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SOME PROPERTIES OF THE GENERALIZED
FAVARD-DURRMEYER OPERATORS

GRrRZEGORZ NowaK & PAULINA PYCH-TABERSKA

Abstract: The Durrmeyer modification f‘n f of the generalized Favard operators in some weigh-

ted function spaces are considered. The rate of convergence of ’I*:‘n f(z) at the Lebesgue points =
of f is estimated. In particular, a corresponding estimate in the class of functions f of bounded
p-th power variation is deduced.

Keywords: Favard-Durrmeyer operator, rate of convergence, Lebesgue point, p-th power va-
riation

1. Preliminaries

Let X,(R) be the space of all measurable real-valued functions f on the real line
R = (—00,00), with the norm

Ifllo = sup |f(z) exp(~03?)| < oo,
zeR

where ¢ > 0. For functions f € X,(R) consider first the generalized Favard
operators defined by

Faf(@) =Y f(k/n)pax(z;7),
k=—00

where t € R,ne N,

@0 = e (57 (5 %) )
;7)) = ————=exp|l—s5 |- —=
Pn .k Y TL’)’"\/Q_’TT p 27’21 n

and v = (1,)5, is a positive sequence convergent to 0 (see [4]). In the special
case where 42 = k/2n with a positive constant «, F,, become the known discrete
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Favard operators introduced in [3]. Some properties of operators Fy, f for continu-
ous functions on R can be found e.g. in [4] and [5]. In this paper we deal with the
Durrmeyer type modification of the operators F,, defined by

Faf@=n Y pas@n) [ fOpneltinli (1)

k=—0a

We will examine the rate of convergence of F, f(z), mainly, at those points z € R
at which

.1t
lim = [ (1@ +0 = )t =0
The general estimate will be expressed in terms of the quantity
1 h
w6 )= sup |5 [ (re+0 - fanar, @>0).
D<|higs 0

Some analogous results for the generalized Favard-KKantorovich operators are pre-
sented in [6].

Throughout the paper, the symbols K(---), K;(---) (7 = 1,2,...) will mean
some positive constants depending only on the parameters indicated in parenthe-
ses.

2. Main result

As is known (]2}, pp. 126, 204; [4], p. 388), for all n € N,z € R,

> Paklzmy) =14 Sa(z), (2.1)
k=00
where -
Sn(z) == 22exp(—2w2j2n27,21) cos(2mnj) (2.2)
i=1
and
|Sn(2)] < (7nym) 2. (2.3)

It is easy to see that for all n € N,v € N,k € Z :={0,+1,%2,.. },

7 1
[ pmrttimar==, (24)
-0

Tk A\ % — 1)
/(__t) Pn‘k(tsv)dt=———~( v-1) S
™ n

hant e <]
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and, by the Schwarz inequality,
(o) k v
[
Y

In view of Lemma 2.1 in [5], if v € N and ny2 > ¢ for all n € N, with a positive
absolute constant ¢, then

Pnk(t - (2.5)

(tsyde < Y2 =D

} > (S - m) upn,k($§7)' < T5A.(2/€) Py,
k=—00

where A, = max{1,(2¢cx?)7'}. Further, from (2.1) and (2.3) it follows that

Z Pni(T;Y) £3A. forall ne N,xe R, (2.6)

k=00

and consequently,

> fi-d

k=—00

P (z;7) < 154c(2/e)/ 2/ (20)1y. (2.7)

Let f € X,(R) with some ¢ > 0. Then the operators (1.1) are well defined
forall z € R and n € N such that 1602 < 1. Indeed, using the obvious inequality

(a+ b)? < 2(a? 4+ b%) and denoting by 27 the sequence (v27,)3, we easily
observe that

1 1 k 2
. 2 < 24,2 - s —_——
Pn k(1 7) exp(ot”) < —-—n%mexp(Zcrk /n )exp( (272 20)( t) )
< V2exp(20k° /n®)pn i (t; V27)
and
Pnk(t;7) exp(20k® /n*) < V2exp(402° )pn k(z; V27).
Hence, in view of (2.1) - (2.4)

Fof @) < 20l fllo exp(405?) S pr(es vEy) / P (t; V) dt

k=—o00

< 2(1+ (mmym) 2 fllo exp(402?).

Theorem 2.1. Let f € X,(1),0 >0 and let v = ('yn)n_l be a positive sequence
convergent to 0 and satisfying the condition ny2 > ¢, where ¢ is a positive

absolute constant. Then, given any numbers g € N, p > 0, we have

Foste) - s <o 3, LR+ U

forall z € R and n € N such that 16072 < 1, 8py2 <1.
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Proof. In view of (2.1) and (2.4)

Fof@) - flz)=n 3 pnkm] )Pkt 7)dt + F(2)50(2).

k= —00

Clearly, if f € X,(R) and t € R, then

[ @)= r@)du] < ¢ = al I lo(2exploa?) + explot?)

and, under the assumption 16042 <1,

e P 4 ) R )

