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THE p-ADIC DIAPHONY OF THE HALTON SEQUENCE

Friedrich Pillichshammer

Abstract: The p-adic diaphony as introduced by Hellekalek is a quantitative measure for the
irregularity of distribution of a sequence in the unit cube. In this paper we show how this notion
of diaphony can be interpreted as worst-case integration error in a certain reproducing kernel
Hilbert space. Our main result is an upper bound on the p-adic diaphony of the Halton sequence.
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1. Introduction

In many applications, like numerical integration using Monte Carlo or quasi-Monte
Carlo algorithms, where random number generators or low discrepancy sequences
are used, the success of the algorithm often depends on the distribution properties
of the underlying point set. Consequently various measures for the irregularity of
the distribution of sequences in the unit cube have been introduced and analyzed.
Some of them stem from numerical integration where the worst-case integration
error has been analyzed, others are based in geometrical concepts or on specific
function systems, see, for example, [3, 4, 10, 11, 12].

For a function space H of functions f defined on [0, 1]s with norm ∥ · ∥ the
worst-case error e(H , ω) using a quasi-Monte Carlo rule 1

N

∑N−1
n=0 f(xn) based on

a sequence ω = (xn)n∈N0 in the unit cube [0, 1)s, is given by

e(H , ω) := sup
f∈H
∥f∥61

∣∣∣∣∣
∫
[0,1]s

f(x) dx− 1

N

N−1∑
n=0

f(xn)

∣∣∣∣∣ . (1)
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For a given function space and norm, this worst-case error then only depends
on the sequence used. In some cases this worst-case error can be related to the
discrepancy of the sequence which is a geometric measure for the irregularity of
the distribution of a sequence, see [3, 9, 13].

In this paper we deal with a further measure of the irregularity of distribution
which is called diaphony and which is based on certain function systems. The
classical diaphony introduced by Zinterhof [14] (see also [4, Definition 1.29] or [10,
Exercise 5.27, p. 162]) is based on the trigonometric function system. Later the
concept of dyadic diaphony, which is based on Walsh functions in base b = 2,
was introduced by Hellekalek and Leeb [8]. This concept has been generalized
by Grozdanov and Stoilova [5] to general integer bases b > 2. Although these
diaphonies are quantitative measures for the irregularity of distribution of arbitrary
sequences each of them is particularly suited to analyze a special class of sequences.
For example, the classical diaphony is suitable to analyze (nα)-sequences and
lattice point sets and the diaphony based on Walsh functions is especially useful
to analyze (t, s)-sequences and (t,m, s)-nets in suitable bases.

Quite recently Hellekalek [7] introduced a further notion of diaphony which is
based on the p-adic function system. This notion of so-called p-adic diaphony is
especially useful to analyze distribution properties of the Halton sequence.

The exact definition of the the p-adic function system and of p-adic diaphony
according to [7] will be presented in the next section. In Section 3 we show how the
p-adic diaphony can be interpreted as the worst-case integration error of functions
from a certain reproducing kernel Hilbert space. The main result of this paper
is presented in Section 4 where we estimate the p-adic diaphony of the Halton
sequence.

2. Definition of p-adic diaphony

In this section we present the definition of p-adic diaphony as introduced by
Hellekalek [7]. Before we do so we need to introduce some notation. We follow
[7, Section 2] and [6, Section 2].

Let P denote the set of prime numbers. For p ∈ P we define the set of p-adic
numbers as the set of formal sums

Zp =

{
z =

∞∑
r=0

zrp
r : zr ∈ {0, . . . , p− 1} for all r ∈ N0

}
.

The set N0 of non-negative integers is a subset of Zp. For two non-negative integers
y, z ∈ Zp, the sum y+z ∈ Zp is defined as the usual sum of integers. The addition
can be extended to all p-adic numbers and, with this addition, Zp forms an abelian
group.

Define the so-called Monna-map ϕp : Zp → [0, 1) by

ϕp(z) =
∞∑
r=0

zrp
−r−1 (mod 1).
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We also define the inverse ϕ+p : [0, 1)→ Zp by

ϕ+p

( ∞∑
r=0

xrp
−r−1

)
=

∞∑
r=0

xrp
r,

where we always use the finite p-adic representation for p-adic rationals in [0, 1).
For k ∈ N0 we can define characters χk : Zp → {c ∈ C : |c| = 1} of Zp by

χk(z) = exp(2πiϕp(k)z).

These functions satisfy χk(y+z) = χk(y)χk(z), χk(0) = 1, χ0(z) = 1, χk(z)χl(z) =
χϕ+

p (ϕp(k)+ϕp(l) (mod 1))(z).
Let γk : [0, 1)→ {c ∈ C : |c| = 1} where

γk(x) = χk(ϕ
+
p (x)).

