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Abstract: The length L(P ) of a polynomial P is the sum of the absolute values of the coef-
ficients. For P ∈ R[x] the properties of l(P ) are studied, where l(P ) is the infimum of L(PG)
for G running through monic polynomials over R .
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We shall consider only polynomials with real coefficients. For such a polyno-

mial P =
d∑
i=0

aix
d−i the length L(P ) is defined by the formula

L(P ) =
d∑

i=0

|ai| .

A. Dubickas [1] has introduced the reduced length by the formula

l̂ (P ) = inf
G∈Γ̂

L(PG),

where

Γ̂ =

{
n∑

i=0

bix
n−i ∈ R[x], where b0 = 1 or bn = 1

}
.

It follows, see [1], p. 3, that

l̂ (P ) = min {l0(P ), l0 (P ∗)} ,
where

l0(P ) = inf
G∈Γ0

L(PG), Γ0 =

{
n∑

i=0

bix
n−i ∈ R[x], bn=1

}
, P ∗=xdegPP

(
x−1) .

2001 Mathematics Subject Classification: 12D99, 26C99.



272 Andrzej Schinzel

Since polynomials with the leading coefficient 1 have a name (monic) and polyno-
mials with the constant term 1 have no name, I prefer to work with

l(P ) = l0 (P ∗) = inf
G∈Γ

L(PG), Γ =

{
n∑

i=0

bix
n−i ∈ R[x], b0 =1

}

Dubickas’s results about l0 translated in the language of l give the following

Proposition A. (Dubickas [1]) Suppose that ω, η, ψ ∈ R , ν ∈ C , ν is the complex
conjugate to ν , |ω| > 1 , |η| < 1 , |ν| < 1 , then for every Q ∈ R[x]

(i) l(ψQ) = |ψ|l(Q) ,
(ii) l(x+ ω) = 1 + |ω| ,

(iii) if T (x) = Q(x)(x− η) , then l(T ) = l(Q) ,
(iv) if T (x) = Q(x)(x− ν)(x− ν) , then l(T ) = l(Q) .

We shall prove the following

Proposition. For all monic polynomials P,Q in R[x] and all positive integers k
(i) max{l(P ), l(Q)} 6 l(PQ) 6 l(P )l(Q) ,
(ii) M(P ) 6 l(P ) , where M is the Mahler measure,

(iii) l(P (−x)) = l(P (x)) ,
(iv) l(P (xk)) = l(P (x)) .

Theorem 1. If P ∈ R[x] is monic of degree d with P (0) 6= 0 , then l(P ) =
inf

Q∈Sd(P )
L(Q) , where Sd(P ) is the set of all monic polynomials Q over R divisible

by P with Q(0) 6= 0 and with at most d + 1 non-zero coefficients, all belonging
to the field K(P ) , generated by the coefficients of P .

Theorem 2. If P ∈ R[x] has all zeros outside the unit circle, then l(P ) is attained
and effectively computable, moreover l(P ) ∈ K(P ) ( l(P ) is attained means that
l(P ) = L(Q) , where Q/P ∈ Γ).

Corollary 1. If P ∈ R[x] has no zeros on the unit circle, then l(P ) is effectively
computable.

Theorem 3. Let P,Q ∈ R[x] , Q be monic and have all zeros on the unit circle.
Then for all m ∈ N

l (PQm) = l(PQ).

Theorem 4. If P ∈ R[x] is monic and has all zeros on the unit circle, then
l̂ (P ) = l(P ) = 2 , with l(P ) attained, if and only if all zeros are roots of unity and
simple.

Theorem 5. Let P (x) = P0(x)(x− ε)e , where P0 ∈ R[x] , ε = ±1 , e ∈ N and all
zeros of P0 are outside the unit circle. Assume that the set Z of zeros of P0 has
a subset Z0 , possibly empty, such that its elements are real of the same sign and
the elements of Z rZ0 are algebraically independent over Q(Z0) . Then l(P ) can
be effectively computed. Moreover, if degP0 = d0 , then

l(P ) 6 inf
Q∈Sd0 (P0)

{
L(Q) +

∣∣Q(ε)
∣∣
}
.
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For quadratic polynomials P Theorems 2, 4 and 5 together with Propo-
sition A (iii) and (iv) exhaust all possibilities, so that l(P ) can be effectively
computed. A more precise information is given by the following

Theorem 6. If P (x) = (x− α)(x− β) , where |α| > |β| > 1 , then

l(P ) > 2|α|

with the equality attained, if and only if |β| = 1 .

Corollary 2. If P ∈ R[x] is of degree at most two with no zeros inside the unit
circle, then

l(P ) ∈ K(P ).

Corollary 3. If P (x) = (x− α)(x− β) , where |α| > |β| > 0 , then

l̂ (P ) =





|αβ|, if |β| > 1,
2|α|, if |β| = 1,
|α|+ min {1, |αβ|} , if |α| > 1 > |β|,
2, if |α| = 1,
1, if |α| < 1.

Corollary 4. The function l̂ is not submultiplicative.

The last corollary is of interest, because of Proposition, part (i).
The problem of computing l(P ) for cubic polynomials remains open already

for P = 2x3 + 3x2 + 4. Another open question is whether l(P ) ∈ K(P ) for all
P ∈ R[x] with no zeros inside the unit circle.

We begin with

Proof of Proposition. We have by definition for all monic polynomials R,S in
R[x]

l(P ) 6 L(PQR), l(PQ) 6 L(PQRS) 6 L(PR)L(QS)

hence
l(P ) 6 inf

R∈Γ
L(PQR) = l(PQ),

l(PQ) 6 inf
R∈Γ

L(PR) inf
S∈Γ

L(QS) = l(P )l(Q).

This proves (i). As to (ii) we have for every R in R[x]

M(R) 6 L(R)

(see [4]), hence
M(P ) 6 M(PQ) 6 L(PQ),

thus
M(P ) 6 inf

Q∈Γ
L(PQ) = l(P )
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and (ii) holds. The statement (iii) follows from

L
(
P (−x)

)
6 L

(
P (−x)Q(−x)(−1)degQ

)
= L(PQ),

whence

l

(
P (−x)

)
6 inf
Q∈Γ

L(PQ) = l(P ).

