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ON THE CLASS NUMBER OF A COMPOSITUM OF REAL
QUADRATIC FIELDS: AN APPROACH VIA CIRCULAR UNITS

RADAN KUCERA
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Abstract: For a compositum k of quadratic number fields new explicit units are constructed by
taking power-of-two roots of circular units. These units are used to obtain a result concerning
the divisibility of the class number of k by a power of 2.
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1. Introduction

Let k£ be a compositum of quadratic number fields and let —1 not be a square in
the genus field K of k in the narrow sense. This paper resumes the study of the
group F of all units of k& that started in [3], where a group of circular units C' of
k, slightly bigger than the Sinnott’s one defined in [4], has been introduced and
an explicit basis of C has been found. Using this basis, the index [F : C] has been
computed as a product of several factors, one of them being the class number h™
of the maximal real subfield k™ of k. This index formula has been used to get
some divisibility relations for h* (see [3], [2], [1]). The aim of this paper is to try
to improve results of [3] in the following direction: a new group of units C; C K is
defined by means of explicit generators. If K is real and k # K then C C C; C E,
but in general (i.e., if K is imaginary) there are cases where C} is not a subgroup of
E. Nevertheless C still can be used to obtain divisibility relations for A that are
stronger than what is given by genus theory (if both [k : Q] > 2 and [K : k] > 2).
It seems to be interesting that the index (E : C1) is much easier to compute than
[E : C] (compare the index formulae given by Theorem 3.1 and by [3, Theorem 1|).
The main results of this paper (see Theorems 3.2 and 4.1) can be summarized as
follows:
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Theorem 1.1. If k is a compositum of real quadratic fields such that —1 is not
a square in the genus field K of k in the narrow sense then the class number h of
k is divisible by the following power of 2:

[k :2@] . ([K4; k]><[k=@1/z>—1

2
Moreover, if K is real then even

2.k ql. (@)[k:@w ‘ .

To compare the strength of this result, let us notice that genus theory gives
only @ | h and [K : K] | h, respectively.

2. Definitions and basic results

Recall that k is a compositum of quadratic fields such that —1 is not a square in
the genus field K of k in the narrow sense (so k can be both real and imaginary).
This condition can be written equivalently as follows: either 2 does not ramify in k
and k = Q(v/dy,...,Vds), where dy, ..., ds with s > 1 are square-free integers all
congruent to 1 modulo 4, or 2 ramifies in k and there is uniquely determined x €
{2, -2} such that k = Q(v/d1,...,\/ds), where dy, ..., ds with s > 1 are square-
free integers such that d; = 1 (mod4) or d; = z (mod8) for each i € {1,...,s}.
In the former case, let

J={p€Z;p=1(mod4), |p| is a prime ramifying in k},
and, in the latter case, let
J={z}U{p€Z; p=1 (mod4), |p| is a prime ramifying in k}.

For any p € J, let

e lp| if p is odd,
KR if p is even.

For any S C J let (by convention, an empty product is 1)
ns = H ngpy, (s =M Q¥ =Q(Cs), Ks=Q(/ppe€S).
peS
It is easy to see that Ky = K and that n; is the conductor of k. Let us define
1 if $ =0,
NQS/KS(l_CS) if #5 > 1,

€s
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ks = kN Kg and ns = N, /s (es) for any S C J. It is easy to see that e and
7ns are units in Kg and kg, respectively. For any p € J let o, be the non-trivial
automorphism in Gal(K /K (p1). Then G = Gal(K;/Q) can be considered as
a (multiplicative) vector space over Fy with Fo-basis {op; p € J}. Let W be the
group of roots of unity in & (it is easy to see that #W is 2 or 6). The paper [3]
was devoted to the study of the group C' generated by W U {ng; S C J, 0 € G}.
The aim of this paper is to show that some power-of-two roots of the generators
of C' lie in K and to study the group C; of units generated by these roots. We
shall be more specific in a moment. For any S C J let Dg be the group generated
by {er; T C S}.

Lemma 2.1. For any S C J and any o € G we have 515+” = :I:HTCS ET T for
suitable ar € 7.

