
Functiones et Appr-oximatio 
XXVIII (2000), 201-209 

To Professor Wlodzimicrz Stas on the 
occasion of his 75th birthday 

ON THE RATE OF CONVERGENCE OF THE BEZIER TYPE 
OPERATORS 

PAULINA PYCH-TABERSKA 

Abstract: The rate of pointwise convergence of the Bezier type modification of some discrete 
Feller operators of locally bounded functions is estimated. In the general theorems the Chanturija 
modulus of variation is used. In particular, corresponding estimates for functions of bounded 
p-th power variation are deduced. 
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1. Preliminaries 

Let { Xk.x} ~ 1 be a family of sequences of independent and identically distributed 
random variables with expectation EXk,x = x. k E N := {1, 2, ... } and fi­
nite variance 0"2 (x), where :r is a real parameter taking values in a bounded 
or unbounded interval I ~ R := ( -oo, x). Suppose that the random vari­
ables X1.x, X 2 .x, ... have the common lattice distribution F = {P1.j (x) : x E 
I,j E Ji} concentrated on a set 11 ~ Zrll, Z := {0,±1,±2, ... }, where the 
«weights» P1.J of the «atoms» j are continuous on I. Consider the sum 
S,u = X1,x + X2,x + · · · + Xn,x and its distribution {pn,j(x) : X E I. j E J,i} 
being the n-fold convolution of F with itself. Introduce the discrete Feller oper­
ators 

Lnf(-r) := EJ(Sn,x/n) = I: f ( t) Pn.j(x) (n E N) (1.1) 
JE.ln 

for real-valued functions f defined on I and satisfying Elf(Sn.x/n)I < cc [5, p. 
218]. 

Suppose that Jn is of the form {0, 1, 2, ... , mn} with some m 11 E N or 
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I 11 = No :=NU {0} and define, as in [2], thr Bczier basit:1 functions 

Qn,k(x) := L Pn,j(x) for k E In, 
jEJn. j?:_k 

Qn.mn ! l (x) - 0 if In= {O, 1, 2 .... , m 11 }. 

Given a number a ~ 1, write 

Q~~l(x) := q~_dx) q.~.k+l (x). 

The Bezier type modification of operators ( 1. 1) is defined by 

L(a) f(x) := ~ J (~) Q(a) (x'). 
n L n n,k 

kE Jn 

(1.2) 

Recently, several authors studird approximation properties of the special 
operators (1.2) in which Lnf = B,J are the Bernstein polynomials of f, i.e. 
Pn,j(x) = G)xJ(1-xr-j, XE I= [0,1], j E In= {0,1, ... ,n}. As is known [10. 

p.372L the Bernstein-Bezier operators B~°') f are not the Feller type ones. Some 
results concerning the approximation by operators B;tl f are given e.g. in [3], [10]. 
In particular, Zeng and Piriou [IO] gave an estimate for the rate of co11vergence 
of Bit) f for functions f belonging to the class BV ( [O, 1]), i.e. for functions f of 
bounded variation in the Jordan sense on [O, l]. 

In this paper we first present a general estimate for the rate of pointwise 
convergence of the discrete Feller-Be,-;ier operators (1.2) in the casr ,vhere f is 
bounded on the interval I and possesses the one-sided limits f ( x+), f ( x-) at a 
fixed point x. In particular. we obtain the corresponding estimates for functions 
f of bounded variation in the generalized sense on I. In the special case where 
f E BV([O. l]) and L~i,).f = Bt').f we get the above mentioned result of Zeng 
and Piriou [10]. Finally, the extension of our results to unbounded functions f 
is presented. Note that analogous problems for the discrete Feller operators (1. 1) 
wrre considered e.g. in [l], [8], [9]. 

