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UNITARY PERFECT POLYNOMIALS OVER F4 WITH LESS
THAN FIVE PRIME FACTORS

Luis H. Gallardo, Olivier Rahavandrainy

Abstract: We determine all unitary perfect polynomials with less than five distinct prime factors
over a finite field with four elements.
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1. Introduction

Let p be a prime number and let Fq be a finite field of characteristic p with q
elements. Let A ∈ Fq[x] be a monic polynomial. We say that a divisor d of A is

unitary if d is monic and gcd(d,
A

d
) = 1. Let ω(A) denote the number of distinct

monic irreducible (or prime) factors of A over Fq and let σ(A) (resp. σ∗(A))
denote the sum of all monic divisors (resp. unitary divisors) of A (σ and σ∗ are
multiplicative functions). We call even a polynomial with some zero in Fq, and
odd a polynomial that is not even. If any zero of A lies in Fq then we say that A
is a splitting polynomial (or that A splits in Fq). We consider only nonconstant
polynomials A /∈ Fq.
If σ(A) = A (resp. σ∗(A) = A), then we say that A is a perfect (resp. unitary
perfect) polynomial. This is a polynomial analogue of the notions of multiperfect
(resp. unitary multiperfect) numbers, (see, e.g., [14]).

E. F. Canaday [5], the first doctoral student of Leonard Carlitz, began in 1941
the study of perfect polynomials by working on the prime field F2. Later, in the
seventies, J. T. B. Beard Jr. et al. [3],[4] extended this work in several directions.
We [6], [7], [8], [9], [10],[11] became interested in this subject, a few years ago. In
particular we [6], [7],[11] determined all perfect polynomials A over F4 such that
ω(A) 6 4.

J. T. B. Beard Jr et al. [1], [2] obtained the first results about unitary perfect
polynomials. We [12] continued this work by considering splitting polynomials over
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the quadratic extension Fp2 of the prime field Fp. Recently, we [13] characterized
all unitary perfect binary polynomials A ∈ F2[x] such that ω(A) 6 4.

We determine in this paper all unitary perfect polynomials A over F4, such
that ω(A) 6 4. This extends the results for p = 2 in [12]. The number of cases to
consider is reasonable so we discuss all of them here, contrary to the case of odd
perfect polynomials in [8]. However, as in the analogue cases over the integers, the
computations grow exponentially when ω() grows so for the moment it seems very
difficult to study perfect or unitary perfect polynomials with a moderately large
number of distinct prime factors. New ideas are required to properly treat these
cases.

As usual, N denotes the nonnegative integers and N∗ the positive integers. We
denote by A

′
the formal derivative of a polynomial A relative to x. We put:

F4 = {0, 1, α, α2} where α is in a fixed algebraic closure of the prime field F2 and
satisfies α2 + α + 1 = 0,

Ω1 = {P ∈ F4[x] : P and P + 1 are odd and irreducible},
Ω2 = {P ∈ F4[x] : P , P + 1, P 3 + P 2 + 1, P 3 + P + 1 are odd and irreducible},
ᾱ = α + 1 = α2 the conjugate of α by the Frobenius automorphism.

Our main results are the following:

Theorem 1.1. Let A be a nonconstant polynomial over F4 such that ω(A) 6 4,
then A is unitary perfect if and only if ω(A) is even and there exists a ∈ F4, such
that A(x + a) is of the form B2k

for some k ∈ N where:
a) B ∈ {x(x + 1)} ∪ {P (P + 1) : P ∈ Ω1}, if ω(A) = 2.
b) B ∈ {(x2+x)2

r

(x2+x+1)2
s

: r, s ∈ N}∪{x4+x, (x4+x)3}∪{x3(x+α)3(x+
1)2(x + ᾱ)2, x3(x + 1)3(x + α)4(x + ᾱ)6}, if ω(A) = 4 and if A splits in F4.

c) B ∈ {(x2 + x)2
n

(P 2 + P )2
m

, (P 2 + P )2
m

(R2 + R)2
n

: m,n ∈ N, P, R ∈
Ω1} ∪ {P 4(P + 1)7(P 3 + P 2 + 1)(P 3 + P + 1) : P ∈ Ω2} ∪ {P 7(P + 1)7(P 3 +
P 2 +1)2(P 3 +P +1)2 : P ∈ Ω2}, if ω(A) = 4 and if A does not split in F4.

