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BOUND FOR THE SUM INVOLVING THE JACOBI
SYMBOL IN Z]i]

KAZUHIRO ONODERA

Abstract: We give a nontrivial estimate of a certain sum involving the Jacobi symbol in Z[i]
which is a generalization of Heath-Brown’s character sum estimate.
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1. Introduction

In 1995 Heath-Brown [1] derived a powerful estimate

> |3 w ()

m<M ' n<N

< (MNP +N) Y fanf?

n<N

for any complex sequence {a, }, where ) " means that the range of summation is
restricted to odd squarefree integers. As applications, he gave new mean-value, and
zero-density, estimates for Dirichlet L-functions. Thereafter many people applied
the above result and its corollaries to arithmetic problems such as the mean-value
estimate for various kinds of L-functions [2, 4], or the nonvanishing of the central
value of quadratic Dirichlet L-functions [5].

In this paper we consider the generalization of the above estimate to the case
of Gaussian integers. Let [:] denote the Jacobi symbol in Z[i] which is defined
in § 2, and N(n) the norm of n in Z[i]. Then our main result is stated as follows.

Theorem 1. Let M,N be positive integers and {a,} be arbitrary complezx se-
quence. Then we have

* * 2 *
3 ’ S an [”H < (MNFMA+N) Y e (11)
N(m)<M ' N(n)<N m N(n)<N

for any e > 0.
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The strategy of the proof is the same as in [1]. But we have to resolve some
difficulties which occur in our case.

In §2, we recall some properties of the Jacobi symbol and the Gaussian sums
in Z[i]. The exact value of the Gaussian sum is determined in Proposition 2.2.
Moreover in Lemma 2.3 we give a rough bound for the left hand side of (1.1). In §3,
we prove various kinds of lemmas which will be used in the later section. In §4,
we prove Lemma 4.6 which improve the bound given in Lemma 2.3. Applying the
lemma repeatedly, we obtain Theorem 1.

2. Jacobi symbol and Gaussian sums in Z[i

In this section we recall definitions and some properties for the Jacobi symbol and
the Gaussian sums in Z[i]. Moreover we will give a rough bound, Lemma 2.3, for
the left hand side of (1.1).

Let p be a Gaussian prime and ¢ be a Gaussian integer with (p,q) = 1. Then
we define the quadratic residue symbol as
{q} B {1 if there exist some x € Z[i] such that 22 = ¢ mod p,

p —1 otherwise.

Let n be an odd integer in Z[i] with a prime factorization n = p{"'p5? - - p&r and
m be a Gaussian integer. The Jacobi symbol is defined by

[m}_{[m (2] (2] (myn) = 1,

n 0 otherwise.

Using the reciprocity law of the residue symbol [3, Proposition 5.1], we easily see
that the same law holds for the Jacobi symbol as follows.

Proposition 2.1. Let m, n be coprime Gaussian integers =1 (mod 2). Then we

- [2)

Moreover for a + bi =1 mod 2 with a,b € Z we have

Libi] = (D%, [al:-rbzz} B (aj—b)’

where (-) is the Jacobi symbol in Z.

We define the Gaussian sum for the Jacobi symbol by
o= T [2]e(n )

for an odd integer n € Z[i], where e(z) = exp(2miz) and [z, w] = Re(zw). This
sum is not multiplicative, but we have the relation

m n

T(mn) = [—} {—] 7(m)T(n) (2.1)

n m
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for odd integers m and n with (m,n) = 1. We determine the exact value of 7(n)
for a prime power n = p". We immediately see that 7(p") vanishes for an odd
prime p and r > 2. The result for 7(p) is as follows.

Proposition 2.2. Let p be an odd prime and write p = p1 + pai with p1,ps € Z.

Then we have - - )
7(p) = (cos % + cos? %) N(p)2. (2.2)

Proof. To prove this proposition we employ the method used by Dirichlet to
determine the exact value of the usual quadratic Gaussian sum. Let n be a nonzero

Gaussian integer. Put
52
= 1,—1).
so= % «([-3])

z mod n

Then we can check that 7(p) = S(p), so we investigate the sum S(n). We treat
the case that Re(n) > 0 and Im(n) > 0, the other cases being similar. Let D(n)
be the fundamental parallelogram for the lattice generated by n and in, namely

D(n)={sn+tineC:0<s,t <1}
Moreover we set

D'n)= | J {z€C:0<Re(z) - Re(w),Im(z) — Im(w) < 1}.
weZ[i)ND(n)

By the double Poisson’s summation formula we have
22 log? 2M
S(n) = / e({l,+mz}>dz+0n<)
UED ) ol e (8= =
[mal,lma|<M
for any M > 1, where we write m = my + imso. Set

5 T (LD L (5]

[mal,[ma|<M
m=j mod 2

for j € {0,1,4,144}. Then the main term is Sy + S1 +.5; + S14:. We first treat Sp.
Then we have

s= x> oy f o e(E])e

[ <M/2 |l2| <M /2

2N o S () Es

| <M/2 |2 | <M /2

by partial integration. Hence we obtain

So :N(n)/ e([l,an})dz—kOn(M*%)
[= M, M/ +1]x[— M’ ,M’+1]
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where M’ = [M/2]. Thus Sy converges to %N(n)% when M goes to +o0o. Similarly,
we have

1 1 _1m
N(n)z, 8 — —5"—N(n)2, Sl+i_>M

as M — +o00. We combine these results to obtain

1+e([l,n/4]) +e(—[1,n/4]) +e(—[1,in/2 1
S = e/ + /) + e fling2)
— (cos ™ 4 cos ™2 N ()}
= (cos 5 + cos 5 )N(n) ,
which gives Proposition 2.2. |

Our next result gives a rough bound for the left of (1.1) which is important to
get the bound in Theorem 1.

Lemma 2.3. Let M, N be positive integers. Then

S wln]

N(m)<M ' N(n)<N

2 *
< (M+N®) > aal
N(n)<N

To prove this lemma, we first obtain a bound for the following double sum of
the Jacobi symbol.

