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WARING’S PROBLEM FOR POLYNOMIAL BIQUADRATES
OVER A FINITE FIELD OF ODD CHARACTERISTIC

Mireille Car & Luis H. Gallardo

To Jean-Marc Deshouillers,
friendly, for his sixty years

Abstract: Let q be a power of an odd prime p and let k be a finite field with q elements.
Our main result is: If q /∈ {3, 9, 5, 13, 17, 25, 29}, every polynomial P ∈ k[t] of degree > 269
is a strict sum of 11 biquadrates. We first decompose P as a strict mixed sum of biquadrates.
Keywords: Waring’s problem, biquadrates, polynomials, finite fields, odd characteristic.

1. Introduction

Waring’s problem for biquadrates of polynomials in F[t] over some field F, is the
analogue of the same problem over the positive integers N. We can represent an
integer n > 0 as

n = n4
1 + . . .+ n4

g,

for some positive integer g such that, necessarily, the integers ni satisfy n4
i 6 n

for all i = 1, . . . , g. In particular no cancellation of any terms occurs in the above
sum.

Waring’s problem for biquadrates over N consists of determining or at least
bounding the minimal such g , say g(4,N). Wieferich [16], proved that g(4,N) 6 37
while, later Balasubramanian et al., [1] obtained g(4,N) = 19.

Two related problems arise.
a) The (so called)“easy” Waring problem in which we allow sums and dif-

ferences, instead of merely sums of biquadrates to appear in the decomposition
above; so that we can represent now all integers. Let v(4,Z) represent the analo-
gue of g(4,N). The exact value of v(4,Z) is unknown, however:

9 6 v(4,Z) 6 10.

(See, e.g. [8, Theorem 5.6, p. 505] and [10]).
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b) The “asymptotic” Waring problem in which we restrict our attention to
represent only “sufficiently large” integers, i.e. we try to represent all integers
bigger than some bound b. Let G(4,Z) denote the analogue ofg(4,Z) for these
large integers. The inequality G(4,Z) > 16 is due to Kempner [7], and the bound
G(4,Z) 6 16 has been established by Davenport [3]. Moreover, in [4] Deshouillers
et al. proved that the largest integer that requires seventeen biquadrates for its
representation is 6 13792.

Let F be a commutative field and let P ∈ F[t] be a polynomial such that

P = P 4
1 + . . .+ P 4

s

for some polynomials P1, . . . , Ps ∈ F[t]. Cancellation may occur and it is possible
to have

(
deg(Pi

4)− degP
)

large. We want to write polynomials as sums of bi-
quadrates with the least possible number of cancellations. Thus, we ask that the
polynomials P1, . . . , Ps appearing in the above sum satisfy the most restrictive
degree conditions, i.e, 4 degPi < 4 + degP. When this condition is satisfied, we
say that P is a strict sum of s biquadrates.

Similarly, we say that P is a mixed strict sum of m biquadrates if

P = s1P
4
1 + . . .+ smP

4
m

for some polynomials P1, . . . , Pm ∈ F[t] such that deg(P 4
i ) < deg(P ) + 4 for all

i = 1, . . . ,m and sj ∈ {1,−1} for all j while, at least for some i, one has si = −1
and in that case not all the si ’s are equal to −1.

In other words, we may say that in the “mixed strict” problem as before, we
want conditions on degrees, but we relax on the condition that all coefficients must
be equal to 1. So, this problem has no an exact analogue for the integers indeed it
is “in between” the “easy” and the“classical” Waring’s problem for biquadrates.

For any field F we denote by

G(4,F[t]),

the least positive integer G, if it exists such that every polynomial P ∈ F[t] of
degree large enough, is a strict sum of G biquadrates. If it does not exist, then we
put G(4,F[t]) =∞. Similarly, we denote by

V (4,F[t]),

the least positive integer g, if it exists, such that every polynomial P ∈ F[t] of
degree large enough, is a mixed strict sum of g biquadrates. If it does not exist,
then we put V (4,F[t]) =∞.

For q ∈ {3, 9} some congruence obstructions appear (see [6, section 1.1]),
and G(4,F[t]) =∞. In this paper we restrict our attention to q /∈ {3, 9}.

Roughly speaking, the object of the paper is to prove (see Theorem 5.1 and
section Identities) that:
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a) For odd q /∈ {3, 9, 5, 13, 17, 25, 29},

V (4,Fq[t]) 6 10, G(4,Fq[t]) 6 11,

b) For odd q /∈ {17, 29} and congruent to 1 modulo 8,

G(4,Fq[t]) 6 10.

