Functiones et Approximatio 60.1 (2019), 77–86 doi: 10.7169/facm/1689

OPTIMAL GROUPS FOR THE r-RANK ARTIN CONJECTURE

LEONARDO CANGELMI, RAFFAELE MARCOVECCHIO

Abstract: For any finitely generated subgroup Γ of \mathbb{Q}^* , Pappalardi and the first-named author [1] found a formula to compute the density of the primes ℓ for which the reduction modulo ℓ of Γ contains a primitive root modulo ℓ . They conjectured a characterization of optimal groups, free or torsion, i.e. subgroups with maximal density. In this paper we prove their conjecture and give a similar characterization for optimal positive groups.

Keywords: Artin primitive root conjecture, finitely generated subgroups of \mathbb{Q}^* .

1. Introduction and main results

Let Γ be a finitely generated subgroup of \mathbb{Q}^* , the multiplicative group of non-zero rational numbers. We denote the rank of Γ by r, and we assume $r \ge 1$. We define $\operatorname{Supp}(\Gamma)$ as the (finite) set of primes ℓ such that $\nu_{\ell}(a) \ne 0$ for some $a \in \Gamma$. Hereafter, ℓ will always denote a prime number. For any $\ell \notin \operatorname{Supp}(\Gamma)$, we set $\Gamma \mod \ell = \{a \mod \ell : a \in \Gamma\}$, which is a subgroup of the multiplicative group \mathbb{F}^*_{ℓ} . For any positive real number x, let $N_{\Gamma}(x) = \#\{\ell \le x : \ell \notin \operatorname{Supp}(\Gamma) \text{ and } \Gamma \mod \ell = \mathbb{F}^*_{\ell}\}$.

The Artin Conjecture for primitive roots states that $N_{\Gamma}(x) \to \infty$ for $x \to \infty$, when Γ is generated by an integer a which is different from -1 and is not a perfect square. Under the Generalized Riemann Hypothesis for some number fields, Hooley [2] proved that $N_{\Gamma}(x) \sim \delta_{\Gamma} \frac{x}{\log x}$, when $\Gamma = \langle a \rangle$ with a as above, giving an explicit formula to compute the density. In the general case of groups Γ of any rank, Pappalardi [6] proved the same asymptotic formula for $N_{\Gamma}(x)$, and Pappalardi and the first-named author [1] gave a complicated formula to compute δ_{Γ} . Indeed, they proved that $\delta_{\Gamma} = A_r b_{\Gamma} c_{\Gamma}$, where

$$A_r = \prod_{\ell>2} \left(1 - \frac{1}{\ell^r(\ell-1)} \right) \tag{1}$$

²⁰¹⁰ Mathematics Subject Classification: primary: 11A07; secondary: 11R45, 20K15

is the r-rank Artin constant,

$$b_{\Gamma} = \prod_{\ell>2} \left(1 - \frac{\ell^{r-r_{\ell}} - 1}{\ell^{r}(\ell - 1) - 1} \right)$$
(2)

and

$$c_{\Gamma} = 1 - \frac{1}{2^{r_2}} \sum_{\xi \in \widetilde{\Gamma}} \mu(|s(\xi)|) \prod_{\ell \mid s(\xi)} \frac{1}{\ell^{r_\ell}(\ell - 1) - 1}.$$
 (3)

Here, $r_{\ell} = \dim_{\mathbb{F}_{\ell}}(\Gamma \mathbb{Q}^{*\ell}/\mathbb{Q}^{*\ell})$, where $\mathbb{Q}^{*\ell} = \{a^{\ell} : a \in \mathbb{Q}^*\}$. Furthermore, for any $\xi \in \mathbb{Q}^*/\mathbb{Q}^{*2}$, we let $s(\xi)$ denote the unique square-free integer in the equivalence class ξ . Then, $\widetilde{\Gamma} = \{\xi \in \Gamma \mathbb{Q}^{*2}/\mathbb{Q}^{*2} : s(\xi) \equiv 1 \pmod{4}\}$. Since $r_{\ell} < r$ only for finitely many primes ℓ (see Section 2), then the product defining b_{Γ} is finite, so that b_{Γ} is a positive rational number. We also note that c_{Γ} is rational, since $\widetilde{\Gamma}$ is finite.

