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ON THE CLASS NUMBER OF A COMPOSITUM OF REAL
QUADRATIC FIELDS: AN APPROACH VIA CIRCULAR UNITS

Radan Kučera

Dedicated to Professor Władysław Narkiewicz
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Abstract: For a compositum k of quadratic number fields new explicit units are constructed by
taking power-of-two roots of circular units. These units are used to obtain a result concerning
the divisibility of the class number of k by a power of 2.
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1. Introduction

Let k be a compositum of quadratic number fields and let −1 not be a square in
the genus field K of k in the narrow sense. This paper resumes the study of the
group E of all units of k that started in [3], where a group of circular units C of
k, slightly bigger than the Sinnott’s one defined in [4], has been introduced and
an explicit basis of C has been found. Using this basis, the index [E : C] has been
computed as a product of several factors, one of them being the class number h+

of the maximal real subfield k+ of k. This index formula has been used to get
some divisibility relations for h+ (see [3], [2], [1]). The aim of this paper is to try
to improve results of [3] in the following direction: a new group of units C1 ⊆ K is
defined by means of explicit generators. If K is real and k �= K then C � C1 ⊆ E,
but in general (i.e., if K is imaginary) there are cases where C1 is not a subgroup of
E. Nevertheless C1 still can be used to obtain divisibility relations for h+ that are
stronger than what is given by genus theory (if both [k : Q] > 2 and [K : k] > 2).
It seems to be interesting that the index (E : C1) is much easier to compute than
[E : C] (compare the index formulae given by Theorem 3.1 and by [3, Theorem 1]).
The main results of this paper (see Theorems 3.2 and 4.1) can be summarized as
follows:
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Theorem 1.1. If k is a compositum of real quadratic fields such that −1 is not
a square in the genus field K of k in the narrow sense then the class number h of
k is divisible by the following power of 2:

[k : Q]
2

·
(

[K : k]
4

)([k:Q]/2)−1 ∣∣∣ h .
Moreover, if K is real then even

2 · [k : Q] ·
(

[K : k]
4

)[k:Q]/2 ∣∣∣ h .
To compare the strength of this result, let us notice that genus theory gives

only [K:k]
2 | h and [K : k] | h, respectively.

2. Definitions and basic results

Recall that k is a compositum of quadratic fields such that −1 is not a square in
the genus field K of k in the narrow sense (so k can be both real and imaginary).
This condition can be written equivalently as follows: either 2 does not ramify in k
and k = Q(

√
d1, . . . ,

√
ds), where d1, . . . , ds with s ≥ 1 are square-free integers all

congruent to 1 modulo 4, or 2 ramifies in k and there is uniquely determined x ∈
{2,−2} such that k = Q(

√
d1, . . . ,

√
ds), where d1, . . . , ds with s ≥ 1 are square-

free integers such that di ≡ 1 (mod 4) or di ≡ x (mod 8) for each i ∈ {1, . . . , s}.
In the former case, let

J = {p ∈ Z; p ≡ 1 (mod 4), |p| is a prime ramifying in k},
and, in the latter case, let

J = {x} ∪ {p ∈ Z; p ≡ 1 (mod 4), |p| is a prime ramifying in k}.
For any p ∈ J , let

n{p} =

{
|p| if p is odd,
8 if p is even.

For any S ⊆ J let (by convention, an empty product is 1)

nS =
∏
p∈S

n{p}, ζS = e2πi/nS , QS = Q(ζS), KS = Q(
√
p; p ∈ S).

