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A NOTE ON THE DIOPHANTINE EQUATION
2n−1(2n − 1) = x3 + y3 + z3

Maciej Ulas

Abstract: Motivated by a recent result of Farhi we show that for each n ≡ ±1 (mod 6) the
title Diophantine equation has at least two solutions in integers. As a consequence, we get
that each (even) perfect number is a sum of three cubes of integers. Moreover, we present
some computational results concerning the considered equation and state some questions and
conjectures.
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1. Introduction

Let N and N+ denote the set of non-negative integers and positive integers respec-
tively. Let n ∈ N+ and put Pn = 2n−1(2n−1). We say that N is a perfect number
if it is the sum of its divisors. In other words, N is a perfect number if and only
if σ(N) = 2N , where σ(N) =

∑
d|N d. We do not know whether there is an odd

perfect number. On the other hand, as was proved by Euclid, if N is an even
perfect number then N = Pp, where p and 2p − 1 are primes. An early state of
research on perfect numbers is presented in the first chapter in Dickson’s classical
book [3]. We know that there are at least 49 even perfect numbers. The largest
known corresponds to p = 74207281. One among many interesting properties of
perfect numbers, is the property observed by Heath, that each even perfect num-
ber > 6 is a sum of consecutive odd cubes of positive integers. This observation
motivated Farhi to ask what is the smallest number r such that each even perfect
number > 6 is the sum of at most r cubes of non-negative integers. In [6], Farhi
proved that r = 5 does the job. In fact, he observed that if n ≡ 1 (mod 6), then
Pn is the sum of three cubes of positive integers. This is simple consequence of the
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classical polynomial identity

2t6 − 1 = (t2 + t− 1)3 + (t2 − t− 1)3 + 1.

Indeed, multiplying it by t6 and then taking t = 2n we immediately get the
representation of P6n+1 as sum of three positive cubes. In case of n ≡ 5 (mod 6)
the number Pn is a sum of five positive cubes. It is important to note that Pn

is not necessarily perfect in the proof presented by Farhi. Let us also note that
perfect numbers corresponding to p = 3, 5, 7, 13, 17 can be represented as a sum
of three cubes of positive integers. This observation motivated Farhi to state the
conjecture saying that each perfect number is such a sum (Conjecture 2 in [6]).
Unfortunately, we were unable to prove this statement. This is a good motivation
to consider the Diophantine equation

Pn = x3 + y3 + z3 (1)

for fixed n, and asks about its solutions in (not necessarily positive) integers.
The question about the existence of integer solutions of the equation N = x3+

y3 + z3 is a classical one. The equation has no solutions for N ≡ ±4 (mod 9) and
it is conjectured that there are infinitely many solutions otherwise. However, this
conjecture is proved only for N being a cube or twice a cube (see for example [9]).
It is clear that the number Pn is not a cube nor twice a cube and Pn 6≡ ±4 (mod 9)
for all n ∈ N+. Thus, the question concerning the existence of integer solutions
of the equation (1) is non-trivial. Moreover, let us note that a lot of effort was
devoted to find integer solutions of the equationN = x3+y3+z3 for relatively small
positive values of N (say N < 104). The reason is a consequence of the method
employed in the numerical searches, which essentially use the observation that
N/x3 is very small (and thus close to 0). This idea was introduced by Elkies in [4]
and used in [5] (and the recent paper [7]). It is related to finding rational points
near algebraic curves. If N is small, the curve of interests is given by the equation
X3 + Y 3 = 1. Some other methods were proposed by Bremner [2] and Beck et
all [1]. In all these methods we are interested in finding big representations of N .
However, it is not clear whether they can be used in the case of representation of
Pn as sum of three cubes. Indeed, the sequence (Pn)n∈N+

has exponential growth,
and it is likely that for given n, the equation (1) may have solutions (x, y, z)

satisfying max{|x|, |y|, |z|} = O(P
1/3
n ). Let us describe the content of the paper in