The results above are similar [11] to those about perfect polynomials, except
that there does not exist a unitary perfect polynomial over F4, with ω(A) = 3.
Furthermore, (see [13]) for P ∈ {x, x + 1}, the polynomials P 4(P + 1)7(P 3 + P 2 +
1)(P 3 +P +1) and P 7(P +1)7(P 3 +P 2 +1)2(P 3 +P +1)2 are both unitary perfect
over F2. Observe also (see Lemma 2.8) that Ω1 and Ω2 are infinite sets. So our
families of unitary perfect polynomials are non-trivially infinite.

After some preliminary results shown in section 2 we prove Theorem 1.1 in
the remaining sections. The proof consists of two main parts corresponding to
the cases ω(A) 6 3 (Propositions 3.1 and 3.4) and ω(A) = 4 (Propositions 4.1
and 4.3).

2. Preliminary

We need the following results. Some of them are obvious, so we omit their proofs.
Our main new result is Lemma 2.7 that may have an interest in his own since some
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polynomials occurring there are polynomial analogues of the Mersenne numbers.
At the end of the section (see Lemma 2.8) we recall the existence of certain infi-
nite families of irreducible polynomials. This will be useful for determining non
trivial infinite families of unitary perfect polynomials. In our first lemma below
we describe the primary parts with minimal degree of such a polynomial:

Lemma 2.1 ([13, Lemma 2.1]). If A = Ph1
1 · · ·Phr

r Qk1
1 · · ·Qks

s is a nonconstant
unitary perfect polynomial over F4 such that:

{
P1, . . . , Pr, Q1, . . . , Qs are monic, distinct and prime,
h1 deg(P1) = · · · = hr deg(Pr) < k1 deg(Q1) 6 · · · 6 ks deg(Qs).

Then: r ≡ 0 (mod p).

Proof. By definition, one has

0 = σ∗(A)−A =
A

Ph1
1

+ · · ·+ A

Phr
r

+ · · ·

so that the leading coefficient r = 1+· · ·+1 of
A

Ph1
1

+ · · ·+ A

Phr
r

, equals 0 in Fp. ¥

Lemma 2.2. If A = A1A2 is unitary perfect over F4 and if gcd(A1, A2) = 1.
Then A1 is unitary perfect if and only if A2 is unitary perfect.

Unitary perfect polynomials are invariant under some transformations:

Lemma 2.3. If A(x) is unitary perfect over F4, then for any a ∈ F4 and for any
n ∈ N, the polynomials A(x + a) and A2n

are both unitary perfect over F4.

Lemma 2.4 ([7, Lemmas 2.4 and 2.6]).

(i) For any integer n > 2, the polynomial 1+x+ · · ·+xn is reducible over F4.
(ii) If 1 + x + · · · + x2n = PQ, with P, Q irreducible, then 2n + 1 is a prime

number, deg(P ) = deg(Q), and P (0) = Q(0) = 1 for n > 2.
(iii) If 1 + x + · · · + x2n = 1 + (x + 1) + · · · + (x + 1)2n = PQ, with P, Q

irreducible, then n = 3 and {P, Q} = {x3 + x2 + 1, x3 + x + 1}.
(iv) If 1 + x + · · · + x2n = PQ, for irreducible polynomials P,Q such that P

and Q are of the form xa(x+1)b +1, then n = 3 and {P, Q} = {x3 +x2 +
1, x3 + x + 1}.