Lemma 2.4. Let M be a positive real number and let n be an odd squarefree
integer. Then we have

3 [%} < M3N(n)2. (2.3)
N(m)<M

Proof. We easily see that
Flrm= 3 [Fle(l57))- @4

The equations (2.1) and (2.2) imply that |7(n)| = N(n)z for n odd squarefree.
Hence we have

‘ 2 [T]’gN(;)é 2

N(m)<M

where the condition (a,n) = 1 implies that Re(%) or Im(%) is not a rational
integer. For the terms in which both Re(%) and Im(%) are not integers, we have
a bound

N|=

]. M 1 3
M MiIN@)?
< n;in [sin(rm(ay)] < MV,
Re(£) (8 gz
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since || Im(%)|| > N(n)~! where ||lz|| = min,ez [x — n|. Next we obtain a bound

1

1 Mz 1 3

L M MIN(Mm)E.

< mz;m [sin(r Re(zy)] < M
Re(2)¢Z,Im(2)eZ

n

Similarly, the terms in which Re(%) € Z and Im(%) ¢ Z are bounded by
O(Mz2N(n)?). Combining the above estimates, we obtain (2.3). [ |

Proof of Lemma 2.3. By Lemma 3.1 given below there exist some sequence
{al,} with |a}| = |ay| for all n such that

s el s aafn]

N(m)<M ' N(n)SN N(m)<M N(n1),N(n2)<N

We split the sum over ny, ng into two parts depending on whether (n;) = (nz2) or
not. Then we have

> |3 wlg]

N(m)<M ‘ N(n)<N

<M Z* lan|® + Z Z am s Z [nTZzQH

N(n)<N (n1)#(n2) N(m)<M
* m
LMD YD S WA DR P |
N(n)<N N(d)<K2N (n1,n2)=(d) N(my<m L7172
(n1)#(n2) (m,d)=1
<M > anl?
N(n)<N
l
DN DID DRTAT SIC] YL B S P I
N(d)<2N (n1,n2)=(d) k|d N(1)<M/N(k)

(n1)#(n2)

Lemma 2.4 shows that the innermost sum is bounded by
0 MN(TLl TL2)3
N(k)N(d)® |
Hence the contribution of the second term is
* 2
< M%N3( > |an|)
N(n)<N

By Cauchy’s inequality we have

> ‘ S a =] ‘2<<(M+M5N4) S Janl

N(m)<M ' N(n)<N N(n)<N
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Since
M+ M3N* < (M3 + N*)? < 2M + 2N®,

Lemma 2.3 follows. ]

3. Preliminary lemmas

In this section we shall prove various lemmas which will be necessary to prove
Theorem 1.

We put
2

Be 3| Y wl[l]

N(m)~M ' N(n)~N

where N(m) ~ M means M < N(m) < 2M and the sequence {a,} is supported
on the odd squarefree Gaussian integers satisfying N(n) ~ N. We define

B(M,N) =supX;/ Z lan|?
N(n)~N

where the supremum is over all {a,} for which the denominator is non-vanishing.
Then Theorem 1 is equivalent to

B(M,N) <. (MN)*(M + N)

for any € > 0.
First, we pick up two basic properties in Lemma 3.1 and 3.2. Our first result
concerns the symmetry for B(M, N).

Lemma 3.1. We have
B(M,N) < 2B(N,M).

!

"| = lan| for all n such that

Moreover there exist some sequence {al,} with |a
*

ST Y a =] rgzNZ

N(m)~M ’ N(n)~N (m)~M

* *

> a2]]

N(n)~N

Proof. The duality principle shows that

B(M,N)zsup{ Z* ’ Z* am {%}

{am} N(n)~N ' N(m)~M

2 *
s |am|2}.
N(m)~M

We investigate the sum in the numerator of the right. We split the sum over n
into two parts depending on the value of n (mod 2) and use the reciprocity law of
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the Jacobi symbol, so that we have

S a2
N(n)~N ' N(m)~M
* * 2 * « .
S SN D SUEHES IR Sl 1D Sur I
N(n)NéV N(m)~M n N(n)f\/é\f N(m)~M m n
n=1 mod 2 n=t mod 2

<2B(N,M) > aml®.

N(m)~M

Hence the first part of Lemma 3.1 follows. To obtain the second part we should
take {a),} = {an} or {a, [£]}, since

S Y wlE]

N(m)~M ‘ N(n)~N

SO PO [ o)

2

N(m)~M ' N(n)~N i
m=1 mod 2 momel?
* * ’
n
- - 3 ‘ > a, {*] -
{a,}={an} . {an[E]} N(m)~M ' N(n)~N "

The next result implies that we may regard that B(M, N) is essentially increas-
ing with respect to M and N.

Lemma 3.2. There exists an absolute constant C' > 1 as follows. If My, N > 1
and My > C My log(2M 1 N), then

B(Mi,N) < B(Ma,N).
Moreover, if M,Ny1 > 1 and Ny > CN;log(2M Ny), then
B(M, Ny) < B(M, N3).
Proof. Put K = My/M;. First we suppose that m is an odd squarefree integer in

Z[i] and satisfies My < N(m) < 2M;. We take an odd prime p with K < N(p) <
%K . Then, since

[

N(n)~N
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we have

>

n

>
pin

* 2 *
SMIMEDY
* *2 *
SIS
plm n

ptm

2 *
+22

ptm

pln

In the second sum on the right, pm is odd squarefree and N(pm) lies in (Ms, 2Ms)].
Hence we have

* * 2 * *
DN D IR [ T S D A
m pm
Mi<N(m)<3M;  N(n)~N Mi<N(m)<iM; N(n)~N
ptm pin ptm pin

<y s el

N(r ~Ms ' N(n)~N

2

where b, = [%]a,. Thus we obtain a bound for the second sum
<B(OM,N) 3 anf.
N(n)~N
For the third sum on the right we have

* *

2 * *
n n
S Y Wk s ¥ wll]
N(m)~M; "' N(n)~N N(m)~M; "' N(n)~N
ptm pln pln
< B(Mi,N) Z |an .
N(n)~N
pln

Hence we obtain

*

D

Mi<N(m)<5$M, ' N(n)~N

<>
N(m‘)NMl N(n)~N
plm

+2B(M,N) > an|*
N(n)~N
pln

*

> oo [2][ 4200 3) 3 o

N(n)~N



Bound for the sum involving the Jacobi symbol in Z[i] 79

We now sum over all odd primes with N(p) € (K, 2K). By the prime ideal theorem
we have

* * 2
ar X[ Xy

Mi<N(m)<EM; ' N(n)~N

log(2M7) * * n
< logK1 Z ‘Z an[g}

2

N(m)~M; ' N(n)~N
K . log(2N) o
+ 2 B(M,y, N a,? + 28 o, N an
et ) 3 Janf+ LB 5 o
log(2M; N) K * 2
——=B(M;,N ——B(My, N |- 3.1
{PERN 500, M) + 600 Tl (31)

N(n)~N

For the other terms for which N(m) € (2My,2M,], we consider an odd prime
p with 2K < N(p) < K, then a similar inequality as (3.1) holds. Combining these
inequalities we deduce that there exists an absolute constant C' > 1 such that

CMl IOg(QMlN)

<
B(M;,N) < 20,

B(M,,N) + CB(My, N).