Similarly,

l

(
P
(
xk
))

6 L

(
P
(
xk
)
Q
(
xk
))

= L(PQ),

whence

l

(
P
(
xk
))

6 inf
Q∈Γ

L(PQ) = l(P ). (1)

Finally, if

P
(
xk
)
Q(x) =

k−1∑

i=0

xiAi
(
xk
)
, where Ai ∈ R[x], (2)

let Ai = QiP +Ri , where Qi, Ri ∈ R[x] and degRi < degP . It follows that

P
(
xk
) |

k−1∑

i=0

xiRi
(
xk
)

and since the degree of the sum is less than that of P
(
xk
)

, Ri = 0 (0 6 i < k).
Let i be chosen so that deg xiAi

(
xk
)

is the greatest. It follows from (2) that Qi
is monic. Hence, by (2)

L

(
P
(
xk
)
Q(x)

)
> L (Ai) = L (PQi) > l(P ),

thus l(P (xk)) > l(P ), which together with (1) implies (iv).

Remark. The above proof of (iv), simpler than author’s original proof, has been
kindly suggested by A. Dubickas.

For the proof of Theorem 2 we need two lemmas

Lemma 1. Let k > n , xxx = (x1, . . . , xn) , Li(xxx) for i 6 k be linear forms over
R; L1, . . . , Ln linearly independent, ai ∈ R (1 6 i 6 k) . Then

S(xxx) =
k∑

i=1

|Li(xxx) + ai|

attains its infimum.
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Proof. Let Li(xxx) =
n∑
j=1

aijxj (1 6 i 6 k), A = max
i,j6n

|aij | ,

D =
∣∣∣det (aij)i,j6n

∣∣∣ , s =
k∑

i=1

|ai| .

Let s0 be the infimum of S(xxx) in the hypercube (degenerated if s = 0)

H : max
16i6n

|xi| 6 2n
n−1

2 sAn−1

D
.

Since H is compact, there exists xxx0 ∈ H such S(xxx0) = s0 . We shall show that
s0 = inf

xxx∈Rn
S(xxx). Indeed, if for some xxx1 ∈ Rn

S (xxx1) < s0, (3)

then
n∑

i=1

|Li (xxx1)| < s0 + s 6 2s.

Solving the system Li(xxx) = Li(xxx1) (1 6 i 6 n) by means of Cramer’s formulae
and using Hadamard’s inequality to estimate the relevant determinants we obtain

max
16i6n

|x1i| < 2n
n−1

2 sAn−1

D
,

hence xxx1 ∈ H , a contradiction with (3) and the definition of s0 .

Lemma 2. Let k > n , xxx ∈ Rn , K be a subfield of R , L1(xxx), . . . , Lk(xxx) be
linear forms over K , n of them linearly independent, ai ∈ K . There exists a

point xxx0 ∈ Kn in which S(xxx) =
k∑
i=1
|Li(xxx) +ai| attains its infimum over Rn and

Li(xxx0) + ai = 0 , for n indices i = i1, i2, . . . , in such that Li1 , Li2 , . . . , Lin are
linearly independent.

Proof by induction on kkk . If k = 1 we have n = 1 and the assertion is trivial.
Assume it is true for k − 1 forms and consider the case of k forms, k > 2.
If one of them, say Lk is identically 0, then among L1, . . . , Lk−1 there are n
linearly independent, hence k − 1 > n and applying the inductive assumption
to L1, . . . , Lk−1 we obtain the assertion. Therefore, we assume that all forms
L1, . . . , Lk are non-zero. Suppose that inf S(xxx) = S(xxx1) and Li(xxx1) + ai 6= 0 for
all i 6 k . Then there is an ε > 0 such that |xxx − xxx1| < ε implies sgn (Li(xxx) +
ai) =: εi for all i 6 k . We have

S(xxx) =
k∑

i=1

εi (Li(xxx) + ai) = M (xxx − xxx1) + S (xxx1) ,
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where

M(xxx) =
k∑

i=1

εiLi(xxx).

If M 6= 0, then there exists a point xxx0 with |xxx0| < ε and M(xxx) < 0, hence
taking xxx2 = xxx1 + xxx0 we obtain S(xxx2) < S(xxx1), a contradiction. Thus either
Li1(xxx1) + ai1 = 0 for a certain i1 , or M = 0. In the latter case we take the
point xxx2 nearest to xxx1 (or one of these) with Li2(xxx2) + ai2 = 0 for a cer-
tain i2 . Since the hyperplanes Li(x) + ai = 0 either are disjoint with the ball
|xxx − xxx1| 6 |xxx2− xxx1| , or are tangent to it, taking 〈xxx3, i3〉 equal either to 〈xxx1, i1〉
or to 〈xxx2, i2〉 we obtain S(xxx3) = S(xxx1) and Li3(xxx3) + ai3 = 0. Without loss of
generality we may assume that i3 = k and Lk is of positive degree in xn . The
equation Lk(xxx) + ak = 0 is equivalent to xn = C(x1, . . . , xn−1) + c , where C is
a linear form over K and c ∈ K . We now apply the inductive assumption to the
forms L′i = Li(x1, . . . , xn−1, C(x1, . . . , xn−1)) and numbers a′i = ai+Li(0, . . . , 0, c)
(1 6 i 6 k− 1). By virtue of the theorem about the rank of the product of matri-
ces, the number of linearly independent among forms L′i is n−1. By the inductive

assumption there exists a point xxx ′0 ∈ Kn−1 such that
k−1∑
i=1
|L′i(xxx ′) + a′i| = S′(xxx ′)

attains at xxx ′0 its infimum over Rn−1 and L′i(xxx
′
0) + a′i = 0 for n − 1 indices

i = i′1, . . . , i
′
n−1 such that L′i′1 , . . . , L

′
i′
n−1

are linearly independent. By the defini-

tion of L′i and a′i we have

S (xxx3) = S′ (x3,1, . . . , x3,n−1) > inf
xxx ′∈Rn−1

S′(xxx ′) > inf
xxx∈Rn

S(xxx) = S (xxx3) ,

hence
S′(xxx ′0) = inf

xxx ′∈Rn−1
S′(xxx ′) = inf

xxx∈Rn
S(xxx).