In the following lemmas we replace x by more general prime polynomials.

Lemma 2.5. (see [6, Lemmas 2.1 and 2.5]) Let P, Q ∈ F4[x] such that P is
irreducible and 1+· · ·+P 2n = Qm for some m,n ∈ N. Then m ∈ {0, 1}. Moreover,
if Q is irreducible, then n = m = 0.

Lemma 2.6. (see [5, Lemma 6] and [11, Lemmas 12, 13]) Let P, Q ∈ F4[x] such
that P is irreducible and let n,m ∈ N.
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(i) If 1 + P + · · ·+ P 2n = QmA, with m > 1 and A ∈ F4[x] nonconstant, then
deg(P ) > deg(Q).

(ii) If 1 + P + · · ·+ P 2n = RS then deg(R) = deg(S) = n deg(P ).
(iii) If 1 + P + · · · + Ph = 1 + (P + 1) + · · · + (P + 1)h, then h = 2n − 2, for

some n ∈ N.
The following lemma generalizes part iv) of Lemma 2.4.

Lemma 2.7. Assume that 1 + P + · · ·+ P 2n = RS =
(
P a(P + 1)b + 1

)(
P c(P +

1)d + 1
)
for some a, b, c, d > 1, with P, P + 1 both irreducible. Then n = 3 and

{R, S} = {P 3 + P + 1, P 3 + P 2 + 1}.
Proof. If either (a, c > 2) or (a = c = 1) then:

1 + P + · · ·+ P 2n =
(
P a(P + 1)b + 1

)(
P c(P + 1)d + 1

)
= 1 + P 2C,

for some polynomial C ∈ F4[x]. This is impossible. We may suppose that a = 1
and c > 2. We have a + b = c + d = n > 3 by Lemma 2.6 ii). Thus,

1 + P + · · ·+ P 2n =
(
P (P + 1)n−1 + 1

)(
P c(P + 1)n−c + 1

)

= P c+1(P + 1)2n−c−1 + P (P + 1)n−1 + P c(P + 1)n−c + 1.

Hence:

P + · · ·+ P 2n = P (P + 1)n−c
(
P c(P + 1)n−1 + (P + 1)c−1 + P c−1

)
,

P (P +1)(1+P + · · ·+Pn−1)2 = P (P +1)n−c
(
P c(P +1)n−1 +(P +1)c−1 +P c−1

)
,

(1 + P + · · ·+ Pn−1)2 = (P + 1)n−c−1
(
P c(P + 1)n−1 + (P + 1)c−1 + P c−1

)
. (1)

We claim that n − c − 1 = 0. Assume to the contrary that n − c − 1 > 1. Then
1 + P divides 1 + P + · · ·+ Pn−1, so n must be even. Since P + 1 does not divide
P c(P +1)n−1 +(P +1)c−1 +P c−1 both factors on the right hand side of (1) must
be perfect squares so that c is odd. By differentiation of both sides of (1) one gets
the contradiction (2) below:

0 = P
′
P c−1(P + 1)2n−c−3((P + 1) + P ) = P

′
P c−1(P + 1)2n−c−3. (2)

This proves the claim. Thus, d = 1 and b = c. We have then now

1 + P 2 + P 4 + + · · ·+ P 2n−2 = Pn−1(P + 1)n−1 + (P + 1)n−2 + Pn−2. (3)

If n is even (so that c− 1 is also even) we get the same contradiction as in (2). If
n is odd we get by differentiation of both sides of (3):

0 = P
′
((P + 1)n−3 + Pn−3).

We conclude that n = 3 and b = c = 2. This completes the proof of the
lemma. ¥
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The following lemma describes some interesting infinite sets.

Lemma 2.8.

a) There exist infinitely many prime polynomials P ∈ F4[x] such that P +1, P 3+
P + 1, and P 3 + P 2 + 1 are all prime.

b) For all k ∈ N the polynomials Pk and Pk + 1 are both prime, where

Pk = x3k

+ α, k ∈ N.