Therefore if My > CM;log(2M1N), we obtain
B(M;,N) < B(M;,N).
Moreover, by Lemma 3.1 we have
B(M,Ny) < 2B(N1, M) < B(Na, M) < 2B(M, N3)
for Ny > C'Nylog(2M Ny). The proof of Lemma 3.2 is complete. [ |

The following result shows that the sum involving two different sequences is
bounded in terms of B.

Lemma 3.3. Let C be as in Lemma 3.2. Let D > % and {a,},{b,} be complex
sequences supported on the odd squarefree integers in (N,2N]. Then there exist
D+, D> satisfying
1 2D
o S DS s
2C'log(2MN) C'log(2MN)

fori=1,2 and

D D
oo SDiDy S 5 ——,
2C?log“(2MN) C?log“(2MN)
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such that m
- Y Y XY b [nn] ’
N(d)~D N(m)~M | (n1,n2)=1, dlnins 172
<y (MN)(DyD2) 4 {B(M, N/D1) Y Janl?}
1
x {B(M,N/D2) 3" b2}
for any n > 0.

Proof. If D > 4N?, then S = 0 and Lemma 3.3 holds. We now suppose that
D < 4N?. If we write dy = (n1,d) and dy = dd; ', then

IS MNP aw[wﬂ

N(dldQ)ND N(m)NJVI (n1 'n.g) 1

di|n1,dz|n2
PO MDD o SN Pl
N(dydy)~D N(m)~M

N()<2N d1|n1,l|n1 da|na,l|ns

We decompose the sum over d; and dy into dyadic ranges F; < d; < 2F; with
%D < E1E5 < D. Since there are O(log V) possible pairs Ey, Eo, we have

S< (logN) > > > Z ) 2, ambu, [nmzH

(Z)<2N N(dl)NEl (dz)NEQ N(m)NM d1|n1,l|n1 d2|n2,l|n2

for some choice of F; and F5. By Cauchy’s inequality we obtain

S < (log N)S2%7,

where )
S O YD SIS Sl D S
N(1)<2N N(d1)~E1 N(dz)~E3 N(m)~M ' dy|n,l|n n
and )
DOREED DEEED DI DI D S Y
N(1)<2N N(dy)~E; N(d2)~Es N(m)~M " da|n,l|n

We treat ¥,. Since
I w3 [7] S l7).

we have

*

>

N(m)~M

> an ] r < B(M,N/N(d1)) 3 Jagul?

d1|n,l\n l‘dlk

= BOLN/N(@) 3 ol

di|n,ln
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Lemma 3.2 shows that B(M,N/N(dy)) < B(M,0N/Ey) for § = Clog(2MN).
Hence we have

S.< >, > > B(MON/E) Y laf

N(1)<2N N(d1)~E1 N(d2)~E> di|n,ln
<y N"2E,B(M,ON/Ey) > an|?
N(n)~N

for any n > 0. Similarly, it follows that

Thus we obtain
1 1
S <, N37,/4(E1E2)%{5(M, 9N/E1)Z|an|2}2{B(M, ON/Es) \bnﬁ}z.
If we take D; = E;/0, then D; and D5 satisfy the conditions in Lemma 3.3 and

§ <y (MN)/(DD2){ B N/D) Y o} (B N/D2) Y )

This completes the proof of Lemma 3.3. |

Our next result is an application of the double Poisson summation formula.

Lemma 3.4. Let W(x) be an infinitely differentiable function supported on a
compact subset of (0,00). Let q be an odd squarefree integer in Z[i]. Then we have

3w (N0 [2] - 0 5w () [4]

meZli] h€eZ[i)

where 7(q) is the Gaussian sum defined in the previous section, and we put

:/ww%«mmw
C

with t = t1 + ity and dt = dt,dts.

Proof. We split the sum on the left into parts depending on the value of m
(mod ¢), and apply the double Poisson summation formula to each, so that
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|
(]

/ W (N(a +a(@ + sz))) e(—hiw1 — hazo)dridry
R2

M
a mod q hi1,h2€Z
M A M
- S [ 2 e (2w ()
(q) a mod q q h€EZ[i] q (q)
Thus Lemma 3.4 follows from the relation (2.4). |

The next result will be used to separate the variables in the proof of Lemma 4.2.

Lemma 3.5. Suppose that p : R2 — C be an infinitely differentiable function
satisfying
gotB

Oz 0yl p
for (x,y) € R? and any A > 0. Let

(,y) <apa (142> +1y%)~"

o0 o0
pjk(51,82) = / / p(jz, ky)z® ~ty® " dady,
0 0

for j,k € {—=1,1}, and let

o0

pro(s) = / pliz, 0"z, poy(s) = / (0, 1y)y*~dy
0 0

forl € {—1,1}. Then p;i(s1,s2) is holomorphic in Re(s1) = o1 > 0 and Re(s2) =
o9 > 0. Moreover p;o(s) and poi(s) are holomorphic in Re(s) = o > 0. We have

ik (51, 82) Kaoron 152174 and  pro(s), pou(s) <ao |s| ™
for any A > 0. Moreover if 01,09 > 0,

1
iz, ky) = ——= ; TSy T%2dsqd
p(jz, ky) (27i)2 /(02) /(al)pj,k(shsz)x Yy 51A82

forxz,y >0 and j, k € {-1,1}, and if 0 > 0,

1 1
p(lz,0) = 2—/ pro(s)xz™%ds and p(0,ly) = —/ po,i(s)y~*ds

T (U) 271 (U)
forx,y>0andl e {-1,1}.

The next result is also an application of the double Poisson summation formula
which will be use in the proofs of Lemma 4.2 and 4.3.