We have γk(x)γl(x) = γϕ+
p (ϕp(k)+ϕp(l) (mod 1))(x) and γk(x) = γϕ+

p (−ϕp(k) (mod 1))(x).
We call γk the k-th p-adic function.

For p = (p1, . . . , ps) ∈ Ps, k = (k1, . . . , ks) ∈ Ns
0 and for x = (x1, . . . , xs) ∈

[0, 1)s define the k-th p-adic function by

γk(x) :=
s∏

i=1

γki(xi).

Remark 1 (ONB property). It has been shown by Hellekalek [7, Corollary 3.10]
that the system {γk : k ∈ Ns

0} is an orthonormal basis of L2([0, 1]
s).

For p = (p1, . . . , ps) ∈ Ps and for k = (k1, . . . , ks) ∈ Ns
0 we put ρp(k) =∏s

j=1 ρpj (kj) where for p ∈ P we put ρp(0) = 1 and ρp(k) = p−2t for k ∈ N
satisfying pt 6 k < pt+1 for some t ∈ N0.

Now we can state the formal definition of p-adic diaphony according to
Hellekalek [7].

Definition 1 (Hellekalek [7]). Let s ∈ N and p ∈ Ps. The p-adic diaphony of
a sequence ω = (xn)n∈N0 in [0, 1)s is defined as

FN (ω) =

 1

σp − 1

∑
k∈Ns

0\{0}

ρp(k)

∣∣∣∣∣ 1N
N−1∑
n=0

γk(xn)

∣∣∣∣∣
2
1/2

,

where σp :=
∏s

i=1(pi + 1).

Note that the p-adic diaphony is normalized, i.e., for any sequence ω and for
any N ∈ N we have 0 6 FN (ω) 6 1. It has been shown in [7, Theorem 3.14] that
the p-adic diaphony is a quantitative measure for the irregularity of distribution
modulo one of a sequence. In fact, a sequence ω is uniformly distributed modulo
one if and only if limN→∞ FN (ω) = 0. In [7, Theorem 3.16] it has been shown that
for p = (p, . . . , p) the p-adic diaphony of a regular lattice consisting of N = pgs

elements is of order (logN)1/2/N1/s. In Section 4 we will show that the p-dic
diaphony of the first N elements of the Halton sequence is of order (logN)s/2/N .
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3. The p-adic diaphony and quasi-Monte Carlo integration

Define the function

Kp,s(x,y) :=
∑
k∈Ns

0

ρp(k)γk(x)γk(y).

Then we can write the p-adic diaphony as

FN (ω) =

(
1

σp − 1

(
−1 + 1

N2

N−1∑
n,m=0

Kp,s(xn,xm)

))1/2

. (2)

We define an inner product by

⟨f, g⟩p,s =
∑
k∈Ns

0

ρp(k)
−1f̂(k)ĝ(k),

with k = (k1, . . . , ks) and

f̂(k) :=

∫
[0,1]s

f(x)γk(x) dx.

A norm is given by ||f ||p,s := ⟨f, f⟩1/2p,s . (In the sequel we omit the index s whenever
s = 1.) Now Kp,s can be shown to be the reproducing kernel of the function space

Hp,s = Hp1 ⊗ . . .⊗Hps

which is the s-fold tensor product of function spaces of the form

Hp := {f : ||f ||p <∞}.

From the general theory of reproducing kernel Hilbert spaces (see, for example, [1])
it is known that it suffices to prove this for the one-dimensional case. Let

Kp(x, y) :=

∞∑
k=0

ρp(k)γk(x)γk(y)

and note that we have Kp(x, y) = Kp(y, x). In fact, the kernel Kp is a real
function as γk(x) = γϕ+

p (−ϕp(k) (mod 1))(x) and ρp(k) = ρp(ϕ
+
p (−ϕp(k) (mod 1))).

Hence Kp(x, y) = Kp(y, x).
We have Kp(·, y) ∈Hp as

||Kp(·, y)||2p =
∞∑
k=0

ρp(k) = 1 + p <∞.

Further we have

⟨f,Kp(·, y)⟩p =
∞∑
k=0

f̂(k)γk(y) = f(y).
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Therefore Kp is the reproducing kernel of the space Hp. Since

Kp,s(x,y) =
s∏

i=1

Kpi(xi, yi)

it follows that Kp,s is the reproducing kernel of Hp,s.
Using [3, Proposition 2.11] it follows that the squared worst-case integration

error of functions from Hp,s is given by

e2(Hp,s, ω) = −1 +
1

N2

N−1∑
n,m=0

Kp,s(xn,xm). (3)

Combining (2) and (3) we obtain the following result.