Throughout the paper we use the symbol 1U(I) [resp. 1\l10 r(I)] for the class 
of all real-valued functions bounded on I [resp. bounded on every compact subin­
terval of I]. For positive integer k, the modulus of variation of a bounded function 
g on a compact interval Y = [c, d] will be denoted by vk(g; Y) or vk(g; c. d) and 
will be drfinrd as in [4] (see also [1], [8]). If Y is an unbounded interval, e.g. 
Y = [c, ,x;). then vk(g; c, oo) is understood as the limit of vk(g; c, d) at:1 d - oo. 
Clearly, if g E 1\1 (Y), then for every integer k, vk(g; Y) < oo. Some basic prop­
erties of the modulus of variation can be found e.g. in [4]. 
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2. Results 
Let f E Al ( I) or f E Af10 c ( I) and let at a fixed point x E Intl the one-sided 
limits J ( x+), f ( x-) exist. It is easy to verify that for all t E I, 

J(t) = 2-a J(x+)+(l -2-°')f(x-)+gx(t)+2-°'(J(x+)-f(x-))sgn~°')(t) 

+ (J(x) - 2-a J(:c+) - (1- 2-°')J(x-)) Ox(t), 

where 

{ 
f (t) - f ( X +) if t > X.· •. 

g x ( t) = Q if t = X 1 

f(t) - f(x-) if t < X, 

{ 
2°' - 1 

sgn~n) ( t) = 0 
-1 

and br(x) = 1. Ox(t) = 0 if t-=/=- x (sec [10, p. 381]). Therefore 

if t > .T. 

if t = .T, 

if t < X 

L~c~) f(x) - 2-n f(x+) - (1 - 2-°')f (x-) = L~°')gx(:r) + ~~a) (f; x) (2.1) 

with 

~ii°') (f; X) = 2-n (f ( x+) - J (x-)) L~,°'lsgn~n) (x) 
+ (J(x) - 2-a f(x+) (1- 2-a)J(x-)) L~°')bJ:(x). (2.2) 

Let a, b be two arbitrary positive numbers. Write the term L},a)9x(x) in the 
form 

L~1°')gr(x) = L 9.r ( ~ )Q~~{(x) + V,i-(a, b) L 9x ( ~ )Q~~L(x), (2.3) 
kEAr(u.b) kElJ,(a.b) 

where A.,(a.b) = {k E In: x-a s; k/n s; x+b}, Dx(a,b) = In \Ax(a,b) and 
iJ,.(a. b) = 0 if neither of the points x - a, :r + b belongs to Intl, 1Jx(a, b) = 1 
otherwise. 

In order to estimate the terms of the right-hand side of (2.3) let us observe 
that Q~tk(.r) ~ 0, 

L Q~1~l(:r) = ( ~ Pn.j(x)) 
0 

= 1 
kEJ,, JEJ,, 

and that the variance of the avergage Sn_:i:/n is equal to 

Consequently, in view of the obvious inequality lu°' - v°'I s; oiu - vi if o- ~ 1. 0 < 
v s; u ::; 1 , we have 

( k ) 2 
( k ) 2 

. a 2 ( :r) ' - - X Q;;\(x) :S: 0 ' - - X (qn_k(:r) - Qn.k+l (x)) = O'--. L....t n · L....t n · n 
kEJn kEJn 

Arguing similarly to the proof of Lemma in [1] (see also the proof of Lemma 
in [9]) ,ve obtain the following fundamental estimates. 
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Lemma 2 .1. Let f E AJ10 c ( I) and let a > 0, b > 0. Then, for every n 2- 4, 

( 
80:a2(x))(m-l 1 . ~ 1 ) S 1 + 2 L ~Vj (gx; Ix(-Ja/vn)) + -2Vm (g,i;; lx(-a)) a J rn j=l 

+ ( 1 + Sa:: (x)) (~ 1
1
3 v1 (g, Jx(jb/ fa)) + ~2 v,,, (gx; l,(b))). 

where m = [fa], Ix(h) = [x + h,x] n I if h < 0. Ix(h) = [:r,:r + h] n I if h > 0. 
If f E Af (I) and if at least one of the points :r - a, x + b belongs to Intl, then 
for all n EN, 

where c = min{a,b}. 

