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ON THE DENSITY OF SOME SETS OF PRIMES, V
KaziMIERZ WIERTELAK*

Abstract: In the present paper we derive an asymptotic formula for E 1, where k is

p<x, i (P)=qr
a product of different odd primes, g is the 7-th consecutive prime and 7, (p) the least prime ¢
such that (ordpg¢, k) =1.
Keywords: primitive roots mod p, cyclotomic fields

1. Let k£ be a product of different odd primes. For a prime p, we denote by ri(p)
the least prime g such that (ord,q,k) =1.

In the following, the symbols u(l), ¢(l), w(l) and (a,3) denote as usual
the Mobius function, the Euler function, the number of different prime divisors of
{ and the greatest common divisor of «, # respectively. By NV and Ny we denote
positive integers whose all prime factors divide k; | denotes a generic divisor of
k, po is the least prime factor dividing k and r = w(k), ¢, denotes the 7-th
consecutive prime, p and ¢ denote generic prime numbers.

We denote by ¢;, ¢ = 1,2,... numerical constants and by |A| the number
of elements of a finite set A. If p— 1 = Nt, where (t,k) =1, we write N ||p—~1.

Moreover, let

N(z,k,q,;) = Zl, W(m)zZl.

pszT P&z
reip)=gr

2. The purpose of the present paper is to prove an asymptotic formula for N(z, %, ¢, ).

Theorem. If k is odd and z > expexpg,, k* < 11?15_;%, then
2

1

m{z)
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27rk? log, z)71°

N 1k7 r) = 2r k o ’
(@K, gr) = Br(k) + (go(k) logr'"lpo log21:
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where

wiy =S (7] )xk(q—l =) @)

=0 q
and f.(k) >0

3. The proof of the Theorem will rest on the following lemmas.

Lemma 3.1. If p { ¢, then (ord,c, k) = 1 if and only if ¢ is an N-th power
residue (mod p), where N || p— 1.

The lemma follows from the definition of the power residue.

Lemma 3.2. Suppose £ > 1. If M,(§) denotes the set
M (&) = {No: € < Ny < &g for each g|Np}

then

IM, (&) < (11;;;0 +1)H. (3)

If N is an arbitrary natural number whose all prime factors divide k and
N > £ then there exist a number Ny € M,(€) and a positive integer number m
such that N = mNg.

The first part of the lemma follows by induction. The proof of the second
part is obvious.
Let m,a1,...,as41 (s =0,1,...,7 — 1) denote arbitrary natural numbers.
Moreover, let
B = B(m,a,...,0541)
={p:p=1(modm),a,...,as1: are: m-th power: residue: (modp)},

M(z,m,a1,...,68641) = Z 1.
pP<T
pEB

Lemma 3.3. With the notation of section 1, there exists a numerical constant ¢
such that for £ 2 k we have

Nz, kog) = > > u(l) > M(z,Nl.qi,....4},,q})

Nl g2t {itsnis }C{1,2,...,7— 1}
<2'r ( log ¢ )T“l max M(z, No,gq.), (4)
% C s
' log pa No&M,(€) 0:4r

where M, (£) has the same meaning as in Lemma 3.2.

Proof. Let
Bi = Bi(.’ﬁ) == {p g T (Ordp%’»k) = ]'}
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then
1
Nz, k,q;) =Y _(-1)* > |By "B, N...0B;,NB,|. (5
s=0 {i1,..,is}C{1,2,...,7~1}

For fixed N and s > 0 we write

AN = AN(Iaqila" . 1q‘i,7Q‘r‘)
= {pLz: Ni|p-1,4,,...,q, 9 are: N-th power residue (modp)}.

Since Ay N An: =@ for N # N’ we have using Lemma 3.1

|B,NB,N...0B,NB,|= Y  |Ax]

Ngx~1

=Y |An[+ D |AN| = Si+ S (6)

NgE E<NgT—1

From the second part of Lemma 3.2 we get

Sp< Y. M(z,Nogq.).
Noe M (€)

Hence from the first part of Lemma 3.2 and owing to the inequality k& < £ we have

log & Tl
So < Mz, No,q.). 7
s ar (logm) Noren./st)f(f) (2, No, 4-) (7)

On the other hand, using the well-known Legendre principle we get

Si=7)_ > w)M(z Nid,,....d,.q) )

Neg gzt
From (5) - (8) the result follows.

4. In the following we denote by K = K, the cyclotomic field generated by the
m-th root of unity V1, and by R,, its ring of integers.
For o € Ry, and a prime ideal p of R,,, p{[mo], we denote by (%) the

m-th power residue symbol. "

For an ideal a of R,,, (a,{ma]) =1 we put

B OR
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Let a,a9,...,a511 denote arbitrary natural integers and M the product
of different prime divisors of the product ejag - ... - asy1. For given integers
jlaj?s-"7j3+11 1 <.71 gma i= 15"-)S+1 we define

J1 d2 Ts41

(——r"'*'—> for (a,[m2M]) =1

0 otherwise.