Hence, from the definition of p, (z;v) it follows at once that for any k € Z,

i

i posttiv) [ (£ - @)du =0,

T

Consequently, integration by parts gives
Fof(z) - f(2)
=n > paale) [ ([0 = rena)si st + 1@8a(o)

k=~00

Observing that p!, ,(t;7) = pnk(t;7) (£ = t) /72, applying (2.3) and the definition
of wg(d; f) we get;

o~

|Fn f(2) — f(z)]

oo

n o0 k )
S 7'2' k:—oopn]k (m, 7)_‘!.: 1; - t’pn‘k(t; 7)it - m]wz(‘t - $])dt + (’jf',‘;L('Y:%Q
- —; D Zr (W) +1f (@) (7nya) 2, 28
nor=

where A is an arbitrary positive number,

= > Pak(z;7)

k=00

%t a(t )it — 2l (1t~ 2,

I x(x)

Lalz)={te R:rA < |t —z| < (r+1)A} and w(d) = w(; f).
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Using (2.6) and (2.5) with v = 1 we obtain Zp(\) < 3A w,(A)n"1y,.
Given any 020, € N we have for r> 1

we((r + 1)A)
Ze (A x
(N = rq,\qexp or2A?) k;mp"k ;7)

‘f_wlz“t

+1 +1
e <o)
n n

Pnk(t; )|t — 2|7 exp(o(t — z)?)dt

Clearly,

and . ) . )
exp(o(t — z)?) < exp (29(; - :c) ) exp (2@(; - t) )
Moreover, if 802 < 1, then

(o)) = el (g 20 =)

Sm,,\/— exp (- 1 (i“”‘)z)
=\/_Pn,k 7\/_7)-

From the above inequalities and the estimates (2.5), (2.6), (2.7) it follows that

oo

oC
k
> pn.k(fvw)/ l— - tlpn,k(t; Pt — 2| exp(o(t ~ z)?)dt
k=00 ~oo! Tt
2011 = ko jatl
ST Y puale V2N (VI OUVEIR W + | S — 2| Vo)
k== —o0
1
Sy It 2(34,/(29 + 3)N(V2)T? + 154,21/ (29 + 2)1(2/e) 21172y,
Hence ((r + 1))
we((r+ -
Z,\N) <K i+2p-1  f 0.
()‘) = I(Q7c) FINT exp(grg)\g) n or r>
Choosing A = vy, and using (2.8) we get the desired result immediately. |

It is easy to see that under the assumptions f € X,(R) and 6 > 0 we have
wy(6; f) < (exp(0z?) + exp(2027)) exp(206°) | |,

(see e.g. [6]). Consequently,

ws((r + 1)7n; ) S exp(202%)(1 + exp(dory7)) exp(doy) | o
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From this inequality it follows at once that the right-hand side of the estimate
given in Theorem 2.1 (with ¢ > 2,p > 40) converges to 0 as n — oo, at every
Lebesgue point z of f.

3. Corollaries

Let f € Xs(R) be continuous on R and let (9; f), be its weighted modulus of
continuity defined by

QU6; flo = ;tlgsllf( +h)~f(HMe (6>0).

Then, given any z € R and r € N we have
we(r8; f) < rexp(20z® 4 20(r — 1)26%)Q(9; f)o

(see [6], p. 149). This inequality and Theorem 2.1 with ¢ = 3,0 = 20 lead to

Corollary 3.1. If the sequence v = (v,)32, satisfies the conditions of Theorem
2.1 and if f € X,(R) is continuous on R, then

Vs = fllar < K@) (2m3 0o + 1 fla0)

for all n € N such that 16072 < 1.

For some m € Ny let Crn(R) be the space of all continuous functions f on
R such that

[ 5 = sup | f(z)(L + =2™) 1] < o0,
TER

Clearly, Cn(R) C X,(R) for arbitrary m € Ny, o > 0. Moreover, for any z € R
and r € Ny there holds the inequality

wa((r +1)8; f) < (1+ (22)™ + (2r6)"™)(r + 1)w(8; flm,

(see [6]), where
w(8; fm = sup | f(- +h) = f()lim-
{hi<é

Consequently, from Theorem 2.1 (with p =0, ¢ = 2m + 3) it follows

Corollary 3.2. If the sequence v = (y,)o0o., satisfies the conditions of Theorem
21 and if f € C(R), then

1Bt = £l < K (e;m) (i N + = 11150)

forallne N.
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Finally, let us suppose that f € X,(R) with some ¢ > 0 and that at a fixed
point = € R the one-sided limits f(z+), f(z—) exist. Introduce the functions

f(t) = f(z+) ift >z, 1 ift >z,
gz(t) =<0 ift =z, sgn, (t) ::{0 if t =z,
f(t) = f(z—) ift<uz, -1 ift <z

Then, it is easy to verify that

10 = 5@ + f@=) + g:(0) + 5(fat) ~ [ (=) sgn (1
(/@) - 3/6+) - 2 fla)b0),

where 6z(z) =1 and 6,(t) = 0 if t # z. Hence
Fof(@) = 5(£(a4) + 1@-)(1 + 5p()) + Faga(2)
+ 5 (#4) ~ [(@=)F s, (2),

where S, (z) is defined by (2.2) and estimated in (2.3). As is shown in [1] (p. 104),

