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PRODUCTS OF CONSECUTIVE VALUES OF SOME QUARTIC
POLYNOMIALS

ARTURAS DUBICKAS

Abstract: In this paper, we investigate some special quartic polynomials P whose coefficients
for 4,23, ... 1 are a?,2a(a+b),a® + b +3ab+2ac, (a+b)(b+2c), (a+b+c)c, where a,b,c € Z,
and consider the question whether the product [];r; P(k) is a perfect square for infinitely many
m € N or for only finitely many m € N. The answer depends on the solutions of the Pell type
diophantine equation (a + b + ¢)(ax? + bz + ¢) = y2. Our results imply, for example, that the
product ]—chzl(élk4 +8k2 + 9) is a perfect square for infinitely many m € N, whereas the product
[T, (k* + 7k? + 16) is a perfect square for m = 3 only, when it equals 230400 = 4802.
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1. Introduction

Let P be a polynomial in Z[x] with positive leading coefficient. In general, the
question of whether there are infinitely many or only finitely many positive inte-
gers m (or, more generally, pairs of positive integers ¢ < m) for which the product
[T, P(k) (resp. [, P(k)) is a perfect square or a higher power is completely
open. Only in case P(x) = = + b, where b € Z, the theorem of Erdés and Self-
ridge [8] asserting that the product of two or more consecutive integers is never
a power gives a complete answer to this problem. The case of a general linear
polynomial P(z) = ax + b, where a > 2 and b are integers, has a long history, but
it is not yet completely solved. It has been considered, for instance, in [10] and
[14], where one can find many references on this problem.

In [1], the problem on whether the product [}, (k® + 1) can be a perfect
square has been raised. (Of course, this corresponds to the quadratic polynomial
P(z) = 2% +1.) The negative answer is given in [5]. Similar problems for quadratic
polynomials 422 + 1, 222 — 22 + 1 and for polynomials of the form z¢ + 1, where
¢ > 2, have been considered in [9] and [2], [3], [4], [17], respectively, whereas some
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special cubic polynomials appear in [12], [15]. In [6], some bounds on the density
of squares in the sequence [];", P(k), m = 1,2,3,..., have been obtained for
a general irreducible polynomial P € Z[x].

2. Main results

This paper is a continuation and in some sense a generalization of two recent results
([11] and [13]) related to some special quartic polynomials. In 2016, by a completely
elementary approach, Giirel [13] has shown that the product [],—,(4k* + 1) is
a perfect square for infinitely many m € N, whereas [}, (k* + 4) is a perfect
square only for m = 2.

This approach was then developed by Gaitanas [11] who generalized it to some
other special quartic polynomials. His idea was to use the identity

Qr +Q(z)) = Q(x)Q(x +1) (1)

for the monic quadratic polynomial Q(z) = 22 4+ azx + b € Z[x].
One should say that a more general identity was already used by the author in
an entirely different context (see [7]). For a quadratic polynomial

Q(x) := ax® + bz + ¢ € Clx], a#0, (2)

and a complex number ¢ # 0 it was shown that

o(r+ Low) = Cama(s + 1), ®)

The proof of (3) given in [7] is a simple exercise. Note that (3) implies (1) for
a=t=1.
Inserting ¢ = 1 into (3) (but do not assuming that a = 1) we find that

b
oteen-oafes ) e D)
= “71770(:6)3
where P, () is a quartic polynomial of the form
Pape(@) = a*a* + 2a(a + b)z® + (a® + b* + 3ab + 2ac)a”

+(a+b)(b+2c)x+ (a+b+ o). (5)

With this notation, we have the following:

Theorem 1. For any integers a, b, ¢ satisfying a # 0 and a+b+c # 0, the product
[Tiey Pap,c(k) is a perfect square for m € N if and only if the equation

(a+b+c)(az® + bz +c) =y? (6)

has a solution (z,y) withx =m+1 andy € N.
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Furthermore, for a finite extension K of Q of degree d = [K : Q), let o1,...,04
be the distinct embeddings of K into C. Then, for any algebraic integers a,b,c € K
satisfying a # 0 and a + b+ ¢ # 0, and any positive integers £ < m the product

m d
H H Poj(@).05(6).05(0) (K) (7)

k=0 j=1

is a perfect square if and only if the equation

E&

(05 (a)f? + 0 (b) + 7;(c) 2?4+ oj(b)x + 0j(c)) =y (8)

H:&

i=1
has a solution (x,y) withx =m+1 and y € N.

By Siegel’s theorem [16], equation (8) has only finitely many solutions if the
polynomial del(oj( )z? +0;(b)x + 0;(c)) € Z[x] has at least three simple roots.
In order to investigate the equation (6) we put

d:=ala+b+c) (9)

and
D :=b* — dac. (10)

Evidently, (6) has at most finitely many solutions (z, %) € N2 if d < 0, so it suffices
to investigate the case d > 0. Then, as a < 0 implies a + b+ ¢ < 0, we can replace
the triplet (a,b,c) by (—a,—b,—c), which leaves both (5) and (6) unchaged. For
this reason, we only consider the case a > 0, a + b+ ¢ > 0.