Moreover, L′i′
j
(xxx ′0) + a′i′

j
= 0 implies

L′i′
j

(
x′0 1, . . . , x

′
0n−1, C (xxx ′0)

)
+ aij = 0

and the linear independence of L′i′1 , . . . , L
′
i′
n−1

implies the linear independence of
the forms Li′1 , . . . , Li′n−1

. The latter forms are also linearly independent with Lk
since identity

L1 (x1, . . . , xn) =
n−1∑

j=1

cjLi′
j

(x1, . . . , xn) , cj ∈ R

gives on substitution xn = C(x1, . . . , xn−1)

0 =
n−1∑

j=1

cjL
′
ij (x1, . . . , xn) , hence cj = 0 (1 6 j < n).

Taking xxx0 = (x′0 1, . . . , x
′
0n−1, C(x′0)), ij = i′j (1 6 j < n), in = k we obtain the

inductive assertion.
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Proof of Theorem 1. We have by definition

l(P ) = inf L(PG),

where G runs through all monic polynomials. Let P = xd +
d∑
i=1

aix
d−i , G =

xn +
n∑
i=1

xix
n−i . We have

PG = xn+d +
n+d∑

i=1

bix
n+d−i,

where, with a0 = 1 for i 6 d

bi = ai +
min{i,n}∑

j=1

ai−jxj ,

for i > d

bi =
min{i,n}∑

j=i−d
ai−jxj .

Therefore,

l(P ) = 1 + inf
n,xxx∈Rn

{
d∑

i=1

|Li(xxx) + ai|+
d+n∑

i=d+1

|Li(xxx)|
}
,

where

Li(xxx) =
min{i,n}∑

j=max{1,i−d}
ai−jxj .

The forms Li satisfy the assumptions of Lemma 2. Indeed, the n forms Ld+1, . . . ,
Ld+n are linearly independent, since Ld+1(xxx) = . . . = Ld+n(xxx) = 0 gives PG ≡
0(modxn), hence G ≡ 0(modxn), i.e. x1 = . . . = xn = 0. Applying Lemma 2
and Proposition A (iii) with η = 0 we obtain that for a given n , PG with the
minimal length occurs in Sd(P ).

For the proof of Theorem 2 we need

Definition 1. Let P =
r∏
s=1

(x−αs)ms , where αs are distinct and non-zero, ms ∈
N (1 6 s 6 r), m1 + . . . + mr = d , n0 > n1 > . . . > nd−1 > nd > 0 be
integers. If s > 1, 1 6 i 6 d , 0 6 j 6 d , then i can be written in the form
i = m1 + . . .+ms−1 + g for some 1 6 s 6 r and 1 6 g 6 ms . We put

cij = αnjs

g−2∏

f=0

(nj − nf ) , where the empty product is 1

and for ν = 0, 1

C (P ;n0, . . . , nd) = (cij) 16i6d
06j6d

, Cν (P ;nν , . . . , nd−1+ν) = (cij) 16i6d
ν6j<d+ν

.
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Definition 2. Td(P ) =
{
Q ∈ Sd(P ) : Q = xn0 +

d∑
i=1

bix
ni , where n0 > n1

> . . . > nd = 0, |C0(P ;n0, . . . , nd−1)| 6= 0 6= |C1(P ;n1, . . . , nd)| , L(Q) 6 L(P )
}

.

Lemma 3. We have for xj ∈ C
d∑

j=0

xjx
nj ≡ 0(modP ) (41)

if and only if
d∑

j=0

cijxj = 0 (1 6 i 6 d). (42)

Proof. Clearly the condition (41 ) is equivalent to

d∑

j=0

xj

(
nj
g − 1

)
αnjs = 0(1 6 g 6 ms, 1 6 s 6 r),

that is to the vector equation
Mxxx = 0, (5)

where xxx = (x0, x1, . . . , xd)t , M = (mij) 16i6d
06j6d

and if i = m1 + . . . + ms−1 + g ,

1 6 g 6 ms , then

mij =
(

nj
g − 1

)
αnjs . (6)

Now define the numbers bgh by the equation

g−2∏

f=0

(x− nf ) =
g∑

h=1

bgh

(
x

h− 1

)
(7)

and put for i = m1 + . . .+ms−1 + g , 1 6 g 6 ms , 1 6 j 6 d

aij =
{
bgh if j = m1 + . . .+ms−1 + h, 1 6 h 6 g,
0 otherwise,

(8)

A = (aij)16i,j6d . (9)

The matrix A is lower triangular and non-singular, since bgg = (g − 1)! . Hence
the equation (5) is equivalent to

AMxxx = 0. (10)

However, by (6)–(9) the element in i-th row (1 6 i 6 d) and j -th column
(0 6 j 6 d) of AM for i = m1 + . . .+ms−1 + g , 1 6 g 6 ms is

d∑
t=1

aitmtj =
g∑

h=1

bgh

(
nj
h− 1

)
αnjs = αnjs

g−2∏

f=0

(nj − nf ) = cij ,

hence (41 ) is equivalent to (42 ).
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Lemma 4. We have inf
Q∈Sd(P )

L(Q) = inf
Q∈Td(P )

L(Q) .

Proof. Let P be as in Definition 1. We shall prove by induction with respect to
n that

inf
Q∈Sd(P )

degQ6n+d

L(Q) = inf
Q∈Td(P )

degQ6n+d

L(Q). (11)

If n = 0 then Q ∈ Sd(P ), degQ 6 n + d implies Q = P . We shall show that

P ∈ Td(P ). Otherwise P = xn0 +
d∑
i=1

aix
ni (ni = d− i) and either |C0(P ;n0, . . . ,

nd−1)| = 0, or |C1(P ;n1, . . . , nd)| = 0. In the former case there exists [d0, . . . ,
dd−1] ∈ Cd r {0} such that

d−1∑

j=0

cijdj = 0 (1 6 i 6 d). (12)

By Lemma 3
d−1∑

j=0

djx
nj ≡ 0(modP ) (13)

and, since n0 = d ,
d−1∑
j=0

djx
nj = d0P ; d0 6= 0, P (0) = 0, a contradiction. In the

latter case, similarly, there exists [e1, . . . , ed] ∈ Cd r {0} such that

d∑

j=1

cijej = 0 (1 6 i 6 d). (14)

By Lemma 3
d∑

j=1

ejx
nj ≡ 0(modP ), (15)

which is impossible since n1 < n0 = d = degP .
Assume now that the equality (11) holds with n replaced by n − 1 and

suppose that

inf
Q∈Sd(P )

degQ6n+d

L(Q) = L (Q0) ,where Q0 = xn0 +
d∑

j=1

bjx
nj ∈ K(P )[x],

n0 > n1 > . . . > nd > 0.

