FACTORIZATION IN THE EXTENDED SELBERG CLASS

Jerzy Kaczorowski \& Alberto Perelli

Abstract

We prove that every function in the extended Selberg class \mathcal{S}^{\sharp} can be factored into primitive functions. 'The proof is definitely more involved than in the case of the Selberg class \mathcal{S}. Keywords: extended Selberg class, factorization, general L-functions.

1. Introduction

We denote by \mathcal{S} the Selberg class of Dirichlet series with functional equation and Euler product. It is well known that \mathcal{S} contains several classical L-functions, and it is expected that \mathcal{S} essentially coincides with the class of automorphic L functions. We refer to the survey paper [5] for definitions, notation and basic properties of \mathcal{S} and related classes of Dirichlet series, such as the extended Selberg class \mathcal{S}^{\sharp} of Dirichlet series with functional equation, but not necessarily with Euler product. We recall that a function $F(s)$ in \mathcal{S} is primitive if $F(s)=F_{1}(s) F_{2}(s)$ with $F_{1}, F_{2} \in \mathcal{S}$ implies $F_{1}=1$ or $F_{2}=1$. It is well known that every function in \mathcal{S} can be factored into primitive functions; see Conrey-Ghosh [2]. The proof is an immediate consequence, by a simple induction on the degree, of the following three facts:
i) the degree is additive, i.e., $d_{F G}=d_{F}+d_{G}$ for $F, G \in \mathcal{S}$;
ii) there are no functions $F \in \mathcal{S}$ with degree $0<d_{F}<1$;
iii) the only function of degree 0 in \mathcal{S} is the constant 1 .

The notion of primitive function is defined in the extended Selberg class \mathcal{S}^{\sharp} as well, and hence the problem of the factorization into primitive functions can also be raised in the framework of \mathcal{S}^{\sharp}. In view of Lemma 1 below, in this case we consider only factorizations up to constants, since the non-zero constants are invertible in \mathcal{S}^{\sharp}. Note that the first two of the above facts still hold in \mathcal{S}^{\sharp}, see [4], but \mathcal{S}_{0}^{\sharp} is not any more reduced to the single function $F(s)=1$ identically. We refer to Theorem 1 of [4] for the characterization of functions in \mathcal{S}_{0}^{\sharp}. As a consequence, the above simple induction on the degree is not enough to show
the existence of the factorization in \mathcal{S}^{\sharp}. However, the argument can be suitably modified to prove the following

Theorem 1. Every function in the extended Selberg class \mathcal{S}^{\sharp} can be factored into primitive functions.

The basic tools in the proof of Theorem 1 are the notion of conductor of $F \in \mathcal{S}^{\sharp}$ and the characterization of the functions of degree 0 in \mathcal{S}^{\sharp}, see [4]. Indeed, we recall that the conductor q_{F} of $F \in \mathcal{S}^{\sharp}$ is defined as

$$
q_{F}=(2 \pi)^{d_{F}} Q^{2} \prod_{j=1}^{k} \lambda_{j}^{2 \lambda_{j}}
$$

see [6]. Note that q_{F} is multiplicative, i.e., $q_{F G}=q_{F} q_{G}$ if $F, G \in \mathcal{S}^{\sharp}$, and $q_{F}=Q^{2}$ if $F \in \mathcal{S}_{0}^{\sharp}$. Moreover, if $F \in \mathcal{S}_{0}^{\sharp}$ then q_{F} is a positive integer and $F(s)$ is a Dirichlet polynomial of the form

$$
\begin{equation*}
F(s)=\sum_{n \mid q_{F}} a(n) n^{-s} \tag{1.1}
\end{equation*}
$$

Further, $\mathcal{S}_{d}^{\sharp}=\emptyset$ for $0<d<1$, and $F(s)$ is constant if and only if $d_{F}=0$ and $q_{F}=1$; see Theorem 1 of [4] for the above results.

We call almost-primitive a function $F \in \mathcal{S}^{\sharp}$ such that if $F(s)=F_{1}(s) F_{2}(s)$ with $F_{1}, F_{2} \in \mathcal{S}^{\sharp}$, then $d_{F_{1}}=0$ or $d_{F_{2}}=0$. We have
Theorem 2. If $F \in \mathcal{S}^{\sharp}$ is almost-primitive, then $F(s)=G(s) P(s)$ with $G, P \in$ $\mathcal{S}^{\sharp}, d_{G}=0$ and $P(s)$ primitive.