In fact, we prove effective results, that is to say:
a) For odd q /∈ {3, 9, 5, 13, 17, 25, 29}, every polynomial P ∈ Fq[t] of degree

degP > 269 is a mixed strict sum of 10 biquadrates.
b) For odd q /∈ {3, 9, 5, 13, 17, 25, 29} every polynomial P ∈ Fq[t] of degree

degP > 269 is a strict sum of 11 biquadrates.
In order to express effective results, we introduce new notations. For any

field F and any non negative integer d > 0 we denote by

g(4, d,F[t])

the minimal positive integer g such that 0 and every P of degree > d is a strict
sum of g biquadrates. Similarly, we denote by v(4, d,F[t]) the minimal positive
integer v such that 0 and every P of degree > d is a mixed strict sum of v
biquadrates.

In the special cases q ∈ {5, 13, 17, 25, 29} more biquadrates are necessary to
represent a polynomial. Our method improves Gallardo’s (see [9]) that obtained
for most q′s v(4,Fq[t]) 6 11 so that g(4,Fq[t]) 6 16.

Results without degree conditions were obtained by Vaserstein as a special
case in [14, 15], where it is proven that the minimal length w(4,Fq[t]) = w neces-
sary to represent every sum of biquadrates in Fq[t], as a sum of w biquadrates in
Fq[t], satisfy

3 6 w(4,Fq[t]) 6 7, for q 6= 5 and 3 6 w(4,Fq[t]) 6 9, for q = 5.

In this paper, by using our new identity, we improve (see Corollary 3.4) on
this result as follows:

3 6 w(4,Fq[t]) 6 4, for odd q /∈ {3, 5, 9, 13, 29}.

A word on some classical notation used in the paper: Given some field F,
we say that a polynomial P ∈ F[t] is monic if its leading coefficient equals 1.
Moreover, let denote by i a 2-root of −1 in a fixed algebraic closure of Fq. We
also put −∞ for the degree of the 0 polynomial so that deg(0) < n for all positive
integers n.
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2. Method of proof

We choose, again, a wholly elementary method (linear algebra and identities) al-
ready used in [2], [9] to get our results. The reason is that it works! Indeed, ma-
thematically more interesting and powerful method as the circle method (see [6])
seems to produce only weaker results on the Waring’s problem for biquadrates
over Fq[t].

Given a polynomial P ∈ Fq[t], say monic and of degree 4n > 8,

P = t4n + ...+ a0,

to be decomposed, say as a strict sum of biquadrates.
The method consists, roughly, of:

a) Find a biquadrate A4 such that P and A4 have a maximum of equal con-
secutive coefficients beginning by the leading coefficient.

b) Repeat a) with P replaced by P −A4 till get a polynomial R which degree
be less than n+ 1. Care is taken so that this can be done.

c) Apply some polynomial identities (more precisely either Norrie’s identity or
our new identity) to R in order to show R equal to a sum of biquadrates of
polynomials S4 in which the polynomials S, R have the same degree.
Parts a) and b) are covered in section “Descent” and part c) in section

“Identities”.
Roughly, the improvements on the upper bound are obtained by applying

exactly the above procedure.
We leave for further study:

a) The representation of some polynomials of small degree (more precisely the
polynomials with degree 6 28) for the q ’s considered here;

b) The special values of q not considered here (i.e., q ∈ {3, 9, 5, 13, 29})
c) The question of the lower bounds.

3. Identities

First of all, we recall the classical Norrie’s identity ([12], [5, p. 279], [9, Lemma 1]):

Lemma 3.1. Let F be a field of odd characteristic. Let b, c ∈ F be such that
bc(b8 − c8) 6= 0 and let d = c8 − b8.

Then we have Norrie’s identity:

t =
(
c2(d+ 2t)

2d

)4

−
(
c2(d− 2t)

2d

)4

+
(

2c4t− b4d
2bcd

)4

−
(

2c4t+ b4d

2bcd

)4

. (1)
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Our new identity is based on:

Theorem 3.2. Let F be a finite field with odd characteristic and order q /∈ {3, 5,
9, 13, 29} such that −1 is not a biquadrate in F. Then, there exist a, b, c, d ∈ F
such that

1) abcd 6= 0
2) b4 = −1− a4

3) d4 = 1− c4
4) g = (ad)2(a4 + c4 + 1) + (bc)2(a4 + c4 − 1) 6= 0.

The proof of this theorem is delayed to a special subsection below. We begin
by proving some important corollaries.