(16)

Clearly L(Q0) 6 L(P ).
If n0 < n+d the inductive assertion follows immediately from the inductive

assumption. If n0 = n + d , let Li(x) be the linear forms defined in the proof of
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Theorem 1 and ai have the meaning of that proof, if i 6 d , ai = 0 otherwise. We
have

L (Q0) = inf
xxx∈Rn

n+d∑

i=1

|Li(xxx) + ai| ,

hence, by Lemma 2, the above infimum is attained in a point xxx0 , such that for n
indices i1, . . . , in simultaneously Lij (xxx0) + aij = 0 and Li1 , . . . , Lin are linearly
independent. Since the system of equations Lij (xxx0) + aij = 0 (1 6 j 6 n)
determines xxx0 uniquely the coefficients of xn+d−i in Q , where i 6= i1, . . . , in
(hence n+ d− i = n1, n2, . . . , nd ) are uniquely determined by the condition Q ≡
0(modP ), Q monic in C[x] . On the other hand, if |C0(P ;n0, . . . , nd−1)| = 0,
then there exists [d0, . . . , dd−1] ∈ Cd r {0} such that (12) and (13) hold again. If
d0 = 0, then

Q1 := Q0 +
d−1∑

i=1

djx
nj ≡ 0(modP ),

where the Q1 is again monic, contrary to the uniqueness property. If d0 6= 0, then
by the uniqueness property

Q0 = d−1
0

d−1∑

j=1

djx
nj = xnd−1Q2, Q2 ∈ K(P )[x],

hence
L (Q0) = L (Q2) , degQ2 < n+ d

and, by the inductive assumption

L (Q0) = inf
Q∈Sd(P )

degQ<n+d

L(Q) = inf
Q∈Td(P )

degQ<n+d

L(Q) > inf
Q∈Td(P )

degQ6n+d

L(Q).

By (16) this gives (11).
If |C1(P ;n1, . . . , nd)| = 0, then there exists [e1, . . . , ed] ∈ Cdr{0} such that

(14) and (15) hold again. We have

Q3 := Q0 +
d∑

j=1

ejx
nj ≡ 0(modP )

and Q3 is again monic, contrary to the uniqueness property.
In the remaining case

|C0 (P ;n0, . . . , nd−1)| 6= 0 6= |C1 (P ;n1, . . . , nd)|

we have Q0 ∈ Td(P ), hence (11) holds again.
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Lemma 5. Let in the notation of Definition 1, i = m1 + . . . + ms(i)−1 + g(i) ,
1 6 g(i) 6 ms(i) . Then for every j > h > g(i)− 1

|cij | 6 |cih|max

{
1,

g(i)− 1
log
∣∣αs(i)

∣∣

}g(i)−1

. (17)

Proof. For the sake of brevity, put s(i) = s , g(i) = g . For g = 1 we have
|cij | = |αnjs | 6 |αnhs | = |cih| . Assume g > 1. For every f 6 g − 2 the function

ϕ(x) = max
{

1,
g − 1

log |αs|
}
|αs|

nh−x
g−1 − nf − x

nf − nh
satisfies ϕ(nh) > 0, ϕ′(x) 6 0 for x 6 nh . Hence ϕ(nj) > 0,

max
{

1,
g − 1

log |αs|
}
|αs|

nh
g−1 (nf − nh) > |αs|

nj
g−1 (nf − nj)

and (17) follows on taking products over f from 0 to g − 2.

Lemma 6. Let a, b, c, x ∈ R , a > 1 , b > 0 , c > 0 , x > 0 . If

ax/xb 6 c, (18)

then

x 6
(

2b
e log a

+

√
b2

e2(log a)2 +
log c
log a

)2

=: ψ(a, b, c). (19)

The function ψ is decreasing in a , increasing in b and c .

Proof. Put x = y2 , y > 0. It follows from (18) that

y2 log a− 2b log y 6 log c

and, since log y 6 y/e

y2 log a− 2b
e
y 6 log c.

Solving this inequality for y and squaring we obtain (19).

Lemma 7. For every subset I of {1, . . . , d} of cardinality h we have

∣∣∣det (cij) i∈I
16j6h

∣∣∣ 6 h
h
2

∏

i∈I

∣∣αs(i)
∣∣nmax{1,g(i)−1}

g(i)−2∏

f=0

(nf − nh) (20)

and
∣∣∣det (cij) i∈I

06j<h

∣∣∣ 6 h
h
2

∏

i∈I

∣∣αs(i)
∣∣ng(i)−1

g(i)−2∏

f=0

(nf − nh−1) . (21)
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Proof. For all i ∈ I and j 6 g(i)− 2 we have cij = 0, while for j > g(i)− 2

|cij | =
∣∣αs(i)

∣∣nj
g(i)−2∏

f=0

(nf − nh) 6





∣∣αs(i)
∣∣nmax{1,g(i)−1}

g(i)−2∏
f=0

(nf − nh) if 1 6 j 6 h,

∣∣αs(i)
∣∣ng(i)−1

g(i)−2∏
f=0

(nf − nh−1) if 0 6 j < h,

hence (20) and (21) follow by Hadamard’s inequality. Note that if g(i) > h+ 1 or
g(i) > h for i ∈ I , then both sides of (20) or (21), respectively, are zero.

Definition 3. In the notation of Definition 1 and of Lemma 5 put for a posi-
tive integer h < d , positive integers e1, . . . , eh and a subset J of {1, . . . , d} of
cardinality h+ 1 such that max

i∈J
g(i) 6 h+ 1

D(J ; e1, . . . , eh) =

∣∣∣∣∣∣∣∣∣
det


α

h∑
µ=j+1

eµ

s(i)

g(i)−2∏

f=0

j∑

ν=f+1

eν




i∈J
06j6h

∣∣∣∣∣∣∣∣∣

×
∏

i∈J

∣∣αs(i)
∣∣
−

h∑
µ=max{2,g(i)}

eµ∏

i∈J

g(i)−2∏

f=0




h∑

ν=f+1

eν



−1

.