We remark that Theorem 1 is a simple consequence of Theorem 2 and of the above recalled results. In fact, an induction on the degree shows that every $F \in \mathcal{S}^{\sharp}$ can be written as

$$
F(s)=F_{1}(s) \cdots F_{k}(s)
$$

where each $F_{j}(s)$ is almost-primitive. Therefore, by Theorem 2 we have

$$
F(s)=G(s) P_{1}(s) \cdots P_{k}(s)
$$

with primitive $P_{j}(s)$ and $d_{G}=0$. Since the functions in S_{0}^{\sharp} have integer conductor and those with conductor equal to 1 are constant, an induction on the conductor shows that $G(s)$ is a product of primitive functions, and Theorem 1 follows.

A well known conjecture states that \mathcal{S} has unique factorization into primitive functions. Moreover, it is well known that the Selberg orthonormality conjecture implies such a conjecture; see section 4 of [5]. Note that the analog of the Selberg orthonormality conjecture does not hold in \mathcal{S}^{\sharp}. Indeed, let $\chi_{1}(n)$ and $\chi_{2}(n)$ be two primitive Dirichlet characters with the same modulus and parity, and consider
$F(s)=L\left(s, \chi_{1}\right)+L\left(s, \chi_{2}\right)$ and $G(s)=L\left(s, \chi_{1}\right)$. Then $F(s)$ and $G(s)$ belong to \mathcal{S}_{1}^{\sharp} and are primitive (since the functions of \mathcal{S} are linearly independent over the p-finite Dirichlet series, see [3]), but it is easily checked that the Selberg orthonormality conjecture does not hold for $F(s)$ and $G(s)$. It remains open the problem of determining if the unique factorization holds in \mathcal{S}^{\sharp}. We conclude with another interesting problem related with the factorization in \mathcal{S}^{\sharp} : is it true that a primitive function in \mathcal{S} is primitive in \mathcal{S}^{\sharp} as well ?

Acknowledgments. We wish to thank Alessandro Zaccagnini for suggesting some improvements in the presentation of the paper. This research was partially supported by the Istituto Nazionale di Alta Matematica, by a MURST grant and the KBN grant 2 PO3A 02417.

2. Proof of Theorem 2

We first characterize the invertible elements of \mathcal{S}^{\sharp}.
Lemma 1. The invertible functions in \mathcal{S}^{\sharp} are the non-zero constants.
Proof. Clearly, the non-zero constants are invertible in \mathcal{S}^{\sharp}. Let now $F \in \mathcal{S}^{\sharp}$ be invertible, and let $G(s)=F(s)^{-1}$. Then $d_{F}+d_{G}=0$, and hence both $F(s)$ and $G(s)$ are Dirichlet polynomials (see the Introduction). Denoting by n_{0} and m_{0} the largest indexes of non-zero coefficients of $F(s)$ and $G(s)$, respectively, we have that the coefficient of index $n_{0} m_{0}$ of $F(s) G(s)$ is non-zero. Therefore $n_{0} m_{0}=1$, and Lemma 1 follows.

It is well known that every $F \in \mathcal{S}^{\sharp}$ has a zero-free half-plane, say $\sigma>\sigma_{F}$. By the functional equation, $F(s)$ has no zeros for $\sigma<-\sigma_{F}$, apart from the trivial zeros coming from the poles of the Γ-factors. We denote by $\rho=\beta+i \gamma$ the generic zero of $F(s)$, and write

$$
N_{F}(T)=\#\left\{\rho: F(\rho)=0,|\beta| \leqslant \sigma_{F},|\gamma|<T\right\} .
$$