Lemma 2.2. Let I = [0, oc) or I = (-oo, oc) and let a function f of class 
lif1oc( I) satisfy tile growth condition 

l.f (x) I S 1h(x) for all x E I (2.4) 

with a non-negative function lJJ E C(I) such that for all n 2_ no, x E I, 

L 'lj) 2 (;) Pn.j(x) :S <,:i(:r) (rp E C(I), rp(:r) 2. 0 for all x EI) . 
.7EJn 

Then 

where c = min{u,b}. a(x) = ~-
Proof. In view of (2.4) the left-hand side of (2.5) is not greater than 

:S ~ °'"' VJ (!3_) 15_ - xjQ(o-)(x) + 'I/J(:1:) °'"' (15:_ - x) 2 Q(o-)_(x) r L n n n.k c2 L n n.k . 
kEJn kEJn 

l ( 2 ( )) 1;2 ( a 2 (x)) 112 'I/J(x)a2 (x) S - 0:rp X 0: -- + 0: ') , c n nc~ 
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by the Schwarz inequality. Thus, estimate (2.5) follmvs. • 
Inequalities given in Lemmas 2.1 and 2.2 together "vith identity (2.3) enable 

us to get the estimate of the term Lt.,_) g;r,-(J_:) in (2.1). To obtain the estimate of 
the term t:l~a\J;x) in (2.1) we consider only the points x EI at which 

a 2 (x) > 0 and 3(x) := L lj - xl 3Pu(x) < ex;,. 
jEJi 

Lemma 2.3. Under the assumptions (2.6) we have 

l!:l}la)(_f; x)I :S fo:;(x) (u(x)lf(x+) - f(T-)1 

+ en ( X) If ( X) - f ( .T-) I ( 2 i3 ( X) + o-2 ( x))) , 

(2.6) 

where O < T :S 0.82 and e71 (x) = 0 if x =/- k/n for all k E Jn, en(x:) = l if there 
exists a k' E In such tllat x = k' /n. 

Proof. First, let us recall that in view of the Bcrry-Esseen Theorem [5, p. 515], 

(n EN, t ER) 

where 
l ft IJ1(t) = rcc exp(-y2 /2)dy 

v21r -x 

and 0 < T :S 0.82 (see [6, p. 93]). From this it follows at once that 

I '""" , 11 T/3(x) _L- Pn.j(:r) - 2 :S Jna3(x) 
J>n:r 

(2.7) 

and 

1 (2T/3(J.') 1 ) 
Pn.k(x) = ~Pn,1(x) - j~l Pn.j(:r) :S fo a3(x) + v'21ra(x) · (2.8) 

Further, it is easy to see (as in [10]) that 

k>n,r k<nx 

k>nx k>n:r k<nx 

= 2a ( L Pn, 1(x)) a - ( 1 - en(x)Q;tk,(x)) 
J>nx 
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and 

Hence, in view of (2.2), 

ID-~;•)(f;:r)I :S lf(x+) -f(x-)11 (L Pn.j(x)) a - 2-u1 
J>nx 

+ If (x) - f (x-)\en (:r)Q~~k, (x) 

:S n\f(x+) - f(x-)\1 _L Pn.1 (x) - ~I 
J>nx 

Now, the result follows by (2. 7) and (2.8). • 
Combining identity ( 2 .1) with the inequalities gi vcn in our lemmas one can 

formulate corresponding estimates concerning the rate of point.wise convergence of 
the operators L~a) f. 

