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LOCAL REGULARITY RESULTS FOR SECOND ORDER
ELLIPTIC SYSTEMS ON LIPSCHITZ DOMAINS
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on the occasion of his 75th birthday

Abstract: For a class of strongly elliptic, second order systems L with rough coefficients on
a Lipschitz domain Ω, we show that if Lu = 0 on Ω and u vanishes on an open subset of the
boundary, then weak a priori hypotheses on the nontangential maximal function of u lead to
strong estimates on ∇u, in nontangential and Besov norms, near this subset.
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1. Introduction

In this paper we are concerned with the regularity of elliptic PDE’s under minimal
smoothness assumptions. A specific question we address in this context can be
phrased as follows: given a variable coefficient, second order, symmetric, strongly
elliptic system L and a Lipschitz domain Ω, how smooth is the solution of the
Dirichlet problem for L in Ω away from the support of its boundary datum? The
coefficients of the operator L are only mildly regular and the smoothness of the
solution is characterized both in terms of membership to Besov spaces, as well as
the size of the associated nontangential maximal function.

In order to be more specific, we need some notation. Consider a second-order,
strongly elliptic, formally self-adjoint operator L, acting between sections of vector
bundles over a compact, Riemannian manifold M . It is assumed that the metric
structures on M and the vector bundles in question have C1 coefficients and that,
in local coordinates U ⊂ M over which the bundles are trivial,

Lu =
∑

j,k

∂jA
jk(x)∂ku +

∑

j

Bj(x)∂ju− V (x)u, (1.1)
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where Ajk, Bj and V are matrix-valued functions with the property that

Ajk ∈ C1+θ, θ > 0, Bj ∈ H1,r, V ∈ Lr, r > dim M. (1.2)

The metric structures on M and the vector bundles involved are assumed to have
C1 coefficients.

We shall say that L satisfies the non-singularity hypothesis provided

∀D(⊆ M) Lipschitz domain, u ∈ L2
1,0(D), Lu = 0 in D =⇒ u = 0 in D.

(1.3)
As observed in [MT2], if L is negative-definite on M then (1.3) is automatically
verified. Also, if L is strongly elliptic, then L − λ, λ ∈ R, satisfies the non-
singularity hypothesis (1.3) provided λ is sufficiently large. This follows from the
Gårding inequality which, as observed in [MMT], holds in our setting (despite
the fact that V may be unbounded). Also, if L is strongly elliptic and negative
semidefinite, then L− λ satisfies (1.3) for any λ > 0.

For L as above and Ω a Lipschitz subdomain of M , consider the Dirichlet
problem

Lu = 0 in Ω, u
∣∣
∂Ω

= f ∈ L2(∂Ω), u∗ ∈ L2(∂Ω). (1.4)

Above, u∗ denotes the nontangential maximal function of u (see (2.3)). Let Bp,q
s

denote the Besov scale of spaces (cf. the discussion in Section 2).

Theorem 1.1. Assume that L is strongly elliptic, formally selfadjoint operator
satisfying (1.1)-(1.2), and that Ω ⊂ M is Lipschitz. Let Γ0 be an open subset
of ∂Ω. There exist p = p(Ω,Γ0, L) > 2 > q = q(Ω, Γ0, L) such that if u solves
(1.4) then

f ∈ Lq(∂Ω), supp f ⊂ Γ0 =⇒
(∇u)∗

∣∣
∂Ω\Γ0

∈ Lp(∂Ω \ Γ0) and u ∈ Bp,p
1+1/p(Ω̄ \ Γ0; loc).

(1.5)

See also Theorem 3.1 for a more refined version. Our main results, Theo-
rems 1.1–3.1, are sharp. Indeed, take L := ∆, the Laplacian, define the Lipschitz
domain Ω and the harmonic function u : Ω → R by

Ω :=
{
z ∈ C = R2 : |z| < 1 and 0 < arg z < 2(1− δ)π

}
, 0 < δ < 1,

and u(z) := Im zβ , z ∈ Ω, where β := 1/(2− 2δ),
(1.6)

and, finally, consider Γ0 a small neighborhood of {eiθ : 0 6 θ 6 2(1− δ)π} in ∂Ω
(in the relative topology induced by R2 on ∂Ω). In this setting, we see that, given
any p0 > 2, it is possible to choose δ ∈ (0, 1) such that both conclusions in (1.5)
fail for p = p0.