We refer the reader to the paper by Moree [4] for a comprehensive survey on Artin's primitive root conjecture, written both for a general audience and for specialists, including some historical remarks, a complete bibliography, open problems and outlines to many variations of the conjecture. With regard to generalizations to the higher rank case, we point out the papers by Pappalardi and Susa [8], Pappalardi [7], and Menici and Pehlivan [3]. It is also interesting to note that Moree and Stevenhagen [5] recovered the above formula for δ_{Γ} using a unified general approach for the computation of Artin primitive root densities.

For any r, it is easy to find a subgroup Γ with rank r such that δ_{Γ} is arbitrarily small. In contrast, it is not evident that for any r there is a maximum value of δ_{Γ} , varying Γ among all the subgroups of \mathbb{Q}^* with rank r. In [1], the authors conjecture that, for any given rank r, there exists a free group of rank r having maximal density, and the same is stated for torsion groups of rank r. Moreover, they propose a characterization of free groups, and of torsion groups, having maximal density, which they call *optimal*. In the present paper we prove their claims, with just a minor correction, and complete the picture, taking into account also the positive groups, that is the subgroups of \mathbb{Q}^+ .

We say that a free (or torsion) subgroup of \mathbb{Q}^* with rank r is an *optimal* group when its density is maximal in the set of the densities of all free (or torsion, respectively) subgroups of \mathbb{Q}^* with rank r.

Let $(p_i)_{i \ge 1}$ be the increasing sequence of all the odd primes.

Theorem 1. The free group $\langle (-1/p_i)p_i : i = 1, ..., r \rangle$ is optimal, and its density is

$$A_r\left(1 - \frac{1}{2^r} \prod_{i=1}^r \left(1 - \frac{1}{p_i^r(p_i - 1) - 1}\right)\right).$$

Moreover, a free subgroup Γ of \mathbb{Q}^* with rank r is optimal if and only if $\widetilde{\Gamma} = \langle (-1/p_i)p_i\mathbb{Q}^{*2} : i = 1, \ldots, r \rangle$, and $r_{\ell} = r$ for every ℓ when $r \ge 2$, while $r_{\ell} = 1$ for every $\ell \ne 3$ when r = 1.

Theorem 2. The torsion group $\langle -1, p_i : i = 1, ..., r \rangle$ is optimal, and its density is

$$A_r\left(1 - \frac{1}{2^{r+1}} \prod_{i=1}^r \left(1 - \frac{1}{p_i^r(p_i - 1) - 1}\right)\right).$$

Moreover, a torsion subgroup Γ of \mathbb{Q}^* with rank r is optimal if and only if $\widetilde{\Gamma} = \langle (-1/p_i)p_i \mathbb{Q}^{*2} : i = 1, \ldots, r \rangle$, and $r_{\ell} = r$ for every $\ell > 2$.

By Theorem 1 no positive group is optimal, as a free group. However, we can say that a positive subgroup of \mathbb{Q}^* with rank r is an *optimal group* when its density is maximal in the set of the densities of all positive subgroups of \mathbb{Q}^* with rank r. Let $(q_i)_{i \ge 1}$ be the increasing sequence of all the primes q satisfying $q \equiv 1 \pmod{4}$.

Theorem 3. The positive group $\langle q_i : i = 1, ..., r \rangle$ is optimal, and its density is

$$A_r\left(1 - \frac{1}{2^r} \prod_{i=1}^r \left(1 - \frac{1}{q_i^r(q_i - 1) - 1}\right)\right).$$

Moreover, a positive subgroup Γ of \mathbb{Q}^* with rank r is optimal if and only if $\widetilde{\Gamma} = \langle q_i \mathbb{Q}^{*2} : i = 1, ..., r \rangle$, and $r_\ell = r$ for every ℓ when $r \ge 2$, while $r_\ell = 1$ for every $\ell \ne 5$ when r = 1.

In Section 2, we sketch the proof of our results and give some remarks related to finitely generated subgroups of \mathbb{Q}^* . In Section 3, we prove a basic technical lemma about certain sums over subgroups of $\mathbb{Q}^*/\mathbb{Q}^{*2}$, which will be the the main tool in the proof of our theorems. In Sections 4, 5 and 6, we prove Theorems 1, 2 and 3, respectively.