Proof. This is a direct consequence of 3, Lemma 2|, because 57 = ¢% /e 7. M

Since —1 is not a square in K, the only power-of-two roots of unity in K are
+1. Therefore the following proposition well defines »g € Kg up to sign.

[Ks:ks] _

Proposition 2.1. For any S C J there is »xs € Dg such that »g = £7s.

Proof. It is easy to see that Gal(Kg/kg) is a subspace of the (multiplicative)
vector space Gal(Kg/Q) over Fo. Let o, ..., o, be a basis of Gal(Kg/kg), then

ns = Ngg /s (€s) = €g1+a1)~~~(1+a7.) and [Kg : ks] = 2". The proposition follows
by means of induction with respect to r using Lemma 2.1. |

Let Cq be the group generated by W U {x%; S C J, o0 € G}.

Lemma 2.2. For any S C J and any 0 € G we have %éf" :I:HTCS %T T for
suitable ar € Z.

Proof. In the proof of [3, Lemma 3| we have derived the following formula

77‘1870 -+ H n%aT[KSZkSKT] 7
7CS

where a7 € Z. Therefore

( é' o\ [Ks:ks] -+ H 2ar[Ks:ksKr)[Kr: k:T]

TCS

We have ks N Ky = kN KsN Ky =kNKp = kpr and so [KT : kT] = [kSKT : ks]
The lemma follows as the only power-of-two roots of unity in K are +1. ]

Let £t be the maximal real subfield of k and let

X ={¢eG;&(0)=1forall o € Gal(K,/kT)},



182 Radan Kucera

where G is the character group of G. Then X can be viewed also as the group of
all Dirichlet characters corresponding to k. For any x € X let

Sy=1{r € J; x(op) = -1},
hence ng, is the conductor of x.
Theorem 2.1. The set B = {xs ; x € X, x # 1} is a Z-basis of C.

Proof. Lemma 2.2 implies that C; is generated by W U {»g; S C J}. Let us
suppose that S C J and that S # S, for all x € X. In the proof of [3, Lemma 5]
we have derived the following formula for such a set S; here T C J and p € W:

i =TI Nigjre, s)FetsEormiesaracy (Coo)
peESNT

Due to [3, Lemma 4] we have

1—Frob(|p|,ks\ {p})
Nks/ks\{p}(ﬂs) =4 S\{p} Pliks\{p}

where Frob(|p|, ks\(p}) is the Frobenius automorphism of [p| in kg 3 and so

KS kS] :I: H 1— Flob(|10| kS\{p}))[KS\{p} kS\{p}][KS kSKS\{p}] quSmT q<p( Uq) .

P #5\{p}

peSNT

We have [KS\{p} : kS\{p}][KS : kSKS\{p}] = [KS : k‘s] and Lemma 2.2 implies
that

p%?g[KS:kS] _ :I:(H %%QT)[Ks:kS]
TCS

for suitable ar € Z. Therefore

—a
PlZ%SH%TT

TCS
is a root of unity in K such that pj 2K s:ks] +p~1 € W. This gives that p; € W
because #W is 2 or 6 and —1 is not a square in K. Hence B U W is a system
of generators of C'y. The definition of C; implies that C; and C have the same
Z-rank. Moreover, [3, Theorem 1] states that the Z-rank of C equals (#X) — 1
and the theorem follows. |

Corollary 2.1. The index of C in Cy is equal to [C1 : C] =[] cx[Ks, : ks,].

Proof. [3, Theorem 1 and Lemma 5| gives that {ns, ; x € X, x # 1} is a Z-basis
of C. Proposition 2.1 implies that the transition matrix is the diagonal matrix
diag([Ks, : ks,|)yex,x#1- The corollary follows as the torsion subgroups of C
and C; coincide. | |
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3. The index of (E : Cq)

The index [E : C] is computed in [3, Theorem 1] by means of the class number h™
of k7. To get a lower bound for the divisibility of h™ by a power of 2, it is enough
to obtain a lower bound for the divisibility of the index [E : C]. Unfortunately
this lower bound is not the index [C; : C] because Cj is not a subgroup of E in
general. So we shall consider the intersection C;1 N E = C; N k.

