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PRODUCTS OF CONSECUTIVE VALUES OF SOME QUARTIC
POLYNOMIALS

Artūras Dubickas

Abstract: In this paper, we investigate some special quartic polynomials P whose coefficients
for x4, x3, . . . , 1 are a2, 2a(a+ b), a2+ b2+3ab+2ac, (a+ b)(b+2c), (a+ b+ c)c, where a, b, c ∈ Z,
and consider the question whether the product

∏m
k=1 P (k) is a perfect square for infinitely many

m ∈ N or for only finitely many m ∈ N. The answer depends on the solutions of the Pell type
diophantine equation (a + b + c)(ax2 + bx + c) = y2. Our results imply, for example, that the
product

∏m
k=1(4k

4 +8k2 +9) is a perfect square for infinitely many m ∈ N, whereas the product∏m
k=1(k

4 + 7k2 + 16) is a perfect square for m = 3 only, when it equals 230400 = 4802.
Keywords: integer polynomial, Pell’s equation, perfect square.

1. Introduction

Let P be a polynomial in Z[x] with positive leading coefficient. In general, the
question of whether there are infinitely many or only finitely many positive inte-
gers m (or, more generally, pairs of positive integers ` < m) for which the product∏m
k=1 P (k) (resp.

∏m
k=` P (k)) is a perfect square or a higher power is completely

open. Only in case P (x) = x + b, where b ∈ Z, the theorem of Erdös and Self-
ridge [8] asserting that the product of two or more consecutive integers is never
a power gives a complete answer to this problem. The case of a general linear
polynomial P (x) = ax+ b, where a > 2 and b are integers, has a long history, but
it is not yet completely solved. It has been considered, for instance, in [10] and
[14], where one can find many references on this problem.

In [1], the problem on whether the product
∏m
k=1(k

2 + 1) can be a perfect
square has been raised. (Of course, this corresponds to the quadratic polynomial
P (x) = x2+1.) The negative answer is given in [5]. Similar problems for quadratic
polynomials 4x2 + 1, 2x2 − 2x+ 1 and for polynomials of the form x` + 1, where
` > 2, have been considered in [9] and [2], [3], [4], [17], respectively, whereas some
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special cubic polynomials appear in [12], [15]. In [6], some bounds on the density
of squares in the sequence

∏m
k=1 P (k), m = 1, 2, 3, . . . , have been obtained for

a general irreducible polynomial P ∈ Z[x].

2. Main results

This paper is a continuation and in some sense a generalization of two recent results
([11] and [13]) related to some special quartic polynomials. In 2016, by a completely
elementary approach, Gürel [13] has shown that the product

∏m
k=1(4k

4 + 1) is
a perfect square for infinitely many m ∈ N, whereas

∏m
k=1(k

4 + 4) is a perfect
square only for m = 2.

This approach was then developed by Gaitanas [11] who generalized it to some
other special quartic polynomials. His idea was to use the identity

Q(x+Q(x)) = Q(x)Q(x+ 1) (1)

for the monic quadratic polynomial Q(x) = x2 + ax+ b ∈ Z[x].
One should say that a more general identity was already used by the author in

an entirely different context (see [7]). For a quadratic polynomial

Q(x) := ax2 + bx+ c ∈ C[x], a 6= 0, (2)

and a complex number t 6= 0 it was shown that

Q
(
x+

t

a
Q(x)

)
=
t2

a
Q(x)Q

(
x+

1

t

)
. (3)

The proof of (3) given in [7] is a simple exercise. Note that (3) implies (1) for
a = t = 1.