Proof. For part a) see ([11, Lemma 2]). For part b) see ([7, Introduction]). ¥

Remark 2.9. For Propositions 3.1, 4.1 and 4.3, we shall prove only necessity,
since sufficiency is always obtained by direct computations.

3. Case ω(A) 6 3

3.1. Odd case

We prove the following result:

Proposition 3.1. Let A ∈ F4[x] be an odd polynomial such that ω(A) 6 3. Then

a) A is unitary perfect over F4 if and only if: ω(A) = 2 and

A = (P 2 + P )2
n

,

for some n ∈ N, where P and P + 1 are both odd and irreducible
b) For any fixed nonnegative integer n ∈ N there are infinitely many unitary

perfect polynomials in F4[x] with two distinct prime factors.

Assume that part a) holds. By Lemma 2.8 there are infinitely many odd
irreducible polynomials P ∈ F4[x], such that P +1 is also irreducible. This proves
part b). Part a) is proved below. Observe that ω(A) > 2 by Lemma 2.1.

Case ω(A) = 2

In that case, A = PhQk where by Lemma 2.1, h deg(P ) = k deg(Q) and deg(P ),
deg(Q) > 2. We obtain

1 + Ph = Qk, 1 + Qk = Ph.

So, Q divides 1 + P and P divides 1 + Q. Thus Q = 1 + P and h = k = 2n, for
some n ∈ N. Hence:

A = (P (P + 1))2
n

, where P and P + 1 are both irreducible.

By contrast (see [5]) all perfect polynomials A over F2 with ω(A) = 2 are the
(x2 + x)2

n−1 where n goes from 1 to infinity.
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Case ω(A) = 3

Put: A = PhQkRl, p = deg(P ), q = deg(Q), r = deg(R). According to Lemma
2.1, we may assume the following:

hp = kq 6 lr and p, q, r > 2.

Lemma 3.2. If U, V, W are irreducible odd polynomials over F4 such that

1 + Uh = V aW b,

then: h = 2n for some n ∈ N, and h divides gcd(a, b).

Proof. Put: h = 2nu, where u is odd and n ∈ N. If u > 3 then since 1 + Uh =
((1 + U)(1 + U + · · ·+ Uu−1))2

n

and since gcd(1 + U, 1 + U + · · ·+ Uu−1) = 1, we
may write

1 + U = Ss, 1 + U + · · ·+ Uu−1 = T t, where {S, T} = {V, W}.
This contradicts Lemma 2.5. We are done. ¥

Corollary 3.3. There exists no unitary odd perfect polynomial A over F4, with
ω(A) = 3.

Proof. Assume that the contrary holds. We obtain

1 + Ph = Qb1Rc1 , 1 + Qk = P a2Rc2 , 1 + Sl = P a3Qb3 .

By Lemma 3.2, we have h = 2n, k = 2m, l = 2r for some n, m, r ∈ N, so that
h, k, l respectively divide b1 and c1, a2 and c2, a3 and b3. Hence:

1 + P = Q
b1
h R

c1
h , 1 + Q = P

a2
k R

c2
k , 1 + R = P

a3
l Q

b3
l .

If 0 ∈ {b1, c1, a2, c2, a3, b3}, for example if c1 = 0, then b1 = h and thus 1+P = Q.
So 1 + Q = P and h = k = 2n. Hence PhQk is unitary perfect. Thus by

Lemma 2.2, Rl =
A

PhQk
is also unitary perfect. This is impossible since l > 1. If

0 6∈ {b1, c1, a2, c2, a3, b3}, then Q | 1 + P and P | 1 + Q. So 1 + P = Q and c1 = 0
which is also impossible. ¥

3.2. Even non splitting case

One has

Proposition 3.4. There exists no even non splitting unitary perfect polynomial
A over F4 such that ω(A) 6 3.