First, let us choose a = b = 1 in (2.3). Then we obtain the following 
Theorem 2.4. Let f E 1\1 ( T) and let at a fixed point x E Intl tl1e one-sided 
limits f(x+ ), f(x-) exist. Then, for all n ~ 4, 

IL~k) f(x) - 2-nf(x+) - (1- 2- 0 )f(:1:-)I 

2 (m-1 1 . 1 ) :S 2(1+80:a (x)) ~ j3Vj (g:r;Yx(J/Jn) + m 2 Vm (g.r:Yr(l)) 

+1.9x(l. l)aa2 (x)vi(gx;I) + ID-~0 )(f;x)I. 
n 

wlwre m = [fol. Yr(h) = tX - h, x + h] n I, 1.9x(l.1) = 0 if neitl1er of the points 
1: - l.:1: + 1 belongs to IntI,1.9x(L 1) = 1 otherwise, and /D-~i°')(f;1:)I is estimated 
via Lemma 2.3. 

Next, suppose that I is an unbounded interval and choose a = b = A > 0 
in the formula (2.3). Then we get 

Theorem 2.5. Let all conditions of Lemma 2.2 be satisfied. If moreover tl1e 
function f has the one-sided limits f(x+ ), .f(x-) at a fixed point x E Intl and 
11:I :S A, then for all n ~ max{ 4, no}. 

\L~1a) f(x) - 2-a f(T+) - (1 - 2-a)f(x-)I 

8na2(x) (m-l 1 _ 1 ) :S 2(1+ A2 ) L j3VJ(9x:Yx(JA/Jn))+ m 2 vm(9.i:;Yx(A)) 
J=l 

+ Afa ( <p(x)a(x) + ~ ~:(x)a2 (x)) + ID-~0 !(J: x) 1-
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wherf' m = [Jn], }':r(h) = [x- h,:r+ h] n J and 1~~01 (f;x)I is estimated via 
Lemma 2.3. 

Remark 2. 6. In view of the continuity of the function gx at x, the right-hand 
sides of the inequalities given in Theorems 2.4 and 2.5 tend to O as n -r CXJ (see 
Remark 1 in [9]). 

3. Corollaries and examples 

Let p 2:: 1. Denote by BVp(J) the class of all functions of bounded p-th power 
variation on the interval J and by Vp(g; Y) the total p-th variation of the function 
g on the interval Y c;;;; I) defined as the upper bound of the set of all numbers 

over all finite systems of non-overlapping intervals (ti, Ti) c Y. Clearly, if VP (g; Y) < 
x tben for every integer _j 

vj(g; Y) s j 1- 1!Pvp(g; Y). 

This inequality, Theorem 2.4 and some simple calculation (see e.g. [9, p. 152]) 
lead to 

Corollary 3.1. If f E BVp(I), then for every x E Intl and all n 2:: 4, 

IL~1a) f(x) -2-a J(x+) - (1 - 2- 0 )f(x-)I 

< 8(1 + 9cw2(x)) ~( 'k+l)-1+1/pv (g .. · [T,.) + l~(a)(f· x)I - ( y'n) l+l /P f=6 V It: + l p x' , " n , , 

where Uo = I, Uk= [x - 1/v'k,x + 1/v'k] n J if k = 1, 2, ... , n and l~·~a)(J; x)I 
is estimated as in Lemma 2. 3. 

Analogously. from Theorem 2.5 one can deduce corresponding estimate for 
functions f of bounded p-th power variation on every compact interval contained 
in I and satisfying the growth condition (2.4). We will not formulate this corollary 
explicite. 

Note, that from Theorems 2.4 and 2.5 similar results for more general classes 
of functions f of bounded <I>-variation can be obtained) too (see e.g. [1], [8], [9]). 

Now, we will present some simple examples. 
1) Let L~a) J = B~a) J be the Bernstein-Bezier operators of J E Af(I), 

defined by (1.2) in which I= [O, 1], In= {O, 1, ... , n},Pn.j(:r) = (;)1)(1 - xr-j. 
In this case Theorem 2.4 applies vvith cr2 (x) = x(l - x), /3(x) = :r(l - :r)(2x2 -

2x+l), 19x(l,1)=0 and 

l~~a)(J;:r)I S 5
0'. (lf(:r+) - J(;r-)1 + en(x)IJ(-r) - f(sr-)1). (3.1) 

2✓n:r(l - x) 
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In view of the Remark 2.6, 

lim st~) J(x) = 2-a f (x+) + (1 - 2-a)f(x-) 
n---+cx::, 

whenever f is bounded on [0, 1] and x E (0, 1) is its discontinuity point of the 
first kind. This means that our estimate can be treated as a quantitative version 
of Corollary 1 in [10]. 

