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DECOMPOSITION THEOREMS FOR HILBERT MODULAR
FORMS

Benjamin Linowitz

Abstract: Let S +
k (N ,Φ) denote the space generated by Hilbert modular newforms (over a fixed

totally real field K) of weight k, level N and Hecke character Φ. In this paper we examine the
behavior of S +

k (N ,Φ) under twists (by a Hecke character). We show how this space may be
decomposed into a direct sum of twists of other spaces of newforms. This sheds light on the
behavior of a newform under a character twist: the exact level of the twist of a newform, when
such a twist is itself a newform, and when a newform may be realized as the twist of a primitive
newform. In certain cases it is shown that the entire space S +

k (N ,Φ) can be represented as
a direct sum of twists of primitive nebenspaces. This adds perspective to the Jacquet-Langlands
correspondence, which characterizes those elements of S +

k (N ,Φ) not representable as theta series
arising from a quaternion algebra as being precisely those forms which are twists of primitive
nebenforms. It follows that in these cases no newforms arise from a quaternion algebra. These
results were proven for elliptic modular forms by Hijikata, Pizer and Shemanske by employing
the Eichler-Selberg trace formula.
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1. Introduction

Let K be a totally real number field. In this paper we study the structure of
spaces of Hilbert modular cusp forms over K. Shimura [11] showed that these
spaces possess a newform theory, so it suffices to restrict our attention to spaces
of Hilbert modular newforms. In order to understand these spaces, one often
studies the behavior of newforms under character twists. Motivation for studying
newforms via their character twists ranges from Weil’s converse theorem [13] to the
Jacquet-Langlands correspondence [7, Theorem 16.1], which characterizes those
newforms not representable as a theta series arising from a quaternion algebra as
being precisely those which are twists of primitive nebenforms.

More specifically, we are interested in extending to the Hibert modular setting
a number of results about elliptic modular newforms which concern the behavior
under character twists of both individual newforms and spaces generated by new-
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forms. For the elliptic case there were two perspectives. The first was that of Atkin
and Li [1], who proved a number of important theorems about twists of newforms.
In particular they determined the exact level of the twist of a newform and shed
light on when the twist of a newform is itself a newform. The second perspective
was that of Hijikata, Pizer and Shemanske [6], who used the Eichler-Selberg trace
formula for Hecke operators in order to prove structural results about the space
generated by newforms of a fixed weight, level and character and in particular to
decompose such a space into sums of twists of other spaces generated by newforms.
The latter perspective, in which one studies the behavior of the space generated
by newforms under character twists, is an important strengthening of the former
perspective. Indeed, one can deduce many properties about twists of individual
newforms in a straightforward manner from the aforementioned decomposition
theorems.

It is not difficult to show that when one twists a (Hilbert modular) newform
by a character whose conductor is coprime to the level, the resulting modular
form is always a newform (of suitable character and level). The complementary
situation, in which the twist is by a character whose conductor is a power of a prime
dividing the level, is considerably more subtle and is the focus of this paper. That
the latter situation is indeed more subtle can be seen in the following theorem (our
Theorem 3.11), which makes clear the fragile dependence of the twist of a newform
being a newform upon both the conductor of the twisting character and the level
of the newform being twisted (see Section 2 for notation and terminology).

Theorem 1.1. Let N be an integral ideal which we decompose as N = P N 0 for P
a power of a prime ideal p coprime to N 0. Set ν = ordp(P). Let ϕ be a numerical
character modulo N and Φ a Hecke character extending ϕϕ∞.Write Φ = ΦPΦN 0

and denote the finite part of the conductor of ΦP by pe(ΦP). Let Ψ be a Hecke
character whose conductor has finite part a power of p.

If 0 < e(Ψ) < ν
2 and e(ΦP) + e(Ψ) < ν then

S +
k (N ,Φ)Ψ = S +

k (N ,Ψ2Φ).

In the vein of studying twists of individual newforms we have Theorem 3.14,
which gives necessary and sufficient conditions for a newform to be represented as
the twist of a newform in terms of the vanishing of certain Fourier coefficients, the
level of the newform and the conductor of the twisting character.

Many of our theorems deal with the structure of the entire space generated
by newforms and its twists by various characters. Our motivation for studying
structural properties of twists of the space generated by newforms is the Jacquet-
Langlands correspondence, which implies that the complement of the subspace
generated by theta series arising from a quaternion algebra is a sum of twists of
primitive nebenspaces. A concrete realization of this can be found in [6], where
explicit structure theorems were developed in order to facilitate a solution to Eich-
ler’s basis problem [5].
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As the object of our study is the space generated by newforms, it is natural
to make use of Hecke theory. The general approach of Hijikata, Pizer and She-
manske [6] was to establish isomorphisms between spaces of newforms and twists
of spaces of newforms as modules for the Hecke algebra. They did this by estab-
lishing identities between traces of Hecke operators acting on these spaces. This
involves using the Eichler-Selberg trace formula and in particular Hijikata’s explicit
formula [4] for the trace of a Hecke operator acting on a space of cusp forms.

Of course using trace formulae in the Hilbert modular setting might be seen as
a natural way to extend some of the aforementioned theorems. However, formidable
complications quickly arise, even when one tries to compute an explicit formula
for the trace of the Hecke operator T (1). In our generalization we are able in
a number of cases to avoid the use of trace formulae and use only properties of
newforms that were proven in the elliptic case by Li [8], and Atkin-Li [1], and
later extended to the Hilbert modular case by Shemanske-Walling [9]. Our results
are therefore new for Hilbert modular forms over totally real number fields other
than Q and provide simplified proofs when specialized to the elliptic case.