It is easy to see that KJ = K and that nJ is the conductor of k. Let us define

εS =

⎧⎪⎨⎪⎩
1 if S = ∅,
1√
p NQS/KS

(1 − ζS) if S = {p},
NQS/KS

(1 − ζS) if #S > 1,
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kS = k ∩KS and ηS = NKS/kS
(εS) for any S ⊆ J . It is easy to see that εS and

ηS are units in KS and kS , respectively. For any p ∈ J let σp be the non-trivial
automorphism in Gal(KJ/KJ\{p}). Then G = Gal(KJ/Q) can be considered as
a (multiplicative) vector space over F2 with F2-basis {σp; p ∈ J}. Let W be the
group of roots of unity in k (it is easy to see that #W is 2 or 6). The paper [3]
was devoted to the study of the group C generated by W ∪ {ησ

S ; S ⊆ J, σ ∈ G}.
The aim of this paper is to show that some power-of-two roots of the generators
of C lie in K and to study the group C1 of units generated by these roots. We
shall be more specific in a moment. For any S ⊆ J let DS be the group generated
by {εT ; T ⊆ S}.
Lemma 2.1. For any S ⊆ J and any σ ∈ G we have ε1+σ

S = ±∏T⊆S ε
2aT

T for
suitable aT ∈ Z.

Proof. This is a direct consequence of [3, Lemma 2], because ε1+σ
S = ε2S/ε

1−σ
S . �

Since −1 is not a square in K, the only power-of-two roots of unity in K are
±1. Therefore the following proposition well defines κS ∈ KS up to sign.

Proposition 2.1. For any S ⊆ J there is κS ∈ DS such that κ[KS :kS ]
S = ±ηS.

Proof. It is easy to see that Gal(KS/kS) is a subspace of the (multiplicative)
vector space Gal(KS/Q) over F2. Let α1, . . . , αr be a basis of Gal(KS/kS), then
ηS = NKS/kS

(εS) = ε
(1+α1)···(1+αr)
S and [KS : kS ] = 2r. The proposition follows

by means of induction with respect to r using Lemma 2.1. �

Let C1 be the group generated by W ∪ {κσ
S ; S ⊆ J, σ ∈ G}.

Lemma 2.2. For any S ⊆ J and any σ ∈ G we have κ1−σ
S = ±∏T⊆S κ2aT

T for
suitable aT ∈ Z.

Proof. In the proof of [3, Lemma 3] we have derived the following formula

η1−σ
S = ±

∏
T⊆S

η
2aT [KS:kSKT ]
T ,

where aT ∈ Z. Therefore

(κ1−σ
S )[KS :kS ] = ±

∏
T⊆S

κ2aT [KS:kSKT ][KT :kT ]
T .

We have kS ∩KT = k ∩KS ∩KT = k ∩KT = kT and so [KT : kT ] = [kSKT : kS ].
The lemma follows as the only power-of-two roots of unity in K are ±1. �

Let k+ be the maximal real subfield of k and let

X = {ξ ∈ Ĝ; ξ(σ) = 1 for all σ ∈ Gal(KJ/k
+)} ,
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where Ĝ is the character group of G. Then X can be viewed also as the group of
all Dirichlet characters corresponding to k+. For any χ ∈ X let

Sχ = {p ∈ J ; χ(σp) = −1} ,
hence nSχ is the conductor of χ.

Theorem 2.1. The set B = {κSχ ; χ ∈ X, χ �= 1} is a Z-basis of C1.

Proof. Lemma 2.2 implies that C1 is generated by W ∪ {κS ; S ⊆ J}. Let us
suppose that S ⊆ J and that S �= Sχ for all χ ∈ X . In the proof of [3, Lemma 5]
we have derived the following formula for such a set S; here T ⊆ J and ρ ∈W :

ρη2
S =

∏
p∈S∩T

(NkS/kS\{p}(ηS))[KS :kSKS\{p}]
Q

q∈S∩T,q<p(−σq) .

Due to [3, Lemma 4] we have

NkS/kS\{p}(ηS) = ±η1−Frob(|p|,kS\{p})
S\{p}

where Frob(|p|, kS\{p}) is the Frobenius automorphism of |p| in kS\{p} and so

ρκ2[KS :kS ]
S = ±

∏
p∈S∩T

(κ1−Frob(|p|,kS\{p})
S\{p} )[KS\{p}:kS\{p}][KS:kSKS\{p}]

Q
q∈S∩T,q<p(−σq) .