Xitvdser (a) = {

From Lemma 27 of [3] it follows that x;, j,. ..., is a character of the group of
ideal classes mod m2M of the ring R,,. If m is odd then X1, njsg1 CANNOL be
a real non-principal character (see [2] Lemma 6).

For a fixed 3 € R,, we put

m m

N(mai,...,ae1)= Y ... Y 1 (9)

F1=1 js+1:1

7 Is41
all»...»aHj =fgm

and

S(z,m,a1,...,0541) = Z 1 (10)

Np<x
ptimay...as44]

(i‘pi) =1, j=1,...,541

m

where p runs over the set of prime ideals of the ring R,,.

Lemma 4.1. Suppose that t 2 1, 0 < o < 1, M = ¢...q,, ¢co > 0 is an
arbitrary numerical constant and let cj is sufficiently small numerical constant.

If
((V1*M)* ™ < exp (( ° ) ‘°ga“") , (11)

c2+1/ loghz

then

S(z,Nl,¢,....¢ .q")

m(x g2 xa
= Ng+)1 + O(xcxp(—»(l,?cz +1,2)Valog ™ z log,® T))’ (12)

where the constant in O depends only on cg, c3, @, t.

The proof of the lemma follows from Lemma 5.4 of [5]. It is enough to note
that if & is odd, then N(x\’l,qﬁl,...,qﬁg,qﬁ_) = {#+1 and Xj1,njasa fOT G5 = @4,
7 =1,...,8, ag41 = q. cannot be a real non-principal character (cf. Lemma 5.6
of (5] and Lemma 4.6 of [6]).
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Lemma 4.2. If the conditions of Lemma 4.1 are satisfied, then there exists a
numerical constant ¢4 depending only on cp,c3, a,t such that

M(z.Ni.d .. o by mE)
] (Is !Qllt 3q7.,iq‘l') Ns+1(p(Nl)

- 148
<C4:cexp(—(1,7c2+1,2)\/alogl_r zlog,t x). (13)

The Lemma follows from the formula

M(z,Nlgl,....q¢ . ¢') = S(z,Nl, ¢ ,....q¢ .¢&) + O(Vz)

1
p(N)
and Lemma 4.1 (cf. Lemma 4.7 of [6]).

5. Proof of Theorem. We use Lemma 3.3 with £ = k—i%%f—z,
2

If the conditions of the Theorem are fulfilled, for Ny € M, (§) and sufficiently
large = we have

2
log
N, 3 < A < ‘s .
©(No) log(Nygr) < &klog((§k) -] (C'z +1/ logyx
Moreover k) (k)
w(No) 2 No'"(l'c“- > f%;‘~

Hence owing to Lemma 4.2 for t =1, a =1, cp = 2 we obtain

1 % T
max M(z,Ng,q,;) € 5 ——7(x) + c4g—5—
NoeM.(£) (2, No, gr) < €% p(k) () 4log“:v
K3 mlogg:c
c e 14
= (k) logdz (1)
From this estimate and Lemma 3.3 we have
N(z,k, q:)
71
=Y Y ud)d (-1y > M(z,Nl,g},,....q},.q")
Nef gzt s=0 {i1,..8.}C{1,2,...,7—1}
+ O(r(z)R(z, k, g7 )), (15)
where s .
Ik r+
R(z,k,q.) - (log, 7)

T e(B)log Tp  logz
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If the conditions of the Theorem are fulfilled, for N < ¢ and sufficiently
large r we obtain

log z

P(N1) log (N1)*M) < ( : )

hence owing to Lemma 4.2 applied for ¥ € £, t =1, a =1, ¢ = 2 we have

log, z’

; () T
Mee N ko) = O (v

Hence, using (15) we obtain

) _ p(l) 1y
;(_;)_N(m,k,qr) = Z Z No(NI) (1 - N)

+ XS s (1o y) romERe) (9)

=51+ 52 + O(R(z, k,q.)).
If d is fixed and N is such that d|N, (N,k/d) = 1, we have the following

equality
u(l) _ n-
Z Ny - ' H q- 1

Hence, for n 2 0

Sy (-5)

N>7 ik

_ (- )" e
% o v e )

(N k/d)=1
d|N

-y 3 (1-4)"" yg-2
h N? g—1
R o
di|N

Therefore, for n = £ we have
Sz < ce€*[Mo(€)] = O(R(z, k,4-)).
On the other hand, owing to (16) and (17) for » = 0, and owing to the last

estimate, we obtain

?(1?)N(z, k,4r) = G- (k) + O(R(z. k.4 ).

Finaly, from (17) applied for n = 0 we conclude that 8,(k) > 0.
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