Note, that we can also proceed as follows. Choosing in Lemma 2.1, a = 
:r, b = l - :r and using representations (2.1 ), (2.3), we easily get 

jB,~a) J(x) - 2-o J(x+) - (1- 2- 0 )J(x-)I 

( ~ 1 ( jx j(l - x)) 1 ) :S: TVa(x) ~ j3 Vj g,,.; T - y"n' J: + J'n + m 2 V 111 (g",: 0, 1) 

+ l~~a)(f; x)J, 

where m = [v!nJ, W,,(:r) = 2 + 8n(1 - x)/x + 80'x/(l - :r) and !~(;'\/': x)! is 
estimated in (3.1). For functions f E BVp([O, 1]) the above inequality leads to the 
following estimate 

JB~a) J(x) - 2-a f(:i:+) - (1 - 2-a)J(x-)J 

/ ( l ~ ~ -l+l/p ( . X . 1 - X) ::::: Z a X) ( y"n) l+ 1 / p f::i ( V k + l) ' Vp g x, X - v1k , X + yk 

+ J~~,0 )(f; x)J 

for all x E (0. 1 ), n ~ 4, where Z,,( x) = lOTVu(x). In case p = 1 this gives 
the result up to the order the same as in Theorem 1 in [10]. Clearly, in this case 
(p = 1), by the direct calculation one can get more precise value of the factor 
Z 0 (x) (see [10, Th. l]). Also, the factor 5a:/2}ru:(l - x) in (3.1) may be slightly 
improved and replaced by 20:/(Jn.r(l - x) + 1) (see [10, Lemma 5]). 

2) Next, let us consider the Szasz-Mirakyan operators Snf = L,if given by 
(1.1) in which Pn.J(x) = e-n:1.·(nx)j / j! for :r E I = [0, oo ), j E In = No. Denote 
by S~a) f their modification of the form (1.2). If f is bounded on [0, oo) then one 
can apply Theorem 2.4 with a 2(x) = :r, f3(x) :S: :rJl + 3x. OI(l, 1) = l and 

50:Jl + 3:r 
!~~a)(!; x) I :S: 2../nx (IJ(x+) - f(x- )I + en(x) IJ(x) - f(x-) I). 

Suppose, further, that f is unbounded on I and that it satisfies the growth con­
dition (2.4) with ijJ(x) = (1 + x)q where q is a positive integer. It is easy to see 
that 

~ ,j,2 ( t) Pn;(x) S 22 q-l ( (1 u)2' + t ( t -x r;,nh)) S c(q)(l + x) 2' 
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for all n E N. x EI, where c(q) is some positive constant depending only on q (cf. 
e.g. [7, Lemma 3.7]). Hence, one can apply Theorem 2.5 with the above values 
of a2 (x), 6(x), l~~cr) (f; x)I, v,(x), n0 = 1, 1y(x) = vc{q)(l + x)q and arbitrary 
po:-;itive number A (in paricular, A may be choo:-;en x ). Also, analogous results 
can be obtained for functions f E Af10 c(I) satisfying condition (2.4) with some 
exponential function it,, e.g. it,( x) = exp(p:r), p > 0. In this case \Ve have 

t v,2 (i) Pn.j(x) = exp (nx(e 2P/n - 1)) :::; exp( 2~x I ) , n 1 - 2p n j=O I 

1.e. Theorem 2.5 holds true with sp(x) = exp(2p:r) and n 2: no where no= [4p]+l. 
Finally, let us mention that corresponding results can be obtained for the 

Bezier type modification (1.2) of the discrete Baskakov operators ( defined e.g. as 
in [7]). 
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