The following theorem (our Theorem 3.12; see Section 2 for notation and ter-
minology) adds perspective to the Jacquet-Langlands correspondence by showing
that in certain cases the entire space generated by newforms can be represented
as a sum of twists of primitive nebenspaces. In these cases it follows that no
newforms arise from theta series coming from a quaternion algebra.

Theorem 1.2. Let N be an integral ideal which we decompose as N = P N 0 for
P a power of a prime ideal p coprime to N 0. Set ν = ordp P. Let ϕ be a numerical
character modulo N and Φ be a Hecke character extending ϕϕ∞ which satisfies
ν
2 < e(ΦP) = ordp(fΦP ) < ν. Then

S +
k (N ,Φ) =

⊕
e(Ψ)=ν−e(ΦP)

S +
k (pe(ΦP)N0,Ψ

2Φ)Ψ,

where the sum
⊕

e(Ψ)=ν−e(ΦP) is taken over all p-primary Hecke characters Ψ with
conductor pν−e(ΦP) and infinite part Ψ∞(a) = sgn(a)l for l ∈ Zn and a ∈ K×

∞.

It is our pleasure to thank Tom Shemanske for his encouragement and for
commenting on several drafts of this paper.

2. Notation and Preliminaries

For the most part we follow the notation of [9, 10, 11]. However, to make this
paper somewhat self-contained, we shall briefly review the basic definitions of the
functions and operators which we shall study.

Let K be a totally real number field of degree n over Q with ring of integers
O, group of units O× and totally positive units O×

+ . Let d be the different of K.
If q is a finite prime of K, we denote by Kq the completion of K at q, Oq the
valuation ring of Kq, and πq a local uniformizer.
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We denote by KA the ring of K-adeles and by K×
A the group of K-ideles. As

usual we view K as a subgroup of KA via the diagonal embedding. If α̃ ∈ K×
A , we

let α̃∞ denote the archimedean part of α̃ and α̃0 the finite part of α̃. If J is an
integral ideal we let α̃J denote the J -part of α̃.

For an integral ideal N we define a numerical character ϕ modulo N to be
a character ϕ : (O/N )× → C×, and a Hecke character to be a continuous character
on the idele class group: Φ : K×

A/K
× → C×. We denote the induced character on

K×
A by Φ as well. Every Hecke character is of the form Φ(α̃) =

∏
ν Φν(αν) where

each Φν is a character Φν : K×
ν −→ C×. The conductor, cond(Φ), of Φ is defined

to be the modulus whose finite part is fΦ (see [3]) and whose infinite part is the
formal product of those archimedean primes ν for which Φν is nontrivial. In the
case that fΦ is a power of a single prime q, we define the exponential conductor
e(Φ) to be the integer such that fΦ = qe(Φ). We adopt the convention that ϕ and ψ
will always denote numerical characters and Φ and Ψ will denote Hecke characters.

For a fractional ideal I and integral ideal N , define

Γ0(N , I) = {A ∈
(

O I−1 d-1

N I d O

)
: detA ∈ O×

+}.

Let θ : O×
+ → C× be a character of finite order and note that there exists an

element m ∈ Rn such that θ(a) = aim for all totally positive a. While such an m
is not unique, we shall fix one such m for the remainder of this paper.

Let k = (k1, ..., kn) ∈ Zn
+ and ϕ be a numerical character modulo N .

Following Shimura [10, 11], we define Mk(Γ0(N , I), ϕ, θ) to be the complex
vector space of classical Hilbert modular forms on Γ0(N , I).

It is well known that the space classical Hilbert modular forms of a fixed weight,
character and congruence subgroup is not invariant under the entire Hecke algebra
(see the introduction to [12] for a related discussion). We therefore consider the
larger space of adelic Hilbert modular forms, which is invariant under the Hecke
algebra. Our construction closely follows that of Shimura [11].

Fix a set of strict ideal class representatives I1, ..., Ih of K, set Γλ = Γ0(N , Iλ),
and put

Mk(N , ϕ, θ) =

h∏
λ=1

Mk(Γλ, ϕ, θ).

We are interested in studying h-tuples (f1, ..., fh) ∈ Mk(N , ϕ, θ).
Let GA = GL2(KA) and view GK = GL2(K) as a subgroup of GA via the

diagonal embedding. Denote by G∞ = GL2(R)n the archimedean part of GA. For
an integral ideal N of O and a prime p, let

Yp(N ) =

{
A =

(
a b
c d

)
∈
(

Op d-1 Op

N dOp Op

)
: detA ∈ K×

p , (aOp,N Op) = 1

}
,

Wp(N ) =
{
x ∈ Yp(N ) : detx ∈ O×

p

}
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and put

Y = Y (N ) = GA ∩

(
G∞+ ×

∏
p

Yp(N )

)
, W =W (N ) = G∞+ ×

∏
p

Wp(N ).

Given a numerical character ϕmodulo N define a homomorphism ϕY : Y → C×

by setting ϕY (
(
ã ∗
∗ ∗

)
) = ϕ(ãN mod N ).

Given a fractional ideal I of K define Ĩ = (Iν)ν to be a fixed idele such that

I∞ = 1 and ĨO = I. For λ = 1, ..., h, set xλ =

(
1 0

0 Ĩλ

)
∈ GA. By the Strong

Approximation theorem

GA =
h∪

λ=1

GKxλW =
h∪

λ=1

GKx
−ι
λ W,

where ι denotes the canonical involution on two-by-two matrices.
For an h-tuple (f1, ..., fh) ∈ Mk(N , ϕ, θ) we define a function f : GA → C by

f(αx−ι
λ w) = ϕY (w

ι) det(w∞)im(fλ | w∞)(i)

for α ∈ GK , w ∈W (N ) and i = (i, ..., i) (with i =
√
−1). Here

fλ |
(
a b
c d

)
(τ) = (ad− bc)

k
2 (cτ + d)−kfλ

(
aτ + b

cτ + d

)
.