Lemma 3.1. For any ¢ € Cy and any 0 € Gal(K/k) let x-(0) = *=7. Then
Xe : Gal(K/k) — {1,—1} is a homomorphism. Moreover,

—

X: C1 — Ga(K/E),
where X(€) = Xe, 18 a homomorphism whose kernel kery = C1 N E.

Proof. For any S C J we have [Kg : ks] = [kKs : k] | [K : k] and so e[+ € € C
k. Thus (x.(0))5* = 1 for any o € Gal(K/k) and so x. (o) is a power-of-two root
of unity in K, i.e. &1. The lemma follows from the identities ¢! 777 = g1 =7.(¢1=7)“
and (gp)t=7 =¢gl=7 . pl=e. |

Corollary 3.1. For any S C J we have »% € E and so [Cy : C1 N E] | olk*:Ql-1,
Moreover the index [C1 : C1 N E] divides the degree [K : k], too.

—

Proof. This follows from rankzCy = [kT : Q] — 1 and #Gal(K/k)=[K : k]. R

The following theorem computes the generalized index (E : C;) = % (The
definition of the generalized index can be found in [4, page 187|.) Let K’ be the

genus field in narrow sense of k. We shall start with a lemma:

Lemma 3.2. We have

[1(xs, : Q= [K: Q2.

x€X

Proof. If x is the trivial character then Ks = Q. Let x € X be a nontrivial
character. Then [Kg : Q] = #Gal(Kg, /Q) and dimp, Gal(Kg /Q) = #S, equals
the number of primes dividing the conductor ng, of x, which is equal to the number
of primes that ramify in the quadratic field corresponding to x. If x runs over all
nontrivial characters in X then the corresponding field runs over all quadratic
subfields of k*. For any prime ¢ ramifying in k*/Q, let M, be the inertia subfield
of kT /Q corresponding to g, i.e. the fixed field of the inertia subgroup of Gal(k*/Q)
corresponding to ¢q. Then the prime ¢ does not ramify in a quadratic subfield L of
kT if and only if L is a subfield of M,. The ramifying index of ¢ in k¥ /Q equals
2 and so the degree [M, : Q] = [k* : Q]/2. Hence the inertia field M, has exactly
(™ : Q]/2) — 1 quadratic subfields. Therefore ¢ ramifies in exactly [k* : Q]/2
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quadratic subfields of k*. As dimp, Gal(K’/Q) is equal to the number of primes
q that ramify in k™, we have

H [Ks. :Q]=2%aF"U/2 — (g7 Q[k"Q/2
xeX

where the sum is taken over all primes ¢ ramifying in k™ /Q. [ |

Theorem 3.1. The generalized index (E : Cy) is given by the formula

Kkt —[kT:Q)/2 Qth
Wcﬂ:(%) TR Q)

where h* is the class number of k™ and Q = [E : W(E N k™)] is the Hasse unit
index of k (so Q € {1,2} and Q =1 if k is real).

Proof. [3, Theorem 1] gives

[E:C]= ( H

XEX, x#1

Using Corollary 2.1 and #X = [kT : Q] we obtain
(E : Cl) = [E : C]/[Cl : C]

2-[k:ks,]

ko k'] ) C(#X)"#O2 opt

- 2 - [k : ksx] . 7[1{*7@]/2
B (xe)lfj[x;q [k: k*]- [Ks, : ksx]> B -QhT
(7 2k @—]> Rt Qrae__@hT
(X[L &s. ) "9 PRTEEY)
and Lemma 3.2 gives the theorem. |

Corollary 3.2. Let Cy be the group generated by W U{»%"; S C J, o € G}. Then
Cs is a subgroup of E of index
Kkt —[k*:Q]/2 +
[E:Cs) = LS| e .
16 1kt Q]

Proof. Corollary 3.1 gives Cy C E. The index formula is given by Theorem 3.1
and the obvious equality [Cy : Cy] = 28 Q-1 [ ]

