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VARIABLE EXPONENT SOBOLEV SPACES ON METRIC
MEASURE SPACES

Petteri Harjulehto∗ , Peter Hästö∗∗ and Mikko Pere

Abstract: In this article we study variable exponent Sobolev spaces on metric measure spaces.
We employ two definitions: a HajÃlasz type definition, which uses a pointwise maximal inequality,
and a Newtonian type definition, which uses an upper gradient. We prove that these spaces are
Banach, that Lipschitz functions are dense as well as other basic properties. We also study when
these spaces coincide.
Keywords: Variable exponent, Sobolev space, metric measure space, Newtonian space, HajÃlasz
space.

1. Introduction

The theory of Sobolev spaces was originally developed in domains of Rn using
the notion of distributional derivatives. To generalize this theory to metric spaces
alternative ways to define Sobolev spaces were needed. P. Haj lasz showed in [12]
that a p -integrable function u , 1 < p < ∞ , belongs to W 1,p(Rn) if and only if
there exists a non-negative p -integrable function g such that

|u(x)− u(y)| 6 |x− y|(g(x) + g(y))

for almost every x, y ∈ Rn . This inequality can be stated also in metric measure
spaces if |x − y| is replaced by the distance between the points x and y . Spaces
defined using this inequality are often called Haj lasz spaces.

Another way to define Sobolev spaces on metric measure spaces is via the
concept of an upper gradient. A non-negative function ρ is said to be an upper
gradient of u if

|u(x)− u(y)| 6
∫

γ

ρ ds (1.1)
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for every x, y and curve γ connecting x to y . In an open set Ω of Rn this holds
for a Sobolev function u on every curve not belonging to an exceptional family of
p -modulus zero [11]. If this holds in a general metric space, we call g a weak upper
gradient of u . Existence and p -integrability of a weak upper gradient together with
p -integrability of the function lead to another characterization of W 1,p(Ω). These
spaces are often called Newtonian spaces. For basic properties of Newtonian spaces
see the pioneering work of N. Shanmugalingam [29].

Sobolev spaces on metric measure spaces have been studied very intensively
during the last ten years, and the ”standard” framework is now available in the
monograph [18] by J. Heinonen. On the other hand new approaches are still being
put fourth, see e.g., [13]. For instance it is known that if the measure is doubling and
the space supports a (1, p)-Poincaré inequality, then the Haj lasz and Newtonian
spaces coincide. These advances have made possible the development of potential
theory in metric measure spaces, see for example [1, 19].

Variable exponent Lebesgue and Sobolev spaces have attracted a steadily
increasing interest over the last couple of years, but most papers have dealt only
with the Euclidean case. Variable exponent spaces have been independently disco-
vered by several investigators [9, 21, 28, 30] and are related to differential equations
with non-standard coercivity conditions. For some of the latest advances in the
Euclidean theory see [6, 15, 20].

In metric measure spaces the variable exponent is very natural. For example,
it allows us to study Sobolev spaces with integrability connected to the dimension
of the space, which changes with location. Only three papers exist on variable
exponent spaces on metric measure spaces, two by T. Futamura, Y. Mizuta and
T. Shimomura [10, 23] and one by the authors [17]. All of these papers deal only
with variable exponent Lebesgue spaces.

In this article we study Haj lasz and Newtonian spaces with variable exponent
in metric measure spaces. In the next section we review some definitions and
present the theory of variable exponent Lebesgue spaces on metric measure spaces.
In Section 3 we show that the variable exponent Newtonian space is a Banach
space. We prove that Lipschitz continuous functions are dense if the measure is
doubling and the space supports a Poincaré inequality. In the final section we
study when Haj lasz and Newtonian spaces coincide in a metric measure space and
also in Euclidean space.

2. Preliminaries

This section contains some material on variable exponent Lebesgue spaces. The
results in the first two sections are used throughout this paper. The last two
sections are necessary only for specific parts, and can be read later as needed.

2.1. Metric measure spaces. By a metric measure space we mean a triple
(X, d, µ), where X is a set, d is a metric on X and µ is a non-negative Borel
regular outer measure on X which is finite in every bounded set. For simplicity,
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we often write X instead of (X, d, µ). For x ∈ X and r > 0 we denote by B(x, r)
the open ball centered at x with radius r . We use the convention that C denotes
a constant whose value can change even between different occurrences in a chain
of inequalities.