Proposition 1. Let s ∈ N and p ∈ Ps. Then the worst-case integration error in
Hp,s and the p-adic diaphony of a sequence ω in [0, 1)s are related by

e(Hp,s, ω) =
√
σp − 1FN (ω).

We now show that the reproducing kernel Kp can be written in a concise form.
Let e(x) := exp(2πix). Note that for x ∈ [0, 1) and n ∈ Z we have e(x+n) = e(x).

We have γ0(x) = 1. For k = κ0+ · · ·+κapa ∈ N and x = x1p
−1+x2p

−2+ · · · ∈
[0, 1) we have

γk(x) = e
((
κ0p

−1 + · · ·+ κap
−a−1

)
(x1 + x2p+ · · · )

)
= e

(
1

p
(κ0x1 + · · ·+ κaxa+1) + · · ·+

1

pa+1
κax1

)
.

Let a ∈ N and 0 6 l < p be fixed, then

(l+1)pa−1∑
k=lpa

γk(x) = e(l
(
xa+1p

−1 + · · ·+ x1p
−a−1

)
)

×
p−1∑
κ0=0

e(κ0x1p
−1)

p−1∑
κ1=0

e(κ1
(
x2p

−1 + x1p
−2
)
)

× · · ·
p−1∑

κa−1=0

e(κa−1

(
xap

−1 + · · ·+ x1p
−a
)
)

=

{
e(lxa+1p

−1)pa if x1 = · · · = xa = 0,

0 otherwise.

Hence

(l+1)pa−1∑
k=lpa

γk(x)γk(y) =

{
e(l(xa+1 − ya+1)p

−1)pa if x1 = y1, . . . , xa = ya,

0 otherwise.
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Now we obtain

Kp(x, y) = 1 +

∞∑
a=0

1

p2a

p−1∑
l=1

(l+1)pa−1∑
k=lpa

γk(x)γk(y).

If x = y, then we have

Kp(x, y) = 1 +
∞∑
a=0

1

p2a

p−1∑
l=1

pa = 1 + p.

If x ̸= y, more precisely, if xi = yi for i = 1, . . . , i0− 1 and xi0 ̸= yi0 , then we have

Kp(x, y) = 1 +

(
i0−2∑
a=0

(p− 1)pa

p2a
+

pi0−1

p2(i0−1)

p−1∑
l=1

e(l(xi0 − yi0)p−1)

)

= 1 +

(
i0−2∑
a=0

p− 1

pa
− 1

pi0−1

)

= 1 +

(
p− p+ 1

pi0−1

)
.

Using the definition

θp(x, y) :=

{
p if x = y,

p− p1−i0(p+ 1) if xi0 ̸= yi0 and xi = yi for i = 1, . . . , i0 − 1,
(4)

we have
Kp(x, y) = 1 + θp(x, y).

The function θp can easily be computed and therefore also the reproducing kernels
Kp and Kp,s, respectively, can easily be computed. Together with (2) we obtain
the following computable formula for the p-adic diaphony.

Proposition 2. Let s ∈ N and p ∈ Ps. The p-adic diaphony of a sequence
ω = (xn)n∈N0 in [0, 1)s, where xn = (xn,1, . . . , xn,s) for n ∈ N0, can be written as

FN (ω) =

(
1

σp − 1

(
−1 + 1

N2

N−1∑
n,m=0

s∏
i=1

(1 + θpi(xn,i, xm,i))

))1/2

,

where θp is defined by (4).

Remark 2. Note that Kp(x, y) = Kwal(x, y) where Kwal is a reproducing kernel
for the so-called Wash space. We refer to [2] for an exact definition and for some
background. Hence it follows from [2] and from our considerations here that for
p = (p, . . . , p) the p-adic diaphony and the diaphony based on Walsh functions in
base b = p coincide.
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4. The p-adic diaphony of the Halton sequence

In this section we present the main result of this paper. We analyze the p-adic
diaphony of the Halton sequence. The s-dimensional Halton sequence in pairwise
different prime bases p1, . . . , ps is defined by xn = (ϕp1(n), . . . , ϕps(n)) for n ∈ N0.

Theorem 1. Let ω be the Halton sequence in pairwise different prime bases
p1, . . . , ps. Then for any N ∈ N we have

F 2
N (ω) 6 c(p, s)

(logN)s

N2
+
d(p, s)

N2
,

where c(p, s) = 1
σp−1

π2

3

(∏s
j=1

(
1 + 2

p2
j

log pj

))
and d(p, s) = 2smax16i6s pi.