Theorem 3.2. Ifk is real then the class number h of k is divisible by the following
powers of 2:

[k:Q] <[K4; k])([kiQ]/Q)l

and
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Proof. Theorem 3.1 gives

] 02
h:z[k;@p@;qy(@)
2 k:Q K : K] [ - ]\ 02
_W.[E.CmE].[q:CmE].( . )

and Corollary 3.1 implies the former divisibility relation. The latter one is given
by Corollary 3.2. [}

The following example shows that C; is not a subgroup of E in general:

Example 3.1. Let &k = Q(v/21). Then J = {3, -7}, K = Q(i/3,iV/7),
iV3 — i

er=01-C)A-¢)A-¢°) =

2
14+o0_30_7 —_— 2
nJg ==y =é&j-&€5=—¢&y,
»y = *+ey

Hence we have C; = (—1,s;), C = (=1,n;) and [Cy : C] = 2 for this specific k.
Theorem 3.1 gives (E : Cy) = % It is easy to compute that h = 1 which implies
E=C.

4. The case of real K

The rest of this paper is devoted to a special case of K being real. Our aim is to
show that under this assumption we have C; C E. It is easy to see that K is real
if and only if each p € J is positive.

We shall need the equivalence relation ~ defined on the group of all units of K
as follows: For any units z,y of K we write x ~ y if and only if z/y is the square
of a totally positive unit of K.

Lemma 4.1. If K is real then we have:

(a) if x ~y and u ~ v are units of K then xu ~ yv;

(b) if x ~y are units of K then x° ~ y° for any o € G;

(c) e*~1 for any unit e of K;

(d) E%p} %1 for any p € J;

(e) €% ~1forany S CJ, #S>1;

(f) eg 7" ~eg e " forany S C J and any 0,7 € G.
Proof. (a) The product of totally positive units is totally positive, too. (b) All
conjugates of a totally positive unit are again totally positive. (c) As all conjugates
of e belong to K, they are real, and so e? is totally positive. (d) [3, Lemma 1] gives

7 — 1 and so €(p} is neither totally positive nor totally negative. (e) Due to

its definition, g is the norm of a nonzero number from an imaginary abelian field
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Q¥ to a real subfield K and so it is totally positive. (f) Using (a), this statement is
equivalent to 5(317”)(177) ~ 1. Due to [3, Lemma 2| we have ey 7 = + [rcs gar

for suitable ar € Z and, once again, [3, Lemma 2] implies
1—7
(H E%T) == H ebr
TCS TCS
for suitable by € Z. Thus
2
5(5170)(177) _ (i H €%bT)
TCS
and (c) gives the result. |
In the following lemma we shall consider the complete undirected graph on

S C J where for each p,q € S, p # q, the edge between vertices p and ¢ is labeled
by the number m, ,y which is defined by means of Legendre symbol as follows:

1—t, (B) if ¢ is odd,
M =T Vhere g = {(5) if ¢ =2
p ==

Notice that the quadratic reciprocity law implies m ;. q) = M(q,p) 88 We are assum-
ing that each p € J is positive, i.e., either p = 2 or p is a prime congruent to 1 mod-
ulo 4. If H is a Hamiltonian path from p to ¢ in S, i.e., H = (p,r1,...,7%5-2,9)
such that {p,71,...,745 2,9} = S, then we put mpg = me ) - My ) - -
my

T#5-2,9)"

Lemma 4.2. If K is real, p€ S C J, and #S > 1 then
140 23 ym
es "~ I e™ s
q€S, qFp
where the sum is taken over all Hamiltonian paths H from p to q in S.