Bound for the sum involving the Jacobi symbol in Z[i] 83

Lemma 3.6. Suppose that ¢ : R? — C be an infinitely differential function satis-

fying
aa+ﬂ

s’
for (u,v) € R? and any A > 0. Put p(2) = p(21,22) for 2 = 21 +izg with 21, 22 €
R. Let x be a nonzero complex number and put X = |as|2 Let 0 < X1 <X <Xy
and 0 < J < min{X/X1,Xo/X}. Then for any k € Z[i] with (k) # (0),(1),

we have
> ( IZ X/ x)dx — 790(0) > wd)

(u,v) Kap.a (1+u?+0%)~4

neZli] N(d)<X2
(n,k)=1 dlk
1 X
- = d)—— d
1 Y g [
N(d)>X2
dlk

in‘ gl

1 X
+Z Z Z M(d)N(d)<P<

0#N ()KL X1 <N(d)<X2

)

+04(XT™H) (3.2)
for any A >0 and L > (X2/X)?, where ®(k) is the Euler function and

ﬂwzéwmhmmw

Proof. We remove the condition (n,k) = 1 by using the sum of the Mobius

function to obtain
> e (h)-= zu > ().

(n,k)=1 neZ[i]
First we consider the case in which N(d) > Xs. Since (k) # (0), (1), we have
1 1
T2 Mde()=—700) > ud).
N(d)>Xa,d|k N(d)<Xa,d|k

The assumption for ¢ shows that
1 nd
LY Y e(B) e X Y (5
N(d)>Xz,d|k n#£0 N(d)>X3,d|k n£0
<a XAX3A = (XQ/X)*A < XJ A

Next we deal with the case in which N(d) < X;. Using the double Poisson
summation formula, we obtain

B T2 e ()

N(d)<X2,d|k nezfi] N(d)<X2,d|k 1€Z]4)
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We compute the terms with [ = 0 to be
1 X

1 Z M(@m@(o)
N(d)<Xa2,d|k
1 X 1 X
= - dzlkzﬂ(d)N(d)%’(O) -7 N(d)§2 d|ku(d)W¢(0)
_ 2(k) 1 X e
N(k)X c e N(d)gz,dlkﬂ(d)N(d) /CSO( )

For the remaining terms we have

S Suo(f) ey (e

N(d)<X1,d|k 170 N(d)<X1,d|k 1£0

<A Xl—A Z N(d)A—l
N(d)<X1,d|k

<A XXM = X(X/X) A< XxTA
and

> u(d)%sb (g)

X1 <N(d)<X2,d|k N(1)>L

X (XN 2
@22 N(d)(N(d))

X1 <N(d)<X2,d|k N(1)>L

<4 x—A-1 Z N(d)A+1 Z N(l)fAfZ

X1 <N(d)<Xo,d|k N()>L
Cp XATIXPP LA C XAMLXSA = X ( X/ X) A < XT A

We combine the above results to obtain the formula (3.2). |

Lemma 3.7. Let W and W be as in Lemma 3.4. Then we have

/CW(ZZ)dz = w/ooo W(r?

To prove this lemma, we first investigate a certain integral. Let a be a complex
number and K be a positive real number. Set D(K) ={z € C: |z| < K} and

= e O[Z2 Z.
1(K) = /D PRCRE

Lemma 3.8. For a nonzero complex number a,

L (K) = ﬁ +0 (@) (3.3)

where the implied constant is absolute.



Bound for the sum involving the Jacobi symbol in Z[i] 85

Proof. We use the following properties of the J-Bessel function Jo(z):

Jo(2) 1/7r e=eos0qg  (cf. [6, §2.2 (5))),

:§_ﬂ

2 ™ 3
Jo(z) = \/;cos (z - Z) +O(|z|72)
when |z| is large and |arg z| < m (cf. [6, §7.21 (1)]), and
/OO Jo(t)dt =1 (cf. [6, §13.42 (7)]).
0

By (3.4) and (3.6) we have

K ,m

I (K) = / / re2milalr® cost gy gy
0 -7
K

:27r/ rJo(2|a|r?)dr
0

1 1 e

_ . L To(t)dt.
2‘0&| 2|Oé| 27 || K2

The asymptotic formula (3.5) shows that the second term on the
O(Ja|~2 K1), which gives (3.3).

(3.6)

right is
|

Proof of Lemma 3.7. Fix positive real numbers a and b such that the function

W (|t|?) is supported in D(a,b) := D(b) \ D(a). Then

/CW(Z i = gim [ (/D(a’b) W(lt2)e(~[2 ,t])dt) i

= lim W ([t|*) 1 (K)dt
K—oo D(a,b)

by Fubini’s Theorem. Hence the asymptotic formula (3.3) shows
. 1 dt >
/W(z2)dz = 7/ W ([t = 7r/ W (r?)dr.
C 2 /p(ap) [t] 0

4. Proof of Theorem 1

Let us consider the complex sequence {a,} where n runs over odd squarefree
integers in Z[i] satisfying that N(n) ~ N. We assume Y |a,|* # 0. In this section

we aim to prove that
B(M,N) <. (MN)*(M + N)

(4.1)
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for € > 0, which is equivalent to Theorem 1. We introduce a weight function W (x)

given by
1 .
W(x) = exXp (_m) if % <z < %
0 otherwise.
Set
N(k) if m # 0 and m = kl? with k squarefree,
S(m) = ] 7
0 if m=0,
and
odd N
00510 = ( 7w (S)] 5 [
{an} s(m)>K N(m)~N

)/ S el

N(n)~N

where ZOdd means that the range of summation is restricted to odd integers.

Then Lemma 3.1 tells us
B(M,N) < B(M,N, K)
for K < M/2. We give an estimate of B(M, N, K) as follows.

Lemma 4.1. Let ¢ > 0 be given. Let 0 < K < M/2 and 1 <
A € Zi] we set

C(M,N,K,A)=supSy/ Y lan|”

tan} N(n)~N
with N(m)
odd m m
Sim YN anm Y w (N [ ]
(n1,n2)=A s(m)>K

Then we have

B(M,N,K) <. N°B(M,N1,K)+ Y C(M,N,K,A)

for some positive real number Ny < N/Dy.