Corollary 3.3. Let F be a finite field of order q /∈ {3, 5, 9, 13, 29} and odd
characteristic. Then there exist four polynomials L1, L2, L3, L4 ∈ F [t] of degree
at most 1 such that

t = L4
1 + L4

2 + L4
3 + L4

4. (2)

Proof. If −1 is a biquadrate in F then apply Lemma 3.1. Suppose that −1 is not
a biquadrate in F. According to the previous Theorem 3.2, there exist a, b, c, d ∈ F
satisfying identities 1), 2), 3) and 4). Set A = at, B = bt + cd((bd)2 − (ac)2),
C = ct+bd((ab)2+(cd)2), D = dt+bc(a4−c4+1), and α = 4a4bcd(a4−c4+1)g.
Then α ∈ F is nonzero and there exists λ ∈ F depending polynomially on the
parameters a, b, c, d ∈ F above, such that:

αt+ λ = A4 +B4 + C4 +D4.

In this expression the parameters b, d occur with exponents at most equal
to 3. It is essential to have α 6= 0. This is true since from equality 3) one obtains
a4 − c4 + 1 = d4 + a4.

The following corollary improves on some results of Vaserstein:

Corollary 3.4.
3 6 w(4,Fq[t]) 6 4,

for odd q with q /∈ {3, 5, 9, 13, 29}.
Proof. The upper bound follows from Corollary 3.3 while the lower bound follows
from the fact that the polynomial t is not a sum of 2 biquadrates.

3.1. Proof of the Theorem 3.2. Firstly, we assume that −1 is not a square
in Fq.

The proof of the following proposition is easy and we leave it to the reader:

Proposition 3.5. Suppose q congruent to 3 modulo 4. Then, the set S2 of squares
of Fq equals the set S4 of biquadrates of Fq . Moreover the map ψ : x 7→ x2 from
S2 to S4 is bijective.
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Consider the system:

α2 + β2 = −1, (3)

γ2 + δ2 = 1, (4)

γδ 6= 0, (5)

αδ(α2 + γ2 + 1) + βγ(α2 + γ2 − 1) 6= 0. (6)

in which α, β, γ, δ ∈ Fq
Corollary 3.6. If q ≡ 3 (mod 4) then there is a one to one correspondance
between the solutions (a, b, c, d) ∈ F4

q of the system I : a4 +b4 = −1, c4 +d4 = 1,
abcd 6= 0 and (ad)2(a4 + c4 + 1) + (bc)2(a4 + c4 − 1) 6= 0, and the solutions
(α, β, γ, δ) ∈ F4

q of the system II : (3), (4), αβγδ 6= 0 and (6).

Proposition 3.7. Suppose q congruent to 3 modulo 4. Then, among the (α, β, γ, δ)
∈ F4

q that satisfy (3), (4), (5), at least one satisfies also (6).

Proof. Let (α, β, γ, δ) ∈ F4
q satisfy (3), (4) and (5). Then αβ 6= 0 since −1 is not

a square in Fq. We note that (α,−β, γ, δ) also satisfy (3), (4) and (5). Assume
that both of them do not satisfy (6). Then,

αδ(α2 + γ2 + 1) = 0 = βγ(α2 + γ2 − 1)

and

α2 + γ2 + 1 = 0 = α2 + γ2 − 1

so that we get a contradiction.

Consider the system:

a4 + b4 = −1, (7)

c4 + d4 = 1, (8)

abcd 6= 0, (9)

(ad)2(a4 + c4 + 1) + (bc)2(a4 + c4 − 1) 6= 0. (10)

in which we are searching for a, b, c, d ∈ Fq.
We are ready to give a solution in the case when q ≡ 3 (mod 4).

Proposition 3.8. If q > 3 is congruent to 3 modulo 4, then there exist (a, b,
c, d) ∈ F4

q such that (7), (8), (9) and (10) hold.

Proof. Since −1 is not a square in Fq, it is well known (see e.g. [11, Lemma 6.24,
p. 282]) that for all nonzero b ∈ Fq, the equation

x2 + y2 = b
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has q+1 solutions (x, y) ∈ F2
q. On the other hand, the same equation for b = 1 has

only 4 solutions with xy = 0 so, the system (3), (4) and (5) has (q+ 1)(q+ 1− 4)
solutions. Thus, when q > 3 the system (3), (4) and (5) has a solution. This
implies by Proposition 3.7 that the system (3), (4) (5) and (6) has a solution. For
these solution, (3) implies that αβ 6= 0. Now, the system II of Corollary 3.6 has
a solution so that the system I of the same corollary has also a solution. This
finishes the proof.