2. Outline of the proof and preliminary remarks

The idea behind the proof of the characterization of optimal groups is the following. Given a non-optimal group Γ , we look for some other group (with the same rank) having density greater than that of Γ . This is attained by recursively removing, adding, or substituting primes in Supp(Γ). Since, for any fixed r, $\delta_{\Gamma} = A_r b_{\Gamma} c_{\Gamma}$ and A_r is constant, we have to maximize the product $b_{\Gamma} c_{\Gamma}$. The term we mainly have to control is c_{Γ} , while b_{Γ} is dealt with easily in a second phase, when some compensation may occur. Hence we are led to study the sum in the formula of c_{Γ} , and this can be more easily undertaken in a more general set, considering similar sums over subgroups of $\mathbb{Q}^*/\mathbb{Q}^{*2}$. When dealing with the product $b_{\Gamma} c_{\Gamma}$ in Sections 4, 5 and 6, we shall need some general remarks that we list below.

Let Γ be a finitely generated subgroup of \mathbb{Q}^* with rank r. Then, Γ is free if and only if $-1 \notin \Gamma$, and is torsion otherwise. In both cases, there exist $a_i \in \mathbb{Q}^*$, for $i = 1, \ldots, r$, such that a_1, \ldots, a_r are multiplicatively independent, and $\Gamma = \langle a_1, \ldots, a_r \rangle$ when Γ is free, while $\Gamma = \langle -1, a_1, \ldots, a_r \rangle$ when Γ is torsion; in the latter case, we may assume that $a_i > 0$, for $i = 1, \ldots, r$.

We recall that $r_{\ell} = \dim_{\mathbb{F}_{\ell}}(\Gamma \mathbb{Q}^{*\ell}/\mathbb{Q}^{*\ell})$. In other words, r_{ℓ} is the maximal number of elements in Γ that are multiplicatively independent modulo ℓ -powers. Therefore, $0 \leq r_{\ell} \leq r$ for every odd prime ℓ , and $0 \leq r_2 \leq r$ when Γ is free, while $1 \leq r_2 \leq r+1$ when Γ is torsion.

We note that $\widetilde{\Gamma}$ is a subgroup of $\Gamma \mathbb{Q}^{*2}/\mathbb{Q}^{*2}$ and $-\mathbb{Q}^{*2} \notin \widetilde{\Gamma}$. If we let $t = \dim_{\mathbb{F}_2}(\widetilde{\Gamma})$, then $0 \leq t \leq \min\{r_2, r\}$. It easily follows that c_{Γ} is positive when r_2 is positive, while $c_{\Gamma} = 0$ when $r_2 = 0$. We also note that if $\widetilde{\Gamma} = \langle (-1/\ell_i)\ell_i : i = 1, \ldots, r \rangle$ for some primes ℓ_i , then $r_2 = r$ when Γ is free, and $r_2 = r + 1$ when Γ is torsion.

If $\operatorname{Supp}(\Gamma) = \{\ell_1, \ldots, \ell_s\}$ then $s \ge r$, and there exists a matrix $M = (m_{ij})$ of size $r \times s$, with integer entries, such that $|a_i| = \prod_{j=1}^s \ell_j^{m_{ij}}$. It is shown in [1] that $r_{\ell} = \operatorname{rank}(M \mod \ell)$ for every odd prime ℓ , and $r_2 = \operatorname{rank}(M \mod 2)$ when $-1 \notin \Gamma \mathbb{Q}^{*2}$, while $r_2 = \operatorname{rank}(M \mod 2) + 1$ when $-1 \in \Gamma \mathbb{Q}^{*2}$ (which is the case when Γ is torsion). Moreover, for every odd prime ℓ , we have $r_{\ell} = r$ if and only if $\ell \nmid \Delta(M)$, where $\Delta(M)$ is the greatest common divisor of the minors of maximum size (i.e. r) of M. Hence, $r_{\ell} < r$ only for finitely many primes ℓ . In addition, $r_{\ell} = r$ for all ℓ if and only if $\Delta(M) = 1$, while $r_{\ell} = r$ for all $\ell \neq 3$ (or $\ell \neq 5$) if and only if $\Delta(M) = 3^n$ (or 5^n , respectively) for some integer $n \ge 0$. This shows that the condition on the r_{ℓ} 's in Theorems 1, 2 and 3 can be reformulated in terms of $\Delta(M)$.

3. Sums over subgroups of $\mathbb{Q}^*/\mathbb{Q}^{*2}$

Let G be a finite subgroup of $\mathbb{Q}^*/\mathbb{Q}^{*2}$. Each element of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ can be uniquely written as $m\mathbb{Q}^{*2}$, where m is a square–free integer. Hence, hereafter m will denote a square–free integer, and we shall write an element of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ as $m\mathbb{Q}^{*2}$. According to the notation in Section 1, for $\xi = m\mathbb{Q}^{*2}$ we have $m = s(\xi)$. We suppose that $-\mathbb{Q}^{*2} \notin G$; this implies that, for all $m \in \mathbb{Z}$, if $m\mathbb{Q}^{*2} \in G$ then $-m\mathbb{Q}^{*2} \notin G$.