Proof. We transform 3777 x W (M) | Y N(my~n @n 2] ? into

Z ZOdd ( M > 22, [711"2}

N(A);éO s(m)>K (n1,n2)=A

The part in which N(A) < Dy are bounded by

> CMN,K,A) Y anl

N(A)< Do N(n)~N

Dy < N. For
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For each A with N(A) > Dy we have

ZOddW< ) DD andn {nan ‘

s(m)>K (n1, nz) A
- Zodd < > ZZ An, Ty [mm}

s(m)>K (n1,m2)=A
odd N(m m
= Z w (J(W)) ZZ Ay Alpy A [nn]
s(m)>K (n1,m2)=1 12
(m A)=1
() R e
= = Z a5 anlAanzA -
s(m)>K M ni,n2 ning
(m,A)_l
1
<3 Z G N 1|
N (d)<2N s(m) dln
1 2
N(d)<2N dn
1 2
< 4B, N/N(A»K)Ed(n)\am :

> u(d)‘

d|(n1,m2)

We note that there exists a positive real number N7 < N/Dy such that

B(M,N/N(A), K) < B(M, Ny, K)

for any A with N(A) > Dy. Hence we obtain that

IS \ PEOLNE) S Sl

N(A)>Dg s(m)>K N(A)>Do n

B(M,N.,K) Y Zd(

B(M, Ny, K Zd )2|an|?

»M»—‘

»JMH

<. N°B(M,Ny, K Z|an|2

and the lemma follows.
We decompose Yo = X3 — ¥4 with

e XX a X (M) [

(n1,m2)=A meEZ[i]

|anA|2

) lanl?
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and

5, = ZZ o T ZoddW (NJ(\;M) LT:LQ] _ (4.4)

(n1,m2)=A s(m)<K

For X3 we prove the following result.

Lemma 4.2. Let € > 0 be given. Let N(A) < N and
N?’M Y MN)®* <K< M(MN)™*

For any Gaussian integers ni, ny we write

( ) n1n2
=q(ny,ng) i= ——.
q=q\ni, n2 (n1, 112)?2
Moreover we put
and
i N/vVMB
mg = min — .
0 ) D1D2

Then we have
23 = M3 =+ E3 Z \an\Q,

where
M ®q) [ } /
Z — Z aman2 W(r
N(b)<K (b) (n1,n2) 2N(q
and
N\ N\
Es <. 1+ (MN)*N \/D1D23< (A)) B<B’Dﬂvw>

. y L1 ] ) - .
for certain values of B, D1 and Dy with D1, Dy > (MN) ¢ and 1 < B<K K

Proof. Put 4 =1+ 4. The inner sum of ¥3 becomes

o () )

mez[i]
PNCIHP> W< W) L7

Le)
|_|

elpA mEL[i]
1 e M
== ¢ S W
4 2, 1) {q] N(eq) )
elpA hE [z]
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by Lemma 3.4. Since N(q) > N?N(A)~2? > 1, we observe that [%] = 0 when

h =0. If h # 0, we can factorize h = abc?, where a = 1 or 1 + i, and b is an odd
squarefree integer. Then we have

B =15 2 ZZZZ

e\p, b c#0
T(ning) - M 5\ | eabe?
X Ay Al w abc .
(nlnzz)_l A4 2AN(nlng) < N(ening) nino
For the terms with N(b) > K the contribution is O.(>_ |an|?), since W (z) <4
|z|=4 and K > N2M~'(MN)?. We next consider the terms with N(b) < K.
We split the sum over b into subintervals (B,2B] with B = 27FK for k =
1,2,..., [lﬁf;;] + 1. Then the contribution for each range becomes
u(e) T(nino) [ eab
b = n n S )
3,B — Z 6 Z Z Z an,AQ 2A (nan) l:ﬂ1n2:| (n1n2)
e|;1,A a N(b)~B (ni,n2)=1
where
M
Z W( )ab02>
N(enin
(c,)=1 172
for a € ZJ[i] with («) # (0),(1). We apply Lemma 3.6 to S(«) by taking
. N(enlng)% N(enins)
2)=W(?), z= BVZTAE =\ = o
N(e 1 N(e) _1
X, MN) 22—~ N(MB Xo=(MN)" N(MB
J=(MN)? and L= (MN)* (n>0),
so that we have
D) .
S(a) = 7X W (2%)dz — fW(()) w(d)
N O[ C
dla, N(d)< X2
1 X
= d W(z%)d 4.5
P RRGE  TAGEE (4.5
d|o, N (d)>
1 X xl
- d)——¢ (= XJ 4.
XY ugge() o

0<N (1)KL dlon, X1 <N(d)< X2

We sum the first part on the right of (4.5) over B and apply Lemma 3.7, then
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the corresponding contribution to X3 is

(TllTlQ)q)(anLQ)

*)dr Z > na An2 A N 2N (ny1g)372

b)<K (n1,n2)=1

LWJ >y ]

e\uAa 1,

Sl—

7(nin2)®(nins)
2) gy Z Z Uny Alna A7 N(b)1/2N (ning)3/?

(n1,m2)=1

N(b)<

- [”11)”2} ’ ( {nsz e%azl:ﬂ \/7 {mi@} 7

where F = {z € C: Re(z) > 0,Im(z) > 0}. We note that T(nins) = N(ninz)

1
2

for [-] =1 and
o+ ) £ 5 i) o]
ning elpA a= 1#\/7 nina nina
These show that
T2 N, X s,
N(b)<K (nl,ng) 1 112)

k(A ning) {nmJ /Ooo W(r?)dr = Ms.

Let S3 denote the contribution for the second part on the right of (4.5) to 33 5.
Then we have

Sy <y MN(A)" Y Z

N(d)<Xz N(b)~B

dDD

N(d)<Xs N(b )~B ) )
X\ S sy [ a2 (2] (2] (]

(n1,n2)=1
d‘?’llnz

for some e and a with 1 < N(e) < 2N(A). We take A = {(1,1), (1,4), (4,1), (4,7) }

and write A = (A1, A2) for A € A. Then we obtain

b
5y MNAPY Y Y Y a [W] ’

AEA N(d)< X2 N(b)~B ' (nq,n2)=1
d"ﬂ/lng

7(ning) [ eab
ZZ%MM
N(ning) [ning
(n1,n2)=
d|n1n2
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where
YN ;,((Z) [<] if n = A\ mod 2Z[i] and Ay =1,
all™ = < ana ]:;((7;)) [€][L] if n =) mod 2Z[i] and Ay = i,
0 otherwise,
anA ]:,((7:1)) (<] | if n = Ay mod 2Z[i] and A\ = 1,
BN =S ana g (2] [£] if n = A mod 2Z[i] and A =1,
0 otherwise.