Definition 4. D(e1, . . . , eh) = maxD(J ; e1, . . . , eh), where the maximum is taken
over all subsets of {1, . . . , d} of cardinality h+ 1 such that max

i∈J
g(i) 6 h+ 1.

Remark. The definition is meaningful, since always there exists a subset J of
{1, . . . , d} with the required property. If for all i 6 d we have g(i) 6 h+ 1 this is
clear and if for some i0 : g(i0) > h+ 1 we take

J =
{
i : m1 + . . .+ms(i0)−1 < i 6 m1 + . . .+ms(i0)−1 + h+ 1

}
.

Proof of Theorem 2. Using the notation of Definition 1 we define the sequence
d1, . . . , dd inductively as follows.

d1 =
log
(
L(P )− 1

)

log |α1| (22)

and, if d1, . . . , dh (d > h > 1) are already defined, put

Dh+1 = (h+ 1)−1h
h
2 min {D (e1, . . . , eh) : 1 6 ei 6 di, D (e1, . . . , eh) > 0} (23)
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(the minimum over an empty set being ∞), m = max
16s6r

ms ,

dh+1 =





max

{
d1 + . . .+ dh,

ψ

(
|αr| ,m− 1,

(
max

{
2,

2(m− 1)
log |αr|

})m−1

D−1
h+1

(
L(P )− 1

)
)}

if Dh+1 6=∞,
0 otherwise.

(24)

We shall show that if Q ∈ Td(P ), Q = xn0 +
d∑
j=1

bjx
nj , then

nj−1 − nj 6 dj (1 6 j 6 d). (25)

We proceed by induction on j . Since Q ∈ Td(P ) the equation

αn0
1 +

d∑

j=1

bjα
nj
1 = 0

implies

|α1|n0 6 |α1|n1

d∑

j=1

|bj | 6 |α1|n1
(
L(Q)− 1

)
6 |α1|n1

(
L(P )− 1

)
,

which, in view of (22) gives (25) for j = 1. Assume now that (25) holds for all
j 6 h (h < d) and consider the matrix (cij) 16i6d

06j6h
for cij defined in Definition 1.

Since Q ∈ Td(P ) we have

rank (cij) 16i6d
06j6h

= h+ 1,

hence also
rank

(
cijα

−nh
s(i)

)
16i6d
06j6h

= h+ 1.

Therefore, there exists a subset J of {1, . . . , d} of cardinality h+ 1 such that

∆(J) = det
(
cijα

−nh
s(i)

)
i∈J

06j6h
6= 0. (26)

For every subset J with the above property consider

M(J) = max
i∈J

∣∣∣∣∣∣


ci0 +

h∑

j=1

cijbj


α−nhs(i)

∣∣∣∣∣∣
.
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Solving the system of equations


ci0x0 +

h∑

j=1

cijxj


α−nhs(i) =


ci0 +

h∑

j=1

cijbj


α−nhs(i) (i ∈ J)

by means of Cramer’s formulae and developing the numerator according to the
first column we obtain

1 6
(h+ 1)M(J) max

∣∣∣∣det
(
cijα

−nh
s(i)

)
i∈I

16j6h

∣∣∣∣
∣∣∆(J)

∣∣ ,

where the maximum is taken over all subsets I of J of cardinality h . Now, by
Lemma 7, since |αs(i)| > 1

max
∣∣∣∣det

(
cijα

−nh
s(i)

)
i∈I

16j6h

∣∣∣∣ > h
−h
2

∏

i∈J

∣∣αs(i)
∣∣nmax{1,g(i)−1}

g(i)−2∏

f=0

(nf − nh) .

This gives, by Definitions 3 and 4, for every J satisfying (26)

M(J) > (h+ 1)−1h−
h
2D (J ;n0 − n1, . . . , nh−1 − nh) > 0

and, since such J exist

max∗M(J) > (h+ 1)−1h−
h
2D (J ;n0 − n1, . . . , nh−1 − nh) <∞,

where max∗ is taken over all subsets J of {1, . . . , d} such that card J = h + 1
and max

i∈J
g(i) 6 h+ 1.

By the inductive assumption and (23)

max∗M(J) > Dh+1 > 0,

thus there exists a set J0 ⊂ {1, . . . , d} such that

card J0 = h+ 1, max
i∈J0

g(i) 6 h+ 1 and

M (J0) > Dh+1. (27)

On the other hand, by Lemma 3

ci0 +
d∑

j=1

cijbj = 0 (i ∈ J0) ,
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hence ∣∣∣∣∣∣


ci0 +

h∑

j=1

cijbj


α−nhs(i)

∣∣∣∣∣∣
·
∣∣αs(i)

∣∣nh =

∣∣∣∣∣∣

d∑

j=h+1

cijbj

∣∣∣∣∣∣
. (28)

By (27) for a certain i0 ∈ J0 the left-hand side is at least Dh+1|αnhs(i)| . As to the
right-hand side, replacing in Lemma 5 h by h+ 1, we obtain

∣∣∣∣∣∣

d∑

j=h+1

ci0jbj

∣∣∣∣∣∣
6 |ci0,h+1|

(
max

{
1,

g (i0)− 1
log
∣∣αs(i0)

∣∣

})g(i0)−1 d∑

j=h+1

|bj |

6 |ci0,h+1|
(

max

{
1,
ms(i0) − 1

log
∣∣αs(i0)

∣∣

})ms(i0)−1 (
L(P )− 1

)
.

(29)

If nh − nh+1 6 n0 − nh , we obtain nh − nh+1 6 d1 + . . .+ dh 6 dh+1 , hence the
inductive assertion holds. If nh − nh+1 > n0 − nh , then

|ci0,h+1| =
∣∣αs(i0)

∣∣nh+1

g(i0)−2∏

f=0

(nf − nh+1)

6
∣∣αs(i0)

∣∣nh+1

(
2 (nh − nh+1)

)g(i0)−1

6
∣∣αs(i0)

∣∣nh+1 2ms(i0)−1 (nh − nh+1)ms(i0)−1
.