A metric measure space X or a measure µ is said to be doubling if there is
a constant C > 1 such that

µ(B(x, 2r)) 6 Cµ(B(x, r)) (2.1)

for every open ball B(x, r) ⊂ X . The constant C in (2.1) is called the doubling
constant of µ . By the doubling property, if B(y,R) is an open ball in X , x ∈
B(y,R) and 0 < r 6 R <∞ , then

µ(B(x, r))
µ(B(y,R))

> CQ

( r
R

)Q
(2.2)

for some CQ and Q depending only on the doubling constant. For example, in
Rn with the Lebesgue measure (2.2) holds with Q equal to the dimension n .

We say that the measure µ is lower Ahlfors Q–regular if there exists a
constant C > 0 such that µ(B) > C diam(B)Q for every ball B ⊂ X with
diamB 6 2 diamX . We say that µ is upper Ahlfors Q–regular if there exists
a constant C > 0 such that µ(B) 6 C diam(B)Q for every ball B ⊂ X with
diamB 6 2 diamX . The measure µ is Ahlfors Q–regular if it is upper and lower
Ahlfors Q–regular, i.e. if µ(B) ≈ diam(B)Q for every ball B ⊂ X with diamB 6
2 diamX . If X is a bounded doubling metric measure space, so that µ(X) < ∞
and diam(X) <∞ , then it is lower Ahlfors Q-regular.

2.2. Variable exponent Lebesgue spaces. We call a measurable function
p:X → [1,∞) a variable exponent. For A ⊂ X we define p+

A = ess supx∈A p(x)
and p−A = ess infx∈A p(x); we further abbreviate p+ = p+

X and p− = p−X . For a
µ–measurable function u:X → R we define the modular

%p(·)(u) =
∫

X

|u(y)|p(y) dµ(y)

and the norm
‖u‖p(·) = inf{λ > 0: %p(·)(u/λ) 6 1}.

Sometimes we use the notation ‖u‖p(·),X when we want to emphasize in what
metric space the norm is taken. The variable exponent Lebesgue space Lp(·)(X, d, µ)
consists of those µ -measurable functions u:X → R for which ‖u‖p(·) < ∞ . This
is a special case of an Orlicz–Musielak space, cf. [24].

As in the Euclidean setting, we easily see that ‖ · ‖p(·) is a norm. Also, if
‖f‖p(·) 6 1, then %p(·)(f) 6 ‖f‖p(·) . Moreover, if p+ < ∞ , then %p(·)(fi) → 0 if
and only if ‖fi‖p(·) → 0. If p:X → (1,∞), then Hölder’s inequality,

‖fg‖1 6 C‖f‖p(·)‖g‖p′(·),
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holds also in variable exponent Lebesgue spaces, where p′ is the pointwise Hölder
conjugate of p , i.e. p(x) + p′(x) = p(x)p′(x).

Variable exponent Lebesgue spaces on metric measure spaces have been stu-
died in [10, 17, 23]. Some of the basic results are that Lp(·)(X) is a Banach space if
p+ <∞ [17, Lemma 3.1] and that continuous functions with compact support are
dense in Lp(·)(X) provided X is a locally compact doubling space and p+ < ∞
[17, Theorem 3.3]. As in [21, Theorem 2.8] we can prove that

‖u‖p(·) 6 (1 + µ(X)) ‖u‖q(·)
if µ(X) <∞ and p(x) 6 q(x).

Recall that a Banach space is said to be uniformly convex if for every δ > 0
there exists ε > 0 such that ‖u‖ = ‖v‖ = 1 and ‖u − v‖ > δ imply that
‖u + v‖ < 2 − ε . Recall also that a measure µ is atomless if µ({x}) = 0 for
every point x ∈ X . For future reference we record the following simple but useful
fact

Proposition 2.3. If 1 < p− 6 p+ < ∞ and µ is atomless, then Lp(·)(X,µ) is
uniformly convex. From this it follows that Lp(·)(X,µ) is reflexive and has the
Banach-Saks property, namely, if ui ⇀ u weakly, then 1

i (u1 + . . . + ui) → u
strongly.

The following condition has emerged as the right one to guarantee a high
degree of regularity for variable exponent spaces in Rn . We say that p:X → [1,∞)
is log -Hölder continuous if

|p(x)− p(y)| 6 C

− log d(x, y)
, (2.4)

when d(x, y) 6 1/2. This condition has also been called Dini-Lipschitz, weak-Lip-
schitz and 0-Hölder. Since it is the limiting case of α -Hölder continuity, we think
that log-Hölder is the most descriptive term. The following lemma illustrates the
geometrical significance of log-Hölder continuous exponents. It corresponds to
Lemma 3.2 of [4] on the Euclidean case.