We identify Mk(N , ϕ, θ) with the set of functions f : GA → C satisfying

1. f(αxw) = ϕY (w
ι) f(x) for all α ∈ GK , x ∈ GA, w ∈W (N ), w∞ = 1

2. For each λ there exists an element fλ ∈Mk such that

f(x−ι
λ y) = det(y)im(fλ | y)(i)

for all y ∈ G∞+.

We denote by Sk(N , ϕ, θ) the subspace of cusp forms of Mk(N , ϕ, θ).
Let ϕ∞ : K×

A → C× be defined by ϕ∞(ã) = sgn(ã∞)k|ã∞|2im, where m was
defined in the definition of θ. We say that a Hecke character Φ extends ϕϕ∞
if Φ(ã) = ϕ(ãN mod N )ϕ∞(ã) for all ã ∈ K×

∞ ×
∏

p O
×
p . If P∞ denotes the

K-modulus consisting of the product of all the infinite primes of K, then any
Hecke character Φ extending ϕϕ∞ has conductor dividing N P∞. Henceforth we
will use the word conductor to refer to the finite part of the conductor.

If ϕ is a numerical character modulo P N 0 where P = pa is a power of a prime
p and (p,N 0) = 1, then by the Chinese Remainder Theorem we have a decom-
position ϕ = ϕPϕN 0 where ϕP is a numerical character modulo P and ϕN 0 is
a numerical character modulo N 0. If ΦP is a Hecke character extending ϕP (i.e.
trivial infinite part) and ΦN 0 is a Hecke character extending ϕN 0ϕ∞ then it is clear
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that Φ = ΦPΦN 0 . Throughout this paper we shall adopt this convention and de-
compose a Hecke character Φ extending a numerical character modulo P N 0 as
Φ = ΦPΦN 0 where ΦP has trivial infinite part.

Given a Hecke character Φ extending ϕϕ∞ we define an ideal character Φ∗

modulo N P∞ by {
Φ∗(p) = Φ(π̃p) for p - N and π̃O = p,

Φ∗(a) = 0 if (a,N ) ̸= 1

For s̃ ∈ K×
A , define fs̃(x) = f(s̃x). The map s̃ −→

(
f 7→ fs̃

)
defines a unitary

representation of K×
A in Mk(N , ϕ, θ). By Schur’s Lemma the irreducible subrep-

resentations are all one-dimensional (since K×
A is abelian). For a character Φ on

K×
A , let Mk(N ,Φ) denote the subspace of Mk(N , ϕ, θ) consisting of all f for which

fs̃ = Φ(s̃) f and let Sk(N ,Φ) ⊂ Mk(N ,Φ) denote the subspace of cusp forms. If
s ∈ K× then fs = f. It follows that Mk(N ,Φ) is nonempty only when Φ is a Hecke
character.

If f = (f1, ..., fh) ∈ Mk(N , ϕ, θ), then each fλ has a Fourier expansion

fλ(τ) = aλ(0) +
∑

0≪ξ∈Iλ

aλ(ξ)e
2πitr(ξτ).

If m is an integral ideal then we define the m-th ‘Fourier’ coefficient of f by

C(m, f) =

{
N(m)

k0
2 aλ(ξ)ξ

− k
2−im if m = ξI−1

λ ⊂ O
0 otherwise

where k0 = max{k1, ..., kn}.
Given f ∈ Mk(N , ϕ, θ) and y ∈ GA define a slash operator by setting

(f | y)(x) = f(xyι).
For an integral ideal r define the shift operator Br by

f | Br = N(r)−
k0
2 f |

(
1 0
0 r̃−1

)
.

The shift operator maps Mk(N ,Φ) to Mk(rN ,Φ) and takes cusp forms to cusp
forms. Further, C(m, f | Br) = C(mr−1, f). It is clear that f | Br1 | Br2 = f | Br1r2 .

For an integral ideal r the Hecke operator Tr = TN
r maps Mk(N ,Φ) to itself

regardless of whether or not (r,N ) = 1. This action is given on Fourier coefficients
by

C(m, f | Tr) =
∑

m+r⊂a

Φ∗(a)N(a)k0−1C(a−2mr, f).

Like the shift operator, Tr takes cusp forms to cusp forms. Also note that if
(a, r) = 1 then BaTr = TrBa. Given f ∈ Sk(N ,Φ) we define the annihilator
operator Ap by

f | Ap = f− f | Tp | Bp.
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Let S −
k (N ,Φ) be the subspace of Sk(N ,Φ) generated by all g | BQ where

g ∈ Sk(N ′,Φ) for some proper divisor N ′ of N with QN ′ | N . This space is
invariant under the action of the Hecke operators Tr with (r,N ) = 1.

Shimura defines ((2.28) of [11]) a Petersson inner product ⟨f,g⟩ for f,g ∈
Sk(N ,Φ). With respect to this inner product the Hecke operators satisfy

Φ∗(m)⟨f | Tm,g⟩ = ⟨f,g | Tm⟩

for integral ideals m coprime to N . Let S +
k (N ,Φ) denote the orthogonal com-

plement of S −
k (N ,Φ) in Sk(N ,Φ). It follows from our discussion above that

S +
k (N ,Φ) is invariant under the Hecke operators Tr with (r,N ) = 1.