We decompose the sum over d into subintervals (D,2D] with D = 27X, and
apply Lemma 3.3 to each. Then we have

52 0 (U N0 B (B vy ) B8 ) e

for some values of D and Ds. There are O(log K') = O((M N)7) ranges for B, so
that the total contribution to X3 is

< ()05 (B. JJVV@))éB (= DJJVVMAQ 2ol

for certain values of Dy, Dy and B. Since

N(e)
N(A)

D1Dy < Xy = (MN)" N(MB)~% < (MN)"N(MB)~?,

we obtain that 1 < (M N)"mg. Thus the contribution to 33 is

<o (MN)"N (&) o/ D38 (5 le]va))%B (= Dz]va>> 2 leal*

Let us put S5 to be the contribution for the third part on the right of (4.5) to
Y3,5. Then we obtain

1

M= T(ning) eab
S PN 3 iy | S anats
Bz N(d)>X N(b)~B (n1,n2)=1 N(ning) Lmane
d"ﬂl’nz
for some e and a with 1 < N(e) < (A). We decompose the range for d into

2N
dyadic ranges (D, 2D] Wlth X, < D <2N?. Then

S Nar Y YL S S S5 an [ |

MeA D N(d)NDN(b)NB (n1,n2)=1
d|n1n2
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where
QHAJ% [<2] if n = Ay mod 2Z[i] and Ay =1,
2N = am% (€] [2] if n = Ay mod 2Z[i] and Az = 1,
0 otherwise,
ana Tzirn(zm) [<2] if n = Ay mod 2Z[i] and A\ =1,
2,2) _ T(n) [eal [i] if, — : —
(3N = a"A\/W)n) [<2] [£] if n = A» mod 2Z[i] and A\; = i,
0 otherwise.

Applying Lemma 3.3 to each, we have

SIS

2

M2 VD1Ds N 3 N
, 2n v v 2
Sy <, (MN) . §D 5 B<B7D1N( )) B(B,DZN( )> > lanl*.

n

Since
1 1

< < :
D1Dslog?(2MN) — D1Dy

ol =

we obtain

1

- N oO\? N \?
MN)*"log N\/ 5~—=-B( B, 5~ B 5Ny ol
S5 < (MN)*"log \/;11)23( ’DlN(A)> B< ’DzN(A)) zn:|a|

Hence we see that the total contribution to X3 is

f M N \? N \?
3n 2
<y (MN) \/BD1D28<B’ DlN(A)) B(B’ D2N(A)> Zn [an]

for some B with % < B < K. Since

DDy > 2X2 _ (MN)W\;/N(:)N
log?(2MN) ~ N(A)(MB)3 log?(2MN)

>, NN(A)"'(MB)~3,

we have
M M N/vVMB
—+/D1{Dymin<{ N(A), —-—
BDiD, SNV Qmm{ (&) =p.D, }
M . N/vVMB
<<N(A)W DlDlen{171)11)2}.

Thus the contribution to >3 becomes

<<7] (MN)3"N(A)%mO\/ D1D>B (B, DIJJVVW> 2B<B, DQ]]VV(A)> : Z |an|2'

n
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Let S4 denote the contribution for the forth part on the right of (4.5) to X3 5.
Then we obtain

1 *
M2B 2 LN(A)" _
sty S S
X1<N(d)< Xz N(b)~B
Z 7(nins) {eab] (1 N(eniny)i ‘
anl (07 — -
(n1,m2) fnad N(ning) Lnin2 7\ M (ab)z
d|n1n2

for some a, e and [ with 1 < N(e) < 2N(A) and N(I) < L. We will remove the
factor ¢ by means of Lemma 3.5 with p(z,y) = ¢(x +iy). We first decompose the
sum over d into the parts depending on the signs of real and imaginary parts of
ld’l(%)’l/ 2. We treat the part that both are positive. Using the formula

) lN(enlng)% 1 / / < l >_51
e - = . s1,52) | Re ——
4 (d M (ab)? (27mi)? J (o) (al)pl’l( o) d(ab)?
l 2

- N(en1n2)>_‘1‘(sl+52)
X Im e —_— dS dS 5
( d(ab)z) ( M e

the corresponding part S} is bounded by

<rpriese gt gt e LAY [ oo+ it on +it)
RZ
X Z N(d)ils)\(gl +it1,02+it2,d)dt1dt2
X1<N(d)§X2
for some choice of A, where

b 1
Sa(s1,82,d) = ) S a2EY | ——| N —alsitse)|
(s1,82,d ’ a . (ning)~1

N(b)~B ' (ni,n2)=1
d|n1n2

Splitting the range for d into intervals D < d < 2D and applying Lemma 3.3 to
each, we obtain an estimate

S Loy.on (MTIN~2BX,N(A)2)742 (MN)?L(log X5)

M N \?® N \*® ,
BDngg(B’ DlN(A)> B<B’ DQN(A)) ;'a’”

for some Dy and D5, and any o1,092 > 0. Hence

M
BD1Dy

L o DL

> Sy < (MN?)7 7 (MN)* L
B
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for certain value of B. The condition for D7 and D5 in Lemma 3.3 shows that

X \
DiDy>» —5——— > (MN)"NN(A)"}{(MB)~=
log“(2M N)

and
M
BD;D,

D1Ds
Thus

s < (MN2)"1+"2(MN)”UV(A)%mO\/DlDQ
B

(B s ) B(B ) Sl

When we choose 1, o1 and o5 sufficiently small compared with e, this estimate
is included in the error terms in Lemma 4.2. For the other parts we take similar
arguments to obtain estimates included in the error terms.

Finally, for the error term on the right of (4.5) we obtain that it makes a neg-
ligible contribution to X3, providing that we choose A sufficiently large compared
with e. This completes the proof of Lemma 4.2. |

Our result for ¥4 is as follows.

Lemma 4.3. Let ¢ > 0 be given. Let N(A) < N and 0 < K < M'~¢, and put
q = q(ni,n2) = ning/(n1,n2)%. Then we have

Yu=My+ E4Z \an\z,

where
N(v)<K (n1,m2)=A
(v,ud)=1

and

M N \? N \?
By <. 1+ (MN),/ B, B, ——
1< 1 ) BD1DzB( D1N(A)) B< DzN(A))

for certain values of B, Dy, Dy satisfying that 1 < B < K, D1,Dy > (MN)~¢
and

D1Dy > (MN)"*N(A)"'M2B" 3.