The classical proof of the Riemann-von Mangoldt formula can be adapted to show that

$$
\begin{equation*}
N_{F}(T)=\frac{d_{F}}{\pi} T \log T+c_{F} T+O(\log T) \tag{2.1}
\end{equation*}
$$

with a certain constant c_{F}, for $T \geqslant 2$ and any fixed $F \in \mathcal{S}^{\sharp}$ with $d_{F}>0$; see section 2 of [5]. The proof of Theorem 2 is based on the following uniform estimate for the number of zeros of functions in S_{0}^{\sharp}, i.e., for Dirichlet polynomials of type (1.1).
Proposition 1. We have

$$
N_{F}(T)=\frac{T}{\pi} \log q_{F}+O_{\sigma_{F}}\left(\log ^{6} q_{F}\right)
$$

uniformly for $T \geqslant 2$ and $F \in \mathcal{S}_{0}^{\sharp}$ with $a(1)=1$ and $q_{F} \geqslant 2$.

A similar result already appears as Proposition 1 of Bombieri-Friedlander [1]. However, Proposition 1 of [1] deals with more general Dirichlet polynomials but gives only an upper bound for $N_{F}(T)$, while we need a lower bound. We first show how Theorem 2 follows from our Proposition 1, and in the next section we prove Proposition 1.

Assume that $F \in \mathcal{S}^{\sharp}$ is almost-primitive. If $F(s)$ is not primitive, it can be written as

$$
F(s)=L_{\mathbf{1}}(s) F_{\mathbf{l}}(s)
$$

with $d_{L_{1}}=0, q_{L_{1}} \geqslant 2$ and $F_{1}(s)$ almost-primitive. If $F_{1}(s)$ is not primitive we apply inductively the same reasoning, and hence arguing by contradiction we may assume that for every $n \in \mathbb{N}$

$$
\begin{equation*}
F(s)=L_{1}(s) \cdots L_{n}(s) F_{n}(s) \tag{2.2}
\end{equation*}
$$

with $d_{L_{j}}=0, q_{L_{j}} \geqslant 2$ and $F_{n}(s)$ almost-primitive, $j=1, \ldots, n$. Moreover, looking at the Dirichlet series of both sides of (2.2), we have that only a finite number of $L_{j}(s)$ can have first coefficient $a_{L_{j}}(1)=0$. Therefore, by a normalization, for n sufficiently large we can rewrite (2.2) as

$$
F(s)=H(s) H_{1}(s) \cdots H_{n}(s) F_{n}(s)
$$

with $d_{H}=0, d_{H_{j}}=0, q_{H_{j}} \geqslant 2, a_{H_{j}}(1)=1$ and $F_{n}(s)$ almost-primitive, $j=1, \ldots, n$. Writing $G_{n}(s)=H_{1}(s) \cdots H_{n}(s)$, for large n we finally obtain

$$
\begin{equation*}
F(s)=H(s) G_{n}(s) F_{n}(s) \tag{2.3}
\end{equation*}
$$

with $d_{H}=0, d_{G_{n}}=0, q_{G_{n}} \rightarrow \infty$ as $n \rightarrow \infty, a_{G_{n}}(1)=1$ and $F_{n}(s)$ almostprimitive.

Since the conductor of the functions in \mathcal{S}_{0}^{\sharp} is integer and $\mathcal{S}_{d}^{\sharp}=\emptyset$ for $0<$ $d<1$, from (2.2) we immediately have that $d_{F} \geqslant 1$. Hence we may use (2.1) and Proposition 1 to show that (2.3) is impossible. Indeed, for n sufficiently large we have

$$
N_{F}(T) \geqslant N_{G_{n}}(T)
$$

and $G_{n}(s) \neq 0$ for $\sigma>\sigma_{F}$. Therefore, from (2.1) and Proposition 1 we have

$$
\frac{d_{F}}{\pi} T \log T \geqslant \frac{1}{2 \pi} T \log q_{G_{n}}+O\left(\log ^{6} q_{G_{n}}\right)
$$

for sufficiently large T, and hence we get a contradiction as $n \rightarrow \infty$ by choosing $T=T_{n}=q_{G_{n}}^{\delta}$ with a small $\delta>0$.