some details.
In Section 2 we prove that for n ≡ 1, 2, 4, 5 (mod 6) the Diophantine equa-

tion (1) has at least one solution in integers. Moreover, in the case of n ≡ ±1
(mod 6) we show the existence of at least two solutions. We also prove that for
each n ∈ N+ the number Pn can be represented as a sum of four cubes of integers.
In Section 3 we propose a method which, for given n, allows us to compute all
positive integer solutions of equation (1) (and some other). In particular, for each
n 6 50 a solution of (1) is found and the table of all non-negative solutions for
n 6 40 is presented. Moreover, we state some questions and conjectures which
may stimulate further research.
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2. The results

We have the following

Theorem 2.1. If n ≡ 1 (mod 3) or n ≡ 2 (mod 6) then the Diophantine equation
(1) has at least one solution in integers. Moreover, if n ≡ ±1 (mod 6) then the
Diophantine equation (1) has at least two solutions in integers.

Proof. Our result is an immediate consequence of the following identities which
hold for all n ∈ N+:

P3n+1 = (22n)3 + (22n)3 − (2n)3,

P6n+2 = (24n+1)3 − (22n)3 − (22n)3,

P6n+1 = (2n−2(23n+2 − 21))3 + (2n−2(23n+2 + 21))3 − (11 · 22n−1)3,
P6n+5 = (2n(23(n+1) + 22(n+1) + 1))3

+ (2n(23(n+1) − 22(n+1) − 1))3 − (22(n+1)(22n+1 + 1))3

= (22n+1(22(n+1) − 2n+1 − 1))3

+ (22n+1(22(n+1) + 2n+1 − 1))3 − (24n+3)3.

Replacing n by 2n in the first equality we get the second solution of the equation
P6n+1 = x3 + y3 + z3. �

Remark 2.2. Let us note that the expression for P6n+1 from the proof of Theo-
rem 2.1, can be deduced from the polynomial identity

64t3(2t6 − 1) = (4t3 − 21)3 + (4t3 + 21)3 − (22t)3

by multiplying both sides by 1
64 t

3, and then taking t = 2n. Moreover, the first
expression for P6n+5 follows from the identity

t3(t6 − 2) = (t3 + t2 + 1)3 + (t3 − t2 − 1)3 − (t(t2 + 2))3

by multiplying both sides by 1
8 t

3, and then taking t = 2n+1.

Corollary 2.3. For each even perfect number N , the number of representations
of N as a sum of three cubes of integers is > 2.

Proof. From Theorem 2.1, we know that for each odd prime p > 3, the number
N = Pp has at least two representations as a sum of three cubes of integers.
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For p = 2, 3 we have

P2 = 23 − 13 − 13 = 653 − 433 − 583, P3 = 33 + 13 = 143 + 133 − 173,

and get the result. �

We firmly believe that equation (1) has a solution in integers for each n ∈ N+

(see Conjecture 3.3). Unfortunately, we were unable to prove such statement. In-
stead, we offer the following

Theorem 2.4. For each n ∈ N+, the number Pn can be represented as a sum of
four cubes of integers.

Proof. Let us note the classical identity

t3 − 2(t− 1)3 + (t− 2)3 = 6(t− 1),

and observe that P2n ≡ 0 (mod 6). Thus, by taking

t =
1

3
(22(2n−1) − 22(n−1) + 3)

we get the representation of the number P2n as a sum of four cubes.
In order to represents P2n+1, we note the identity

(3t− 12)3 − (3t− 13)3 − t3 + (t− 9)3 = 2(9t− 130).