Bound for the sum involving the Jacobi symbol in Z[i] 95

Proof. Put m = u?v with v squarefree. Then we have

P 2X e 3 S () o

(nl,nz N(()<XK u€Zli]
v
-2 zz otz 3|2 St0mm)
nl,TLQ N(’U)<K q
(v,8)=

where
S(v,n1,m2) = ZA: 1W (J\iv/(NuZ)) .

We split the range for v into intervals B < N(v) < 2B. For each range we apply
Lemma 3.6 to S(v,n1,n2) by taking

p(2) = W(N(=%), == (M/N@)i, X
X, =(MN)""M?*B~3, X,=(MN)'M>B">
J=(MN)? and L= (MN)".

Then we have

S(v, nl,nz)

N w [veee-we Y
dlpgA,N(d)< X2
. d) s 46
1 dlpuqA, N(d N(d) / o

1 p(d) | M M3l B

P > w( )+ oa(xTA).

4 0<N()KL  dlugA N(d) | N(v) N(v)ad
X1<N(d)<X2

The first part on the right of (4.6) is equal to

T®(qA) M Oo 2
INGA)\ N ], WO

Taking the summation over B, ni, ny and v, the total value becomes Mjy.
The second part vanishes, since W (0) = 0.
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The total contribution for the third part to 34 becomes

2:2*%

d)>X>o N(v)~B
(v,A)=1
xz;%%u/w
n1 ’ILQ
d|lpgA
< S 5w S VE| I e ||
N(d)>X2 N(U) ~B (n1,n2)=A
(v,A)=1 dlugA

1 * M v

M77 ENTN oy mn .

< Z N(d) V' B ZZ (ny Alny A {nan ‘
N(d)>Xz N(U)NB (77,1,712):1
(v,A)=1 dlpnins A

for certain value of B. We write d’ = (d, uA) and e = d/d’. Then we have

M 1 *
S < (MN)W\/E > N(e) >

N(e)>X2/2N(A) N(v)~B

Y aia [n] ‘

n
(n1,n2)=1 172
elning

We decompose the sum over e into subintervals D < N(e) < 2D and apply Lemma
3.3 to each. This yields

M N \? N \?
KN)3n B B—— nl?
S <y (KN)Ty, BD1D28< ’DlN(A)> B( ’DgN(A)) ;'“'

for certain values of D; and D5 satisfying that

log(2M N) " 7 log(2M N)

for i =1,2, and

MN)" Mz N2
( 1)22 <<D1D2<<27
N(A)Bz2 log“(2MN) log“(2M N)

Let T denote the contribution of the forth part on the right of (4.6) to 4.
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Then
1 . w(dy | M < M )
T=16 Z 4 T
16 % N(w)~B O0<N()KL X1 <N(d)<X2 N(d) | N(v)" \ N(v)1d
(v,A)=1

v

« TN anm |

(’I’Ll,ng):A q

d|pgA

DSBS Sl D ) SR 1 1|

B X <N(d)<X2 N(v)~B ' (ni,n2)=A
(v,A)=1  dlpgA

We write d’' = (d, uA) and e = d/d’ to obtain that

T <, (MN)* \/> 3 ( Z ‘ SN anatna m .

Ty <N(e)<X2 N(v)~B ' (n1,n2)=1
elnins

2N(A

We decompose the sum over e into subintervals (D, 2D] and apply Lemma 3.3 to
each, so that

Y N\ N\
6n oy oy 2
T <y (MN) <BD1D2) B<B’ DlN(A)> B<B’ DQN(A)) ;'m

for certain values of D1 and D5 satisfying that

# < D < M
log(2M N) Bz log(2MN)
for i =1,2, and
M= MN)"M?
I 5 < DDy < (12—)
N(A)B*(MN)7log?(2MN) B% log?(2MN)

Finally, the error term of (4.6) makes a negligible contribution to X3, providing
that we choose A sufficiently large compared with €. The proof of Lemma 4.3 is
complete. |

We shall investigate a bound for the difference M3 — My.

Lemma 4.4. Let 1 < N(A) < N and 0 < K < M. Then we have

M — My < MK~ 3(MN)*B(KN(A)*(MN)°, Z |an|?.
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Proof. We begin to consider Ms. Put

aw) =1 S ule).
w=be,e|A
N(b)<K
b odd squarefree

> i ls) =X Lo

N(b)KK

Then we have

where the sum is over odd Gaussian integers w satisfying that N(w) < KN(A)
and w = rs? with 7 odd squarefree and s|A. Hence we obtain

™ ®(q) a(w) fw] (% o
= Z\/M Z Gy Gy IN(g) Zw: N [Q]/o W (r=)dr.

(n1,m2)=A

Next we consider My. Since (¢, A) = 1, we have

(qa) _ (g 2(4)
2N(qA)  2N(q) N(A)

and

Hence we have

Y At [T e[y

N(v)<K
(v,pA)=1
where 1
sw=1 Y uw)
vu=w,u|A
N(W)<KK
(v,pA)=1
v squarefree
Thus

o o — 20 Bw) [wl [ wi2var
M4_4m >, ”22N(Q)%:\/N(w)[Q}/o Wt

(n1,m2)=A

where the sum is taken over w such that w is odd, N(w) < KN(A)? and w = rs?
with 7 odd squarefree and s|A.
Let w be an odd integer with N(w) < K. Then we have

o(w) =7 3 e (w/e)

el (w,A)
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and

Bw)== > pup’(w/u?).
w=vu?,u|A

(v,A)=1

We note that the two sums on the right are multiplicative in w, and therefore
v(w) = a(w) — f(w) = 0 in this case. Also we can check v(w) < d(w) for any w
with N(w) € (K, KN(A)?]. Hence we have

M — M,

< M3K~3(MN)" >
K<N(w)<KN(A)2

< MEK™5(MN)"Y Z*

s|A KN(A)=2<N(r)<KN(A)2

zx =l
g

(nl,ng) A

Let us put

48 = %a,ﬂ if (n,s) =1,
" 0 otherwise.

Then, decomposing the range for r into subintervals (R, 2R], we obtain

23 o |

(m1,m2)=

Ms — My < M2K~3(MN)"
N

(r)~R

for certain values of s and R. We apply Lemma 3.3 with D = % to show that

Mz — My < M2K~2(MN)*B(R,N')> " |a,|?
for some N’ <« N(MN)". Finally Lemma 3.2 allows us to replace R by
KN(A)2(MN)?", and N’ by N(MN)?". We choose 7 sufficiently small compared

with € to complete the proof of Lemma 4.4. |

We shall combine Lemma 3.1, 4.2, 4.3 and 4.4 to give the following bound for
C(M,N,K,A).