3. Proof of Proposition 1

Since $a(1)=1$, we can find a sufficiently large $\sigma_{0}>\sigma_{F}$ such that

$$
\begin{equation*}
|F(s)-1| \leqslant \frac{1}{4} \quad \text { for } \sigma \geqslant \sigma_{0} \tag{3.1}
\end{equation*}
$$

we will choose σ_{0} later on. Moreover, we may assume that $\pm T$ is not the ordinate of a zero of $F(s)$ and that $q_{F} \geqslant 2$. Recalling that $q_{F}=Q^{2}$ for $F \in \mathcal{S}_{0}^{\sharp}$, by a standard technique based on the argument principle, the functional equation and (3.1) we have

$$
\begin{align*}
N_{F}(T) & =\frac{1}{2 \pi} \Delta_{\partial R} \arg \left(Q^{s} F(s)\right)=\frac{1}{\pi} \Delta_{L_{1} \cup L_{2} \cup L_{3}} \arg \left(Q^{s} F(s)\right) \\
& =\frac{T}{\pi} \log q_{F}+O(1)+O\left(\left|\Delta_{L_{1} \cup L_{3}} \arg \left(Q^{s} F(s)\right)\right|\right), \tag{3.2}
\end{align*}
$$

where R is the rectangle of vertices $\sigma_{0} \pm i T, 1-\sigma_{0} \pm i T$ and $L_{1} \cup L_{2} \cup L_{3}$ is the right half of its perimeter, L_{2} being the vertical side.

The second error term in (3.2) does not exceed π times the number of zeros of

$$
\frac{1}{2}(F(s \pm i T)+\bar{F}(s \pm i T))
$$

in the circle with center σ_{0} and radius $\sigma_{0}-\frac{1}{2}$. Therefore, by Jensen's inequality such an error term is

$$
\ll \sigma_{0} \log \left(\max _{\left|s-\sigma_{0}\right| \leqslant \sigma_{0}}|F(s \pm i T)|\right),
$$

and hence from (3.2) we have

$$
\begin{equation*}
N_{F}(T)=\frac{T}{\pi} \log q_{F}+O\left(\sigma_{0} \log \left(\max _{\sigma \geqslant 0}|F(s)|\right)\right) \tag{3.3}
\end{equation*}
$$

Writing

$$
\begin{equation*}
M=\max _{n \mid q_{F}}|a(n)| \tag{3.4}
\end{equation*}
$$

(and assuming that $M \geqslant 2$) we have

$$
\max _{\sigma \geqslant 0}|F(s)| \ll q_{F}^{\epsilon} M,
$$

and hence (3.3) becomes

$$
\begin{equation*}
N_{F}(T)=\frac{T}{\pi} \log q_{F}+O\left(\sigma_{0} \log \left(q_{F}^{\varepsilon} M\right)\right) \tag{3.5}
\end{equation*}
$$

Suppose now that

$$
\begin{equation*}
M<_{\sigma_{F}} e^{10 \log ^{3} q_{F}} \tag{3.6}
\end{equation*}
$$

Then (3.1) holds with the choice

$$
\begin{equation*}
\sigma_{0}=c \log ^{3} q_{F} \tag{3.7}
\end{equation*}
$$

for a suitable constant $c>0$, and hence Proposition 1 follows immediately from (3.5)-(3.7). Therefore, in order to conclude the proof of Proposition 1 we need the following

Proposition 2. Let $F \in \mathcal{S}_{0}^{\sharp}$ have $a(1)=1$ and $q_{F} \geqslant 2$. Then, with the notation in (3.4), we have

$$
M=O_{\sigma_{F}}\left(e^{10 \log ^{3} q_{F}}\right)
$$

We first prove a lemma. Let $\Omega(n)$ denote the total number of prime factors of n and, given $\delta_{0} \geqslant 1$, define the sequence $a\left(n, \delta_{0}\right)$ by induction as $a\left(1, \delta_{0}\right)=\delta_{0}$ and

$$
a\left(n, \delta_{0}\right)=\delta_{0}+\sum_{l=2}^{\Omega(n)} \frac{1}{l} \sum_{\substack{n_{1}, \ldots, n_{1} \geqslant 2 \\ n_{1}, \cdots n_{l} \rightarrow n}} a\left(n_{1}, \delta_{0}\right) \cdots a\left(n_{l}, \delta_{0}\right)
$$

for $n \geqslant 2$, an empty sum being equal to 0 . We have
Lemma 2. For $n \geqslant 1$

$$
\delta_{0} \leqslant a\left(n, \delta_{0}\right) \leqslant \delta_{0}^{\Omega(n)} 2^{\Omega(n)^{3}} .
$$