Case ω(A) = 2

By Lemma 2.3 we know that A may be written as: A = xhP k, where p = deg(P ) >
2. Since 1 + x divides 1 + xh, P must be equal to 1 + x, which is impossible.
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Case ω(A) = 3

The proof is similar to that of the case where A is odd, in Section 3.1.

4. Case ω(A) = 4

4.1. Even non splitting case

We prove the following result that characterizes even non splitting unitary perfect
polynomials with four distinct prime factors.

Proposition 4.1. Let A ∈ F4[x] be an even non splitting polynomial over F4 such
that ω(A) = 4. Then A is unitary perfect if and only if there exist a ∈ F4, r ∈ N
such that A(x + a) is of the form B2r

where:
i) B = (x2 + x)2

n

(P 2 + P )2
m

with both P and P + 1 odd irreducible,
ii) B = x4(x + 1)7(x3 + x2 + 1)(x3 + x + 1),
iii) B = (x2 + x)7(x3 + x2 + 1)2(x3 + x + 1)2.

For any fixed non negative integers m,n ∈ N, there are infinitely many polyno-
mials of the form (x2 + x)2

n

(P 2 + P )2
m

.

The last statement follows from Lemma 2.8. Now we prove parts i), ii) and iii):

Lemma 4.2. If A is an even non splitting unitary perfect polynomial over F4

such that ω(A) = 4, then after a suitable translation, we may write A = xh1(x +
1)k1P l1Qm1 , with both P, Q odd and irreducible.

Proof. Since A is even, we may suppose that x divides A. So x+1 which divides
1 + xh1 must divide σ∗(A) = A. Moreover, if P is also even, then P = x + α, so
Q = x + α + 1 and hence A splits. This is impossible. ¥

Put now p = deg(P ), q = deg(Q), h1 = 2hc, k1 = 2kd, l1 = 2lr, m1 = 2ms
with c, d, r, s odd. Since A is unitary perfect, we have four equalities:

1 + xh1 = (x + 1)2
h

(1 + x + · · ·+ xc−1)2
h

,

1 + (x + 1)k1 = x2k

(1 + (x + 1) + · · ·+ (x + 1)d−1)2
k

,

1 + P 2lr = (1 + P )2
l

(1 + P + · · ·+ P r−1)2
l

= (xa3(x + 1)b3Qd3)2
l

,

1 + Q2ms = (1 + Q)2
m

(1 + Q + · · ·+ Qr−1)2
m

= (xa4(x + 1)b4P c4)2
m

.

(4)

By Lemma 2.4, we have

{1 + x + · · ·+ xc−1, 1 + (x + 1) + · · ·+ (x + 1)d−1} = {1, PQ}.
Since h1 and k1 play symmetric roles and since P must appear in the right hand
side of (4), it suffices to consider the following three cases:

(I) c = d = 1,
(II) c = 1, 1 + (x + 1) + · · ·+ (x + 1)d−1 = PQ,
(III) 1 + x + · · ·+ xc−1 = PQ = 1 + (x + 1) + · · ·+ (x + 1)d−1.
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Case (I)

Since gcd(1 + P, 1 + · · ·+ P r−1) = 1 and since P, Q are odd, from Lemma 2.4, we
obtain

1 + P 6∈ {xa, (x + 1)a : a > 1} ∪ {Qa : a > 2},
1 + P + · · ·+ P r−1 6∈ {xa, (x + 1)a, Qa : a > 1}.

We necessarily have 1 + P = Q so that d3 = 0. Similarly, we obtain c4 = 0. So by
considering exponents and degrees, we deduce from equations (4) that:

2lr = 2m, 2ms = 2l.

Thus,
r = s = 1, l = m, h = k.

We obtain then part i) of Proposition 4.1.