Let $\chi: G \to \{\pm 1\}$ be a homomorphism of multiplicative groups. Let $f(\ell)$ be a real function defined over the set of primes, with values in the open unit interval (0, 1). For G, χ and f as above, let

$$S(G,\chi,f) = \sum_{m\mathbb{Q}^{*2}\in G} \chi(m\mathbb{Q}^{*2}) \prod_{\ell|m} f(\ell).$$

If $G = \{\mathbb{Q}^{*2}\}$, the above sum equals 1. Furthermore, if χ_1 is the trivial homomorphism (that is the one with constant value 1), then $S(G, \chi_1, f) \ge 1$ for any G and any f, where the equality holds if and only if $G = \{\mathbb{Q}^{*2}\}$.

Let $\operatorname{Supp}(G)$ be the (finite) set of primes ℓ dividing m for some integer m with $m\mathbb{Q}^{*2} \in G$. For $\ell \in \operatorname{Supp}(G)$, let G_{ℓ} be the subgroup of G of the elements $m\mathbb{Q}^{*2} \in G$ such that $\ell \nmid m$. Clearly, $\ell \notin \operatorname{Supp}(G_{\ell})$.

Lemma 4. For all G, χ and f, we have

$$S(G,\chi,f) > 0,$$

and for each $\ell \in \text{Supp}(G)$

$$S(G, \chi, f) \ge (1 - f(\ell))S(G_{\ell}, \chi, f),$$

where the equality holds if and only if $\pm \ell \mathbb{Q}^{*2} \in G$ and $\chi(\pm \ell \mathbb{Q}^{*2}) = -1$.

Proof. We argue by induction on $h = |\operatorname{Supp}(G)|$. If h = 0, then $G = \{\mathbb{Q}^{*2}\}$, thus $S(G, \chi, f) = 1$. If $h \ge 1$, in order to fix the ideas, let $\operatorname{Supp}(G) = \{\ell_1, \ldots, \ell_h\}$ and $\ell = \ell_1$. Even if not required, we prove directly also the case h = 1: now $G = \{\mathbb{Q}^{*2}, \ell\mathbb{Q}^{*2}\}$ or $G = \{\mathbb{Q}^{*2}, -\ell\mathbb{Q}^{*2}\}$, so that

$$S(G, \chi, f) = 1 + \chi(\pm \ell \mathbb{Q}^{*2}) f(\ell).$$

Since $G_{\ell} = \{\mathbb{Q}^{*2}\}$, we have $S(G_{\ell}, \chi, f) = 1$, and the result follows from this and $0 < f(\ell) < 1$.

Let h > 1. Since $\text{Supp}(G_{\ell}) \subseteq \{\ell_2, \ldots, \ell_h\}$, by the inductive hypothesis we have

$$S(G_{\ell}, \chi, f) > 0. \tag{4}$$

We distinguish two cases.

First case. Suppose that $\pm \ell \mathbb{Q}^{*2} \in G$, that is $\ell \mathbb{Q}^{*2} \in G$ or $-\ell \mathbb{Q}^{*2} \in G$ (but not both of them). Since G_{ℓ} is a subgroup of G with index 2, we have:

if
$$m\mathbb{Q}^{*2} \in G \setminus G_{\ell}$$
, then $\ell \mid m$ and $\pm \frac{m}{\ell} \mathbb{Q}^{*2} \in G_{\ell}$,

and

if
$$m\mathbb{Q}^{*2} \in G_{\ell}$$
, then $\ell \nmid m$ and $\pm \ell m\mathbb{Q}^{*2} \in G \setminus G_{\ell}$

Hence

$$S(G, \chi, f) - S(G_{\ell}, \chi, f) = \chi(\pm \ell \mathbb{Q}^{*2}) f(\ell) S(G_{\ell}, \chi, f).$$
(5)

Since $0 < f(\ell) < 1$, by (4) and (5) we obtain the result.