We observe that if q = 3, (8) implies cd = 0 so there is no solution in the
field F3.

Now, we assume that −1 is a square in Fq but that it is not a biquadrate
in Fq.

We consider the same system (7), (8), (10) as before but now with the con-
dition

cd 6= 0; (11)

instead of (9). This comes from the observation that −1 is not a biquadrate in Fq
and that (7) implies ab 6= 0.

Proposition 3.9. Suppose that −1 is a square in Fq. Then, among the (a, b,
c, d) ∈ F4

q satisfying (7), (8), (11), at least one satisfies also (10).

Proof. Observe that if (a, b, c, d) ∈ F4
q is a solution of (7), (8), (11), then (a, ib, d, c)

is also a solution where −1 = i2. The rest of the proof is analogous to the proof
of Proposition 3.7.

For a ∈ Fq we denote by N(a) the number of solutions (x, y) ∈ F2
q of the

equation
a = x4 + y4. (12)

Proposition 3.10. Let a ∈ Fq be different from 0. Then,

N(a) > q − 3− 6
√
q. (13)

Proof. The inequality is a special case of [11, Example 6.38, p. 295 ].

Our main result follows:

Proposition 3.11. If q > 37 is congruent to 1 modulo 4 but it is not congruent
to 1 modulo 8 , then there exist a, b, c, d ∈ Fq such that (7), (8), (9) and (10) hold
simultaneously.

Proof. The equation x4 + y4 = 1 has 8 solutions (x, y) ∈ F2
q with xy = 0. From

Proposition 3.10 if q > 55 then N(1) > 9, N(−1) > 9. By a simple check we get
also the result when q ∈ {37, 53}. So, the equation x4 + y4 = 1 has a solution
(x, y) ∈ F2

q with xy 6= 0 and the equation x4 +y4 = −1 has N(−1) > 9 solutions.
So, the conditions (7), (8), (9) hold simultaneously. It follows from Proposition 3.9
that condition (10) also holds.

This finishes the proof of Theorem 3.2.
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Remark 3.12. In the case when q ∈ {5, 13, 29}, the system (7), (8), (9), and (10)
has no solution.

This is obtained by direct computations.

3.2. Sums of biquadrates in FqFqFq . The following lemma (see also [9, Lemma 3])
follows from [11, Example 6.38, p. 295 ] for q > 43 and from a check for the other
values of q.

Lemma 3.13. Let F be a finite field of order q and odd characteristic. If q > 31
or if q ∈ {7, 11, 19, 23, 27}, then every non-zero element of F is a sum of 2 bi-
quadrates.

4. Descent

Lemma 4.1. Let F be a finite field of odd characteristic in which each element
is a sum of 2 biquadrates. Let n > 0 be an integer and let P ∈ F[t] be of degree
d ∈ {4n, 4n− 1, 4n− 2, 4n− 3}. Then,

(I)There exist A,B,C,R ∈ F[t] such that AC = 0 and:
a) P = −A4 +B4 + C4 +R,

b) deg(A4) < d+ 4, deg(B4) < d+ 4 and deg(C4) < d+ 4.
c) R is monic and deg(R) is the least multiple of 4 such that degR > 3n.
d) If 4 divides d then A = 0.
e) If 4 does not divides d then C = 0.
f) If P is monic and 4 divides d then A = 0 and C = 0.

(II) There exist A,B,C,R ∈ F[t] such that AC = 0 and such that a), b),
d), e) and f) are satisfied and such that

g) degR < 3n.

Proof. If 4 does not divide d, we set A = tn, Q = P + A4. If 4 divides d, we
set A = 0, Q = P. In the two cases, Q has degree 4n. The leading coefficient of
Q is a sum, in F, of two biquadrates b4 + c4, with, say, b 6= 0. Set C = ctn. If
4 divides d,Q is monic and we take b = 1, c = 0. Set now r equal to the least
multiple of 4 such that r > 3n and let B = btn + bn−1t

n−1 + . . . + b0, with
unknowns bn−1, . . . , b0 in F to determine in such a manner that all coefficients
of R = Q − B4, from the coefficient of t4n−1, to those of tr+1, be equal to zero
and such that the coefficient of tr in R be equal to 1. This results on a triangular
linear system over F in at most n unknowns bn−1, . . . , b0 soluble since b 6= 0.
This proves the first part of the lemma. If we do not ask R to be monic and have
degree multiple of 4, we solve the system in exactly n unknowns bn−1, . . . , b0 and
we obtain that degR = deg(Q−B4) < 3n.
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5. Representation by biquadrates