Inserting t = 1 into (3) (but do not assuming that a = 1) we find that

Q(x)Q(x+ 1) = aQ
(
x+

Q(x)

a

)
= aQ

(
x+ x2 +

bx

a
+
c

a

)
= Pa,b,c(x),

(4)

where Pa,b,c(x) is a quartic polynomial of the form

Pa,b,c(x) := a2x4 + 2a(a+ b)x3 + (a2 + b2 + 3ab+ 2ac)x2

+ (a+ b)(b+ 2c)x+ (a+ b+ c)c.
(5)

With this notation, we have the following:

Theorem 1. For any integers a, b, c satisfying a 6= 0 and a+b+c 6= 0, the product∏m
k=1 Pa,b,c(k) is a perfect square for m ∈ N if and only if the equation

(a+ b+ c)(ax2 + bx+ c) = y2 (6)

has a solution (x, y) with x = m+ 1 and y ∈ N.
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Furthermore, for a finite extension K of Q of degree d = [K : Q], let σ1, . . . , σd
be the distinct embeddings of K into C. Then, for any algebraic integers a, b, c ∈ K
satisfying a 6= 0 and a+ b+ c 6= 0, and any positive integers ` 6 m the product

m∏
k=`

d∏
j=1

Pσj(a),σj(b),σj(c)(k) (7)

is a perfect square if and only if the equation

d∏
j=1

(σj(a)`
2 + σj(b)`+ σj(c))

d∏
j=1

(σj(a)x
2 + σj(b)x+ σj(c)) = y2 (8)

has a solution (x, y) with x = m+ 1 and y ∈ N.

By Siegel’s theorem [16], equation (8) has only finitely many solutions if the
polynomial

∏d
j=1(σj(a)x

2 + σj(b)x+ σj(c)) ∈ Z[x] has at least three simple roots.
In order to investigate the equation (6) we put

d := a(a+ b+ c) (9)

and
D := b2 − 4ac. (10)

Evidently, (6) has at most finitely many solutions (x, y) ∈ N2 if d < 0, so it suffices
to investigate the case d > 0. Then, as a < 0 implies a+ b+ c < 0, we can replace
the triplet (a, b, c) by (−a,−b,−c), which leaves both (5) and (6) unchaged. For
this reason, we only consider the case a > 0, a+ b+ c > 0.

Theorem 2. Let a, b, c be integers satisfying a > 0 and a+ b+ c > 0. If d defined
(9) is a perfect square then the equation (6) has at most finitely many solutions
in positive integers (x, y) when D defined in (10) satisfies D 6= 0 and infinitely
many solutions when D = 0. If d is not a perfect square and, in addition, either
2a+ b > 0 or D < 0, then (6) has infinitely many solutions (x, y) ∈ N2.

Note that in case d is not a perfect square D cannot be zero. Indeed, D =
b2 − 4ac = 0 implies that b is even. Hence,

d = a(a+ b+ c) = a2 + ab+ (b/2)2 = (a+ b/2)2

is a perfect square. However, it can happen that 2a + b < 0 and D > 0. For full
description of this case one needs to introduce much more technical conditions,
which we will not do in this note.

In the next section, we will prove Theorems 1 and 2. Then, in Section 4 we
will give several examples illustrating Theorem 1.
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3. Proof of the Theorems 1 and 2

Proof of Theorem 1. By (2) and (4), the product
∏m
k=1 Pa,b,c(x) is equal to

Q(1)Q(m+ 1)

m∏
k=2

Q(k)2,

where the product
∏m
k=2Q(k)2 is omitted if m = 1. This is a perfect square iff

Q(1)Q(m+ 1) = (a+ b+ c)(a(m+ 1)2 + b(m+ 1) + c)

is a perfect square. This proves the first part of the theorem.
The proof of the second part is exactly the same, since the product (7) is equal

to
d∏
j=1

(σj(a)`
2 + σj(b)`+ σj(c))

d∏
j=1

(σj(a)(m+ 1)2 + σj(b)(m+ 1) + σj(c))

multiplied by the product
m∏

k=`+1

d∏
j=1

(σj(a)k
2 + σj(b)k + σj(c))

2. (11)

Clearly, (11) is a perfect square for m > ` + 1 (it is omitted for m = `), since∏d
j=1(σj(a)k

2 + σj(b)k + σj(c)) ∈ Z for each k ∈ N. �

Proof of Theorem 2. Suppose first that d = a(a+ b+ c) = v2 for some positive
integer v. Then, the equation (6) is equivalent to