Proof. We first note that for $l \geqslant 2$ and $a_{1}, \ldots, a_{i} \geqslant 1$ we have

$$
\begin{equation*}
a_{1}^{3}+\cdots+a_{l}^{3} \leqslant\left(a_{1}+\cdots+a_{l}\right)^{3}-\left(a_{1}+\cdots+a_{l}\right)^{2} . \tag{3.8}
\end{equation*}
$$

Indeed, (3.8) holds for $l=2$ since $3 a_{1} a_{2}^{2}+3 a_{1}^{2} a_{2} \geqslant a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}=\left(a_{1}+a_{2}\right)^{2}$. Moreover, by induction we have

$$
\begin{aligned}
\left(a_{1}+\cdots+a_{l}+a_{l+1}\right)^{3} & \geqslant\left(a_{1}+\cdots+a_{l}\right)^{3}+a_{l+1}^{3}+\left(a_{1}+\cdots+a_{l}+a_{l+1}\right)^{2} \\
& \geqslant a_{1}^{3}+\cdots+a_{l}^{3}+a_{l+1}^{3}+\left(a_{1}+\cdots+a_{l}+a_{l+1}\right)^{2} .
\end{aligned}
$$

Note that the lemma is trivial when n is a prime number. We prove the lemma by induction, and we may assume that $n \geqslant 4$ and $\Omega(n) \geqslant 2$. Assuming that the lemma holds for $m \leqslant n-1$ and using (3.8) we have

$$
\begin{aligned}
\delta_{0} \leqslant a\left(n, \delta_{0}\right) & =\delta_{0}+\sum_{l=2}^{\Omega(n)} \frac{1}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \geqslant 2 \\
n_{1} \cdots n_{l}=n}} a\left(n_{1}, \delta_{0}\right) \cdots a\left(n_{l}, \delta_{0}\right) \\
& \leqslant \delta_{0}+\sum_{l=2}^{\Omega(n)} \frac{1}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \geqslant 2 \\
n_{1} \cdots n_{l}=n}} \delta_{0}^{\Omega(n)} 2^{\Omega\left(n_{1}\right)^{3}+\cdots+\Omega\left(n_{l}\right)^{3}} \\
& \leqslant \delta_{0}+\delta_{0}^{\Omega(n)} 2^{\Omega(n)^{3}-\Omega(n)^{2}} \sum_{l=2}^{\Omega(n)} \frac{1}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \geqslant 2 \\
n_{1} \cdots n_{l} \geqslant n}} 1 .
\end{aligned}
$$

Note that we have at most $2^{\Omega(n)}$ possible choices for each n_{j} in the last sum, and hence

$$
\begin{aligned}
\sum_{l=2}^{\Omega(n)} \frac{1}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \geqslant 2 \\
n_{1} \ldots n_{l}=n}} 1 & \leqslant \sum_{l=2}^{\Omega(n)} \frac{1}{l} 2^{\Omega(n) t} \leqslant \sum_{l=2}^{\Omega(n)-1} 2^{\Omega(n) t}+\frac{2^{\Omega(n)^{2}}}{\Omega(n)} \\
& \leqslant \frac{2^{\Omega(n)^{2}}}{2^{\Omega(n)}-1}+\frac{2^{\Omega(n)^{2}}}{\Omega(n)}-1 \leqslant 2^{\Omega(n)^{2}}-1
\end{aligned}
$$

and the lemma follows.