Second case. Suppose now that $\ell \mathbb{Q}^{*2} \notin G$ and $-\ell \mathbb{Q}^{*2} \notin G$. Let H be the subgroup of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ generated by the elements of G and by $\ell \mathbb{Q}^{*2}$. We lift χ to a homomorphism on H, which we still call χ , by putting $\chi(\ell \mathbb{Q}^{*2}) = 1$. We consider H_{ℓ} and note that $\operatorname{Supp}(H_{\ell}) = \{\ell_2, \ldots, \ell_h\}$. Hence, besides (4), we have

$$S(H_{\ell},\chi,f) > 0. \tag{6}$$

Moreover, G and H_{ℓ} are subgroups of H with index 2, and $G_{\ell} = G \cap H_{\ell}$. As a result, we have:

if
$$m\mathbb{Q}^{*2} \in G \setminus G_{\ell}$$
, then $\ell \mid m$ and $\frac{m}{\ell}\mathbb{Q}^{*2} \in H_{\ell} \setminus G_{\ell}$,

and

if
$$m\mathbb{Q}^{*2} \in H_{\ell} \setminus G_{\ell}$$
, then $\ell \nmid m$ and $\ell m\mathbb{Q}^{*2} \in G \setminus G_{\ell}$

Therefore

$$S(G, \chi, f) - S(G_{\ell}, \chi, f) = f(\ell) \big(S(H_{\ell}, \chi, f) - S(G_{\ell}, \chi, f) \big).$$
(7)

Recalling that $0 < f(\ell) < 1$, by (6) and (7) we get

$$S(G,\chi,f) > (1-f(\ell))S(G_\ell,\chi,f), \tag{8}$$

which is positive by (4).

Remark. In the second case of the above proof, besides G and H_{ℓ} , there exists a third subgroup of H containing G_{ℓ} , namely the group K generated by the elements of G_{ℓ} and by $\ell \mathbb{Q}^{*2}$. Then we may lift χ to a homomorphism χ_{-} on Hby putting $\chi_{-}(\ell \mathbb{Q}^{*2}) = -1$, this time. We have $K_{\ell} = G_{\ell}$ and $S(K, \chi_{-}, f) =$ $(1 - f(\ell))S(G_{\ell}, \chi, f)$. Hence, the inequality (8) can be read as

$$S(G,\chi,f) > S(K,\chi_{-},f),$$

thus relating Lemma 4 to the outline of the proof given at the beginning of Section 2.

We point out that $\widetilde{\Gamma}$ is a subgroup of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ and that $-\mathbb{Q}^{*2} \notin \widetilde{\Gamma}$. Hence we are going to apply Lemma 4 to $\widetilde{\Gamma}$, with the homomorphism $\mu_+ : \mathbb{Q}^*/\mathbb{Q}^{*2} \to \{\pm 1\}$ defined by

$$\mu_+(m\mathbb{Q}^{*2}) = \mu(|m|).$$

4. Optimal free groups

We note that $2 \notin \operatorname{Supp}(\overline{\Gamma})$. For any odd prime ℓ , we let

$$f(\ell) = \frac{1}{\ell^{r_{\ell}}(\ell-1) - 1},$$

so that $0 < f(\ell) < 1$.

We know that $\widetilde{\Gamma}$ has 2^t elements, for some integer t such that $0 \leq t \leq r_2 \leq r$. As a consequence, $\operatorname{Supp}(\widetilde{\Gamma})$ has at least t elements. By Lemma 4, using induction on t, there exist t primes $\ell_1, \ldots, \ell_t \in \operatorname{Supp}(\widetilde{\Gamma})$ such that

$$S(\widetilde{\Gamma}, \mu_+, f) \ge \prod_{i=1}^t (1 - f(\ell_i))$$

and the equality holds if and only if $\widetilde{\Gamma} = \langle (-1/\ell_1)\ell_1 \mathbb{Q}^{*2}, \ldots, (-1/\ell_t)\ell_t \mathbb{Q}^{*2} \rangle$. It follows that there always exist r (instead of t) odd primes ℓ_1, \ldots, ℓ_r (not necessarily in $\operatorname{Supp}(\widetilde{\Gamma})$) such that

$$S(\widetilde{\Gamma}, \mu_+, f) \ge \prod_{i=1}^r (1 - f(\ell_i))$$

and the equality holds if and only if t = r and

$$\widetilde{\Gamma} = \left\langle (-1/\ell_1)\ell_1 \mathbb{Q}^{*2}, \dots, (-1/\ell_r)\ell_r \mathbb{Q}^{*2} \right\rangle.$$
(9)

Since $r_2 \leq r$, we have by (3)

$$c_{\Gamma} = 1 - \frac{1}{2^{r_2}} S(\widetilde{\Gamma}, \mu_+, f) \leqslant 1 - \frac{1}{2^{r_2}} \prod_{i=1}^r \left(1 - f(\ell_i) \right) \leqslant 1 - \frac{1}{2^r} \prod_{i=1}^r \left(1 - f(\ell_i) \right),$$

and the two equalities hold if and only if (9) holds and $r_2 = r$, respectively. Here we recall that for free groups (9) implies $r_2 = r$.