(30)

Combining this inequality with (28) and (29) we obtain

Dh+1
∣∣αs(i0)

∣∣nh−nh+1

(nh − nh+1)ms(i0)−1 6
(

max

{
2,

2
(
ms(i0) − 1

)

log
∣∣αs(i0)

∣∣

})ms(i0)−1(
L(P )− 1

)
, (31)

hence, by Lemma 6,

nh−nh+1

6 max
16s6r

ψ

(
|αs| , ms−1,

(
max

{
2,

2 (ms−1)
log |αs|

})ms−1

D−1
h+1

(
L(P )−1

)
)

6 ψ

(
|αr| , m−1,

(
max

{
2,

2 (m−1)
log |αr|

})m−1

D−1
h+1

(
L(P )−1

)
)

6 dh+1.

The inductive assertion being proved, it follows that

n0 − nd 6
d∑

h=1

dh.
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However, nd = 0, hence
l(P ) = inf

Q∈Ud(P )
L(Q),

where Ud(P ) =
{
Q ∈ Td(P ) : degQ 6

d∑
h=1

dh

}
.

The set Ud(P ) is finite and effectively computable, since for Q = xn0 +
d∑
j=1

bjx
nj ∈ Ud(P ) there are only finitely many choices for 〈n0, . . . , nd〉 and for each

choice the coefficients bj are determined uniquely and are effectively computable.
Moreover, Q ∈ Td(P ) implies Q ∈ K(P )[x] , hence L(Q) ∈ K(P ). The theorem
follows.

Proof of Corollary 1. If P (x) = a0

c∏
i=1

(x−αi)
d∏

i=c+1
(x−αi), where |αi| > 1 for

i 6 c , |αi| < 1 for i > c , then by Proposition A

l(P ) = |a0| l
(

c∏

i=1

(x− αi)
)

and the right hand side is effectively computable by Theorem 2.
For the proof of Theorem 3 we need two lemmas.

Lemma 8. If Pn ∈ R[x] , pn, qn ∈ N ∪ {0} (n = 0, 1, . . .) and

lim inf
n→∞

L (Pn(x)− P0 (xpn)xqn) = 0, (32)

then
lim inf
n→∞

l (Pn) 6 l (P0) . (33)

Proof. By definition of l(P0) for every n there exists Gn monic such that

L (P0Gn) 6 l (P0) +
1
n
.

By (32) there exists kn ∈ N such that kn > n and

L (Pkn(x)− P0 (xpkn )xqkn ) 6 1
nL (Gn)

.

Hence

L (Pkn(x)Gn (xpkn )) 6 L (P0 (xpkn )xqknGn (xpkn ))

+ L ((Pkn(x)− P0 (xpkn )xqkn )Gn (xpkn )) 6 L (P0Gn)

+ L (Pkn(x)− P0 (xpkn )xqkn )L (Gn) 6 l (P0) +
2
n
,

thus
l (Pkn) 6 l (P0) +

2
n
.

This implies (33).
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Remark. The equality lim
n→∞

L(Pn−P0) = 0 does not imply lim inf
n→∞

l(Pn) = l(P0),

as is shown by the example Pn = x− n−1
n , P0 = x−1, see Proposition A, (ii) and

(iii).

Lemma 9. Let Q be a monic polynomial, irreducible over R of degree d 6 2
with the zeros on the unit circle. There exists a sequence of monic polynomials Rn
such that

Q2 | Rn (34)

and
lim
n→∞

L
(
Rn − xdnQ

)
= 0. (35)

Proof. It suffices to take

Rn = xx+1 − ε
(

1 +
1
n

)
xn +

εn+1

n
, if d = 1, Q = x− ε

and

Rn =
(
xn+1 − ζ

(
1 +

1
n

)
xn +

ζn+1

n

)(
xn+1 − ζ

(
1 +

1
n

)
xn +

ζ
n+1

n

)
,

if d = 2, Q = (x− ζ)(x− ζ).

Indeed, we have for every ε

(x− ε)2 | xn+1 − ε
(

1 +
1
n

)
xn +

εn+1

n
,

which implies (34) and

L
(
Rn − xdnQ

)
6
{

2/n if d = 1
(8n+ 4)/n2 if d = 2,

which implies (35).

Proof of Theorem 3. We proceed by induction with respect to the number N
of irreducible factors of Qm−1 counted with multiplicities. If N = 1, then m = 2,
Q is irreducible and by Lemma 9 we have

PQ2 | PRn (36)

and
lim
n→∞

L
(
PRn − xdnPQ

)
= 0. (37)

By (37) and Lemma 8 we have

lim inf
n→∞

l (PRn) 6 l(PQ).
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However, by Proposition (i) and (36)

l(PQ) 6 l
(
PQ2) 6 l (PRn) ,

hence
l(PQ) 6 l

(
PQ2) 6 l (PQ) ,

which gives the theorem for N + 1.
Assume now that the number of irreducible factors of Qm−1 is N > 1 and

the theorem is true for the number of irreducible factors less than N . If m > 2
then the number of irreducible factors of Qm−2 and of Q is less than N , hence
applying the inductive assumption with P replaced first by PQ we obtain

l (PQm) = l
(
PQ2) = l(PQ).

If m = 2 and the number of irreducible factors of Qm−1 is N > 1, then Q is
reducible, Q = Q1Q2 , where degQi > 1 (i = 1, 2). The number of irreducible
factors of Qi is less than N , hence applying the inductive assumption with P
replaced first by PQ2

1 and then by PQ2 we obtain

l
(
PQ2) = l

(
PQ2

1Q
2
2

)
= l
(
PQ2

1Q2
)

= l (PQ1Q2) = l(PQ).

The inductive proof is complete.

Proof of Theorem 4. By Theorem 3 and Proposition A (ii) we have for d ∈ N

l
(
(x− 1)d

)
= l(x− 1) = 2. (38)

Now, let

P (x) =
d∏

j=1

(x− exp 2πirj) , where rj ∈ R.

By Dirichlet’s approximation theorem for every positive integer n there exists a
positive integer pn such that

‖pnrj‖ 6 1
2πn

(1 6 j 6 d),

hence
|exp 2πipnrj − 1| < 1

n
.

It follows that the polynomial

Qn(x) =
d∏

j=1

(xpn − exp 2πipnrj)

satisfies
P | Qn (39)



On the reduced length of a polynomial with real coefficients 289

and

L
(
Qn − (xpn − 1)d

)
6
(

2 +
1
n

)d
− 2d. (40)

Now, (39) implies by Proposition (i)

l(P ) 6 lim inf
n→∞

l (Qn) ,

while (40), Lemma 8 and (38) imply

lim inf
n→∞

l (Qn) 6 l
(
(x− 1)d

)
= 2.