(vx)2 + ux+ w = y2, (12)

where u = b(a + b + c) and w = c(a + b + c). Here, the left hand side is between
(vx−max(|u|, |w|))2 and (vx+max(|u|, |w|))2 for x large enough. Thus, (12) has
infinitely many solutions in (x, y) ∈ N2 if and only if for some q ∈ Z satisfying
|q| 6 max(|u|, |w|) one has

(vx)2 + ux+ w = (vx+ q)2 (13)

for infinitely many x ∈ N. This happens only when (13) is the identity. Con-
sequently, the discriminant of v2x2 + ux + w is zero, that is, u2 = 4v2w, or,
equivalently, D = b2 − 4ac = 0. Otherwise, if D 6= 0 then (12) has at most finitely
many solutions in (x, y) ∈ N2.

In all what follows we will prove that if d is not a perfect square and either
2a+ b > 0 or D < 0 then (6) has infinitely many solutions in (x, y) ∈ N2.

Setting X = 2ax+ b and Y = y/(a+ b+ c) and using the identity (2ax+ b)2−
(b2 − 4ac) = 4a(ax2 + bx+ c), we can rewrite (6) in the following form:

X2 − 4dY 2 = D. (14)

Note that (X0, Y0) = (2a+ b, 1) ∈ Z2 is a solution of (14).
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We also consider the equation

X2 − 4dY 2 = 1. (15)

Since 4d > 0 is not a perfect square, this is a Pell equation, so that its solutions in
positive integers are (Xn, Yn) ∈ N2, where (X1, Y1) ∈ N2 is a fundamental solution,
and Xn + 2

√
dYn = (X1 + 2

√
dY1)

n for n = 1, 2, . . . . It follows that the pairs

((2a+ b)Xn + 4dYn, (2a+ b)Yn +Xn), n = 1, 2, . . . , (16)

obtained from the products (X0+2
√
dY0)(Xn+2

√
dYn) are some solutions of (14).

Suppose first that 2a+b > 0. Then each pair in (16) belongs to N2. Furthermore,
by (9) and (15), we see that X1 modulo 2a is either 1 or −1. In both cases,
X2 = X2

1 + 4dY 2
1 modulo 2a is 1. Consequently, for each n ∈ N the number

Un := (2a+ b)X2n + 4dY2n is a positive integer, which is b modulo 2a, and Vn :=
(2a+ b)Y2n +X2n is a positive integer too. Choosing

x =
Un − b
2a

and y = (a+ b+ c)Vn (17)

we get a positive solution of (6). This, by choosing different n’s, gives infinitely
many solutions of (6) in (x, y) ∈ N2.

Suppose now that D = b2−4ac < 0. Then, the argument is the same as above,
but, since 2a + b can be negative, we need to show that both Un and Vn tend
to +∞ as n → ∞. (Then, we can take the solutions as in (17) but with n large
enough.)

To show that Un = (2a+ b)X2n+4dY2n →∞ as n→∞, we first observe that
X2n → ∞ as n → ∞ and limn→∞ 4dY2n/X2n = 2

√
d, by (15). So, it remains to

verify the inequality
2a+ b+ 2

√
d > 0. (18)

The inequality (18) clearly holds for 2a + b > 0, whereas for 2a + b < 0 it is
equivalent to 4d > (2a+ b)2. This inequality indeed holds, because

4d− (2a+ b)2 = 4a2 + 4ab+ 4ac− 4a2 − 4ab− b2 = 4ac− b2 = −D > 0.

Similarly, to show that Vn = (2a + b)Y2n +X2n → ∞ as n → ∞, we observe
that Y2n →∞ as n→∞ and limn→∞X2n/Y2n = 2

√
d, by (15). Hence, we arrive

to the same inequality (18), which is already verified. �

4. Examples

Example 1. Selecting (a, b, c) = (2,−2, 1) in (5), we find that P2,−2,1(x) = 4x4+1.
With this choice, d = a(a+ b+ c) = 2 is not a perfect square and D = b2 − 4ac =
−4 < 0. Theorem 2 implies that (6) has infinitely many solutions in (x, y) ∈ N2.
Therefore, by Theorem 1,

m∏
k=1

(4k4 + 1)
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is a perfect square for infinitely many m ∈ N. This reproduces the result of
Gürel [13]. A similar choice (a, b, c) = (2,−2, 3) shows that

m∏
k=1

(4k4 + 8k2 + 9)

is a perfect square for infinitely many m ∈ N.