Theorem 2. Let a,b, c be integers satisfying a > 0 and a+b+c > 0. If d defined
(9) is a perfect square then the equation (6) has at most finitely many solutions
in positive integers (x,y) when D defined in (10) satisfies D # 0 and infinitely
many solutions when D = 0. If d is not a perfect square and, in addition, either
2a+b >0 or D <0, then (6) has infinitely many solutions (x,y) € N2.

Note that in case d is not a perfect square D cannot be zero. Indeed, D =
b? — 4ac = 0 implies that b is even. Hence,

d=ala+b+c)=a*+ab+ (b/2)* = (a+b/2)?

is a perfect square. However, it can happen that 2a + b < 0 and D > 0. For full
description of this case one needs to introduce much more technical conditions,
which we will not do in this note.

In the next section, we will prove Theorems 1 and 2. Then, in Section 4 we
will give several examples illustrating Theorem 1.
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3. Proof of the Theorems 1 and 2

Proof of Theorem 1. By (2) and (4), the product [}, Psp.c(x) is equal to

DQ(m+1) [T Q)
k=2

where the product [];~, Q(k)? is omitted if m = 1. This is a perfect square iff
QMQ(m+1) = (a+b+c)(a(m + 1) +b(m + 1) +c)

is a perfect square. This proves the first part of the theorem.
The proof of the second part is exactly the same, since the product (7) is equal
to

(oj(a Z—&—Uj W+ 0j(c)
j=1 ]:1

J(m + 1) 4 0, (B)(m + 1) + 05(c))

E&.
::]g

multiplied by the product

H H oj(a)k? + o (b)k + oj(c))?. (11)
k=(+1j=1
Clearly, (11) is a perfect square for m > ¢+ 1 (it is omitted for m = /), since
[15_,(0j(a)k? + ;(b)k + 0;(c)) € Z for each k € N. [

Proof of Theorem 2. Suppose first that d = a(a+ b+ c) = v? for some positive
integer v. Then, the equation (6) is equivalent to

(v2)? + ur +w = y?, (12)

where u = b(a + b+ ¢) and w = c¢(a + b + ¢). Here, the left hand side is between
(v — max(|ul, |w|))? and (va + max(|ul, |w|))? for = large enough. Thus, (12) has
infinitely many solutions in (z,y) € N? if and only if for some ¢ € Z satisfying
l¢| < max(|ul,|w|) one has

(vz)? +uz +w = (vr + q)* (13)

for infinitely many x € N. This happens only when (13) is the identity. Con-
sequently, the discriminant of v2z? + ux 4+ w is zero, that is, u? = 4v2w, or,
equivalently, D = b? — 4ac = 0. Otherwise, if D # 0 then (12) has at most finitely
many solutions in (z,y) € N2.

In all what follows we will prove that if d is not a perfect square and either
2a+b >0 or D <0 then (6) has infinitely many solutions in (z,y) € N2.

Setting X = 2ax+b and Y = y/(a+ b+ c) and using the identity (2ax + b)? —
(b? — 4ac) = 4a(ax® + bx + ¢), we can rewrite (6) in the following form:

X? —4dY? = D. (14)
Note that (Xo,Yp) = (2a + b,1) € Z? is a solution of (14).
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We also consider the equation
X2 —4dy? =1. (15)

Since 4d > 0 is not a perfect square, this is a Pell equation, so that its solutions in
positive integers are (X,,,Y,,) € N, where (X1, Y1) € N? is a fundamental solution,
and X, + 2VdY,, = (X1 4+ 2\/&3/1)" forn=1,2,.... It follows that the pairs

((2a+b)Xp +4dY,, (20 + b)Yy + Xn),  n=1,2,..., (16)

obtained from the products (Xo+2v/dYy)(X,, +2v/dY;,) are some solutions of (14).

Suppose first that 2a+b > 0. Then each pair in (16) belongs to N2. Furthermore,
by (9) and (15), we see that X; modulo 2a is either 1 or —1. In both cases,
Xo = X? + 4dY# modulo 2a is 1. Consequently, for each n € N the number
U, := (2a 4+ b) X5, + 4dY3, is a positive integer, which is b modulo 2a, and V,, :=
(2a + b)Ys, + Xa, is a positive integer too. Choosing

U,—0b
2a

x = and y=(a+b+0)V, (17)
we get a positive solution of (6). This, by choosing different n’s, gives infinitely
many solutions of (6) in (z,y) € N2

Suppose now that D = b? —4ac < 0. Then, the argument is the same as above,
but, since 2a + b can be negative, we need to show that both U, and V,, tend
to +00 as n — oo. (Then, we can take the solutions as in (17) but with n large
enough.)