Hence l(P ) 6 2. On the other hand, if P | Q , Q = xn +
n∑
j=1

bjx
n−j , then for

a zero α of P we have

1 = |α|n =

∣∣∣∣∣∣

n∑

j=1

bjx
n−j

∣∣∣∣∣∣
6

n∑

j=1

|bj | = L(Q)− 1,

hence L(Q) > 2; so
l(P ) > 2,

which gives the first part of the theorem. In order to prove the second part assume
that P | Q , Q monic and L(Q) = 2. Let

Q = xn +
n∑

j=1

bjx
n−j , bn 6= 0.

For every zero α of P we have

αn +
n∑

j=1

bjα
n−j = 0, (41)

hence ∣∣∣∣∣
n∑

i=1

biα
n−i
∣∣∣∣∣ = |αn| = 1 =

n∑

i=1

|bi| .

It follows that for every j with bj 6= 0

arg bjαn−j = arg bn.

Since arg bi = 0 or π , either α is a root of unity, or bj = 0 for all j < n . However
the latter case, by virtue of (41) leads to the former. Suppose now that α is a
multiple zero of P , hence also of Q . Then

nαn−1 +
n−1∑

j=1

bj(n− j)αn−j−1 = 0,



290 Andrzej Schinzel

hence ∣∣∣∣∣∣

n−1∑

j=1

bj(n− j)αn−j−1

∣∣∣∣∣∣
= |nαn| = n >

n−1∑

j=1

|bj |n,

which is impossible, since for each j < n , |bj(n−j)αn−j−1| 6 |bj |n . Thus all zeros
of P are roots of unity and simple. If this condition is satisfied, then P | xm − 1,
where m is the least common multiple of orders of the roots of unity in question
and

L (xm − 1) = 2.

For the proof of Theorem 5 we need seven lemmas.

Lemma 10. Let d > 2 , I be a subset of {1, 2, . . . , d − 1} and J a subset of
{0, . . . , d− 2} both of cardinality d− 2 . Then

∣∣∣det (cij) i∈I
j∈J

∣∣∣ 6 (d− 2)
d−2

2

∏

i∈I

∣∣αs(i)
∣∣ng(i)−1

g(i)−2∏

f=0

(nf − nd−2) .

Proof. is similar to the proof of Lemma 7.

Lemma 11. Under the assumptions of Theorem 5 we have, in the notation of
Definition 1, for every h 6 d− e and ν = 0, 1

Dhν = det (cij) 16i6h
ν6j<h+ν

6= 0. (42)

Proof. In the notation of Definition 1 we have |αs| > 1 for s < r , αr = ε ,
mr = e . Assume that αs ∈ Z0 , if and only if s ∈ S0 . In the notation of Lemma 5

h = m1 + . . .+ms(h)−1 + g(h), 1 6 g(h) 6 ms(h).

If ν = 0 or 1, Dhν = 0 and αs ∈ Z0 for all s 6 s(h), the system of equations

h−1+ν∑

j=ν

cijxj = 0 (1 6 i 6 h)

has a solution 〈xν , . . . , xh−1+ν〉 ∈ Rh r {0} . It follows by Lemma 3 that

h−1+ν∑

j=ν

xjx
nj ≡ 0


mod

s(h)−1∏
s=1

(x− αs)ms
(
x− αs(h)

)g(h)




hence the polynomial
h−1+ν∑
j=ν

xjx
nj ∈ R[x] has h zeros of the same sign, counted

with multiplicities. This, however, contradicts the Descartes rule of signs (see [5],
Satz 12), hence, if αs ∈ Z0 (s 6 s(h)) (42) holds. It also shows that Dhν as a
polynomial in αs (s 6∈ S0) is not identically zero for any fixed αs ∈ Z0 . Since the
coefficients of the polynomial in question belong to Q(Z0), the algebraic indepen-
dence of αs (s 6∈ S0) over Q(Z0) implies Dhν 6= 0.
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Lemma 12. Under the assumptions of Theorem 5 let P0 be of degree
d − e . For all positive integers e1, . . . , ed−e there exists a unique polynomial
Q = Q(P0; e1, . . . , ed−e) such that

Q = x

d−e∑
µ=1

eµ

+
d−e∑

j=1

bjx

d−e∑
µ=j+1

eµ

and
Q ≡ 0 (modP0) . (43)

Moreover, Q ∈ R[x] .

Proof. For j = 0, . . . , d − e put nj =
d−e∑
ν=j+1

eν and for i 6 d − e , let cij be

defined by Definition 1 with P replaced by P0 . By Lemma 3 the congruence (43)
is equivalent to

d−e∑

j=1

cijbj = −ci0 (1 6 i 6 d− e).

By Lemma 11 with h = d−e and ν = 1 the determinant of this system is non-zero,
hence bj are uniquely determined. If we replace cij by cij we obtain the same
system of equations, hence bj ∈ R .

Lemma 13. For every positive integer h < d−e and all positive integers e1, . . . , eh
we have in the notation of Definition 3

D ({1, . . . , h+ 1} , e1, . . . , eh) > 0.

Proof. We have

max
i6h+1

g(i) 6 max
i6h+1

i = h+ 1,

hence D({1, . . . , h+1}, e1, . . . , eh) is defined. Its only factor, which could possibly
vanish is

det


α

h∑
µ=j+1

eµ

s(i)

g(i)−2∏

f=0

j∑

ν=f+1

eν




16i6h+1
06j6h

= det
(
cijα

−nh
s(i)

)
16i6h+1
06j6h

,

where nj =
d∑

µ=j+1
eµ . By (42) with ν = 0 the above determinant is non-zero.
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Definition 5. Let the sequence di(1 6 i 6 d−e) be defined inductively as follows.

d1 =
log
(
L(P )− 1

)

log |α1| (44)

and if d1, . . . , dh (h < d− e) are already defined

Dh+1 = (h+ 1)−1h
−h
2 min{D ({1, . . . , h+ 1}, e1, . . . , eh) : 1 6 ei 6 di} , (45)

dh+1 = max

{
d1, . . . , dh, (46)

ψ

(
∣∣αs(i)

∣∣ ,m− 1,
(

max
{

2,
2(m− 1)

log |αs(h+ 1)|
})m−1

)
D−1
h+1

(
L(P )− 1

)
}
.

