A SHORT REMARK ON CONSECUTIVE COINCIDENCES OF A CERTAIN MULTIPLICATIVE FUNCTION

Winfried Kohnen

Abstract

We study integral solutions n of the equation $A(n+k)=A(n)$, where A is a certain multiplicative function related to Jordan's totient function.

Keywords: multiplicative function, Jordan's totient function.

1. Introduction

If $f: \mathbf{N} \rightarrow \mathbf{N}$ is a multiplicative number-theoretic function taking positive integral values, such as Euler's totient function, the divisor function or functions closely related, a quite intriguing problem is to study those n for which $f(n)=f(n+1)$ or more generally $f(n)=f(n+k)$ where $k \in \mathbf{N}$ is fixed. If e.g. $f(n)=\phi(n)$ is Euler's totient function, there has been quite a number of interesting results on this subject, cf. [4] and the literature given there. Though in general it seems quite difficult to find explicit solutions of $\phi(n)=\phi(n+k)$, one conjectures that there are always infinitely many [5]. So far this conjecture has not been proved in a single case. Similar assertions concern the divisor function $\sigma(n)$ and in this connection analogous questions about perfect numbers or amicable numbers, cf. e.g. [3].

On the other hand, one may ask for simple and explicit examples of multiplicative functions $f: \mathbf{N} \rightarrow \mathbf{N}$, closely related to the classical ones, such that there are only finitely many n with $f(n)=f(n+k)$. In this short note we will construct such a function in a simple way. In fact, using Jordan's totient functions (which are simple generalizations of Euler's phi-function, the definition will be recalled in sect. 2), we will define a multiplicative function $A: \mathbf{N} \rightarrow \mathbf{N}$ in a similar way as the classical ones are defined, however with the main differences that the Euler factor at the prime 3 has been slightly modified and also the product of the Euler
p-factors for all primes p converges to a non-zero value. We shall prove that for each given odd $k \in \mathbf{N}$, there are only finitely many n with $A(n)=A(n+k)$. Once the proper definition of A has been found, the proof is quite simple and only relies on the unequal parity of n and $n+k$ and some elementary estimates.

2. Statement of result

We define $A: \mathbf{N} \rightarrow \mathbf{N}$ by

$$
\begin{equation*}
A(n):=n^{2} \prod_{p \mid n, p \neq 3}\left(1+\frac{1}{p^{2}}\right) . \tag{1}
\end{equation*}
$$

Then A clearly is multiplicative.
Recall the definition of the ℓ-th Jordan totient function

$$
J_{\ell}(n):=n^{\ell} \prod_{p \mid n}\left(1-\frac{1}{p^{\ell}}\right) \quad(n \in \mathbf{N})
$$

[2, p. 46]. As is easy to see $J_{\ell}(n)$ counts the number of ℓ-tuples of positive integers all less or equal to n that form a coprime $(\ell+1)$-tuple together with n. Clearly $J_{1}(n)=\phi(n)$.

Regarding (1) we note that

$$
n^{2} \prod_{p \mid n}\left(1+\frac{1}{p^{2}}\right)=\frac{J_{4}(n)}{J_{2}(n)}
$$

We remind the reader that $J_{\ell}(n)$ is a useful and interesting number-theoretic function which for example (among other things) is demonstrated by the classical identity

$$
\# S p_{m}(\mathbf{Z} / n \mathbf{Z})=n^{m^{2}} \prod_{\ell=1}^{m} J_{2 \ell}(n)
$$

(cf. [1]). Here as usual $S p_{m} \subset G L_{2 m}$ denote the symplectic group of degree $2 m$.
Theorem. Let k be a fixed odd positive integer. Then the equation $A(n)=A(n+k)$ has only finitely many solutions $n \in \mathbf{N}$.

Remark. It would be interesting to investigate solutions of the equations $J_{\ell}(n)=$ $J_{\ell}(n+k)$, for fixed ℓ and k, in a similar way as was done in the case $\ell=1$ for the Euler phi-function.