Lemma 2.5. [Lemma 3.6, [17]] Assume that p+ < ∞ and consider two condi-
tions:

(i) p is log -Hölder continuous;
(ii) for all balls B ⊂ X we have µ(B)p

−
B
−p+

B 6 C .
If µ is lower Ahlfors Q-regular, then (i) implies (ii). If µ is upper Ahlfors

Q-regular, then (ii) implies (i).

2.3. The Hardy–Littlewood maximal operator. Recall that the Hardy-
-Littlewood maximal operator is defined for a locally integrable function u by

Mu(x) = sup
r>0

–
∫

B(x,r)
|u(y)| dµ(y).
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Recall also that the integral to the right denotes the mean value of u in B(x, r).
Assume that 1 < p− 6 p+ < ∞ , p is log-Hölder continuous and satisfies

the decay estimate

|p(x)− p(y)| 6 C

log(e+ |x|)
for every x, y ∈ Rn , |y| > |x| . Then Cruz-Uribe, Fiorenza and Neugebauer proved
that the Hardy-Littlewood maximal operator is bounded from Lp(·)(Rn) to itself
[3, Theorem 1.5]. In the local case this result was first derived by Diening [4].
Nekvinda [25] has given another global version of the boundedness result, using a
decay condition stated in terms of an integral. Pick and Růžička [27] constructed an
example which shows that log-Hölder continuity is in some sense sharp. Nekvinda
has given an example which shows that the decay condition is not necessary [26],
and Diening [5] has further studied the necessity of decay conditions.

In bounded doubling metric measure spaces the Hardy-Littlewood maximal
operator is bounded if p is log-Hölder and satisfies 1 < p− 6 p+ < ∞ , [17,
Theorem 4.3]. However, in this case log-Hölder continuity is not necessary [17,
Example 4.5]. A weaker result, derived under fewer assumptions, was given in [10,
Theorem 2.3].

2.4. Sobolev spaces. Variable exponent Sobolev spaces are defined in the obvious
way: For Ω ⊂ Rn the variable exponent Sobolev space W 1,p(·)(Ω) is the subspace
of functions u ∈ Lp(·)(Ω) whose distributional gradient exists almost everywhere
and satisfies |∇u| ∈ Lp(·)(Ω). The norm ‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·) makes
W 1,p(·)(Ω) a Banach space.

For the Newtonian space to agree with the classical Sobolev space the den-
sity of differentiable functions turns out to be crucial. This question is not as well
understood in variable exponent spaces as is the boundedness of the maximal ope-
rator, but we do have some results: Samko proved in [28] that smooth function are
dense in W 1,p(·)(Rn) if p+ <∞ and p is log-Hölder continuous. Diening proved
a similar, though slightly weaker, result [4]. Edmunds and Rákosńık showed that
a certain monotonicity condition on the exponent is also sufficient for the density
of smooth functions, see [8]. Hästö [12] gave an example of a variable exponent
Sobolev space in which continuous functions are not dense. In this example the
continuous exponent has growth just slightly greater than allowed by log-Hölder
continuity.

3. Newtonian spaces

In this section we define Sobolev spaces on metric measure spaces using an upper
gradient. These so-called Newtonian spaces spaces were first studied, in the fixed
exponent case, by N. Shanmugalingam [29], see also [2].

A curve γ in X is a non-constant continuous map γ: I → X , where I = [a, b]
is a closed interval in R . The image of γ , γ(I), is denoted by |γ| . By Γrect we
denote the family of all rectifiable curves in X .
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Let Γ be a family of rectifiable curves. We denote by F (Γ) the set of all
admissible functions, i.e. all Borel measurable functions ρ:X → [0,∞] such that

∫

γ

ρ ds > 1

for every γ ∈ Γ, where ds represents integration with respect to path length. We
define the p(·)-modulus of Γ by

Mp(·)(Γ) = inf
ρ∈F (Γ)

∫

X

ρ(x)p(x) dµ(x).

If F (Γ) = ∅ , then we set Mp(·)(Γ) =∞ . The arguments from Rn imply that the
p(·)-modulus is an outer measure on the space of all curves of X , for the proof
see [16, Lemma 2.1].

A family of curves Γ is said to be exceptional if Mp(·)(Γ) = 0. The following
lemma is a generalization of [11, Theorem 3(f)]. The proof is exactly the same as
the proof of [16, Lemma 2.2].