We have [KS\{p} : kS\{p}][KS : kSKS\{p}] = [KS : kS ] and Lemma 2.2 implies
that

ρκ2[KS :kS ]
S = ±(∏

T�S

κ2aT

T

)[KS :kS ]

for suitable aT ∈ Z. Therefore

ρ1 = κS

∏
T�S

κ−aT

T

is a root of unity in K such that ρ2[KS:kS ]
1 = ±ρ−1 ∈ W . This gives that ρ1 ∈ W

because #W is 2 or 6 and −1 is not a square in K. Hence B ∪W is a system
of generators of C1. The definition of C1 implies that C1 and C have the same
Z-rank. Moreover, [3, Theorem 1] states that the Z-rank of C equals (#X) − 1
and the theorem follows. �

Corollary 2.1. The index of C in C1 is equal to [C1 : C] =
∏

χ∈X [KSχ : kSχ ].

Proof. [3, Theorem 1 and Lemma 5] gives that {ηSχ ; χ ∈ X, χ �= 1} is a Z-basis
of C. Proposition 2.1 implies that the transition matrix is the diagonal matrix
diag([KSχ : kSχ ])χ∈X, χ�=1. The corollary follows as the torsion subgroups of C
and C1 coincide. �
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3. The index of (E : C1)

The index [E : C] is computed in [3, Theorem 1] by means of the class number h+

of k+. To get a lower bound for the divisibility of h+ by a power of 2, it is enough
to obtain a lower bound for the divisibility of the index [E : C]. Unfortunately
this lower bound is not the index [C1 : C] because C1 is not a subgroup of E in
general. So we shall consider the intersection C1 ∩ E = C1 ∩ k.

Lemma 3.1. For any ε ∈ C1 and any σ ∈ Gal(K/k) let χε(σ) = ε1−σ. Then
χε : Gal(K/k) → {1,−1} is a homomorphism. Moreover,

χ̃ : C1 → ̂Gal(K/k) ,

where χ̃(ε) = χε, is a homomorphism whose kernel ker χ̃ = C1 ∩ E.

Proof. For any S ⊆ J we have [KS : kS ] = [kKS : k] | [K : k] and so ε[K:k] ∈ C ⊆
k. Thus (χε(σ))[K:k] = 1 for any σ ∈ Gal(K/k) and so χε(σ) is a power-of-two root
of unity inK, i.e. ±1. The lemma follows from the identities ε1−στ = ε1−σ ·(ε1−τ )σ

and (ερ)1−σ = ε1−σ · ρ1−σ. �

Corollary 3.1. For any S ⊆ J we have κ2
S ∈ E and so [C1 : C1 ∩ E] | 2[k+:Q]−1.

Moreover the index [C1 : C1 ∩E] divides the degree [K : k], too.

Proof. This follows from rankZC1 = [k+ : Q] − 1 and # ̂Gal(K/k) = [K : k]. �

The following theorem computes the generalized index (E : C1) = [E:C]
[C1:C] . (The

definition of the generalized index can be found in [4, page 187].) Let K ′ be the
genus field in narrow sense of k+. We shall start with a lemma:

Lemma 3.2. We have ∏
χ∈X

[KSχ : Q] = [K ′ : Q][k
+:Q]/2 .

Proof. If χ is the trivial character then KSχ = Q. Let χ ∈ X be a nontrivial
character. Then [KSχ : Q] = #Gal(KSχ/Q) and dimF2 Gal(KSχ/Q) = #Sχ equals
the number of primes dividing the conductor nSχ of χ, which is equal to the number
of primes that ramify in the quadratic field corresponding to χ. If χ runs over all
nontrivial characters in X then the corresponding field runs over all quadratic
subfields of k+. For any prime q ramifying in k+/Q, let Mq be the inertia subfield
of k+/Q corresponding to q, i.e. the fixed field of the inertia subgroup of Gal(k+/Q)
corresponding to q. Then the prime q does not ramify in a quadratic subfield L of
k+ if and only if L is a subfield of Mq. The ramifying index of q in k+/Q equals
2 and so the degree [Mq : Q] = [k+ : Q]/2. Hence the inertia field Mq has exactly
([k+ : Q]/2) − 1 quadratic subfields. Therefore q ramifies in exactly [k+ : Q]/2
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quadratic subfields of k+. As dimF2 Gal(K ′/Q) is equal to the number of primes
q that ramify in k+, we have∏