For the proof of Theorem 1 we need the following lemma:

Lemma 1. Let ω = (xn)n∈N0 be the Halton sequence in pairwise different prime
bases p1, . . . , ps. Then for any N ∈ N and any k ∈ Ns

0 \ {0} we have∣∣∣∣∣
N−1∑
n=0

γk(xn)

∣∣∣∣∣ 6 1

∥
∑s

j=1 ϕpj (kj)∥
,

where ∥x∥ denotes the distance to the nearest integer of a real x, i.e., ∥x∥ :=
min(x− ⌊x⌋, 1− (x− ⌊x⌋)).

Proof. Again we use the notation e(x) := exp(2πix). Since p1, . . . , ps are pairwise
different prime numbers it follows that

∑s
j=1 ϕpj (kj) ̸∈ Z. Hence we have

N−1∑
n=0

γk(xn) =
N−1∑
n=0

e

n s∑
j=1

ϕpj (kj)

 =
e(N

∑s
j=1 ϕpj (kj))− 1

e(
∑s

j=1 ϕpj (kj))− 1
,

and further∣∣∣∣∣
N−1∑
n=0

γk(xn)

∣∣∣∣∣ 6 2

|e(
∑s

j=1 ϕpj (kj))− 1|
=

1

| sin(π
∑s

j=1 ϕpj (kj))|

6 1

∥
∑s

j=1 ϕpj (kj)∥
. �

For the proof of Theorem 1 we need some further notation: for g = (g1, . . . , gs) ∈
Ns let

∆p(g) = {k = (k1, . . . , ks) ∈ Ns
0 : 0 6 ki < pgii for all 1 6 i 6 s}

and let

∆p(g) = {k = (k1, . . . , ks) ∈ Ns : 1 6 ki < pgii for all 1 6 i 6 s}.

Furthermore, let ∆∗
p(g) = ∆p(g) \ {0}.
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Now we give the proof of Theorem 1.

Proof. It is shown in [7, Proof of Theorem 3.24] that for arbitrary g = (g1, . . . , gs) ∈
Ns we have

F 2
N (ω) 6 1

σp − 1

∑
k∈∆∗

p(g)

ρp(k)

∣∣∣∣∣ 1N
N−1∑
n=0

γk(xn)

∣∣∣∣∣
2

+
σp − σp(g)
σp − 1

,

where

σp(g) =
s∏

i=1

(pi + 1− p1−gi
i ).

Let

Σ :=
∑

k∈∆∗
p(g)

ρp(k)

∣∣∣∣∣ 1N
N−1∑
n=0

γk(xn)

∣∣∣∣∣
2

.

From Lemma 1 we obtain

Σ 6 1

N2

∑
k∈∆∗

p(g)

ρp(k)

∥
∑s

j=1 ϕpj (kj)∥2

=
1

N2

∑
∅≠u⊆[s]

∑
ku∈∆pu (gu)

∏
j∈u ρpj (kj)

∥
∑

j∈u ϕpj (kj)∥2
, (5)

where [s] := {1, . . . , s} and for u ⊆ [s] and k = (k1, . . . , ks) we write ku = (kj)j∈u

and analogously for pu and gu.
We show that

∑
ku∈∆pu (gu)

∏
j∈u ρpj (kj)

∥
∑

j∈u ϕpj (kj)∥2
6 π2

3

∏
j∈u

gjp
2
j . (6)

W.l.o.g. we may assume that u = {1, . . . , t} =: [t]. Then we have

∑
k[t]∈∆p[t]

(g[t])

∏t
j=1 ρpj (kj)

∥
∑t

j=1 ϕpj (kj)∥2

=

g1−1∑
u1=0

. . .

gt−1∑
ut=0

1

p2u1
1 · · · p2ut

t

p
u1+1
1 −1∑
k1=p

u1
1

. . .

p
ut+1
t −1∑
kt=p

ut
t

1

∥
∑t

j=1 ϕpj (kj)∥2
.

(7)
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We show that

p
u1+1
1 −1∑
k1=p

u1
1

. . .

p
ut+1
t −1∑
kt=p

ut
t

1

∥
∑t

j=1 ϕpj (kj)∥2
6 π2

3

t∏
j=1

p
2uj+2
j . (8)

Any kj ∈ {p
uj

j , . . . , p
uj+1
j −1} has pj-adic expansion of the form kj = κj,0+κj,1pj+

κj,2p
2
j + · · ·+ κj,ujp

uj

j with κj,uj ̸= 0 and hence we have

ϕpj (kj) =
κj,0
pj

+ · · ·+
κj,uj

puj+1
=:

Aj

p
uj+1
j

.