To show that U,, = (2a+ b) Xa,, + 4dYs,, — 00 as n — oo, we first observe that
Xon — 00 as n — 00 and limy, 0 4dYa, / Xop = 2V/d, by (15). So, it remains to
verify the inequality

2a+b+2Vd > 0. (18)

The inequality (18) clearly holds for 2a + b > 0, whereas for 2a + b < 0 it is
equivalent to 4d > (2a + b)2. This inequality indeed holds, because
4d — (2a + b)? = 4a® + 4ab + 4ac — 4a* — 4ab — b* = dac — b* = —D > 0.

Similarly, to show that V;, = (2a + b)Ya, + Xa,, — 00 as n — 00, we observe
that Y2, — 0o as n — oo and lim,_, oo Xo, /Yo, = 2V/d, by (15). Hence, we arrive
to the same inequality (18), which is already verified. |

4. Examples

Example 1. Selecting (a,b,c) = (2, —2,1) in (5), we find that P, o1 (7) = 421+1.
With this choice, d = a(a + b+ ¢) = 2 is not a perfect square and D = b — 4ac =
—4 < 0. Theorem 2 implies that (6) has infinitely many solutions in (z,y) € N2
Therefore, by Theorem 1,

ﬁ(4k4 +1)

k=1
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is a perfect square for infinitely many m & N. This reproduces the result of
Gdirel [13]. A similar choice (a,b,c) = (2, -2, 3) shows that

[ @x* + 8k +9)
k=1

is a perfect square for infinitely many m € N.

Example 2. For (a,b,c) = (4,1, —4) we obtain Py _4(z) = 162* + 4023 — 32% —
352 —4. Now, d = a(a+b+c) = 4 is a perfect square and D = b*> — 4ac = 65 # 0.
Theorem 2 implies that (6) has only finitely many solutions in (z,y) € N2. In
fact, (6) is 422 + x — 4 = y2. This equation has two solutions in positive integers
(z,y) = (1,1) and (4,8). Indeed, for x = 2,3 the expression 422 + x — 4 is not
a perfect square. It is also not a perfect square for x > 5, since then (22)? <
422 + 1 — 4 < (22 + 1)2. Therefore, by Theorem 1,

[ 16k* + 40k® — 3> — 35k — 4)
k=1
is a perfect square for m = 3 only, when it equals 15366400 = 39202.
Example 3. For (a,b,c) = (1, —1,t%), where t € N, we have
Py _q4(2) = 2* + (262 — 1)2? + ¢4
With this choice, d = a(a + b+ ¢) = t? is a perfect square and D = b?> — dac =
1 — 4¢% £ 0. Since (6) is t?(z? — z + %) = y?, we must have t|y, which leads to

2?2 —x +t? = 22, where z € N. Clearly, it has no solutions in (z,2) € N? with
2 > 2 when t = 1 and has a unique such solution (x, z) = (4,4) when ¢t = 2. Thus,

[T + % +1)
k=1
is never a perfect square (this is misstated in [11]), whereas
[T +7%* + 16)
k=1

is a perfect square for m = 3 only, when it equals 230400 = 4802.

Example 4. Take K = Q(¢) and (a,b,¢) = (1,—1,1+4). The two embeddings of
Q(4) into C are the identity u + v — u + iv and v + v — u — w (here u,v € Q).
Hence, by (5),

P1,7171+7;(]€)P1’,1’1,7;(k) = (k4 + 4)(k2 + ].)2
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Note that equation (8) becomes 2((z? —z + 1)+ 1) = y2, so y = 2z with z € N.
This gives the equation
(2 —z+1)* +1 =222 (19)

Evidently, [Tj~, (k* +1)? is always a perfect square. Hence, by the second part of
Theorem 1, the product

ﬁ(k4 + 4)
k=1

is perfect square iff (z,2) = (m + 1,2) is a solution of (19) in positive integers
x > 2, z. By [13], the above product is a square for m = 2 only. This corresponds
to the solution (z,z) = (3,5) of (19).

Example 5. Let K = Q(v/5) and (a,b,c) = (1, -1, (3 ++/5)/2). The two embed-
dings K into C are the identity u+ V50 = u—++v/5v and u+v/5v — u— 5o (here
u,v € Q). Hence, by (5),

Py sy 2(R)P 5 ys) (k) = K+ 4K+ 6k* — k° + 1.

Note that for £ = 1 equation (8) becomes (2% — x)? + 3(2? — x) + 1 = y?, which
is equivalent to (222 — 2z + 3)? — 5 = (2y)2. It has integer solutions only when
202 — 22 +3 = 43, that is, z = 0 and = = 1. Hence, by the second part of
Theorem 1, the product

Tk + 46 + 6k* — k% + 1)
k=1

is never a perfect square.
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