Proof. If S = {p,q} then [3, Lemma 1] gives

s | =l Ery 1-04

€1+c7p 1-Frob(p,K(q43) {1 if tp,q =1,
- _ 2 : —
g =g Htra=-1

which we wanted to show. Let us suppose that #S5 > 2 and that the lemma has
been proved for all T'C S. Then [3, Lemma 1] states

cltor El_FrOb(vaS\{p})
s — "S\{p} )

It is easy to see that Frob(p, Kg\(p}) = qus\{p} O';n(p’Q) and Lemma 4.1(f,e,b,a)
implies

140, 1—0g \M(p.q 1+oq \M(p.,q
es "~ I o)™~ I Eagm)™
q€S\{p} q€S\{p}

The lemma follows from the induction hypothesis for 6;{?;} and Lemma4.1(a). W
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Recall that we have seen in Lemma 2.1 that for any S C J and any o € G we
have slsJ”’ = +2? for suitable x € Dg = (er; T C S). The following lemma states
that this = satisfies 2'~% = 1. Example 3.1 shows that the assumption of K being
real cannot be avoided here.

Lemma 4.3. If K is real, S C J, and 0 € G then there is x € Dg such that
518+” =422 and z'77 = 1.

Proof. If S = () then eg = 1 and « = £1. If S = {p} then €% is equal to either
€5 Or sgp In the former case x = +eg and 2177 = 6}(" =1, in the latter case (3,
Lemma 1] gives 57 = —1 and = = +1.

Finally, let #S > 1. There is T' C S such that o acts as [[

Lemma 2.1 gives x € Dg such that 515+” = 422 and Lemmas 4.1 and 4.2 imply

1 1-
42 — 6S-lrl_[,f,eT T ex Mperow H E1 o 1+ap H H ?qZ}:H ma
peT peT p€ET q€S, q#p

op on Kg.

where the sum is taken over all Hamiltonian paths H from p to ¢ in S. Hence
there is a totally positive unit y € K such that

2 _ 2 . QZPET.p# ZH mH
+z* =y H €14} ¢ .
qeS

As —1 is not a square in K this implies

T = j:y H g{qpeT p#q X ma

qeSs
and so
=yl H (5~1{q}a)szT’p¢q 2™
qeSs
We have
o {11 ifq¢T,
{q} — —0q __ 2 :
g €t = iy ifgeT.
Therefore

a7 =yt H (_€%q})ng'p#q 2™
qeT

As (#179)2 = (e5"7)17% = 1 we have 2177 = £1. Hence to prove the lemma
we need to show that '~ > 0. Since y is totally positive, y'=° > 0; moreover
sfq} > (0. Hence

sgn xl—ff — H(_l)ZpET,p#q g mH — (_1)ZqET ZpET,p#q XpmH .
q€eT
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We know that mg = mpger, where H°P is the path opposite to H. This implies that

— ; -0 _
D €T 2opeT, prtq 2oH TVH = 2D 0cm D et peq 2opr Ma is even and so sgn o'~ 7 =
1 and 2= > 0. The lemma is proved. |

Proposition 4.1. If K is real then »g € kg for each S C J.

Proof. We need to show that »g 7 = 1 for each ¢ € Gal(Ks/ks). This is clear
if ¢ = 1, so we can assume that ¢ # 1. Then there is a basis a1,...,qa, of
Gal(Kg/ks) such that o, = 0. Lemma 2.1 implies that

Eg+a1)~~~(1+a7.,1) _
with y = [[;cge7" for suitable ar € Z. Then
r — o r=1\ 140 o2t
o =g = e TTITIIIE = (yTI = (y)T

As —1 is not a square in K this implies

:l:%% _ yl-i—a _ H (E%:FU)G‘T .

TCS
Lemma 4.3 states that there are x7 € Dp such that E%ﬁ" = :l:x% and m%p_“ =1.
Hence
ik = H (£2%)""
TCS
and this implies
xns = + H {E%T
TCS
because —1 is not a square in K. Therefore
1— l—o\arT
g 0= H(“TU) =1,
TCS
which we wanted to prove. |

Theorem 4.1. If K is real then the class number h of k is divisible by the following

power of 2:
) [k:Q]/2
2-[/«@]-(@) ‘h.

Proof. Proposition 4.1 implies that C; C E and so (F : C1) = [E : (4] is an
integer. Theorem 3.1 gives

[K:k]>[k=(@]/2

hzZ-[k:(@]-[E:C’ﬂ-( 1

and the theorem follows. [ |
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