When all structures involved are smooth, these issues are well understood on
all scales of smoothness, via pseudodifferential operators and Calderón-Zygmund
theory (a classical reference is [ADN]). However, as pointed out above (cf. also
Remark 3.1) there are natural limitations of the theory which can be developed in
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the presence of irregularities. The Hölder regularity at the boundary in a general
scalar context was worked out by Stampacchia [St] (when the coefficients are only
bounded and measurable; for related results and more recent progress see also
[Ke]). Nonetheless, at the level of systems of PDE’s, much less is known. The
main goal of this note is to shed some light in this regard.

In order to carry out our program we rely primarily on our work in [MMT],
[MT2], where the global, well-posedness problem of the Dirichlet problem with
boundary data in Sobolev-Besov spaces on Lipschitz domains was addressed. The
latter theme is reviewed and further expanded in §2 (cf. especially Theorem 2.1),
while the main estimates are derived in §3. Our approach is rather flexible and
could, in principle, be adapted to other situations of interest.

Acknowledgments. The authors are grateful to the referee for a careful read-
ing of the manuscript and for making a number of suggestions which have been
incorporated in the present version.

2. Notation and preliminary results

Let M be a smooth, compact, boundaryless, Riemannian manifold of real dimen-
sion n, and let L be a second order differential operator (between two Hermitian
vector bundles over M). Locally, we assume that L is as in (1.1) and that the
(matrix-valued) coefficients are as in (1.2). The metric tensors on M and the
vector bundles are assumed to have C1 coefficients.

First, recall that a domain Ω ⊂ M is called Lipschitz provided ∂Ω can be
described in appropriate local coordinates by means of graphs of Lipschitz func-
tions. Also, the Sobolev scale Lp

s(M), 1 < p < ∞, s > 0, is obtained by lifting
Lp

s(Rn) := {(I −∆)s/2f : f ∈ Lp(Rn)} to M . We denote by Lp
s(Ω) the restriction

of elements in Lp
s(M) to the Lipschitz domain Ω. As is customary, for s > 0 and

1 < p, q < ∞ with 1/p + 1/q = 1, we set Lp
−s(Ω) := (Lq

s,0(Ω))∗, where Lp
s,0(Ω)

stands for the space consisting of restrictions to Ω of elements from Lp
s(M) with

support contained in Ω̄. Boundary Sobolev spaces Lp
s(∂Ω), 1 < p < ∞, 0 6 s 6 1,

can be introduced by starting with the Euclidean model, Lp
s(Rn−1), via a partition

of unity and pull-back. These Sobolev scales are then related to Besov spaces via
real interpolation. For instance, we have the formulas

(Lp(Ω), Lp
k(Ω))

s,q
= Bp,q

sk (Ω) (2.1)

and
(Lp(∂Ω), Lp

1(∂Ω))s,q = Bp,q
s (∂Ω) (2.2)

when 0 < s < 1, 1 < p, q < ∞ and k is a positive integer. Furthermore, the
trace operator Tr is well-defined from Lp

s(Ω) and Bp,p
s (Ω) onto Bp,p

s−1/p(∂Ω) for
each 1 < p < ∞ and 1/p < s < 1 + 1/p. For a more detailed exposition, the
interested reader is referred to [BL], [JK], [Tr], [MT2].

Next, we let (·)∗ stand for the nontangential maximal operator. More specifi-
cally, if {γ(x)}x∈∂Ω is a family of nontangential approach regions with “vertices”
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at boundary points (cf. [JK], [MT1] for more details), and u is defined in Ω then
u∗, the nontangential maximal function of u, if defined at boundary points by

u∗(x) := sup{|u(y)| : y ∈ γ(x)}, x ∈ ∂Ω. (2.3)

We also set
u
∣∣∣
∂Ω

(x) := lim
y→x

y∈γ(x)

u(y), x ∈ ∂Ω, (2.4)

i.e., for boundary traces taken in the nontangential limit sense, whenever mean-
ingful. Denote by u = PI f the solution operator for the Dirichlet problem (1.4),
whenever this is well-posed.