With regard to b_{Γ} , defined by (2), the factor corresponding to ℓ is 1 when $r_{\ell} = r$, and less than 1 when $r_{\ell} < r$. Hence

$$b_{\Gamma} \leqslant \prod_{i=1}^{r} \left(1 - \frac{\ell_i^{r-r_{\ell_i}} - 1}{\ell_i^r(\ell_i - 1) - 1} \right),$$

where the equality holds if and only if $r_{\ell} = r$ for every $\ell \notin \{2, \ell_1, \ldots, \ell_r\}$.

Thus

$$b_{\Gamma}c_{\Gamma} \leqslant \prod_{i=1}^{r} \left(1 - \frac{\ell_{i}^{r-r_{\ell_{i}}} - 1}{\ell_{i}^{r}(\ell_{i} - 1) - 1}\right) \left(1 - \frac{1}{2^{r}}\prod_{i=1}^{r} \left(1 - \frac{1}{\ell_{i}^{r_{\ell_{i}}}(\ell_{i} - 1) - 1}\right)\right),$$

and the equality holds if and only if (9) holds and $r_{\ell} = r$ for every $\ell \notin \{\ell_1, \ldots, \ell_r\}$. Putting

$$x_i = \ell^{r_{\ell_i}}(\ell_i - 1), \quad y_i = \ell^r_i(\ell_i - 1),$$

we have $x_i \leq y_i$, and the bound for $b_{\Gamma}c_{\Gamma}$ can be written as

$$\prod_{i=1}^{r} \frac{y_i}{y_i - 1} \prod_{i=1}^{r} \frac{x_i - 1}{x_i} \left(1 - \prod_{i=1}^{r} \frac{x_i - 2}{2(x_i - 1)} \right).$$

We let

$$g_r(x_1, \dots, x_r) = \prod_{i=1}^r \frac{x_i - 1}{x_i} \left(1 - \prod_{i=1}^r \frac{x_i - 2}{2(x_i - 1)} \right)$$
$$= \prod_{i=1}^r \left(1 - \frac{1}{x_i} \right) - \prod_{i=1}^r \left(\frac{1}{2} - \frac{1}{x_i} \right).$$

For r = 1, $g_1(x_1)$ is constant, equal to 1/2. For $r \ge 2$, we highlight the dependency on x_1 by noting that

$$g_r(x_1, \dots, x_r) = \prod_{i=2}^r \left(1 - \frac{1}{x_i}\right) - \frac{1}{2} \prod_{i=2}^r \left(\frac{1}{2} - \frac{1}{x_i}\right) - \frac{1}{x_1} \left(\prod_{i=2}^r \left(1 - \frac{1}{x_i}\right) - \prod_{i=2}^r \left(\frac{1}{2} - \frac{1}{x_i}\right)\right).$$

By symmetry in x_1, \ldots, x_r , we see that $g_r(x_1, \ldots, x_r) \leq g_r(y_1, \ldots, y_r)$ when $r \geq 2$, and the equality holds if and only if $x_i = y_i$ for $i = 1, \ldots, r$, that is $r_{\ell_i} = r$ for $i = 1, \ldots, r$. In conclusion

$$b_{\Gamma}c_{\Gamma} \leqslant g_{r}(y_{1},\dots,y_{r})\prod_{i=1}^{r}\frac{y_{i}}{y_{i}-1} = 1 - \prod_{i=1}^{r}\frac{y_{i}-2}{2(y_{i}-1)}$$
$$= 1 - \frac{1}{2^{r}}\prod_{i=1}^{r}\left(1 - \frac{1}{\ell_{i}^{r}(\ell_{i}-1)-1}\right).$$

Moreover, the equality holds if and only if (9) holds, and $r_{\ell} = 1$ for every $\ell \neq \ell_1$ when r = 1, whereas $r_{\ell} = r$ for every ℓ when $r \ge 2$.