Definition 2.1. A newform f in Sk(N ,Φ) is a form in S +
k (N ,Φ) which is

a simultaneous eigenform for all Hecke operators Tq with q a prime not divid-
ing N . We say that f is normalized if C(O, f) = 1.

As in the classical case, if f ∈ Sk(N ,Φ) is a newform with Hecke eigenvalues
{λp : p is prime}, then C(p, f) = λpC(O, f) for all primes p - N .

Since {Tq : q - N} is commuting family of hermitian operators, S +
k (N ,Φ) has

an orthogonal basis consisting of newforms. If g ∈ S −
k (N ,Φ) is a simultaneous

eigenform for all Tq with q - N then there exists a newform h ∈ S +
k (N ′,Φ) with

N ′ | N having the same eigenvalues as g for all such Tq.
Finally, if f,g ∈ Sk(N ,Φ) are both simultaneous eigenforms for all Hecke

operators Tq with q a prime not dividing N having the same Hecke eigenvalues,
then we say that f is equivalent to g and write f ∼ g. If f is a newform and f ∼ g,
then there exists c ∈ C× such that f = cg. This follows from Theorem 3.5 of [9].

3. Twists of Newforms

Throughout this section p will denote a fixed prime ideal of O.
Fix an integral ideal N and write N = P N0 where P is the p-primary part

of N and (P,N0) = 1.
Fix a space Sk(N ,Φ) ⊂ Sk(N , ϕ, θ), where Φ is a Hecke character extend-

ing ϕϕ∞.

Definition 3.1. If f ∈ Sk(N ,Φ) and Ψ is a Hecke character then we define the
twist of f by Ψ, denoted fΨ, by

fΨ(x) = τ(Ψ)−1Ψ(detx)
∑

r∈f−1
Ψ d−1/d−1

Ψ∞(r)Ψ
∗
(rfΨ d) f | ( 1 r

0 1 )0 (x),

where τ(Ψ) is the Gauss sum associated to Ψ defined in (9.31) of [10] and the
subscript 0 denotes the projection onto the nonarchimedean part. Additionally, set
S +

k (N ,Φ)Ψ = {fΨ : f ∈ S +
k (N ,Φ)}.
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Proposition 3.2. Let notation be as above and set L = lcm{N , fΦ fΨ, f
2
Ψ}.

If f ∈ Sk(N ,Φ) is a normalized newform then fΨ ∈ Sk(L,Ψ2Φ) and C(m, fΨ) =
Ψ∗(m)C(m, f) for all integral ideals m.

Proof. This follows from Propositions 4.4 and 4.5 of [11]. �

The following proposition is trivial to verify using the action of the Hecke
operators on Fourier coefficients.

Proposition 3.3. Let notation be as above and q be a prime with q - fΨ. For
f ∈ Sk(N ,Φ) we have fΨ | Tq = Ψ∗(q)(f | Tq)Ψ.

Although Proposition 3.2 gives an upper bound for the exact level of fΨ, one
can obtain better bounds in certain special cases. Of particular interest to us is
the case in which Ψ = ΦP . The following proposition gives an improved bound on
the level of fΨ in this special case and generalizes Proposition 3.6 of [1].

Proposition 3.4. Let f be the conductor of ΦP . Set

L =

{
N if ordp(f) < ordp(P)

pN if ordp(f) = ordp(P)

If f ∈ Sk(N ,Φ) then fΦP
∈ Sk(L,ΦPΦN0).

Proof. The proof of Proposition 3.4 is analogous to the proof of Proposition 3.6
in [1], though somewhat more tedious as we work adelically. We therefore provide
a rough sketch of the proof and leave the details to the interested reader.

Let α ∈ GK , x ∈ GA and w ∈W (L) with w∞ = 1. We must show that

fΦP
(αxw) = (ϕN0ϕP)Y (w

ι)fΦP
(x).

The first step of the proof is to show that given r ∈ f−1d−1/d−1 there is a unique
r′ ∈ f−1d−1/d−1 such that

w

(
1 −r
0 1

)
0

=

(
1 −r′
0 1

)
0

w′, (3.1)

for some w′ ∈W (N ).
By definition,

fΦP
(αxw) = τ(ΦP)

−1ΦP(det(αxw))
∑

r∈f−1 d-1 / d-1

Φ∗
P(r f d) f | ( 1 r

0 1 )0 (αxw)

= τ(ΦP)
−1ΦP(det(x))ΦP(det(w))

×
∑

r∈f−1 d-1 / d-1

Φ∗
P(r f d) f(αxw

(
1 −r
0 1

)
0
) (3.2)

The proof proceeds by substituting equation (3.1) into equation (3.2). Straight-
forward manipulations now suffice to finish the proof. �
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Throughout this paper we will examine the behavior of normalized newforms
under character twists. The case in which the conductor of the twisting character
is coprime to the level of the newform is straightforward in light of the following
theorem.

Theorem 3.5. Let f ∈ S +
k (N ,Φ) be a normalized newform and Ψ be a Hecke

character whose conductor is coprime to N . Then fΨ is a normalized newform of
S +

k (f2Ψ N ,Ψ2Φ).

Proof. This is Theorem 5.5 of [9]. �

The situation when the conductor of Ψ and the level of f are not coprime is
much more subtle and will be studied throughout the remainder of this paper.
Clearly it suffices to consider characters whose conductor is a power of a single
prime dividing the level N . We therefore suppose that Ψ is a p-primary Hecke
character.