Theorem 2.1. Assume that L is a strongly elliptic, formally self-adjoint operator
satisfying (1.1)-(1.3), and that Ω ⊂ M is Lipschitz. Then PI is well-defined and
there exists ε = ε(∂Ω, L) > 0, C = C(∂Ω, L) > 0, such that

‖(PI f)∗‖Lp(∂Ω) 6 C‖f‖Lp(∂Ω), 2− ε < p < 2 + ε, (2.5)

and
‖(∇PI f)∗‖Lp(∂Ω) 6 C‖f‖Lp

1(∂Ω), 2− ε < p < 2 + ε. (2.6)

Furthermore, for each p ∈ (2− ε, 2 + ε), PI extends as a bounded operator

PI : Lp
s(∂Ω) → Bp,p∨2

s+1/p(Ω), 0 6 s 6 1, (2.7)

(hereafter, p ∨ 2 := max{p, 2}), as well as an isomorphism

PI : Bp,p
s (∂Ω) → Lp

s+1/p(Ω) ∩Bp,p
s+1/p(Ω) ∩ kerL, 0 < s < 1. (2.8)

Remark 2.1. The fact that PI is well-defined on L2(∂Ω) answers a question raised
by E. Fabes on p. 78 of [Fa], in the context of general, variable coefficient systems
on Lipschitz domains.

Remark 2.2. If n = dim M = 2, 3 then as a consequence of (2.7) and embedding
results,

PI : Lp
1(∂Ω) → Cα(Ω), p > 2, α = α(p) > 0. (2.9)

In particular, the Poisson integral of Lipschitz functions on ∂Ω is globally Hölder
continuous for n 6 3 (if L is scalar, then this is true in general). This is related
to another question raised in [Fa] (cf. p. 79, loc. cit.).

Remark 2.3. It is also implicit in the proof below that any u satisfying u∗ ∈
Lp(∂Ω), 2 − ε < p < 2 + ε, and Lu = 0 in Ω, is of the form u = PI f for some
f ∈ Lp(∂Ω). Also, if in addition (∇u)∗ ∈ Lp(∂Ω) then in fact f ∈ Lp

1(∂Ω).

Remark 2.4. In the case when the operator L is scalar, the range of indices s,
p for which the conclusions of Theorem 2.1 are valid extends considerably. The
interested reader is referred to [MT2] for details.
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Proof of Theorem 2.1. Since L satisfies the nonsingularity hypothesis (1.3) the
results in §3 of [MMT] imply that PI is well-defined and that (2.5)-(2.6) hold. In
fact, an inspection of the arguments in [MMT] reveals that

PI f = S(S−1f) in Ω, (2.10)

where S is the so-called single layer potential operator associated with L in Ω, and
S is its boundary trace. More specifically, if E(x, y) is the Schwartz kernel of L−1

and if d σ denotes the natural surface measure on ∂Ω (induced by the metric on
M), then

Sf(x) :=
∫

∂Ω

〈E(x, y), f(y)〉 dσ(y), x ∈ Ω. (2.11)

Also, we denote by Sf := Sf |∂Ω, the boundary version of (2.11). The key ingre-
dient, proved in [MMT], is that

S : Lp(∂Ω) → Lp
1(∂Ω), 2− ε < p < 2 + ε,

is an invertible operator. By duality and complex interpolation we also get that

S : Lp
−s(∂Ω) → Lp

1−s(∂Ω), 2− ε < p < 2 + ε, 0 6 s 6 1,

is invertible and, further, by real interpolation, that

S : Bp,p
−s (∂Ω) → Bp,p

1−s(∂Ω), 2− ε < p < 2 + ε, 0 < s < 1,

is invertible. Next, recall from §7 of [MT2] that for each 1 < p < ∞,

S : Lp
−s(∂Ω) −→ Bp,p∨2

1−s+1/p(Ω), 0 6 s 6 1,

and
S : Bp,p

−s (∂Ω) −→ Bp,p
1−s+1/p(Ω), 0 < s < 1,

are bounded operators. These, in concert with (2.10), justify the claim made about
(2.7) plus the fact that the operator in (2.8) is well-defined and bounded. That
the latter operator is also onto, follows from what we have proved so far with the
aid of the lemma below (itself, of independent interest). ¥

We now turn to the uniqueness result invoked above. To state it properly, we
recall a useful approximation result. Concretely, given a Lipschitz domain Ω, it is
possible a family {Ωj}j∈N of domains in M satisfying the following properties:

(i) Each Ωj is a Lipschitz domain whose Lipschitz character is bounded uni-
formly in j ∈ N;

(ii) One has Ωj ⊂ Ωj+1 ⊂ Ω and Ω =
⋃

j∈NΩj ;
(iii) There exist a family of bi-Lipschitz homeomorphisms Λj : ∂Ω → ∂Ωj , j ∈ N,

such that Λj(x) → x as j →∞, in a nontangential fashion;