χ∈X

[KSχ : Q] = 2
P

q [k+:Q]/2 = [K ′ : Q][k
+:Q]/2 ,

where the sum is taken over all primes q ramifying in k+/Q. �

Theorem 3.1. The generalized index (E : C1) is given by the formula

(E : C1) =
(

[K ′ : k+]
4

)−[k+:Q]/2

· Qh+

2 · [k+ : Q]
,

where h+ is the class number of k+ and Q = [E : W (E ∩ k+)] is the Hasse unit
index of k (so Q ∈ {1, 2} and Q = 1 if k is real).

Proof. [3, Theorem 1] gives

[E : C] =
( ∏

χ∈X, χ�=1

2 · [k : kSχ ]
[k : k+]

)
· (#X)−(#X)/2 ·Qh+ .

Using Corollary 2.1 and #X = [k+ : Q] we obtain

(E : C1) = [E : C]/[C1 : C]

=
( ∏

χ∈X, χ�=1

2 · [k : kSχ ]
[k : k+] · [KSχ : kSχ ]

)
· [k+ : Q]−[k+:Q]/2 ·Qh+

=
(∏

χ∈X

2 · [k+ : Q]
[KSχ : Q]

)
· [k+ : Q]−[k+:Q]/2 · Qh+

2 · [k+ : Q]

and Lemma 3.2 gives the theorem. �

Corollary 3.2. Let C2 be the group generated by W ∪{κ2σ
S ; S ⊆ J, σ ∈ G}. Then

C2 is a subgroup of E of index

[E : C2] =
(

[K ′ : k+]
16

)−[k+:Q]/2

· Qh+

4 · [k+ : Q]
.

Proof. Corollary 3.1 gives C2 ⊆ E. The index formula is given by Theorem 3.1
and the obvious equality [C1 : C2] = 2[k+:Q]−1. �

Theorem 3.2. If k is real then the class number h of k is divisible by the following
powers of 2:

[k : Q]
2

·
(

[K : k]
4

)([k:Q]/2)−1 ∣∣∣ h
and

4 · [k : Q] ·
(

[K : k]
16

)[k:Q]/2 ∣∣∣ h .
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Proof. Theorem 3.1 gives

h = 2 · [k : Q] · (E : C1) ·
(

[K : k]
4

)[k:Q]/2

=
2 · [k : Q]
[K : k]

· [E : C1 ∩ E] · [K : k]
[C1 : C1 ∩ E]

·
(

[K : k]
4

)[k:Q]/2

and Corollary 3.1 implies the former divisibility relation. The latter one is given
by Corollary 3.2. �

The following example shows that C1 is not a subgroup of E in general:

Example 3.1. Let k = Q(
√

21). Then J = {−3,−7}, K = Q(i
√

3, i
√

7),

εJ = (1 − ζJ)(1 − ζ4
J)(1 − ζ16

J ) =
i
√

3 − i
√

7
2

,

ηJ = ε
1+σ−3σ−7
J = εJ · εJ = −ε2J ,

κJ = ±εJ .

Hence we have C1 = 〈−1,κJ〉, C = 〈−1, ηJ〉 and [C1 : C] = 2 for this specific k.
Theorem 3.1 gives (E : C1) = h

2 . It is easy to compute that h = 1 which implies
E = C.

4. The case of real K

The rest of this paper is devoted to a special case of K being real. Our aim is to
show that under this assumption we have C1 ⊆ E. It is easy to see that K is real
if and only if each p ∈ J is positive.

We shall need the equivalence relation ∼ defined on the group of all units of K
as follows: For any units x, y of K we write x ∼ y if and only if x/y is the square
of a totally positive unit of K.