Using simple induction, we easily get the congruence P2n+1 ≡ 10 (mod 18) for
n ∈ N+. Thus, by taking

t =
1

9
(24n − 22n−1 + 130)

we get the representation of the number P2n+1, n ∈ N, as a sum of four cubes.
Our theorem is proved. �

3. Numerical results, questions and conjectures

In order to gain more precise insight into the problem we performed a search
for solutions of the equation (1) in integers. Because we are mainly interested in
solutions in non-negative integers we use the following procedure. First of all, let
us recall that for a, b ∈ Z we have a3 + b3 ≡ 0, 1, 2, 7, 8 (mod 9). Moreover, we
observed that the sequence (Pn (mod 9))n∈N+ is periodic of the (pure) period 6.
More precisely:

(Pn (mod 9))n∈N+
= (1, 6, 1, 3, 1, 0).
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For given n and each x ∈ {0, . . . , bP 1/3
n c} satisfying (Pn − x3) (mod 9) ∈

{0, 1, 2, 7, 8}, we computed the set

Dn(x) = {d ∈ N+ : Pn − x3 ≡ 0 (mod d)},

i.e., the set of all positive divisors of the number Pn−x3. The congruence condition
is useful in some cases because it reduces the number of computations which need
to be performed. Indeed, if n ≡ 2, 4 (mod 6) then Pn ≡ 6, 3 (mod 9) respectively,
and we need to have x ≡ 2 (mod 3) (x ≡ 1 (mod 3)). Unfortunately, in remaining
cases we need to compute all values of x in order to find non-negative solutions.
Next, for each d ∈ Dn(x) such that d 6 (Pn − x3)/d, we solved the system of
equations

d = y + z,
Pn − x3

d
= y2 − yz + z2

for y, z and get

y =
1

6

(
3d±

√
3

(
4(Pn − x3)

d
− d2

))
,

z =
1

6

(
3d∓

√
3

(
4(Pn − x3)

d
− d2

))
.

In consequence, if the numbers y, z computed in this way were integers we got
a solution of the equation (1). The number of possible cases which need to be
considered is bounded by

bP 1/3
n c∑
i=1

σ0(Pn − i3),

where σ0(n) is the number of positive divisors of n.

The described procedure was implemented in Magma computational package
[8], and allows us to get all solutions in positive integers of equation (1) with
n 6 40. The results of our computations are presented in Table 1 below. We also
added the value of g := gcd(x, y, z).
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Table 1. All solutions of the Diophantine equation Pn = x3 + y3 + z3 in non-negative
integers x, y, z and n 6 40.

n (x, y, z) g n (x, y, z) g
3 (0, 1, 3) 1 31 (1024, 1014784, 1080320) 210

5 (4, 6, 6) 2 (53824, 684032, 1256896) 26

7 (4, 4, 20) 22 (90112, 464896, 1301504) 210

9 (10, 23, 49) 1 (342016, 581120, 1274368) 29

11 (18, 94, 108) 2 (435712, 977920, 1088000) 29

(28, 73, 119) 1 (452624, 712312, 1227976) 23

13 (16, 176, 304) 24 (642957, 702144, 1192051) 1
15 (87, 273, 802) 1 (649984, 956288, 1049728) 27

(280, 488, 736) 23 35 (103936, 1058816, 8382976) 29

17 (720, 1336, 1800) 23 (825724, 2369072, 8322436) 22

18 (144, 1224, 3192) 3 · 23 (1159576, 5742485, 7364203) 1
(168, 1368, 3168) 3 · 23 (1545844, 5658327, 7401321) 1
(276, 1808, 3052) 22 (2128896, 5711872, 7332864) 210

(968, 976, 3192) 23 (2565760, 2610912, 8220960) 25

(1284, 2076, 2856) 3 · 22 (4021568, 5381152, 7175392) 25

(1368, 1904, 2920) 23 36 (870912, 8406528, 12088320) 3 · 29
19 (64, 3520, 4544) 26 (3364928, 7935616, 12216768) 26

(1216, 1856, 5056) 26 (3663896, 6521760, 12671464) 23

(1968, 3516, 4420) 22 37 (4096, 16510976, 17035264) 212

21 (976, 9088, 11312) 24 (65536, 7086080, 20869120) 212

22 (13084, 14728, 14980) 22 (1409488, 9313840, 20514944) 24

23 (10096, 19648, 29840) 24 (1690048, 2408352, 21123936) 25

(10398, 17175, 30721) 1 (1940480, 12226048, 19669504) 29

(19776, 20992, 26304) 26 (7889536, 14446400, 18109120) 26

25 (16, 27680, 81520) 24 (2701980, 13899489, 18889183) 1
(256, 61184, 69376) 28 (5169168, 15293424, 17894080) 24