180 Marius Mitrea, Michael Taylor

(iv) There exist non-negative, measurable functions ωj on ∂Ω, j ∈ N, which are
bounded away from zero and infinity uniformly in j ∈ N, and which have the
following properties. First, ωj(x) → 1 as j → ∞, for a.e. x ∈ ∂Ω. Second,
for each integrable function g : ∂Ωj → R the following change of variable
formula holds ∫

∂Ωj

g dσj =
∫

∂Ω

g ◦ Λj ωj dσ,

where σj is the canonical surface measure on ∂Ωj .

In other words, the Jacobians of the transformations x′ = Λj(x) are bounded
away from zero and infinity, and converge pointwise a.e. to 1. In the Euclidean
setting, this has been proved in [Ne], [Ve], and a further adaptation to the manifold
setting can be found in Appendix A of [MT1], where other pertinent properties
are presented.

Lemma 2.2. Retain the same hypotheses as in Theorem 2.1, and fix a sequence
of approximating domains Ωj ↗ Ω as discussed above. Then there exists ε > 0 so
that for any u ∈ C0

loc(Ω),

Lu = 0 in Ω, lim
j

∫

∂Ωj

|u|2−ε dσj = 0 =⇒ u ≡ 0. (2.12)

Proof. As in the proof of Theorem 2.1, there is no loss of generality assuming
that L satisfies the nonsingularity hypothesis (3.3) of [MMT]. Then the conclusion
follows from the estimate (3.51) of [MMT]. ¥

Some comments are in order here (they are particularly useful in the various
applications of the above lemma). Concretely, consider a sequence of approxi-
mating domains Ωj ↗ Ω, as above. Then, so we claim, if Tr and Trj denote,
respectively, the trace operators on ∂Ω and on ∂Ωj ,

(Trj w) ◦ Λj → Trw in Lp(∂Ω), ∀w ∈ Lp
s+1/p(Ω), (2.13)

whenever 1 < p < ∞, s > 0. Indeed, since the norms of the operators Lp
s+1/p(Ω) 3

w 7→ (Trj w) ◦ Λj ∈ Lp(∂Ω) are bounded uniformly in j, it suffices to check that
(2.13) holds for w in a dense subclass of Lp

s+1/p(Ω), such as C∞(Ω̄). In this latter
case, granted our assumptions, the desired conclusion follows from Lebesgue’s
Dominated Convergence Theorem. A statement similar to (2.13) holds when
w ∈ Bp,p

s+1/p(Ω).
As a consequence, if u = v + w with w ∈ Lp

s+1/p(Ω) ∪ Bp,p
s+1/p(Ω), 1 < p < ∞,

s > 0, and v∗ ∈ Lp(∂Ω) is such that v|∂Ω exists in the nontangential sense, then∫
∂Ω
|u|p dσ = limj

∫
∂Ωj

|u|p dσj .
The above considerations readily yield the following useful corollary.
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Corollary 2.3. Let L, Ω be as in Theorem 2.1. Then there exists ε > 0 such that
for p > 2−ε and s > 0 the following is true. If Lu = 0, u = v+w with v∗ ∈ Lp(∂Ω)
and v|∂Ω exists in the nontangential sense, while w ∈ Lp

s+1/p(Ω)∪Bp,p
s+1/p(Ω), then

u|∂Ω ∈ Bq,q
α (∂Ω), 2− ε < q < 2 + ε, 0 < α < 1 =⇒

u ∈ Lq
α+1/q(Ω) ∩Bq,q

α+1/q(Ω)
(2.14)

Also, corresponding to α = 0 and α = 1 in (2.14), we have

u|∂Ω ∈ Lq(∂Ω), 2− ε < q < 2 + ε =⇒ u∗ ∈ Lq(∂Ω) and u ∈ Bq,q∨2
1/q (Ω), (2.15)

u|∂Ω ∈ Lq
1(∂Ω), 2− ε < q < 2 + ε =⇒

(∇u)∗ ∈ Lq(∂Ω) and u ∈ Bq,q∨2
1+1/q(Ω).