Lemma 3.1. [Fuglede’s lemma] Let (ui)∞i=1 be a sequence of non-negative Borel
functions in Lp(·)(X) converging to zero in Lp(·)(X) . Then there exists a subse-
quence (uik)∞k=1 and an exceptional family Γ of rectifiable curves such that for
every rectifiable γ /∈ Γ we have

lim
k→∞

∫

γ

uikds = 0.

3.1. Basic properties. Let u be a real valued function on X . A non-negative Bo-
rel measurable function ρ on X is a p(·)-weak upper gradient of u , or weak upper
gradient for short, if there exists a family Γ of rectifiable curves with Mp(·)(Γ) = 0
and

|u(x)− u(y)| 6
∫

γ

ρ ds

for every rectifiable curve γ /∈ Γ with endpoints x and y .
The Newtonian space N1,p(·)(X) is the collection of functions in Lp(·)(X)

with a weak upper gradient in Lp(·)(X) equipped with the norm

‖u‖N1,p(·)(X) = ‖u‖p(·) + inf ‖ρ‖p(·),

where the infimum is taken over all weak upper gradients of u . It is easy to see
that N1,p(·)(X) is a lattice like classical first order Sobolev space.

Next we show that Newtonian space is a Banach space. For that purpose
we introduce a Sobolev type capacity in Newtonian space and study the relation
between the capacity and the modulus. Our proof is along the lines of the proofs
of [16] and is shorter than the original proof of Shanmugalingam [29].
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We define the capacity in Newtonian space by

cp(·)(E) = inf
u

inf
ρ

∫

X

|u(x)|p(x) + ρ(x)p(x) dµ(x),

where the first infimum is taken over all u ∈ N1,p(·)(X), which are at least 1 in
E and the second infimum is taken over weak upper gradients of u . If the class of
test functions is empty we set cp(·)(E) = ∞ . Standard arguments show that the
capacity is an outer measure provided that p+ <∞ .

We denote by ΓE the family of all rectifiable curves whose image intersects
the set E .

Lemma 3.2. Suppose that E ⊂ X and p+ < ∞ . If cp(·)(E) = 0 , then
Mp(·)(ΓE) = 0 .

Proof. For every i ∈ N we choose a function ui ∈ N1,p(·)(X) with weak upper
gradient hi such that ui(x) > 1 for every x ∈ E and

∫

X

|ui(x)|p(x) + hi(x)p(x) dµ(x) 6 2−i.

We define

vk =
k∑

i=1

|ui|.

We find that ρk =
∑k
i=1 hi is a weak upper gradient of vk . For every l > m we

find that

‖vl − vm‖p(·) 6
l∑

i=m+1

‖ui‖p(·) 6 2−m

and

‖ρl − ρm‖p(·) 6
l∑

i=m+1

‖hi‖p(·) 6 2−m

and therefore the sequences (vk)∞k=1 and (ρk)∞k=1 are Cauchy sequences in the
Banach space Lp(·)(X). So (ρk) converges to a function ρ in Lp(·)(X), which we
may assume to be Borel. Since the sequence (vk(x)) is non-negative and increasing
for every x ∈ X the limit v(x) = limk→∞ vk(x) (possibly +∞) exists for every
x ∈ X and v ∈ Lp(·)(X). For x ∈ E we see that vk(x) > k for every k and thus

E ⊂ E∞ =
{
x ∈ X: lim

k→∞
vk(x) =∞}.

Therefore it suffices to show that Mp(·)(ΓE∞) = 0.
Lemma 3.1 gives a subsequence of (ρk), denoted again by (ρk), such that

there is an exceptional family Γ1 and

lim
k→∞

∫

γ

|ρk − ρ| ds = 0 (3.3)
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for every rectifiable curve γ 6∈ Γ1 . Let Γ2 be the family of all curves γ such
that

∫
γ
v ds = ∞ and Γ3 the family of curves γ with

∫
γ
ρ ds = ∞ . Since v/i is

admissible for Γ2 and every i = 1, 2, . . . and since v ∈ Lp(·)(Rn), we find that

Mp(·)(Γ2) 6
∫

X

(v(x)
i

)p(x)
dx 6

‖v‖p(·)
i

for all i > ‖v‖p(·) , by [21, (2.11)]. Therefore Mp(·)(Γ2) = 0 and similarly
Mp(·)(Γ3) = 0. Let Γ4,i be the exceptional family of curves from the definition
of ui . By subadditivity we obtain that Mp(·)(Γ4) = Mp(·)(

⋃
Γ4,i) = 0. This yields

that Mp(·)(Γ∗) = 0, where Γ∗ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 .
To complete the proof we show that ΓE∞ ⊂ Γ∗ . Suppose that γ /∈ Γ∗ . Since

γ /∈ Γ2 there is y ∈ |γ| with v(y) <∞ . For any point x ∈ |γ| we find since γ /∈ Γ4

that

|vi(x)| 6 |vi(y)|+ |vi(x)− vi(y)| 6 |vi(y)|+
∫

γ

ρi ds.