We remind that $(p_i)_{i \ge 1}$ is the sequence of all the odd primes. Then

$$1 - \frac{1}{2^r} \prod_{i=1}^r \left(1 - \frac{1}{\ell_i^r(\ell_i - 1) - 1} \right) \leqslant 1 - \frac{1}{2^r} \prod_{i=1}^r \left(1 - \frac{1}{p_i^r(p_i - 1) - 1} \right),$$

where the equality holds if and only if $\ell_i = p_i$, for $i = 1, \ldots, r$. This completes the proof of the characterization of optimal free groups in Theorem 1. It is plain that $\langle (-1/p_i)p_i : i = 1, \ldots, r \rangle$ is the simplest optimal free group.

5. Optimal torsion groups

We repeat the same arguments as in the case of free groups, except that now we have $r_2 \leq r+1$. Therefore there exist r primes ℓ_1, \ldots, ℓ_r such that

$$c_{\Gamma} \leqslant 1 - \frac{1}{2^{r_2}} \prod_{i=1}^r \left(1 - f(\ell_i)\right) \leqslant 1 - \frac{1}{2} \prod_{i=1}^r \frac{x_i - 2}{2(x_i - 1)}$$

and

$$b_{\Gamma}c_{\Gamma} \leqslant \prod_{i=1}^{r} \frac{y_i}{y_i - 1} \prod_{i=1}^{r} \frac{x_i - 1}{x_i} \left(1 - \frac{1}{2} \prod_{i=1}^{r} \frac{x_i - 2}{2(x_i - 1)} \right).$$

In the latter bound the equality holds if and only if (9) holds, $r_{\ell} = r$ for every $\ell \notin \{2, \ell_1, \ldots, \ell_r\}$, and $r_2 = r + 1$. We recall that for torsion groups (9) implies $r_2 = r + 1$. We set

$$h_r(x_1, \dots, x_r) = \prod_{i=1}^r \frac{x_i - 1}{x_i} \left(1 - \frac{1}{2} \prod_{i=1}^r \frac{x_i - 2}{2(x_i - 1)} \right)$$
$$= \prod_{i=1}^r \left(1 - \frac{1}{x_i} \right) - \frac{1}{2} \prod_{i=1}^r \left(\frac{1}{2} - \frac{1}{x_i} \right).$$

We underline the dependency on x_1 by noting that

$$h_r(x_1, \dots, x_r) = \prod_{i=2}^r \left(1 - \frac{1}{x_i} \right) - \frac{1}{4} \prod_{i=2}^r \left(\frac{1}{2} - \frac{1}{x_i} \right) \\ - \frac{1}{x_1} \left(\prod_{i=2}^r \left(1 - \frac{1}{x_i} \right) - \frac{1}{2} \prod_{i=2}^r \left(\frac{1}{2} - \frac{1}{x_i} \right) \right).$$

We observe that $h_1(x_1)$ is not constant, being equal to $3/4 - x_1/2$. By symmetry in x_1, \ldots, x_r , we see that $h_r(x_1, \ldots, x_r) \leq h_r(y_1, \ldots, y_r)$, where the equality holds if and only if $x_i = y_i$ for $i = 1, \ldots, r$, or, equivalently, $r_{\ell_i} = r$ for $i = 1, \ldots, r$. In conclusion

$$b_{\Gamma}c_{\Gamma} \leqslant h_{r}(y_{1},\dots,y_{r})\prod_{i=1}^{r}\frac{y_{i}}{y_{1}-1} = 1 - \frac{1}{2}\prod_{i=1}^{r}\frac{y_{i}-2}{2(y_{i}-1)}$$
$$= 1 - \frac{1}{2^{r+1}}\prod_{i=1}^{r}\left(1 - \frac{1}{\ell_{i}^{r}(\ell_{i}-1)-1}\right).$$

Moreover, the equality holds if and only if (9) holds, and $r_{\ell} = r$ for every $\ell > 2$ (and $r_2 = r + 1$). Finally,

$$1 - \frac{1}{2^{r+1}} \prod_{i=1}^{r} \left(1 - \frac{1}{\ell_i^r(\ell_i - 1) - 1} \right) \leqslant 1 - \frac{1}{2^{r+1}} \prod_{i=1}^{r} \left(1 - \frac{1}{p_i^r(p_i - 1) - 1} \right),$$

where equality holds if and only $\ell_i = p_i$, for $i = 1, \ldots, r$. This concludes the proof of the characterization of optimal torsion groups in Theorem 2. Obviously, $\langle -1, p_i : i = 1, \ldots, r \rangle$ is the simplest optimal torsion group.