(2.16)

3. Main estimates

Retain the notation and assumptions made in §1-2. In particular, the hypotheses
of Theorem 1.1 are enforced throughout this section. Also, if Ω ⊆ K ⊆ Ω̄, we
denote by Bp,q

α (K; loc) the space of functions u defined in Ω and enjoying the
following property. For each x ∈ K, there exits an open set O containing x and
such that Ω ∩ O is a Lipschitz domain and u|O ∈ Bp,q

α (Ω ∩ O).
We are ready to present the

Proof of Theorem 1.1. There is no loss of generality in assuming that L satis-
fies (1.3). More specifically, fix some constant A ∈ (0,∞) so that, in the current
setting, L − A is negative-definite on L2(M). Also, pick B > A and set Bj =
Bj(x) = B(1−χOj ) where, for some fixed p ∈ Ω, Oj := {x ∈ M : dist(x, p) < 1/j}.
Then it has been proved in [MT2] that

L−Bjo is negative-definite on M for some large jo.

Now, since both the hypotheses and the results we seek to establish are local in
nature, one can assume that Ω is small enough so that Ω ⊂ Ojo . This ensures that
the alteration Bjo vanishes on Ω, as desired.

Moving on, let K ⊂⊂ Γ0 and assume that supp f ⊂ K. Pick χ ∈ C∞0 (M),
equal to 1 on a neighborhood of K and to 0 off a slightly larger neighborhood U
of K; in particular, χ vanishes on a neighborhood of ∂Ω \ Γ0. Consider v := χu
on Ω. We have

Lv = Xu =: g in Ω, (3.1)

where X is a first-order differential operator whose coefficients have smoothness
properties dictated by those of L. More specifically, Xu = ∂j(aju) + bj∂ju + cu
where aj , bj ∈ C1+θ, θ > 0 and c ∈ H1,r, r > dim M . By Theorem 2.1, we have
u ∈ Bq,2

1/q(Ω) ↪→ Lq
1/q−δ(Ω), ∀ δ > 0, which further forces g ∈ Lq

−1+1/q−δ(Ω), for
any δ > 0. In fact, extending u across ∂Ω as an element of Bq,2

1/q(M) provides,
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via (3.1), an extension g̃ ∈ Lq
−1+1/q−δ(M), δ > 0, of g. We can now produce

a neighborhood O of Ω and w ∈ Lq
1+1/q−δ(O), δ > 0, such that Lw = g̃ on

O. It follows that (u − v)|∂Ω = 0 on ∂Ω and L(u − v + w) = 0 in Ω. Since
w|∂Ω ∈ Bq,q

1−δ(∂Ω), δ > 0, Corollary 2.3 entails u− v ∈ Lq
1+1/q−δ(Ω) for any δ > 0,

granted that q is sufficiently close to 2. This is a bit weaker than the conclusion
in (1.5), so we proceed.

Consider Ω1 := Ω \ U which, by picking U appropriately, can be assume to be
a Lipschitz domain. Set U0 := U ∩ Ω and also let K1 := ∂U0 ∩ Ω = ∂U0 \ Γ0. We
have

Lu = 0 in Ω1, u ∈ Lq
1+1/q−δ(Ω1),

and
u
∣∣
∂Ω1

= f1, supp f1 ⊂ K1 ⊂⊂ Γ1,

where Γ1 := K1 ∪ (Γ0 \ ∂U0), so ∂Ω1 \ Γ1 = ∂Ω \ Γ0.
Now pick χ1 ∈ C∞0 (M), equal to 1 on a neighborhood of K1 and equal to 0

off a slightly larger neighborhood U1 of K1, in particular on a neighborhood of
∂Ω1 \ Γ1. Consider v1 := χ1u on Ω1. We have the analogue of (3.1); i.e., Lv1 =
X1u =: g1, with g1 ∈ Lq

1/q−δ(Ω1) extendible to g̃1 ∈ Lq
1/q−δ(M). We can then

pick a neighborhood O1 of Ω1 and w1 ∈ Lq
2+1/q−δ(O1) such that Lw1 = g̃1 on O1.