Note that Aj ∈ {1, . . . , p
uj+1
j − 1}. Hence we have

p
u1+1
1 −1∑
k1=p

u1
1

. . .

p
ut+1
t −1∑
kt=p

ut
t

1

∥
∑t

j=1 ϕpj (kj)∥2

6
p
u1+1
1 −1∑
A1=1

. . .

p
ut+1
t −1∑
At=1

∥∥∥∥∥∥
t∑

j=1

Aj

p
uj+1
j

∥∥∥∥∥∥
−2

=

p
u1+1
1 −1∑
A1=1

. . .

p
ut+1
t −1∑
At=1

∥∥∥∥∥∥∥
 t∑

j=1

Aj

t∏
i=1
i ̸=j

pui+1
i

 1∏t
j=1 p

uj+1
j

∥∥∥∥∥∥∥
−2

.

Assume for 1 6 j 6 t there are Aj , Bj ∈ {1, . . . , p
uj+1
j − 1}, such that

t∑
j=1

Aj

t∏
i=1
i ̸=j

pui+1
i ≡

t∑
j=1

Bj

t∏
i=1
i ̸=j

pui+1
i (mod

t∏
j=1

p
uj+1
j ).

Then for any index j0 ∈ {1, . . . , t} we have

(Aj0 −Bj0)
t∏

i=1
i ̸=j0

p
uj+1
j ≡

t∑
j=1
j ̸=j0

(Bj −Aj)
∏
i=1
i ̸=j

p
uj+1
j ≡ 0 (mod p

uj0+1
j0

).

Since gcd(pj0 , pi) = 1 for any i ̸= j0 it follows that Aj0 − Bj0 ≡ 0 (mod p
uj0+1
j0

).
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But since |Aj0 −Bj0 | < p
uj0+1
j0

it follows that Aj0 = Bj0 . Hence it follows that

p
u1+1
1 −1∑
k1=p

u1
1

. . .

p
ut+1
t −1∑
kt=p

ut
t

1

∥
∑t

j=1 ϕpj (kj)∥2
6

∏t
j=1 p

uj+1

j −1∑
a=1

∥∥∥∥∥ a∏t
j=1 p

uj+1
j

∥∥∥∥∥
−2

=
∑

16a< 1
2

∏t
j=1 p

uj+1

j

(
a∏t

j=1 p
uj+1
j

)−2

+
∑

1
2

∏t
j=1 p

uj+1

j 6a<
∏t

j=1 p
uj+1

j

(
1− a∏t

j=1 p
uj+1
j

)−2

=
t∏

j=1

p
2uj+2
j

 ∑
16a< 1

2

∏t
j=1 p

uj+1

j

1

a2

+
∑

1
2

∏t
j=1 p

uj+1

j 6a<
∏t

j=1 p
uj+1

j

1(∏t
j=1 p

uj+1
j − a

)2


6 2
t∏

j=1

p
2uj+2
j

∞∑
a=1

1

a2
=
π2

3

t∏
j=1

p
2uj+2
j

and hence (8) is shown.
Inserting (8) into (7) gives

∑
k[t]∈∆p[t]

(g[t])

∏t
j=1 ρpj (kj)

∥
∑t

j=1 ϕpj (kj)∥2
6 π2

3

t∏
j=1

gjp
2
j

and hence (6) is shown.
Now, inserting (6) into (5) gives

Σ 6 π2

3

1

N2

∑
∅̸=u⊆[s]

∏
j∈u

gjp
2
j =

π2

3

1

N2

−1 + s∏
j=1

(
1 + gjp

2
j

) .

Now we have

F 2
N (ω) 6 1

σp − 1

π2

3

1

N2

−1 + s∏
j=1

(
1 + gjp

2
j

)+
σp − σp(g)
σp − 1

.
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Choosing gj = ⌊2 logpj
N⌋ we obtain

σp − σp(g) = σp

(
1−

s∏
i=1

(
1− pi

(pi + 1)pgii

))

6 σp

(
1−

s∏
i=1

(
1− 1

pgii

))

6 σp

(
1−

s∏
i=1

(
1− pi

N2

))
6 σp

smax16i6s pi
N2

.

Hence

F 2
N (ω) 6 1

σp − 1

π2

3

1

N2

−1 + s∏
j=1

(
1 +

2p2j logN

log pj

)+
σp

σp − 1

smax16i6s pi
N2

6 1

σp − 1

π2

3

 s∏
j=1

(
1 +

2p2j
log pj

) (logN)s

N2
+

2smax16i6s pi
N2

and the result follows. �
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