Henceforth we assume that Ψ is a Hecke character with conductor dividing P.
The infinite part of Ψ has the form Ψ∞(a) = sgn(a)l|a|ir for l ∈ Zn, r ∈ Rn and
a ∈ K×

∞. In what follows we shall always choose Ψ so that r = 0.
We will see that the vanishing of C(p, f) lies at the heart of the question of

whether or not fΨ is a newform of Sk(N ,Ψ2Φ). We present a slightly strengthened
version of Theorem 3.3 of [9], which will allow us to determine when C(p, f) ̸= 0.

Theorem 3.6. Let f be a normalized newform lying in Sk(N ,Φ).
1. The Dirichlet series attached to f, D(s, f) =

∑
m⊂O C(m, f)N(m)−s has an

Euler product

D(s, f) =
∏
q0|N

(1− C(q0, f)N(q0)
−s)−1

×
∏
q1-N

(1− C(q1, f)N(q1)
−s +Φ∗(q1)N(q1)

k0−1−2s)−1

2. If ϕ is not defined modulo N p−1, then |C(p, f)| = N(p)
(k0−1)

2 .
3. If ϕ is a character modulo N p−1, then C(p, f) = 0 if p2 | N and |C(p, f)|2 =
N(p)k0−2 if p2 - N .

Proof. The statement of this theorem differs from Theorem 3.3 of [9] only in that
part 2 of the latter showed that either C(p, f) = 0 or |C(p, f)| = N(p)

(k0−1)
2 and

that C(p, f) was non-zero for a set of primes having density 1. Kevin Buzzard has
recently shown that in fact, C(p, f) is never zero (see [2]), allowing us to state the
above theorem in its strengthened form. �

Henceforth we use the letter ν to denote ordp(P) = ordp(N ).

Lemma 3.7. Assume that ν > 2 and that e(ΦP) < ν. If f ∈ S +
k (N ,Φ) is

a normalized newform then fΨΨ = f. In particular,

S +
k (N ,Φ)ΨΨ = S +

k (N ,Φ).



166 Benjamin Linowitz

Proof. It follows immediately from Theorem 3.6.(3) that C(p, f) = 0. Because f
is an eigenform of Tp with eigenvalue C(p, f), C(I p, f) = C(I , f)C(p, f) = 0 for all
integral ideals I . Thus the annihilator operator Ap acts as the identity operator
on the newforms of level N and character Φ. The first part therefore follows from
the observation that fΨΨ = f | Ap. As newforms generate the space S +

k (N ,Φ),
we have the second part as well. �

Proposition 3.8. Assume that ν > 2 and that 0 < e(ΦP) < ν. If f ∈ S +
k (N ,Φ)

is a normalized newform then fΦP
∈ S +

k (N ,ΦPΦN0
) is a newform as well.

Proof. Let f ∈ S +
k (N ,Φ) be a normalized newform. By Propositions 3.3 and

3.4, fΦP
∈ Sk(N ,ΦPΦN0) and is an eigenfunction of all the Hecke operators

Tq with q - N . Thus there exists an ideal N ′
0 | N 0, an integer µ satisfying

1 6 e(ΦP) 6 µ 6 ν and a newform g ∈ S +
k (pµ N ′

0,ΦPΦN0) such that fΦP
∼ g.

We claim that N ′
0 = N 0. Note that f = fΦPΦP

∼ gΦP
by Lemma 3.7, where gΦP

has level pλ N ′
0 for some non-negative integer λ. Thus N 0 | N ′

0, hence N 0 = N ′
0.

If µ = ν then fΦP
and g are of the same level and are both normalized, hence

fΦP
= g is a newform, finishing the proof. We may therefore suppose that µ < ν.

We claim that e(ΦP) < µ. To show this, we will assume that e(ΦP) = e(ΦP) = µ
and derive a contradiction.

Because fΦP
∼ g, we have fΦPΦP

∼ gΦP
as well. By Lemma 3.7, fΦPΦP

= f,
hence f ∼ gΦP

. By Proposition 3.4, gΦP
∈ Sk(p

µ+1 N0,Φ). Therefore ν 6 µ+ 1,
meaning that

µ+ 1 > ν > µ.

It is thus clear than ν = µ+1. This means that f is a newform of level pµ+1 N0

and character Φ and gΦP
is a normalized cuspform in the same space which is

equivalent to it. Therefore f = gΦP
. As C(p,g) ̸= 0 by Theorem 3.6(2), this

contradicts Corollary 6.4 of [9], which implies that gΦP
is not a newform of any

level.
We conclude that e(ΦP) < µ. If µ > 2 then Theorem 3.6(3) implies that the

p-th coefficient C(p,g) of g is zero. Since C(p,g) = 0 we have g = g | Ap. But

fΦP
= cO g+cp g | Bp

and one easily checks by comparing Fourier coefficients that cO = 1 and cp =
−C(p,g). Then fΦP

= g−C(p,g)g | Bp = g | Ap = g. Therefore fΦP
is a newform

and we’re done.
Now suppose that µ = 1. Then e(ΦP) < µ implies that ΦP is trivial. This

contradicts our hypothesis that ΦP is nontrivial. �

Proposition 3.9. Assume that 0 < e(Ψ) < ν
2 and e(ΦP) + e(Ψ) < ν.