- o o0 L 4
|Fy sgn,, (z)| = n' > po(zy) (/ —/ )pn,k(t; 7)dt} S =
z —o0 Yn

T e OO

In order to estimate |F,g.(z)| = |anz(m) ~ gz(z)] we use Theorem 2.1 (with
p =0 and ¢ > 2). Consequently, by a simple calculation (cf. e.g. [6], p. 150) we
obtain that under the assumptions of Theorem 2.1,

Fof @)= 5(f(4) + f(z-)
1/
<Kalg. g™ [ 6w/t g
§ 3 lf @)+ [ ) + 20 (@) ~ )] ()™

for all n € N such that 16092 <1.

In particular, let us consider the class BVy,(R) of all functions f of bounded
p-th power variation on R and let us denote by Vi(f;I) or Vy(f;a,b) the total
p-th variation of f on the interval I = [a,b] (defined as in [6]). The obvious
inequality

we(6,f) S Vplfiz—6,2+6) (5> 0)

and some easy computations lead to
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Corollary 3.3. If the sequence v = (7,)52., satisfies the conditions of Theorem
21andif fe BVy(R), p>1,thenforallz€ R and ne N,

Faf(@) - 5(f(o4) + fo-))|
< Ks(g, )y Dk V(g2 I)

k=0

F ol @)+ fE)ln) ™+ 21 () ~ flo=)mw)

where 2 2, p=[1/y|, o =R Ix =[xz — V/k,z+ 1/k] if k=1,...,p.

Clearly, in view of the continuity of g, at z, the right-hand side of the
inequality given in Corollary 3.3 converges to 0 as n — oco. Moreover, in some
classes of functions this inequality cannot be essentially improved. To see this, let
us first mention some properties of the functions

oo o0
Hup(z) =71 Y pox(z;7) / (z — ) pnk(t; 7)dt,
k=—o00 -0

where r € No,n € N,z € R. It is easy to verify that with S,(z) as defined by
(2.2) we have the recursion formula

ano(m) = 1 + Sn (x)’ Hnsl = 735;(x))
H",T+1(m) = 7121Hvl1,r (SC) - 27‘712;Hn,r—1(m)‘

From this formula, by the method of induction, it follows the representation

Hn.2r (T)

r—1
= 2 (dor (14 Su(®)) + 3 dien@ (S (w) + S (@) + 92 S ),
=1

where di; (I = 0,...,r — 1) are real numbers independent of n and z. More-

over, under the assumption ny2 > ¢ for all n € N, the functions s (=) (v =
0,1,...,2r — 1) are bounded uniformly in z € R and n € N. Consequently,

Hpor(z) < Ka(c,r)y2" forall z€ R, ne N (3.1)
and
n]}fgo Vo 2T Ha2r (2) = doyr (3.2)

uniformly in x € R.
Now, let us fix a point zy and a positive number « and let us denote by
U(e, zp) the class of all functions f € BVy(R), continuous at zg and such that
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Vu(f; 20— 90,z0+6) < 6 for & € (0,1]. From Corollary 3.3 with ¢ > max(2, a+1)
it follows that for f € U(a,zp) and n € N,

Fuf (o)  f@o)] < Ks(a )1+ V(s B + LEN (3

On the other hand, the function fo(t) := |t — zo|® if |t — zo| < 1, fa(t) = 1/2
otherwise on R, belongs to U(a, zp) and

Ig+5

Fufa(®o) = falwo) 2 %ﬂ D Pag 3?0»7)/ |t — zo| *pr k(£ 7)dt

k== —00

for any 6 € (0,1]. Let 7 be a positive number such that 7 4o = 2r, where r € N.
Then

Fou fa(®o) - fa(mo)
1 :I':u-f—&
2 5nd Z pnk(ro,*r)/ (t = 20)* i (8 7)dit
k=00
= Lgaor (Hn,zr(xo) -n i Pn.k (205 7) (t— mo)z’pn,k(tn)dt)
2 M lt—zo|>6

1
Z ‘2'6a-2r(Hn,2r(m()) hue 6n2Hn,2r+2($0))-

From (3.2) it follows that
1
Hn,2r ($0) ..>_ §d0,r7§r

for sufficiently large n. Applying inequality (3.1) for H., 2ri2(zo) and putting
6 =272\/Ky(c,m + 1) / \/do,r we obtain that

Fofalzo) = falzo) 2 297 3(Ky(e,r + 1)) /2 (dg )1 T7=2/292 (3.4)

for sufficiently large n. Inequalities (3.3) and (3.4) ensure that in the classes
U, zp) with 0 < a € 2, or U(e,z0) := {f € U(a,zo): f(zo) = 0} with ar-
bitrary @ > 0, the estimate given in Corollary 3.3 is the best concerning the
order.
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