Here we prove our main result:

Theorem 5.1. a) For odd q /∈ {3, 9, 5, 13, 17, 25, 29} every polynomial P ∈ Fq[t]
of degree d > 269 is a mixed strict sum of 10 biquadrates, i.e:

v(4, 272,Fq[t]) 6 10.

b) For odd q /∈ {3, 9, 5, 13, 17, 25, 29} every polynomial P ∈ Fq[t] of degree
d > 272 is a strict sum of 11 biquadrates, i.e:

g(4, 269,Fq[t]) 6 11.

Proof. Let P ∈ F[t] of degree d ∈ {4n, . . . , 4n− 3}.
First step: Applying Lemma 4.1, we get the existence of A,B,C and R1 ∈

F[t] such that AC = 0 and

P = −A4 +B4 + C4 +R1 (1)

with degA4, degB4, degC4 < d + 4, with R1 monic of degree the least multiple
of 4 > 3n. Set

C0 = C, n0 = n, 4n1 = degR1.

Hence,

4n1 > 3n0 > 4n1 − 4. (2)

Second, third, fourth steps: Applying recursively 3 times Lemma 4.1, part (f),
we get the existence of C1, C2, C3, R2, R3, R4 ∈ F[t] such that

Ri = (Ci)
4 +Ri+1, (3)

where for i = 1, . . . , 3,

degCi = ni,degRi = 4ni, (4)

4ni+1 > 3ni > 4ni+1 − 4. (5)

Fifth step: We apply Lemma 4.1, part (g), and we get the existence of
C5, R5 ∈ F[t] such that

R4 = (C4)4 +R5, (6)

degR5 < 3n4. (7)
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By (2) and (5),

n4 6 (
3
4

)
4

n0 + 3
(

1− (
3
4

)
4)

.

Thus, if n0 is such that

n0 > 3
(

(
3
4

)
4

n0 + 3
(

1− (
3
4

)
4))

− 1,

then degR5 6 n0. A sufficient condition under which this occurs is

n0 > 1319
13
⇔ n0 > 102.

By direct computation one finds that if n0 > 68, then 3n4 − 1 6 n0.
Finally, we apply our Corollary 3.3, in the identities section, to R to obtain

4 more biquadrates for the representation of P.
Observe that we obtained that P is a mixed strict sum of 10 biquadra-

tes with, at most, only one of them with the sign −1. This implies b) since, by
Lemma 3.13, −1 is a sum of two biquadrates. This construction works for poly-
nomials P such that degP ∈ {4n0, . . . , 4n0 − 3} with n0 > 68.

Remark 5.2. For odd q /∈ {3, 9, 5, 13, 17, 25, 29} and congruent to 1 modulo 8,

g(4, 269,Fq[t]) 6 10.

Proof. If q is congruent to 1 modulo 8, then −1 is a biquadrate in the field Fq.
So, a mixed strict sum of biquadrates is a strict sum of biquadrates.

The descent process runs for smaller degrees. More steps are necessary to
get the expected degree.

Proposition 5.3. Assume that q is odd and that q /∈ {3, 9, 5, 13, 17, 25, 29}.
Then:

a) Polynomials with degree d in {33 → 64, 69 → 76, 85 → 100, 117 →
124, 129 → 136, 153 → 160, 169 → 172, 181 → 184, 201 → 208, 241 → 244, 265 →
268} are mixed strict sums of 11 biquadrates, (resp. strict sums of 12 biquadrates).

b) All other polynomials with degree d ∈ {29→ 271} are mixed strict sums
of 10 biquadrates, (resp. strict sums of 11 biquadrates).

Proof. By direct computations one proves that the process works in the case b)
and that the process need one step more in the case a).

The method fails for polynomials of degree 6 28. For instance if P has
degree 4, the recursive process applied to n0 = 1 gives ni = 1 for all integer i,
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if P has degree 28, the recursive process applied to n0 = 7 gives n1 = 6, n2 = 5,
n3 = 4, n4 = 3 and ni = 3 for all integer i > 4.

Acknowledgments. We thank the GDR 2251 (director: Laurent Habsieger) for
financial support. We are grateful to the referee for useful comments and for refe-
rences [3, 7].

References

[1] R. Balasubramanian, J. M. Deshouillers, F. Dress, Problème de Waring pour
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