If f ∈ S +
k (N ,Φ) is a normalized newform then fΨ ∈ S +

k (N ,Ψ2Φ) is a new-
form as well.
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Proof. We begin by noting that our hypotheses imply that ν > 3. By Proposi-
tion 3.2, fΨ ∈ Sk(p

ν N0,Ψ
2Φ). Thus there exists an ideal N ′

0 | N 0, an integer
µ satisfying 0 6 e(ΦPΨ

2) 6 µ 6 ν and a newform g ∈ S +
k (pµ N ′

0,Ψ
2Φ) such

that fΨ ∼ g. An argument identical to the one used in Proposition 3.8 shows that
N ′

0 = N 0.
We will show that e(ΦPΨ

2) < µ by assuming that e(ΦPΨ
2) = µ and deriving

a contradiction. Let L = max{µ, e(ΦPΨ
2)+ e(Ψ), 2e(Ψ)}. As fΨ ∼ g, we have, by

Lemma 3.7, f = fΨΨ ∼ gΨ where gΨ ∈ Sk(p
L N0,Φ) by Proposition 3.2. Therefore

L > ν. We have three cases to consider.
Case 1: L = 2e(Ψ). In this case 2e(Ψ) > ν implies that e(Ψ) > ν

2 , contradict-
ing our hypothesis that e(Ψ) < ν

2 .
Case 2: L = e(ΦPΨ

2) + e(Ψ). We have three subcases to consider. First
suppose that e(ΦP) > e(Ψ). Then e(ΦPΨ

2) = e(ΦP), hence L > ν implies that
e(ΦP)+ e(Ψ) > ν, contradicting our hypothesis that e(ΦP)+ e(Ψ) < ν. If e(Ψ) >
e(ΦP), then e(Ψ) > e(ΦPΨ

2), hence L > ν implies that 2e(Ψ) > ν, which we have
already seen results in a contradiction. Finally, suppose that e(ΦP) = e(Ψ). Then
e(Ψ) < ν

2 implies that e(ΦP) <
ν
2 and consequently that e(ΦPΨ

2) < ν
2 . But this

means that L = e(ΦPΨ
2) + e(Ψ) < ν, contradicting the fact that L > ν.

Case 3: L = µ. This case cannot occur as we have assumed that e(ΦPΨ
2) = µ,

meaning that e(ΦPΨ
2) + e(Ψ) > µ by the non-triviality of Ψ.

We conclude that e(ΦPΨ
2) < µ . Suppose first that µ > 1. Then Theorem

3.6(3) implies that c(p,g) = 0. As in the proof of Proposition 3.8 we may easily
show that fΨ = g | Ap. But we’ve just shown that g | Ap = g. Therefore fΨ is
a newform and we’re done.

We show that the case µ = 1 cannot occur. Indeed, suppose that µ = 1 (and
hence e(ΦPΨ

2) = 0). Then g is a newform of Sk(pN0,Φ). As fΨ ∼ g, we also
have fΨΨ ∼ gΨ. Our hypotheses imply that ν > 3, so Lemma 3.7 implies that
f = fΨΨ; hence f ∼ gΨ. Theorem 6.1 of [9] implies that gΨ is a newform of
Sk(p

2e(Ψ) N0,Φ), hence Theorem 3.5 of [9] implies that in fact we have f = gΨ.
By comparing the levels of f and gΨ, we see that this means that 2e(Ψ) = ν; i.e.
e(Ψ) = ν

2 . We assumed that e(Ψ) < ν
2 however, so we obtain a contradiction,

finishing our proof. �

Theorem 3.10. If e(ΦP) < ν then S +
k (N ,Φ) = S +

k (N ,ΦPΦN0)
ΦP .

If e(ΦP) = ν and f is a normalized newform in S +
k (N ,ΦPΦN 0), then

fΦP
= g−C(p, g) · g | Bp

for some normalized newform g in S +
k (N ,Φ).

Proof. When K = Q this is Corollary 3.4 of [6].
Note first that the theorem is vacuously true when e(ΦP) = 0. We therefore

assume that e(ΦP) > 1. As a consequence, ν > 2.
Let f ∈ S +

k (N ,ΦPΦN0) be a newform. Applying Proposition 3.8 shows that
fΦP ∈ S +

k (N ,Φ) is a newform. As S +
k (N ,ΦPΦN 0) is generated by newforms, we

have the inclusion
S +

k (N ,ΦPΦN0)
ΦP ⊂ S +

k (N ,Φ). (3.3)



168 Benjamin Linowitz

Now let f ∈ S +
k (N ,Φ). Then as above fΦP

∈ S +
k (N ,ΦPΦN0) (by interchang-

ing ΦP and ΦP in equation 3.3), hence fΦPΦP
∈ S +

k (N ,ΦPΦN0)
ΦP . This gives

us the chain of inclusions

S +
k (N ,Φ)ΦPΦP ⊂ S +

k (N ,ΦPΦN0)
ΦP ⊂ S +

k (N ,Φ).

Lemma 3.7 shows that S +
k (N ,Φ)ΦPΦP = S +

k (N ,Φ), and it follows that

S +
k (N ,Φ) = S +

k (N ,ΦPΦN0)
ΦP .

We now prove the second assertion. Suppose that e(ΦP) = ν. First note that
by Proposition 3.4, fΦP ∈ Sk(p

ν+1 N 0,Φ). By Proposition 3.3, fΦP is a Hecke
eigenform for all Tq with q a prime not dividing N . Thus there exists an integer
µ with e(ΦP) = ν 6 µ 6 ν+1 and a normalized newform g ∈ S +

k (pµ N 0,Φ) such
that fΦP ∼ g. We claim that the case µ = ν+1 cannot occur. Indeed, if µ = ν+1
then g and fΦP would both lie in S +

k (pν+1 N 0,Φ) and our remarks at the end of
Section 2 would imply that fΦP = g is a newform. But Theorem 3.6 shows that
C(p, f) ̸= 0, so that Corollary 6.4 of [9] implies that fΦP is not a newform of any
level. This contradiction allows us to conclude that µ = ν. It then follows from
Proposition 3.4 that gΦP

∈ Sk(p
ν+1 N 0,ΦPΦN 0). Using the fact that g is an

eigenform of Tp (as follows from Theorem 3.5 of [9]), we see that

g−C(p,g) · g | Bp = g−g | Tp | Bp = (gΦP
)ΦP = (c1 f+c2 f | Bp)ΦP

= c1fΦP

Comparing Fourier coefficients yields c1 = 1. �

Theorem 3.11. If 0 < e(Ψ) < ν
2 and e(ΦP) + e(Ψ) < ν then

S +
k (N ,Φ)Ψ = S +

k (N ,Ψ2Φ).