Taking the limit as i→∞ in this inequality gives, using (3.3) and γ /∈ Γ1 for the
inequality, that

v(x) = lim
i→∞

|vi(x)| 6 lim
i→∞

|vi(y)|+
∫

γ

ρ ds.

Since γ /∈ Γ3 and v(y) < ∞ , the right-hand-side is finite. Hence v(x) < ∞ for
all x ∈ |γ| , which implies that γ /∈ ΓE∞ . Thus ΓE∞ ⊂ Γ∗ , which completes the
proof.

Theorem 3.4. If p+ <∞ , then N1,p(·)(X) is a Banach space.

Proof. Let ui be a Cauchy sequence in N1,p(·)(X). Passing to a subsequence if
necessary we assume that

‖ui+1 − ui‖N1,p(·)(X) < 2−2i.

Let ρ′i be a weak upper gradient of 2i|ui+1 − ui| such that

2i‖ui+1 − ui‖p(·) + ‖ρ′i‖p(·) < 2−i.

Let Ei = {x ∈ X : |ui+1(x)− ui(x)| > 2−i} . Then 2i|ui+1 − ui| ∈ N1,p(·)(X) and
2i|ui+1 − ui| > 1 in Ei . Hence we obtain, using 2i|ui+1 − ui| as a test function
for the capacity,

cp(·)(Ei) 6 %p(·)(2i|ui+1 − ui|) + %p(·)(ρ′i) 6 2i‖ui+1 − ui‖p(·) + ‖ρ′i‖p(·) 6 2−i.

Let Fj =
⋃∞
i=j Ei and F = ∩j∈NFj . Then we get cp(·)(Fj) 6

∑∞
i=j cp(·)(Ei) 6

2−j+1 and cp(·)(F ) = 0. For x ∈ X \ F the sequence ui(x) is a Cauchy sequence
in R and we set u(x) = limi→∞ ui(x).
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Next we show that u has a weak upper gradient. Let g1 be a weak p(·)-inte-
grable upper gradient of u1 and let gi+1 that a weak upper gradient of ui+1 − ui
with ‖gi‖p(·) 6 2−2i for i = 1, 2, . . . . Define ρi = g1 + . . . + gi and note that ρi
is a weak upper gradient of ui . Since (ρi) is a Cauchy sequence it converges to
a function ρ in Lp(·)(X). Passing to a subsequence, if necessary, we obtain by
Lemma 3.1 that

lim
i→∞

∫

γ

ρi ds =
∫

γ

ρ ds

except for γ in a family of curves Γ of zero p(·)-modulus. By Lemma 3.2, the
modulus of ΓF is zero. Hence we obtain for every rectifiable γ /∈ Γ ∪ ΓF joining
x, y ∈ X that

|u(x)− u(y)| = lim
i→∞

|ui(x)− ui(y)| 6 lim
i→∞

∫

γ

ρi ds =
∫

γ

ρ ds.

The first equality follows since x, y 6∈ F , as they lie on a curve not in ΓF . Thus
we have shown that ρ is a weak upper gradient of u .

Now we have only to prove that ui → u in Lp(·)(X). For every k ∈ N we
have

‖u− uk‖p(·) 6
∞∑

i=k

‖ui+1 − ui‖p(·) 6
∞∑

i=k

2−2i 6 41−k.

This completes the proof of Theorem 3.4.

3.2. Density of Lipschitz continuous functions. Next we study when Lip-
schitz functions are dense in the Newtonian space. For this result we need to
assume that the Hardy-Littlewood maximal operator is locally bounded from
Lp(·)(X)→ Lp(·)(X). For a summary of what is known about this, see Section 2.3.

We say that X supports a (1, 1)-Poincaré inequality if there exists a constant
C > 0 such that for all open balls B in X and all pairs of functions u and ρ
defined on B the inequality

–
∫

B

|u− uB | dµ 6 C diam(B) –
∫

B

ρ dµ

holds whenever ρ is an upper gradient of u on B and u in integrable on B the
inequality. The proof of the next theorem follows that of [29, Theorem 4.1].