Case (II)

By Lemma 2.4 ii), we have p = q and P (0) = Q(0) = 1. So Q does not divide
1 + P . Hence, P and Q are of the form xa(x + 1)b + 1. By part iv) of the same
lemma, we get

d = 7, P = x3 + x2 + 1, Q = x3 + x + 1.

It follows from equations (4) that:

2lr = 2ms = 2k.

So
r = s = 1, l = m = k, h = k + 2.

This proves part ii) of Proposition 4.1.

Case (III)

By Lemma 2.4 iv), we have c = d = 7 and P = x3 + x2 + 1, Q = x3 + x + 1. Thus
r = s = 1. We get from equations (4):

l = m = h + 1, k = h.

We obtain now part iii) of Proposition 4.1.

4.2. Odd case

In this section, we prove the following result that characterizes odd unitary perfect
polynomials with exactly four distinct prime divisors. We recall that:

Ω1 = {P ∈ F4[x] : P and P + 1 are odd and irreducible},
Ω2 = {P ∈ F4[x] : P , P + 1, P 3 + P 2 + 1, P 3 + P + 1 are odd and irreducible}.
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Proposition 4.3. Let A ∈ F4[x] be an odd polynomial over F4 such that ω(A) = 4,
then A is unitary perfect if and only if there exist a ∈ F4, r ∈ N such that A(x+a)
is of the form B2r

where:

i) B = (P 2 + P )2
n

(R2 + R)2
m

with n,m ∈ N and P, R ∈ Ω1,
ii) B = P 4(P + 1)7(P 3 + P 2 + 1)(P 3 + P + 1) for some P ∈ Ω2,
iii) B = (P 2 + P )7(P 3 + P 2 + 1)2(P 3 + P + 1)2 for some P ∈ Ω2.

For any fixed non-negative integers n,m, r ∈ N, there are infinitely many uni-
tary perfect polynomials in F4[x] of the above forms with four distinct prime fac-
tors.

The latter statement follows from Lemma 2.8. Let us prove i), ii) and iii). For
an odd unitary perfect polynomial A with ω(A) = 4, say A = Ph1Qk1Rl1Sm1 , we
suppose that:

p = deg(P ) 6 q = deg(Q) 6 r = deg(R) 6 s = deg(S), p, q, r, s > 2.

Put h1 = 2hu, k1 = 2kv, l1 = 2lw, m1 = 2mt, where u, v, w, t are all odd. We may
write the general system to resolve as:





(E1) : 1 + Ph1 = (1 + P )2
h

(1 + P + · · ·+ Pu−1)2
h

= (Qb1Rc1Sd1)2
h

,

(E2) : 1 + Qk1 = (1 + Q)2
k

(1 + Q + · · ·+ Qv−1)2
k

= (P a2Rc2Sd2)2
k

,

(E3) : 1 + Rl1 = (1 + R)2
l

(1 + R + · · ·+ Rw−1)2
l

= (P a3Qb3Sd3)2
l

,

(E4) : 1 + Sm1 = (1 + S)2
m

(1 + S + · · ·+ St−1)2
m

= (P a4Qb4Rc4)2
m

.

(5)

where the exponents on the right hand sides are non-negative numbers so that
some of them may be zero. Some consequences are the following:

Lemma 4.4. If A is unitary perfect, then:

i) Q = 1 + P ,
ii) If u > 3, then u > 5 and R and S have the same degree,
iii) w = 1 if S does not divide 1 + R,
iv) w = t = 1 if S divides 1 + R.

Proof. We have

1 + Ph1 = (1 + P )2
h

(1 + P + · · ·+ Pu−1)2
h

.

So Q must divide 1 + P and hence Q = 1 + P by considering degrees.
ii) If u > 3, then the only possibility is

1 + P + · · ·+ Pu−1 = RS.

It follows by Lemma 2.6 ii) that R and S have the same degree. If u = 3 then
{R, S} = {P + α, P + α + 1}. So the polynomials P, P + 1, P + α, P + α + 1 are
irreducible and odd. This is impossible.
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iii) If S does not divide 1 + R, then (E3) implies

1 + R = P a3Qb3 , 1 + R + · · ·+ Rw−1 = Sd3 .