Proof. When K = Q this is Theorem 3.12 of [6]. We begin by noting that our hy-
potheses imply that ν > 3. Let f ∈ S +

k (N ,Φ) be a newform. By Proposition 3.9,
fΨ ∈ S +

k (N ,Ψ2Φ) is a newform. As S +
k (N ,Φ) is generated by newforms, we

have the inclusion
S +

k (N ,Φ)Ψ ⊂ S +
k (N ,Ψ2Φ). (3.4)

Twisting by Ψ yields:

S +
k (N ,Φ)ΨΨ ⊂ S +

k (N ,Ψ2Φ)Ψ. (3.5)

We claim that e(Ψ2ΦP) + e(Ψ) < ν. We have two cases to consider.
Case 1: e(ΦP) <

ν
2 - By hypothesis e(Ψ) < ν

2 . Therefore e(Ψ2ΦP) <
ν
2 , hence

e(Ψ2ΦP) + e(Ψ) < ν.
Case 2: e(ΦP) > ν

2 - We have two subcases to consider. Suppose first that
e(ΦP) > e(Ψ2). Then e(Ψ2ΦP) = e(ΦP) < ν − e(Ψ). Now suppose that e(ΦP) 6
e(Ψ2). Then e(ΦP) 6 e(Ψ2) 6 e(Ψ) < ν

2 . But Case 2 assumes that e(ΦP) > ν
2 , so

this subcase cannot occur and we have shown our claim.
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Having shown that e(Ψ2ΦP) + e(Ψ) < ν, we apply Theorem 5.7 of [9] and
Proposition 3.9 to show that

S +
k (N ,Ψ2Φ)Ψ ⊂ S +

k (N ,Φ). (3.6)

Combining equations (3.5) and (3.6) gives us the chain of inclusions:

S +
k (N ,Φ)ΨΨ ⊂ S +

k (N ,Ψ2Φ)Ψ ⊂ S +
k (N ,Φ).

Lemma 3.7 implies that S +
k (N ,Φ) = S +

k (N ,Ψ2Φ)Ψ.
Twisting by Ψ then yields:

S +
k (N ,Φ)Ψ = S +

k (N ,Ψ2Φ)ΨΨ.

As e(Ψ2ΦP) < ν, Lemma 3.7 shows that S +
k (N ,Ψ2Φ)ΨΨ = S +

k (N ,Ψ2Φ),
finishing the proof. �

Theorem 3.12. If ν
2 < e(ΦP) < ν then

S +
k (N ,Φ) =

⊕
e(Ψ)=ν−e(ΦP)

S +
k (pe(ΦP)N0,Ψ

2Φ)Ψ,

where the sum
⊕

e(Ψ)=ν−e(ΦP) is taken over all Hecke characters Ψ with conductor
pν−e(ΦP) and infinite part Ψ∞(a) = sgn(a)l for l ∈ Zn and a ∈ K×

∞.

Proof. When K = Q this is Theorem 3.9 of [6].
We begin by noting that our hypothesis ν

2 < e(ΦP) < ν implies that ν > 2.
By Theorem 3.6(3) above and Theorem 6.8 of [9] we have the inclusion

S +
k (N ,Φ) ⊂

∑
e(Ψ)=ν−e(ΦP)

S +
k (pe(ΦP)N0,Ψ

2Φ)Ψ.

Our strategy to complete the proof will be to prove the reverse inclusion and then
show that the sum is direct.

Let Ψ be a Hecke character with conductor pν−e(ΦP) and infinite part Ψ∞(a) =
sgn(a)l, and let f ∈ S +

k (pe(ΦP)N0,Ψ
2Φ) be a newform. By Theorem 5.7 of [9]

we have fΨ ∈ Sk(N ,Φ) where N is the exact level of fΨ. By Theorem 3.6(2),
C(p, f) ̸= 0, so by Theorem 6.3 of [9], fΨ is a newform. Therefore for all p-primary
Hecke characters Ψ with e(Ψ) = ν − e(ΦP) we have the inclusion

S +
k (pe(ΦP)N0,Ψ

2Φ)Ψ ⊂ S +
k (N ,Φ).

We have therefore shown that

S +
k (N ,Φ) =

∑
e(Ψ)=ν−e(ΦP)

S +
k (pe(ΦP)N0,Ψ

2Φ)Ψ. (3.7)
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It therefore remains only to show that the sum on the right hand side of
equation 3.7 is direct. We do this by showing that

dim(S +
k (N ,Φ)) =

∑
e(Ψ)=ν−e(ΦP)

dim(S +
k (pe(ΦP)N0,Ψ

2Φ)Ψ).

Given a Hecke character Ψ with e(Ψ) = ν − e(ΦP) and infinite part Ψ∞(a) =
sgn(a)l, fix a basis SΨ of S +

k (pe(ΦP)N0,Ψ
2Φ) consisting of normalized newforms

f1, . . . , fn.
Define

S =
∪
Ψ

{fΨ : f ∈ SΨ}.