Theorem 3.5. Let X be a doubling space that supports a (1, 1) -Poincaré inequ-
ality. Assume that p+ <∞ and the Hardy-Littlewood maximal operator is boun-
ded from Lp(·)(X)→ Lp(·)(X) . Then Lipschitz continuous functions are dense in
N1,p(·)(X) .

Proof. It is easy to see by a truncation argument that bounded functions are
dense in N1,p(·)(X) (e.g. [29, Lemma 4.3]). Hence it suffices to consider the case
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of bounded u ∈ N1,p(·)(X), say |u(x)| < u0 . Let ρ ∈ Lp(·)(Rn) be a weak upper
gradient of u . We set

Eλ = {x ∈ X : Mρ(x) > λ}.
Note that Eλ is open since M is lower semi-continuous. If x ∈ X \ Eλ , then for
all r > 0 and for balls B = B(x, r) we have

–
∫

B

|u− uB | dµ 6 cr –
∫

B

ρ dµ 6 crMρ(x) 6 crλ.

Hence for s ∈ [ r2 , r] and x ∈ X \ Eλ the doubling property implies that

|uB(x,s) − uB(x,r)| 6 –
∫

B(x,s)
|u− uB(x,r)| dµ

6 µ(B(x, r))
µ(B(x, s))

–
∫

B(x,r)
|u− uB(x,r)| dµ

6 crλ.

Using this inequality for r = r0, r0/2, r0/4, . . . we find that

|uB(x,s) − uB(x,r)| 6 |uB(x,s) − uB(x,2−ir)|+
i∑

j=1

|uB(x,2−jr) − uB(x,21−jr)|

6 (2−ir + 21−ir + . . .+ r)λ 6 crλ,

where i is the largest integer for which s 6 2−ir . Hence any sequence (uB(x,ri)),
ri → 0, is a Cauchy sequence in R . Therefore on X \ Eλ we can define

uλ(x) = lim
r→0

uB(x,r).

Since µ -almost every point is a Lebesgue point for every function in L1
loc(X) we

note that u(x) = uλ(x) for µ -almost every x ∈ X \Eλ . For x, y ∈ X we define a
chain of balls (Bi)i∈Z\{0} by setting

B1 = B(x, d(x, y)) and B−1 = B(y, d(x, y))

and inductively

Bi =
1
2
Bi−1 (for i > 1) and B−i =

1
2
B−i+1 (for i < −1).

We calculate by the doubling property and the (1, 1)-Poincaré inequality that

µ(B1)|uB1 − uB−1 | 6 µ(B1)|uB1 − u2B1 |+ µ(B1)|u2B1 − uB−1 |

6
∫

B1

|u− u2B1 | dµ+
µ(B1)
µ(B−1)

∫

B−1

|u− u2B1 | dµ

6
∫

2B1

|u− u2B1 | dµ+
µ(2B−1)
µ(B−1)

∫

2B1

|u− u2B1 | dµ

6 C diam(B1)
∫

2B1

ρ dµ.
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Dividing by µ(B1) and using the doubling property we get

|uB1 − uB−1 | 6 c d(x, y)Mρ(x) 6 c d(x, y)λ.

If x, y ∈ X \ Eλ , then they are Lebesgue points also of uλ and hence

|uλ(x)− uλ(y)| 6
∞∑

i=1

|uBi+1 − uBi |+ |uB1 − uB−1 |+
∞∑

i=1

|uB−i−1 − uB−i |

6 cλd(x, y).

Hence uλ is cλ-Lipschitz in X \Eλ . We extend uλ as a Lipschitz function to all
of X by McShane extension, [22], setting

uλ(x) = inf
y∈X\Eλ

{uλ(y) + cλd(x, y)}.

We may assume that the extension is bounded by u0 . This can be done by trun-
cation. Then we easily see that uλ → u in Lp(·)(X).

Non-zero values of u− uλ are obtained only at points in Eλ and on a set L
whose measure is zero. Since Eλ is open and u−uλ is zero µ -almost everywhere in
the complement of Eλ , we may assume by [29, Lemma 4.3] that the upper gradient
of u − uλ is zero in X \ Eλ . Notice that λχEλ ∈ Lp(·)(X) by the definition of
λ since Mu is in Lp(·)(X). Therefore we find that the function (cλ+ ρ)χEλ is a
weak upper gradient of u− uλ . Hence u− uλ is in N1,p(·)(X) and therefore so is
uλ . We obtain

∫

X

|(cλ+ ρ(x))χEλ(x)|p(x) dµ(x) =
∫

Eλ

|cλ+ ρ(x)|p(x) dµ(x)

6 C

∫

Eλ

|ρ(x)|p(x) + |λ|p(x) dµ(x)

6 C

∫

Eλ

|u(x)|p(x) + [Mρ(x)]p(x) dµ(x).