Proof of Proposition 2. For σ sufficiently large we can write

$$
\begin{equation*}
\log F(s)=\sum_{n=2}^{\infty} b(n) n^{-s} \tag{3.9}
\end{equation*}
$$

the series being absolutely convergent. We may assume that $\sigma_{F}>1$, and we first bound $\log F(s)$ for $\sigma \geqslant \sigma_{F}+\delta, \delta$ being a small positive constant. For $\sigma \geqslant \sigma_{F}+\frac{\delta}{2}$ we have

$$
F(s)<_{\delta} M
$$

and hence

$$
\Re \log F(s)=\log |F(s)| \leqslant c_{1}(\delta) \log M
$$

with some $c_{1}(\delta)>0$. Moreover, for every $\varepsilon>0$ there exists $c_{2}(\varepsilon)>0$ such that

$$
F(s)=1+O(\varepsilon)
$$

for $\sigma>c_{2}(\varepsilon) \log M$, and hence

$$
\log F(s)=O(1)
$$

Therefore, by the Borel-Carathéodory theorem we have

$$
\begin{equation*}
\log F(s)=O_{\delta}\left(\log ^{2} M\right) \tag{3.10}
\end{equation*}
$$

for $\sigma \geqslant \sigma_{F}+\delta$.
From (3.10) we deduce that the Lindelöf μ-function of $\log F(s)$ satisfies $\mu(\sigma)=0$ for $\sigma>\sigma_{F}$. Moreover, $\log F(s)$ is holomorphic for $\sigma>\sigma_{F}$. Therefore, by a general result in the theory of Dirichlet series, see chapter 9 of [7], we have that the Dirichlet series (3.9) converges for $\sigma>\sigma_{F}$, and hence it is absolutely convergent for $\sigma>\sigma_{F}+1$. By the formula for the n-th coefficient of a Dirichlet series, see again chapter 9 of [7], for $\sigma>\sigma_{F}+1$ we have

$$
b(n) n^{-\sigma}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \log F(\sigma+i t) n^{i t} d t \ll \log ^{2} M
$$

in view of (3,10). Hence

$$
\begin{equation*}
|b(n)| \leqslant \delta_{0} n^{\sigma} \log ^{2} M \tag{3.11}
\end{equation*}
$$

for some $\delta_{0} \geqslant 1$ and every $\sigma>\sigma_{F}+1$.
Now we express the coefficients $b(n)$ in terms of the coefficients $a(n)$. For σ sufficiently large we have

$$
F(s)=1+G(s) \quad \text { with } \quad|G(s)| \leqslant \frac{1}{2}
$$

and hence

$$
\begin{aligned}
\log F(s) & =\log (1+G(s))=\sum_{l=1}^{\infty} \frac{(-1)^{l+1}}{l} G(s)^{l} \\
& =\sum_{l=1}^{\infty} \frac{(-1)^{t+1}}{l} \sum_{n} n^{-s}\left(\sum_{\substack{n_{1}, \ldots, n_{l} \geqslant 2 \\
n_{1} \cdots n_{l}=n}} a\left(n_{1}\right) \cdots a\left(n_{l}\right)\right) .
\end{aligned}
$$

Therefore, comparing Dirichlet coefficients we obtain

$$
\begin{equation*}
b(n)=a(n)+\sum_{l=2}^{\Omega(n)} \frac{(-1)^{l+1}}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \geqslant 2 \\ n_{1} \cdots n_{l}=n}} a\left(n_{1}\right) \cdots a\left(n_{i}\right) . \tag{3.12}
\end{equation*}
$$

By induction, from (3.11) and (3.12) we obtain

$$
\begin{equation*}
|a(n)| \leqslant n^{\sigma} a\left(n, \delta_{0}\right) \log ^{2 \Omega(n)} M \tag{3.13}
\end{equation*}
$$

for $\sigma>\sigma_{F}+1$, where $a\left(n, \delta_{0}\right)$ is the sequence defined before Lemma 2, starting with the δ_{0} in (3.11). Indeed, for $n=2$ we have

$$
|a(2)|=|b(2)| \leqslant \delta_{0} 2^{\sigma} \log ^{2} M \leqslant 2^{\sigma} a\left(2, \delta_{0}\right) \log ^{2 \Omega(2)} M
$$