6. Optimal positive groups

We follow the same arguments as in the case of free groups. However, we now select only primes in $\operatorname{Supp}(\widetilde{\Gamma})$ which are congruent to 1 (mod 4). By Lemma 4, using induction, there exist u primes $\ell_1, \ldots, \ell_u \in \operatorname{Supp}(\widetilde{\Gamma})$, for some $u \in \{0, \ldots, t\}$, and a subgroup $\widetilde{\Gamma}_0$ of $\widetilde{\Gamma}$ with 2^{t-u} elements, such that: $\ell_i \equiv 1 \pmod{4}$, for $i = 1, \ldots, u$; every $\ell \in \operatorname{Supp}(\widetilde{\Gamma}_0)$ satisfies $\ell \equiv 3 \pmod{4}$; and

$$S(\widetilde{\Gamma}, \mu_+, f) \ge \prod_{i=1}^u (1 - f(\ell_i)) S(\widetilde{\Gamma}_0, \mu_+, f).$$

The equality holds if and only if $\ell_1 \mathbb{Q}^{*2}, \ldots, \ell_u \mathbb{Q}^{*2} \in \widetilde{\Gamma}$. If $m \mathbb{Q}^{*2} \in \widetilde{\Gamma}_0$, then $m > 0, m \equiv 1 \pmod{4}$, and $\ell \equiv 3 \pmod{4}$ for all ℓ dividing m. Therefore m is the product of an even number of primes, whence $\mu(m) = 1$. It follows that

$$S(\Gamma_0, \mu_+, f) \ge 1,$$

and the equality holds if and only if $\widetilde{\Gamma}_0 = \{\mathbb{Q}^{*2}\}$, or, equivalently, u = t. Therefore

$$S(\widetilde{\Gamma}, \mu_+, f) \ge \prod_{i=1}^u (1 - f(\ell_i)),$$

and the equality holds if and only if u = t and $\widetilde{\Gamma} = \langle \ell_1 \mathbb{Q}^{*2}, \ldots, \ell_t \mathbb{Q}^{*2} \rangle$. Hence there always exist r (instead of u) primes ℓ_1, \ldots, ℓ_r such that $\ell_i \equiv 1 \pmod{4}$ for $i = 1, \ldots, r$, and

$$S(\widetilde{\Gamma}, \mu_+, f) \ge \prod_{i=1}^r (1 - f(\ell_i)),$$

where the equality holds if and only if $\widetilde{\Gamma} = \langle \ell_1 \mathbb{Q}^{*2}, \dots, \ell_r \mathbb{Q}^{*2} \rangle$.

The proof continues exactly as in Section 4, the only difference being that in the last inequality we have to consider just the primes $q \equiv 1 \pmod{4}$. We add that $\langle q_i : i = 1, \ldots, r \rangle$ is the simplest optimal positive group.

References

- L. Cangelmi and F. Pappalardi, On the r-rank Artin Conjecture, II, J. Number Theory 75 (1999), 120–132.
- [2] C. Hooley, On Artin's conjecture, J. Reine Angew. Math. 225 (1967), 209–220.
- [3] L. Menici and C. Pehlivan, Average r-rank Artin conjecture, Acta Arith. 174 (2016), 255–276.
- [4] P. Moree, Artin's primitive root conjecture -a survey-, Integers 12A (2012), A13, 100 pp.
- [5] P. Moree and P. Stevenhagen, Computing higher rank primitive root densities, Acta Arith. 163 (2014), 15–32.
- [6] F. Pappalardi, On the r-rank Artin Conjecture, Math. Comp. 66 (1997), 853– 868.
- [7] F. Pappalardi, Divisibility of reduction in groups of rational numbers, Math. Comp. 84 (2015), 385–407.
- [8] F. Pappalardi and A. Susa, An analogue of Artin's conjecture for multiplicative subgroups of the rationals, Arch. Math. 101 (2013), 319–330.

Address: Leonardo Cangelmi and Raffaele Marcovecchio: Dipartimento di Ingegneria e Geologia, Università di Chieti–Pescara, Viale Pindaro 42, 65127 Pescara, Italy.

E-mail: l.cangelmi@unich.it, raffaele.marcovecchio@unich.it

Received: 30 June 2017; revised: 29 November 2017