Since both ρ and Mρ belong to Lp(·)(X), the right hand side converges to zero
as λ→∞ . Hence the sequence uλ converges to u in N1,p(·)(X).

Remark 3.6. It is easy to see that the approximating functions constructed in
the previous theorem has the additional property of being non-negative whenever
the function itself is.

4. Equivalence of function spaces

In this section we study when Haj lasz, Newtonian and classical Sobolev spaces
agree. We will see that, roughly speaking, Haj lasz space agrees with Sobolev space
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if the maximal operator is bounded, whereas the Newtonian space agrees with So-
bolev space if differentiable functions are dense. This reflects the fact that the bo-
undedness of the maximal function is somehow built into the definition of Haj lasz
space, as the density of differentiable functions is into Newtonian space. For what
is known about when these conditions hold, see Sections 2.3 and 2.4.

Throughout this section we restrict our attention to exponents p : X →
(1,∞) not taking the value 1. We say that a p(·)-integrable function u belongs
to Haj lasz space M1,p(·)(X, d, µ) = M1,p(·)(X) if there exists a non-negative g ∈
Lp(·)(X) such that

|u(x)− u(y)| 6 d(x, y) (g(x) + g(y))

for µ -almost every x, y ∈ X . The function g is called a Haj lasz gradient of u . We
equip M1,p(·)(X) with the norm

‖u‖M1,p(·)(X) = ‖u‖p(·) + inf ‖g‖p(·),
where the infimum is taken over all Haj lasz gradients of u . Following the argu-
ments in [12] it is easy to prove that M1,p(·)(X) is a Banach space and Lipschitz
continuous functions are dense, provided that p+ <∞ .

Proposition 4.1. We have M1,p(·)(Rn) ⊂ W 1,p(·)(Rn) . If the maximal operator
is bounded from Lp(·)(Rn) to itself, then M1,p(·)(Rn) = W 1,p(·)(Rn) .

Proof. Fix first u ∈M1,p(·)(Rn) and let g ∈ Lp(·)(Rn) be a nonnegative function
such that

|u(x)− u(y)| 6 |x− y|(g(x) + g(y))

for almost every x, y ∈ X . We know that g ∈ L1(B) in every ball B and hence by
[13, Proposition 1] (or [18, Remark 5.13]) ∇u exists and satisfies |∇u| 6 C(n) g al-
most everywhere. Thus we obtain that |∇u| ∈ Lp(·)(Rn), and so u ∈W 1,p(·)(Rn),
since u ∈ Lp(·)(Rn) by definition.

To prove the second claim we fix u ∈ W 1,p(·)(Rn) and assume that M is
bounded. We find as in [12, Chapter 2] that

|u(x)− u(y)| 6 |x− y| (M|∇u|(x) + M|∇u|(y)) .

for almost every x, y ∈ Rn . Since the maximal operator M is bounded in Lp(·)(Rn),
we find that M|∇u| is a Haj lasz gradient of u in Lp(·)(Rn), and so u ∈M1,p(·)(Rn).

We give two alternative characterizations of the Haj lasz space. For this pur-
pose we introduce a fractional sharp maximal operator. For every locally integrable
function u we define

u#(x) = sup
r>0

1
r

–
∫

B(x,r)
|u(x)− uB(x,r)| dµ(x).

In the variable exponent setting the sharp maximal operator has been studied
by Diening and Růžička [6, 7]. The following theorem is a generalization of [14,
Theorem 3.4], and the proof given in that paper also works in our case.
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Theorem 4.2. If the Hardy-Littlewood maximal operator is bounded from
Lp(·)(X) to itself, then the following three statements are equivalent:

(i) u ∈M1,p(·)(X) ;
(ii) u ∈ Lp(·)(X) and there exists a non-negative g ∈ Lp(·)(X) such that

–
∫

B(x,r)
|u− uB(x,r)| dµ 6 cr –

∫

B(x,r)
g dµ

holds for every x ∈ X and r > 0 ;
(iii) u ∈ Lp(·)(X) and u# ∈ Lp(·)(X) .

Moreover, we have that

‖u‖M1,p(·)(X) ≈ ‖u‖p(·) + inf{‖g‖p(·) : g as in (ii)}
≈ ‖u‖p(·) + ‖u#‖p(·).