Moreover, assuming (3.13) for $2 \leqslant m \leqslant n-1$ we get

$$
\begin{aligned}
|a(n)| & \leqslant|b(n)|+\sum_{l=2}^{\Omega(n)} \frac{1}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \geqslant 2 \\
n_{1} \cdots n_{l}=n}}\left|a\left(n_{1}\right) \cdots a\left(n_{t}\right)\right| \\
& \leqslant \delta_{0} n^{\sigma} \log ^{2} M+\sum_{l=2}^{\Omega(n)} \frac{1}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \ngtr 2 \\
n_{1} \cdots n_{l}=n}} a\left(n_{1}, \delta_{0}\right) \cdots a\left(n_{l}, \delta_{0}\right) n^{\sigma} \log ^{2 \Omega(n)} M \\
& \leqslant n^{\sigma} a\left(n, \delta_{0}\right) \log ^{2 \Omega(n)} M
\end{aligned}
$$

by the inductive definition of the sequence $a\left(n, \delta_{0}\right)$, and (3.13) follows. Note that (3.13) implies

$$
\begin{equation*}
M \leqslant q_{F}^{\sigma} \max _{n \mid q_{F}}\left(a\left(n, \delta_{0}\right) \log ^{2 \Omega(n)} M\right) \tag{3.14}
\end{equation*}
$$

Now we are ready to conclude the proof of Proposition 2. If $M \leqslant \exp \left(\log ^{3} q_{F}\right)$ the result follows, and hence we may assume that $M>\exp \left(\log ^{3} q_{F}\right)$, i.e.,

$$
\begin{equation*}
\log M>\log ^{3} q_{F} \tag{3.15}
\end{equation*}
$$

Since $\Omega(n) \leqslant \frac{\log x}{\log 2}$ for $n \leqslant x$, from (3.14), (3.15) and Lemma 2 we have

$$
\begin{aligned}
M & \ll q_{F}^{\sigma}(\log M)^{\frac{2 \cdot \log q_{F}}{\log 2}} \delta_{0}^{\frac{\log q_{F}}{\log 2}} e^{4 \log ^{3} q_{F}} \\
& \ll q_{F}^{\sigma} M^{\frac{2}{\log 2} \frac{\log q_{F} \log \log M}{\log M}} \delta_{0}^{\frac{\log q_{F}}{\log 2}} e^{4 \log ^{3} q_{F}} \\
& \ll q_{F}^{\sigma} M^{\frac{2}{\log 2} \frac{1}{\log q_{F}}} \delta_{0}^{\frac{\log q_{F}}{\log 2}} e^{4 \log ^{3} q_{F}} \\
& \ll q_{F}^{\sigma} M^{\frac{1}{2}} \delta_{0}^{\frac{\log q_{F}}{\log 2}} e^{4 \log ^{3} q_{F}} .
\end{aligned}
$$

Therefore, choosing for example $\sigma=\sigma_{F}+2$ we obtain

$$
M \ll q_{F}^{2 \sigma} \delta_{0}^{\frac{2 \log q_{F}}{\operatorname{Tog} 2}} e^{8 \log ^{3} q_{F}} \ll \sigma_{F} e^{10 \log ^{3} q_{F}}
$$

and the result follows.

References

[1] E. Bombieri, J.B. Friedlander, Dirichlet polynomial approximations to zeta functions, Annali Scuola Normale Superiore Pisa (IV) 22 (1995), 517-544.
[2] J.B. Conrey, A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J. 72 (1993), 673-693.
[3] J. Kaczorowski, G. Molteni, A. Perelli, Linear independence in the Selberg class, C.R. Math. Rep. Acad. Sci. Canada 21 (1999), 28--32.
[4] J. Kaczorowski, A. Perelli, On the structure of the Selberg class, $I: 0 \leqslant d \leqslant 1$, Acta Math. 182 (1999), 207-241.
[5] J. Kaczorowski, A. Perelli, The Selberg class: a survey, Number Theory in Progress, Proc. Conf. in Honor of A. Schinzel, ed. by K.Györy et al., 953-992, de Gruyter 1999.
[6] J. Kaczorowski, A. Perelli, On the structure of the Selberg class, II: invariants and conjectures, J. reine angew. Math. 524 (2000), 73-96.
[7] E.C. Titchmarsh, The Theory of Functions, second ed., Oxford U. P. 1939.

Addresses: Jerzy Kaczorowski, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 60-769 Poznań, Poland;
Alberto Perelli, Dipartimento di Matematica, Via Dodecaneso 35, 16146 Genova, Italy
E-mail: kjerzy@amu.edu.pl; perelliodima.unige.it
Received: 20 October 2003