Example 2. For (a, b, c) = (4, 1,−4) we obtain P4,1,−4(x) = 16x4 +40x3 − 3x2 −
35x− 4. Now, d = a(a+ b+ c) = 4 is a perfect square and D = b2− 4ac = 65 6= 0.
Theorem 2 implies that (6) has only finitely many solutions in (x, y) ∈ N2. In
fact, (6) is 4x2 + x − 4 = y2. This equation has two solutions in positive integers
(x, y) = (1, 1) and (4, 8). Indeed, for x = 2, 3 the expression 4x2 + x − 4 is not
a perfect square. It is also not a perfect square for x > 5, since then (2x)2 <
4x2 + x− 4 < (2x+ 1)2. Therefore, by Theorem 1,

m∏
k=1

(16k4 + 40k3 − 3k2 − 35k − 4)

is a perfect square for m = 3 only, when it equals 15366400 = 39202.

Example 3. For (a, b, c) = (1,−1, t2), where t ∈ N, we have

P1,−1,t(x) = x4 + (2t2 − 1)x2 + t4.

With this choice, d = a(a + b + c) = t2 is a perfect square and D = b2 − 4ac =
1 − 4t2 6= 0. Since (6) is t2(x2 − x + t2) = y2, we must have t|y, which leads to
x2 − x + t2 = z2, where z ∈ N. Clearly, it has no solutions in (x, z) ∈ N2 with
x > 2 when t = 1 and has a unique such solution (x, z) = (4, 4) when t = 2. Thus,

m∏
k=1

(k4 + k2 + 1)

is never a perfect square (this is misstated in [11]), whereas

m∏
k=1

(k4 + 7k2 + 16)

is a perfect square for m = 3 only, when it equals 230400 = 4802.

Example 4. Take K = Q(i) and (a, b, c) = (1,−1, 1 + i). The two embeddings of
Q(i) into C are the identity u+ iv 7→ u+ iv and u+ iv 7→ u− iv (here u, v ∈ Q).
Hence, by (5),

P1,−1,1+i(k)P1,−1,1−i(k) = (k4 + 4)(k2 + 1)2.
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Note that equation (8) becomes 2((x2 − x+ 1)2 + 1) = y2, so y = 2z with z ∈ N.
This gives the equation

(x2 − x+ 1)2 + 1 = 2z2. (19)

Evidently,
∏m
k=1(k

2 +1)2 is always a perfect square. Hence, by the second part of
Theorem 1, the product

m∏
k=1

(k4 + 4)

is perfect square iff (x, z) = (m + 1, z) is a solution of (19) in positive integers
x > 2, z. By [13], the above product is a square for m = 2 only. This corresponds
to the solution (x, z) = (3, 5) of (19).

Example 5. Let K = Q(
√
5) and (a, b, c) = (1,−1, (3 +

√
5)/2). The two embed-

dings K into C are the identity u+
√
5v 7→ u+

√
5v and u+

√
5v 7→ u−

√
5v (here

u, v ∈ Q). Hence, by (5),

P1,−1,(3+
√
5)/2(k)P1,−1,(3−

√
5)/2(k) = k8 + 4k6 + 6k4 − k2 + 1.

Note that for ` = 1 equation (8) becomes (x2 − x)2 + 3(x2 − x) + 1 = y2, which
is equivalent to (2x2 − 2x + 3)2 − 5 = (2y)2. It has integer solutions only when
2x2 − 2x + 3 = ±3, that is, x = 0 and x = 1. Hence, by the second part of
Theorem 1, the product

m∏
k=1

(k8 + 4k6 + 6k4 − k2 + 1)

is never a perfect square.
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