Theorem 4.3. Let Ω ⊂ Rn be an open set. We have N1,p(·)(Ω) ⊂ W 1,p(·)(Ω) .
If 1 < p− 6 p+ < ∞ and C1(Ω) is dense in W 1,p(·)(Ω) , then N1,p(·)(Ω) =
W 1,p(·)(Ω) .

Proof. Let u ∈ N1,p(·)(Rn). Then u is absolutely continuous on every curve
except a family of zero p(·)-modulus, and hence u has classical derivatives almost
everywhere. Denote by ρ a weak upper gradient of u .

Let Q = (−r, r)n for r > 0. We have that
∫

(−r,r)n−1

∫

(−r,r)
ρ(t, y) dt dHn−1(y)

6
∫

Q

ρ(x) dx 6 (1 + |Q|)
∫

Q

ρ(x)p(x) dx <∞,

which means that
∫

(−r,r) ρ(t, x) dt < ∞ except in a set Ek with mn−1(Ek) = 0.
For y 6∈ Ek H1 -almost every point in ((−r, y), (r, y)) is a Lebesgue point. Thus
for almost every point in Q we have

lim
t→0

–
∫

[y,y+te1]
ρ ds = ρ(y),

where [z, w] denotes the line segment joining z and w . On the other hand we
have

1
|t| |u(y)− u(y + te1)| 6 –

∫

[y,y+te1]
ρ ds,

Since u is differentiable almost everywhere, this implies that |∂1u(x)| 6 ρ(x)
almost everywhere in Q . Letting r → ∞ and using the subadditivity we derive
the same claim in all of Rn . Finally the same argument applies in directions
e2, . . . , en as well, so we get |∇u(x)| 6 √nρ(x) for almost every x . Therefore
|∇u| ∈ Lp(·)(Rn) and so u ∈W 1,p(·)(Rn).
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To prove the inclusion W 1,p(·)(Ω) ⊂ N1,p(·)(Ω) we need to show that every
function in W 1,p(·)(Ω) has a weak upper gradient. But it follows as in [16, The-
orem 4.2] that the distributional gradient is an upper gradient in Rn . From this
it follows that the same claim holds in Ω ⊂ Rn using the argument of [16, The-
orem 4.6].

Finally we prove relations between Haj lasz and Newtonian spaces. The fol-
lowing theorem is a generalization of [29, Lemma 4.8].

Theorem 4.4. Let p+ < ∞ . Then M1,p(·)(X) ⊂ N1,p(·)(X) and ‖u‖N1,p(·) 6
C‖u‖M1,p(·) . If X supports a (1, 1) -Poincaré inequality and if the Hardy-Littlewood
maximal operator is bounded from Lp(·)(X) to itself, then we have M1,p(·)(X) =
N1,p(·)(X) and the norms are comparable.

Proof. Let u ∈ M1,p(·)(X). If u is continuous, we find as in [29, Lemma 4.7]
that 4g is an upper gradient for u , where g is the Haj lasz gradient of u . Since
continuous functions are dense in M1,p(·)(X), we can approximate u ∈M1,p(·)(X)
with continuous functions ui . Since ui → u , gi → gu , and N1,p(·)(X) is a Banach
space by Theorem 3.4, we find that 4g is an upper gradient of u .

Next let u ∈ N1,p(·)(X), and let ρ be a weak upper gradient of u . Since
by the definition ρ ∈ Lp(·)(X), ρ is non-negative and X supports (1, 1)-Poincaré
inequality, the inclusion M1,p(·)(X) ⊃ N1,p(·)(X) follows by Theorem 4.2. This
completes the proof.
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[28] S. Samko, Denseness of C∞0 (Rn) in the generalized Sobolev spaces
Wm,p(x)(Rn), pp. 333–342 in Direct and inverse problems of mathematical
physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad.
Publ., Dordrecht, 2000.

[29] N. Shanmugalingam, Newtonian spaces, An extension of Sobolev spaces to
metric measure space, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279.

[30] I. Sharapudinov, On the topology of the space Lp(t)([0; 1]), Math. Notes 26
(1979), no. 3–4, 796–806. [translation of Mat. Zametki 26 (1978), no. 4,
613–632.]

Addresses: Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of
Helsinki, Finland
Research group home-page: http://www.math.helsinki.fi/analysis/varsobgroup/

E-mail: petteri.harjulehto@helsinki.fi; peter.hasto@helsinki.fi
Received: 21 December 2004; revised: 15 April 2005