Thus,
L(u− v1 + w1) = 0 in Ω1, u− v1 + w1

∣∣
∂Ω1

= w1

∣∣
∂Ω1

. (3.2)

This time we apply the trace theorem as follows: (∇w1)|∂Ω1 ∈ Bq,q
1−δ(∂Ω1) ↪→

Lp(∂Ω1), for some p > 2; in particular, w1

∣∣
∂Ω1

∈ Lp
1(∂Ω1). Using this back

in (3.2), it follows from Corollary 2.3 that we have the non-tangential maximal
function estimate

(∇(u− v1 + w1))∗ ∈ Lp(∂Ω1), for some p = p(Ω1, L) > 2. (3.3)

Now v1 vanishes on a neighborhood of ∂Ω \ Γ0 = ∂Ω1 \ Γ1. On the other hand,
we can assume supp g̃1 is disjoint from ∂Ω1 \ Γ1, so w1 ∈ C3−ε (for all ε > 0) on
a neighborhood of ∂Ω1 \ Γ1 = ∂Ω \ Γ0. Thus, the first conclusion in (1.5) follows
from (3.3).

Finally, note that u− v1 ∈ Bp,p
1+1/p(Ω1), which ultimately accounts for the type

of Besov regularity for u indicated in the statement of the theorem. ¥

Remark 3.1. Assume that L is a homogeneous, constant coefficient operator and
that Ω ⊂ Rn. For each r ∈ (0,diamΩ] and each boundary point x0, denote by
Sr(x0) the surface ball Br(x0) ∩ ∂Ω. Then there exist p > 2 > q such that

f ∈ Lq(∂Ω) and supp f ⊆ Sr(x0) =⇒
(∫

∂Ω\S2r(x0)

[(∇PI f)∗]p dσ
)1/p

6 Cr−1+(n−1)(1/p−1/q)
(∫

Sr(x0)

|f |q dσ
)1/q

,

where C = C(Ω, p) > 0 is independent of f and r. Indeed, due to the translation
and dilation invariant nature of the estimate at hand, matters can be reduced to
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the case r = 1 via a rescaling argument. This is, however, implicit in what we
have proved so far.

The following is a refinement of Theorem 1.1, requiring a slightly more elabo-
rate proof.

Theorem 3.1. Let Ω, L be as in Theorem 1.1. Also, let Γ be a closed subset of
∂Ω, and Γ̃ a neighborhood of Γ in ∂Ω. There exist p > 2 > q, depending only on
Ω, L, Γ and Γ̃, such that

Lu = 0 in Ω, u∗
∣∣
Γ̃
∈ Lq(Γ̃), u

∣∣
Γ̃

= 0 =⇒
(∇u)∗

∣∣
Γ
∈ Lp(Γ) and u ∈ Bp,p

1+1/p(Ω ∪ Γ; loc).
(3.4)

Proof. Select some function ψ ∈ C∞0 (M) such that ψ = 1 on a neighborhood V0

of Γ and ψ = 0 off a slightly larger neighborhood V of Γ, in particular equal to 0
on a neighborhood of ∂Ω \ Γ̃. Consider v := ψu on Ω. Parallel to (3.1) we have
Lv = Xu =: g with X a first-order differential operator. This time we do not have
u ∈ Bq,2

1/q(Ω), so extra arguments are required.
For starters, u|V ∩Ω ∈ Lq(V ∩Ω), so we can say g ∈ Lq

−1(Ω) and, extending u, we
have an extension g̃ ∈ Lq

−1(M) of g. Take a neighborhood O of Ω and w ∈ Lq
1(O)

such that Lw = g̃ on O. Now we have v|∂Ω = 0 and hence

L(v − w) = 0 in Ω, (v − w)
∣∣
∂Ω

= −w
∣∣
∂Ω
∈ Bq,q

1−1/q(∂Ω).

From Corollary 2.3 it follows v−w ∈ Lq
1(Ω) and, hence, we have v ∈ Lq

1(Ω). Thus,
with Ω̃ := Ω∩V0 (assumed to be Lipschitz), we see that u ∈ Lq

1(Ω̃), which is more
than enough to yield u∗|∂Ω̃ ∈ Lq(∂Ω̃), by Theorem 2.1. At this stage Theorem 1.1
applies (cf. also Remark 2.3), and the desired conclusion follows. ¥

Remark 3.2. The same domain and function constructed in (1.6) can be used to
show that the conclusion in Theorem 3.1 is in the nature of best possible.

Remark 3.3. Under the hypotheses of Theorem 3.1 and assuming that n = 2, 3,
the following holds. There exist α = α(Ω, Γ, L) > 0 and q = q(Ω, Γ, L) < 2 such
that if Lu = 0 in Ω, u∗

∣∣
Γ̃
∈ Lq(Γ̃) and u

∣∣
Γ̃

= 0, then u is Hölder continuous of
class Cα on a neighborhood of Γ in Ω.
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