Thus, by Lemma 2.5, one has

w − 1 = d3 = 0.

iv) In this case, S = 1 + R. So w and t play symmetric roles. If w > 3, then
(E3) implies

1 + R + · · ·+ Rw−1 = P a3Qb3

and by Lemmas 2.6 ii) and 2.5, we get

a3 = b3 = 1.

By considering degrees, we obtain (w − 1)r = 2p 6 2r, and w = 3.
It follows that:

{P, Q} = {R + α, R + α + 1}.
Thus P , P +1, P +α, P +α+1 are all odd and irreducible. This is impossible. ¥

Since P and Q (and hence u and v) play symmetric roles, it suffices to distin-
guish three main cases, namely:

(I) u = v = 1;
(II) u = 1, v > 3;
(III) u, v > 3.

Case (I)

If S divides 1+R, then S = 1+R and w = t = 1, by Lemma 4.4. We obtain m = l
from (E3) and (E4). It follows that Rl1Sm1 is unitary perfect and consequently
that Ph1Rk1 is also unitary perfect. By Proposition 3.1, we obtain part i) of
Proposition 4.3.
If S does not divide 1 + R, then w = 1 by Lemma 4.4. Hence, by considering the
degree of S in (5), we get a contradiction:

0 < 2mt = d1 · 2h + d2 · 2k + d3 · 2l = 0 + 0 + 0.

Case (II)

If S divides 1+R, then S = 1+R and w = t = 1, by Lemma 4.4. Thus, equations
(5) lead to a contradiction:

2l = 2k + 2m, 2m = 2k + 2l.

If S does not divide 1 + R, then w = 1 by Lemma 4.4. Hence, by considering
the degree of S in (5), we get now:

0 < 2mt = d1 + d2 + d3 = 0 + d2 · 2k + 0 = 2k.
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So
t = 1, m = k = l < h.

It follows from equations (E2), (E3) and (E4) that:

1 + Q + · · ·+ Qv−1 = RS = (P a3Qb3 + 1)(P a4Qb4 + 1).

Lemma 2.7 implies that: v = 7 and {R, S} = {P 3 + P + 1, P 3 + P 2 + 1}.
We may suppose that: R = P 3 + P + 1, Q = P 3 + P 2 + 1. Hence h = k + 2

by (5). In other words, we obtain part ii) of Proposition 4.3.

Case (III)

In this case we have

1 + P + · · ·+ Pu−1 = RS = 1 + (1 + P ) + · · ·+ (1 + P )v−1.

So by Lemma 2.6 we obtain, u = v = 2n − 1, r = s.

If S divides 1 + R, then S = 1 + R and w = t = 1, by Lemma 4.4. Hence:

a3 = b3 = a4 = b4 = 0.

Equations (5) give then a contradiction:

2l = 2h + 2k + 2m, 2m = 2h + 2k + 2l.

If S does not divide 1 + R, then w = 1 by Lemma 4.4. Hence, by considering
the degree of S in (5), we get

0 < 2mt = d1 + d2 + d3 = 0 + d2 · 2k + 0 = 2k.

So
t = 1, m = k = l < h.

We get from (E2), (E3) and (E4):

1 + P + · · ·+ Pu−1 = 1 + Q + · · ·+ Qv−1 = RS = (P a3Qb3 + 1)(P a4Qb4 + 1).

It follows from Lemma 2.7 that: u = v = 7 and {R, S} = {P 3+P +1, P 3+P 2+1}.
We may suppose that: R = P 3 + P + 1, Q = P 3 + P 2 + 1. Thus, by (5):

h = k, l = m = k + 1.

So we obtain part iii) of Proposition 4.3. This completes the proof of Theorem 1.1.
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