We have already shown that the elements of S are all newforms of S +
k (N ,Φ)

and in fact span the space. It therefore suffices to show

1. The (distinct) elements of S are linearly independent
2. #S =

∑
e(Ψ)=ν−e(ΦP) #SΨ =

∑
e(Ψ)=ν−e(ΦP) dim(S +

k (pe(ΦP)N0,Ψ
2Φ)Ψ).

Note that (2) is equivalent to the statement that all the elements fΨ of S are
distinct.

We show that the elements of S are linearly independent by assuming the
contrary and obtaining a contradiction. Suppose that there is a nontrivial relation

m∑
i=1

cihi = 0 (3.8)

where hi ∈ S (for all i), the hi are all distinct, and each ci is a non-zero scalar.
Also assume that m > 2 is minimal in the sense that the elements of any subset
of S having fewer than m elements are linearly independent.

For a prime q which does not divide N , we can apply the linear operator
Tq − C(q,h1)Id to equation 3.8 to get

m∑
i=1

ci(C(q,hi)− C(q,h1))hi.

Note that the coefficient of h1 is zero in the above sum. This means that the
sum has fewer than m summands and hence must be trivial by the minimality of
m. As each ci is non-zero, we conclude that C(q,hi) = C(q,hj) for all 1 6 i, j 6 m
and q - N . As only finitely many primes divide N , Theorem 3.5 of [9] shows that
h1 = h2 = · · · = hm. This contradicts our assumption that the hi are distinct,
proving that the elements of S are linearly independent.

To prove that

#S =
∑

e(Ψ)=ν−e(ΦP)

#SΨ =
∑

e(Ψ)=ν−e(ΦP)

dim(S +
k (pe(ΦP)N0,Ψ

2Φ)Ψ),
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it suffices to show if f ∈ S +
k (pe(ΦP)N0,Ψ

2
0Φ) and g ∈ S +

k (pe(ΦP)N0,Ψ
2
1Φ) are

normalized newforms (with Ψ0,Ψ1 Hecke characters satisfying e(Ψ0) = e(Ψ1) =
ν − e(ΦP)) such that fΨ0

= gΨ1
then Ψ0 = Ψ1 and f = g.

Suppose that f,g are as in the previous paragraph and fΨ0
= gΨ1

. If Ψ0 = Ψ1

then Theorem 3.5 of [9] shows that f = g. Consequently, we may assume that
Ψ0 ̸= Ψ1. Then

f | Ap = fΨ0Ψ0
= gΨ1Ψ0

.

Observe that e(ΦPΨ
2
1) = e(ΦP) (as e(ΦP) > e(Ψ1)) and

0 < e(Ψ1Ψ0) 6 max{e(Ψ1), e(Ψ0)} <
ν

2
< e(ΦP)

by hypothesis. By Corollary 6.4 of [9], gΨ1Ψ0
∈ S +

k (pe(ΦP)+e(Ψ1Ψ0) N0,Ψ
2
0Φ) is

a normalized newform. As f ∼ f | Ap and f | Ap = gΨ1Ψ0
we must have f = gΨ1Ψ0

(by Theorem 3.5 of [9]). This means that f = f | Ap. In particular, the p-th
coefficient of f is zero, contradicting Theorem 3.6(2) and finishing the proof. �

We conclude by presenting an application of the preceding theorems. This
application makes clear the centrality of determining the vanishing of the p-th
‘Fourier’ coefficient of a Hilbert modular form in the study of character twists.
This is a Hilbert modular analogue of Theorem 3.16 of [6].

Before stating the theorem however, we need a definition.

Definition 3.13. A newform g ∈ Sk(N ,Φ) is said to be p-primitive if g is not
the twist of any newform of level N ′ where N ′ is a proper divisor of N by a Hecke
character by a Hecke character whose conductor is a power of p.

Theorem 3.14. Let f ∈ S +
k (N ,Φ) be a normalized newform. The following are

equivalent:

1. C(p, f ) = 0

2. p2 | N and e(ΦP) < ν

3. f = gΨ for some newform g in S +
k (N ′,ΦΨ

2
) for some ideal N ′ dividing N

and some p-primary Hecke character Ψ.

Further, assuming (1), if e(ΦP) >
ν
2 then in (3) g may be chosen so that

ordp(N ′) < ordp(N ) and g is p-primitive.

Proof. (1) implies (2) follows immediately from Theorem 3.6. Now assume (2)
holds. We have two cases to consider. If ΦP is trivial then let Ψ be a p-primary
Hecke character with 0 < e(Ψ) < ν

2 . Theorem 3.11 shows that S +
k (N ,Ψ

2
ΦN 0)

Ψ =

S +
k (N ,ΦN 0) and that there exists a newform g ∈ S +

k (N ,Ψ
2
ΦN 0) such that f =

gΨ. Now suppose that ΦP is nontrivial. Then Theorem 3.10 shows that there exists
a newform g ∈ S +

k (N ,ΦPΦN 0) such that f = gΦP
. We therefore take N ′ = N and

Ψ = ΦP . Finally, assume (3) holds. Then C(p, f) = C(p,gΨ) = Ψ∗(p)C(p,g) = 0
by Proposition 3.2.
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For the final assertion, note that ν
2 < e(ΦP) < ν implies, by Theorem 3.12,

that there exists a newform g ∈ S +
k (pe(ΦP) N 0,Ψ

2Φ) such that f = gΨ, where
Ψ is a p-primary Hecke character with e(Ψ) = ν − e(ΦP). We show that such
a g is p-primitive. It clearly suffices to show that C(p,g) ̸= 0, which follows from
Theorem 3.6 as e(Ψ2ΦP) = e(ΦP) = ordp(p

e(ΦP) N 0). �
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