3. Proof of Theorem

We rewrite the equality $A(n)=A(n+k)$ as

$$
\begin{equation*}
\frac{A(n)}{n^{2}}=\left(1+\frac{k}{n}\right)^{2} \frac{A(n+k)}{(n+k)^{2}} \tag{2}
\end{equation*}
$$

Let us first suppose that n is even. Then $n+k$ is odd and from (1) and (2) we obtain

$$
\begin{equation*}
\left(1+\frac{1}{2^{2}}\right) \prod_{\substack{p \mid n \\ p \neq 3 \\ p \text { odd }}}\left(1+\frac{1}{p^{2}}\right)=\left(1+\frac{k}{n}\right)^{2} \prod_{\substack{p \mid n+k \\ p \neq 3 \\ p \text { odd }}}\left(1+\frac{1}{p^{2}}\right) \tag{3}
\end{equation*}
$$

The left-hand side in (3) is bounded from below by $1+\frac{1}{2^{2}}$. Hence we find that

$$
1+\frac{1}{2^{2}}<\left(1+\frac{k}{n}\right)^{2} \prod_{\substack{p \mid n+k \\ p \neq 3 \\ p \text { odd }}}\left(1+\frac{1}{p^{2}}\right)<\left(1+\frac{k}{n}\right)^{2} \prod_{\substack{p \text { odd } \\ p \neq 3}}\left(1+\frac{1}{p^{2}}\right)
$$

and hence

$$
\left(1+\frac{1}{2^{2}}\right)^{2}<\left(1+\frac{k}{n}\right)^{2} \prod_{p \neq 3}\left(1+\frac{1}{p^{2}}\right)=\left(1+\frac{k}{n}\right)^{2} \cdot \frac{1}{1+\frac{1}{3^{2}}} \prod_{p}\left(1+\frac{1}{p^{2}}\right)
$$

We have

$$
\prod_{p}\left(1+\frac{1}{p^{2}}\right)=\frac{\prod_{p}\left(1-\frac{1}{p^{4}}\right)}{\prod_{p}\left(1-\frac{1}{p^{2}}\right)}=\frac{\zeta(2)}{\zeta(4)} .
$$

Inserting the values

$$
\zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(4)=\frac{\pi^{4}}{90}
$$

we therefore finally get

$$
\begin{equation*}
c<\left(1+\frac{k}{n}\right)^{2} \tag{4}
\end{equation*}
$$

with

$$
c:=\left(1+\frac{1}{2^{2}}\right)^{2}\left(1+\frac{1}{3^{2}}\right) \cdot \frac{\pi^{2}}{15}=\frac{\pi^{2}}{8.64} .
$$

Since $c>1$ we get a contradiction from (4) when n is large.
If n is odd, then $n+k$ is even, and we can proceed as before with the roles of n and $n+k$ interchanged. This proves our assertion.

References

[1] D. Andrica and M. Piticari, On some extensions of Jordan's arithmetical functions, Acta universitatis Apulensis (7) (2004).
[2] T.M. Apostol, Introduction to Analytic Number Theory, Undergrade texts in Mathematics, Springer 1976.
[3] J. Bayless and T. Klyve, Reciprocal sums as a knowledge metric: Theory, computation, and perfect numbers, Amer. Math. Monthly 120(9) (2013), 822831.
[4] J. Bayless and P. Kinlaw, Consecutive coincidences of Euler's function, Int. J. Number Theory 12 (2016), no. 4, 1011-1026.
[5] S.W. Graham, J.J. Holt and C. Pomerance, On the solutions to $\phi(n)=$ $\phi(n+k)$, in: Number Theory in Progress, vol. 2 (Zakopane-Koscielisko, 1997), de Gruyter 1999, pp. 867-882.

Address: Winfried Kohnen: Universität Heidelberg, Mathematisches Institut, INF 205, D-69120 Heidelberg, Germany.

E-mail: winfried@mathi.uni-heidelberg.de
Received: 21 March 2017; revised: 29 March 2017