Lemma 4.1. If K is real then we have:
(a) if x ∼ y and u ∼ v are units of K then xu ∼ yv;
(b) if x ∼ y are units of K then xσ ∼ yσ for any σ ∈ G;
(c) e4 ∼ 1 for any unit e of K;
(d) ε2{p} �∼ 1 for any p ∈ J ;
(e) ε2S ∼ 1 for any S ⊆ J , #S > 1;
(f) ε1−στ

S ∼ ε1−σ
S · ε1−τ

S for any S ⊆ J and any σ, τ ∈ G.

Proof. (a) The product of totally positive units is totally positive, too. (b) All
conjugates of a totally positive unit are again totally positive. (c) As all conjugates
of e belong to K, they are real, and so e2 is totally positive. (d) [3, Lemma 1] gives
ε
1+σp

{p} = −1 and so ε{p} is neither totally positive nor totally negative. (e) Due to
its definition, εS is the norm of a nonzero number from an imaginary abelian field



186 Radan Kučera

QS to a real subfieldKS and so it is totally positive. (f) Using (a), this statement is
equivalent to ε(1−σ)(1−τ)

S ∼ 1. Due to [3, Lemma 2] we have ε1−σ
S = ±∏T⊆S ε

2aT

T

for suitable aT ∈ Z and, once again, [3, Lemma 2] implies(∏
T⊆S

εaT

T

)1−τ

= ±
∏
T⊆S

ε2bT

T

for suitable bT ∈ Z. Thus

ε
(1−σ)(1−τ)
S =

(
±
∏
T⊆S

ε2bT

T

)2

and (c) gives the result. �

In the following lemma we shall consider the complete undirected graph on
S ⊆ J where for each p, q ∈ S, p �= q, the edge between vertices p and q is labeled
by the number m(p,q) which is defined by means of Legendre symbol as follows:

m(p,q) =
1 − tp,q

2
, where tp,q =

{
(p

q ) if q is odd,
( 2

p ) if q = 2.

Notice that the quadratic reciprocity law implies m(p,q) = m(q,p) as we are assum-
ing that each p ∈ J is positive, i.e., either p = 2 or p is a prime congruent to 1 mod-
ulo 4. If H is a Hamiltonian path from p to q in S, i.e., H = (p, r1, . . . , r#S−2, q)
such that {p, r1, . . . , r#S−2, q} = S, then we put mH = m(p,r1) · m(r1,r2) . . .
m(r#S−2,q).

Lemma 4.2. If K is real, p ∈ S ⊆ J , and #S > 1 then

ε
1+σp

S ∼
∏

q∈S, q �=p

ε
2

P
H mH

{q} ,

where the sum is taken over all Hamiltonian paths H from p to q in S.

Proof. If S = {p, q} then [3, Lemma 1] gives

ε
1+σp

S = tp,q · ε1−Frob(p,K{q})

{q} =

{
1 if tp,q = 1,
−ε1−σq

{q} = ε2{q} if tp,q = −1,

which we wanted to show. Let us suppose that #S > 2 and that the lemma has
been proved for all T � S. Then [3, Lemma 1] states

ε
1+σp

S = ε
1−Frob(p,KS\{p})
S\{p} .

It is easy to see that Frob(p,KS\{p}) =
∏

q∈S\{p} σ
m(p,q)
q and Lemma 4.1(f,e,b,a)

implies

ε
1+σp

S ∼
∏

q∈S\{p}

(
ε
1−σq

S\{p}
)m(p,q) ∼

∏
q∈S\{p}

(
ε
1+σq

S\{p}
)m(p,q) .

The lemma follows from the induction hypothesis for ε1+σq

S\{p} and Lemma 4.1(a). �
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Recall that we have seen in Lemma 2.1 that for any S ⊆ J and any σ ∈ G we
have ε1+σ

S = ±x2 for suitable x ∈ DS = 〈εT ; T ⊆ S〉. The following lemma states
that this x satisfies x1−σ = 1. Example 3.1 shows that the assumption of K being
real cannot be avoided here.

Lemma 4.3. If K is real, S ⊆ J , and σ ∈ G then there is x ∈ DS such that
ε1+σ

S = ±x2 and x1−σ = 1.