(6208, 37888, 79808) 26 (5875248, 13984848, 18669088) 24

(21034, 58773, 70515) 1 (10327879, 11144196, 19091961) 1
26 (3542, 93428, 112826) 2 38 (72704, 24487424, 28477952) 29

27 (39808, 89600, 201856) 27 39 (3083584, 32842240, 48722624) 26

(83110, 154196, 168298) 2 (14437236, 38893888, 44692620) 22

28 (88576, 156160, 315904) 29 (26259968, 34426624, 45177088) 28

29 (37120, 54272, 524032) 28 (29613312, 30112512, 46079488) 28

(292540, 340128, 430404) 22 40 (23894752, 58850848, 72873280) 25

30 (98816, 297216, 818944) 28

(120576, 440992, 787808) 25

For given n, the time needed to compute solutions with our method was from
seconds (for n 6 25) to four days in case of n = 40. All computations were
performed on a typical laptop with generation i7 processor and 16 GB of RAM.
Moreover, it should be noted that our procedure also computes (some) solutions
satisfying yz < 0, which is a consequence of the construction. In consequence,
for each n ∈ {2, . . . , 40} \ {2, 8, 20}, our procedure produces a solution of the
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equation (1) with yz < 0, i.e., exactly one among the numbers y, z is negative. In
Table 2 below, we present integer solution of the equation (1) without non-negative
solutions and with smallest value of min{|x|, |y|, |z|}.

Table 2. Certain integer solutions of the Diophantine equation Pn = x3 + y3 + z3 for
n 6 40 and without non-negative solutions.

n (x, y, z) g n (x, y, z) g
4 (−2, 4, 4) 2 24 (−21716, 19656, 52340) 22

10 (−8, 64, 64) 23 32 (−5219392, 1549376, 5285888) 26

12 (−54, 136, 182) 2 33 (−312056, 1171940, 3280828) 22

14 (−430, 446, 500) 2 34 (−2048, 4194304, 4194304) 211

16 (−32, 1024, 1024) 25

Moreover, in Table 3 we present the number of integer solutions which were
found by our procedure.

Table 3. The number of integer solutions of the Diophantine equation Pn = x3 + y3 + z3,
n 6 40, founded by the described procedure.

n 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 1 3 2 2 0 3 2 8 2 6 1

n 15 16 17 18 19 20 21 22 23 24 25 26 27
4 1 8 38 17 0 7 3 18 4 18 4 16

n 28 29 30 31 32 33 34 35 36 37 38 39 40
4 12 11 17 1 4 6 54 14 75 3 10 3

The search of solutions for n = 2, 8, 20 was performed in a similar way, but
without the assumption of positivity of Pn−x3 and with the replacement of Pn−x3
by |Pn − x3|. In this way, for n = 2, we found the solutions of the equation (1)
presented in the proof of Corollary 2.3. Moreover, we get the equalities

P8 = 323 − 43 − 43 = 4043 − 1243 − 4003,

P20 = 81923 − 643 − 643 = 94043 − 4723 − 65563,

which fill the gap in Table 3.

Remark 3.1. Let us also note that the non-negative solutions of the equation (1)
for given n often satisfy the condition gcd(x, y, z) = 2k for certain, not to small,
value of k. Having in mind this property, we performed numerical search of positive
solutions for certain values of n > 40. The method employed was the same as in
the case n 6 40, but instead to work for given n, with Pn we worked with the
(smaller) number Mk,n = 2an23k(2n − 1), where k ∈ {1, 2, 3, 4, 5} and an ≡ n− 1
(mod 3). Each representation of Mk,n after multiplication by 23m, where m =
(n − 1 − an − 3k)/3, leads to the representation of Pn as a sum of three cubes.
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Using this approach we found the following representations