Lemma 4.5. Let ¢ be a real number > 1. Let £ € (1,¢] be given. Assume that
B(M,N) <. (MN)*(M + N*) (4.7)
foranye >0 and 1 < N < M. Then we have
C(M,N,K,A) <. N(A*(MN) (M + N + M> K¢ 3) (4.8)

or 1< < an - <K K -
f N(A) < N and N°M~'(MN)* < K < M(MN)~¢
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Proof. We first prove that, under the assumption (4.7),
B(M, N) <. (MN)*(M + N¥)

and

B(M,N) <. (MN)*(M¢ + N)
for any positive real numbers M and N. Since these estimates are trivial when
M or N is less than 1, we prove them for M, N > 1. The former inequality with

N < M immediately follows from the assumption (4.7). When M < N, we use
Lemma 3.1 to obtain

B(M,N) < 2B(N,M) <. (MN)*(N 4+ M¢) < (MN)*(M + N¢)

Moreover the later inequality follows from the former and Lemma 3.1.

In view of (4.3), (4.4), Lemma 4.2, 4.3 and 4.4, it is enough to estimate FEj3,
E, and M3 — M4 under the assumption (4.7) to obtain our result. We begin to
investigate F3. The assumption shows that

N\ N\ s=( Bt 4 BSN ~3p
B(B,Mw> B(B,DZJV(A)) < (MN) (B +B2Nz +ND, *D, )

N/VMB
D1 D2

Since mg < , we have

M
~ VD1D2mo B <. (MN)*M?B¢ 3.

D1 D>

1
2

1
Similarly, since mg < (N/' MB) 2, we obtain
N

P MiBiTE = (M%Bﬁ—%) MY < MEBEE 4
Finally, since mo < 1, we have

M
ﬁ\/DngmoN(Dng)_% < M.

Thus we deduce ) )
By < (MN)*N(A)(M2KS"2 + M).

We now consider F4. By the assumption we have

Ny Ny (B4 BENY -}

Since D1 Dy > (MN)~2¢, we find that

M
BD, D

B¢ <. (MN)*M=B¢ 3.
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Since
DDy > (MN)*N(A)"'M:B" 3,
we obtain
M BNt <. (MN)EN@A)EMINE B
BD; D, c
= (MN)2°N(A)2 (MB¢ 2)3N3
< (MN)2°N(A)2(M* B2 + N)
and
M N(DDy)} <. (MNYN(A)N
BD1D2 1472 € .

Thus we have
B, < (MN)*N(A)(M2KS % + N).

We finally consider M3 — M,. The assumption yields that
MzK~3(MN)*B(KN(A)?(MN)*, N(MN)?)
<o (MN)WHEH9e N3 K3 (KEN(A)% 4+ N)
— (MN)#HEH95(N(A)EMEKE 3 + MENK™3).

Since M2 NK~2 < (MN)~2°M, we obtain

Mz — My <o (MN)HEFON(AEMIKSS + M) Y anl.
N(n)~N

We combine the above estimates, so that
C(M,N,K,A) <. (MN)*Et9)eN(A)26 (M2 KE2 + M + N).
Thus Lemma 4.5 follows from £ < c. [ |

We use Lemma 4.1 and 4.5 to obtain a new bound for B(M, N) as follows.

Lemma 4.6. Under the same assumption in Lemma 4.5 we have
B(M,N) <. (MN)*(M + M'~¢N%-1)

for any € > 0.

Proof. When N(MN)¢ > M, we immediately obtain

B(M, N) <. (MN)*(M + M $N*~1(M/N)¢ 1)
<o (MN)E(M 4+ MYTENZED),
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We now counsider the case N(MN)® < M. We can apply Lemma 4.5. Let 1 < L <
N and 1 < Dy < L. Then, by inserting (4.8) into (4.2), we obtain that

B(M,L,K) <. (ML)E{B(M, L', K)+ D> (M + L + M%Kﬁ—%)}
< (MN)g{B(M, L' K)+ D2 (M + M%Kﬁfé)}
for certain value of L' < L/Dy. When we take K = N?M (M N)¢, then we have
B(M,L,K) < (MN)“tVE(B(M, L', K) + Dget (M + M'EN>1)),

Let R be a large integer and set Dy = N'/%. Then we can choose positive real
numbers Nog = N, Ny, Na,..., N, satisfying that N,, < Dy < Nyy—1, Np <
DO_TNO and

B(M, N, 1, K) <= (MN)©D={B(M, Ny, K) + D2 (M + MENZE)} (4.9)

forr=1,2,...,79. We remark that ry < R from the choice of Dy. By using the
inequality (4.9) repeatedly, we see that

B(M,N,K) <pg. (MN)HVEEBM, N, K) + D2 (M + M SN2
By the trivial estimate B(M, N,,, K) < MN,, < M Dy, we have
B(M,N,K) <p. (MN)ctDRep2etlyr 4 ppi=6 N1
_ (MN)(6+1)R€N(26+1)/R(M + M17§N2571).

Hence we deduce that
B(M,N,K) <. (MN)*(M + M'=§ N1

for any € > 0. Since B(M,N) < B(M,N, K) for K < M/2, Lemma 4.6 follows.
]

Lemma 4.6 produces the following bound for B(M, N).

Lemma 4.7. Under the same assumption in Lemma 4.5, we have
B(M,N) <. (MN)®(M + NZ-1/¢y
for any e > 0.

Proof. We use Lemma 4.6 to prove Lemma 4.7. When NZ-1/€ < M, we easily
obtain

B(M,N) <. (MN)*(M + M'EN2%-1)
< (MN)F(M + N@E=D/8y,
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When N®26-1/€ > M, Lemma 3.2 and Lemma 4.6 show that

B'(]M7 N) < B(N(Q'f_l)/g(MN)E)N)
<. (MN)E{N@S*I)/f(MN)E + (N(2§*1)/£(MN)5)175N2571}
< Q(MN)QeN(Qf—l)/E.

These conclude the result. |

We now prove Theorem 1. By Lemma 2.3 we see that the assumption (4.7)
in Lemma 4.5 is true if we take £ = 8. Hence we can apply Lemma 4.7 where we
note that (26 —1)/& < £ for £ > 1. By repeating this procedure with respect to £
we obtain the estimate (4.1). This completes the proof of Theorem 1.
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