Proof. If S = ∅ then εS = 1 and x = ±1. If S = {p} then εσ
S is equal to either

εS or εσp

S . In the former case x = ±εS and x1−σ = ε1−σ
S = 1, in the latter case [3,

Lemma 1] gives ε1+σ
S = −1 and x = ±1.

Finally, let #S > 1. There is T ⊆ S such that σ acts as
∏

p∈T σp on KS .
Lemma 2.1 gives x ∈ DS such that ε1+σ

S = ±x2 and Lemmas 4.1 and 4.2 imply

±x2 = ε
1+

Q
p∈T σp

S ∼ ε
1−Q

p∈T σp

S ∼
∏
p∈T

ε
1−σp

S ∼
∏
p∈T

ε
1+σp

S ∼
∏
p∈T

∏
q∈S, q �=p

ε
2

P
H mH

{q} ,

where the sum is taken over all Hamiltonian paths H from p to q in S. Hence
there is a totally positive unit y ∈ K such that

±x2 = y2 ·
∏
q∈S

ε
2

P
p∈T, p �=q

P
H mH

{q} .

As −1 is not a square in K this implies

x = ±y ·
∏
q∈S

ε
P

p∈T, p �=q

P
H mH

{q}

and so

x1−σ = y1−σ ·
∏
q∈S

(
ε1−σ
{q}

)P
p∈T, p �=q

P
H mH

.

We have

ε1−σ
{q} =

{
1 if q /∈ T ,
ε
1−σq

{q} = −ε2{q} if q ∈ T .

Therefore

x1−σ = y1−σ ·
∏
q∈T

(−ε2{q}
)P

p∈T, p �=q

P
H mH

.

As (x1−σ)2 = (ε1+σ
S )1−σ = 1 we have x1−σ = ±1. Hence to prove the lemma

we need to show that x1−σ > 0. Since y is totally positive, y1−σ > 0; moreover
ε2{q} > 0. Hence

sgn x1−σ =
∏
q∈T

(−1)
P

p∈T, p �=q

P
H mH = (−1)

P
q∈T

P
p∈T, p �=q

P
H mH .
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We know thatmH = mHop , whereHop is the path opposite toH . This implies that∑
q∈T

∑
p∈T, p�=q

∑
H mH = 2

∑
q∈T

∑
p∈T, p<q

∑
H mH is even and so sgn x1−σ =

1 and x1−σ > 0. The lemma is proved. �

Proposition 4.1. If K is real then κS ∈ kS for each S ⊆ J .

Proof. We need to show that κ1−σ
S = 1 for each σ ∈ Gal(KS/kS). This is clear

if σ = 1, so we can assume that σ �= 1. Then there is a basis α1, . . . , αr of
Gal(KS/kS) such that αr = σ. Lemma 2.1 implies that

ε
(1+α1)···(1+αr−1)
S = ±y2r−1

with y =
∏

T⊆S ε
aT

T for suitable aT ∈ Z. Then

±κ2r

S = ηS = ε
(1+α1)···(1+αr−1)(1+σ)
S =

(±y2r−1)1+σ =
(
y1+σ

)2r−1

.

As −1 is not a square in K this implies

±κ2
S = y1+σ =

∏
T⊆S

(
ε1+σ

T

)aT
.

Lemma 4.3 states that there are xT ∈ DT such that ε1+σ
T = ±x2

T and x1−σ
T = 1.

Hence

±κ2
S =

∏
T⊆S

(±x2
T

)aT

and this implies

κS = ±
∏
T⊆S

xaT

T

because −1 is not a square in K. Therefore

κ1−σ
S =

∏
T⊆S

(
x1−σ

T

)aT = 1 ,

which we wanted to prove. �

Theorem 4.1. If K is real then the class number h of k is divisible by the following
power of 2:

2 · [k : Q] ·
(

[K : k]
4

)[k:Q]/2 ∣∣∣ h .
Proof. Proposition 4.1 implies that C1 ⊆ E and so (E : C1) = [E : C1] is an
integer. Theorem 3.1 gives

h = 2 · [k : Q] · [E : C1] ·
(

[K : k]
4

)[k:Q]/2

and the theorem follows. �
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