P41 = (212 · 441)3 + (212 · 22063)3 + (212 · 29022)3,
P42 = (29 · 183840)3 + (29 · 301469)3 + (29 · 337507)3,
P43 = (214)3 + (214 · 16255)3 + (214 · 16511)3,
P45 = (212 · 18326)3 + (212 · 144043)3 + (212 · 181837)3,
P47 = (214 · 5835)3 + (214 · 41149)3 + (214 · 129702)3,
P48 = (214 · 8479)3 + (214 · 160641)3 + (214 · 169400)3,
P49 = (216)3 + (216 · 65279)3 + (216 · 65791)3,
P51 = (215 · 91838)3 + (215 · 252707)3 + (215 · 380629)3,
P60 = (219 · 522158)3 + (219 · 877167)3 + (219 · 1559725)3.

Let us observe that for n ∈ {44, 46, 50, 52, 53, 55, 56, 58, 59} we have integer solu-
tions coming from the parametrization given in Theorem 2.1. Moreover, noting
the representations

P54 = (−216 · 557852)3 + (216 · 302)3 + (216 · 908586)3,
P57 = (−216 · 2647337)3 + (216 · 2070161)3 + (216 · 3597922)3

we get

Corollary 3.2. For each n ∈ {1, . . . , 60} the Diophantine equation (1) has a so-
lution in integers.

Our numerical search and Theorem 2.1 suggest the following

Conjecture 3.3. For each n ∈ N+ the Diophantine equation (1) has a solution
in integers.

From our table we note that the equation (1) has no solutions in non-negative
integers x, y, z for

n = 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 32, 33.

This numerical observation lead us to the following

Conjecture 3.4. For each ε ∈ {0, 1}, there are infinitely many n ≡ ε (mod 2)
such that the equation (1) has no solutions in non-negative integers x, y, z.

Moreover, according to our numerical search, one can also ask whether the
conjecture proposed by Farhi is not too optimistic. Indeed, in his proof of the
existence of representations of a perfect number Pp as a sum of five non-negative
cubes, with p > 3, he used only the fact that p ≡ ±1 (mod 6) and the well-known
polynomial identity

2t6 − 1 = (t2 + t− 1)3 + (t2 − t− 1)3 + 1,
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i.e., no special property of perfect numbers was used. We also observed that the
smallest odd n ∈ N>3, such that the equation (1) has no solutions in positive
integers is 33. Due to our limited experimental data (n 6 40 in our search),
there is no strong reason to believe that for all perfect numbers Pp, the equation
Pp = x3 + y3 + z3 has a solution in non-negative integers. On the other hand,
the first possible candidate for the counterexample to the conjecture is p = 89.
The corresponding perfect number P89 has 54 digits, and the question about the
existence of positive integer solutions of the equation P89 = x3 + y3 + z3 is rather
difficult.

It is also interesting to note the equalities

P3 = 13 + 33, P7 = 283 − 243, P9 = 603 − 443,

which give all solutions of the equation Pn = x3 + y3, n 6 140, in integers. This
observation lead us to the following

Question 3.5. Is the set of integer solutions (in variables n, x, y) of the Diophan-
tine equation Pn = x3 + y3 finite?

We expect that the answer is positive.

Remark 3.6. One can also ask about representation of the number Pn as a sum
of three squares. In this case we can easily get the answer. Indeed, Gauss proved
that the equation N = x2 + y2 + z2 has a solution in integers if and only if N
is not of the form 4m(8a + 7) for some a,m ∈ N. In consequence the equation
Pn = x2 + y2 + z2 has a solution in integers if and only if n ≡ 0 (mod 2).

It would be also interesting to know whether the Diophantine equation

Pn = x2 + y2 + z4

has infinitely many solutions in integers (x, y, z, n), i.e., we treat the above equation
in variables x, y, z ∈ Z and n ∈ N. We expect that this is the case, and numerical
computations suggest the existence of solutions with z being power of 2.
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