Lemma 14. For every Q ∈ Td(P ) , Q = xn0 +
d∑
j=1

bjx
nj we have

nj−1 − nj 6 dj (1 6 j < d). (47)

Proof is by induction on j . Since Q ∈ Td(P ) the equation

αn0
1 +

d∑

j=1

bjα
nj
1 = 0

implies

|α1|n0 6 |α1|n1

d∑

j=1

|bj | 6 |α1|n1
(
L(Q)− 1

)
6 |α1|n1

(
L(P )− 1

)
,

which, in view of (44) gives (47) for j = 1. Assume now that (47) holds for all
j 6 h (h < d− 1). By Lemma 11 we have

∆ = det
(
cijα

−nh
s(i)

)
16i6h+1
06j6h

6= 0.

Let

M = max
16i6h+1

∣∣∣∣∣∣


ci0 +

h∑

j=1

cijbj


α−nhs(i)

∣∣∣∣∣∣
.

Solving the system of equations

ci0x0 +

h∑

j=1

cijxj


α−nhs(i) =


ci0 +

h∑

j=1

cijbj


α−nhs(i) (1 6 i 6 h+ 1)
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by means of Cramer’s formulae and developing the numerator according to the
first column we obtain

1 6
(h+ 1)M max

∣∣∣∣det
(
cijα

−nh
s(i)

)
i∈I

16j6h

∣∣∣∣
|∆| ,

where the maximum is taken over all subsets I of {1, . . . , h+ 1} of cardinality h .
Now, by Lemma 7, since |αs(i)| > 1, we have

max
∣∣∣∣det

(
cijα

−nh
s(i)

)
i∈I

16j6h

∣∣∣∣ 6 h
h
2

h+1∏

i=1

∣∣αs(i)
∣∣nmax{1,g(i)−1}

g(i)−2∏

f=0

(nf − nh) .

This gives, by Definition 3,

m > (h+ 1)−1h−
1
2D ({1, . . . , h+ 1}, n0 − n1, . . . , nh−1 − nh)

and by the inductive assumption and (45)

M > Dh+1. (48)

On the other hand, by Lemma 3

ci0 +
d∑

j=1

cijbj = 0 (1 6 i 6 h+ 1),

hence ∣∣∣∣∣∣


ci0 +

h∑

j=1

cijbj


α−nhs(i)

∣∣∣∣∣∣
· ∣∣αs(i)

∣∣nh =

∣∣∣∣∣∣

h∑

j=1

cijbj

∣∣∣∣∣∣
. (49)

By (48) for a certain i0 6 h+ 1 the left-hand side is at least Dh+1|αs(i)|nh . As to
the right-hand side, by (29) we obtain∣∣∣∣∣∣

d∑

j=1

ci0jbj

∣∣∣∣∣∣
6 |ci0,h+1|

(
max

{
1,

ms(i0)−1

log
∣∣αs(i0)

∣∣

})ms(i0)−1 (
L(P )− 1

)
. (50)

If nh − nh+1 6 n0 − nh , we obtain nh − nh+1 6 d1 + . . .+ dh 6 dh+1 , hence the
inductive assumption holds. If nh − nh+1 > n0 − nh , then by (30)

|ci0,h+1| 6
∣∣αs(i0)

∣∣nh+1 2ms(i0)−1 (nh − nh+1)ms(i0)−1
.

Combining the inequality with (49) and (50) we obtain (31), where, however, Dh+1

has the new meaning given by (45).
It follows, by Lemma 6

nh − nh+1

6 max
16s6s(h+1)

ψ

(
|αs| , ms − 1,

(
max

{
2,

2(ms − 1)
log |αs|

})ms−1

×D−1
h+1

(
L(P )− 1

)
)

6 ψ


αs(h+1), m− 1,

(
max

{
2,

2(m− 1)
log
∣∣αs(h+1)

∣∣

})m−1

D−1
h+1

(
L(P )− 1

)

 6 dh+1

and the inductive proof is complete.
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Definition 6. Assume that, under the assumptions of Theorem 5, e = 1. Put for
positive integers n1 > . . . > nd−2 > nd−1

(
c′ij
)

16i<d
16j6d

= C (P0;n1, . . . , nd−1, 0) , c′dj = 1 (1 6 j 6 d),

E (P0;n1 − nd−1, . . . , nd−2 − nd−1)

=
∣∣∣∣det

(
c′ijα

−nd−1

s(i)

)
16i,j<d

∣∣∣∣
−1 d−1∏

i=1

∣∣αs(i)
∣∣ng(i)−nd−1

g(i)−1∏

f=1

(nf − nd−1) .
(51)

Remark. E(P0;n1 − nd−1, . . . , nd−2 − nd−1) is well defined since det(c′ijα
−nd−1

s(i) )
is non-zero by Lemma 11 with h = d− 1, ν = 0. Moreover the right-hand side of
(51) depends only on P0 and the differences nj − nd−1 (1 6 j 6 d− 2).

Lemma 15. Assume that, under the assumptions of Theorem 5 and in the nota-
tion of Definition 1, e = 1 . If for positive integers n1 > . . . > nd−1 and for n > 1 ,
a ∈ R

nd−1 > max

{
n1 − nd−1, ψ

(
|αr−1| ,m− 1, d(d− 1)

d+1
2 2m−1n

× E (P0;n1 − nd−1, . . . , nd−2 − nd−1) max
{

1,
nd|a|
nd− 1

})}
,

(52)

then there exists a polynomial R ∈ R[x] of degree at most n1 such that

P0 | R(x)− a, (53)

x− 1 | R(x), (54)

L(R) <
1
n
. (55)

Proof. Put

R(x) =
d−1∑

j=1

rjx
nj + rd, rj ∈ C.

By Lemma 3 the conditions (53) and (54) are equivalent to the following system
of linear equations for rj

d∑

j=1

c′ijrj = c′ida (1 6 i < d)

d∑

j=1

c′djrj = 0.

(56)
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The determinant of this system equals

∆0 =
d∏

i=1

α
nd−1

s(i) det
(
c′ijα

−nd−1

s(i)

)
16i,j6d

.

Developing the last determinant according to the last column we obtain

det
(
c′ijα

−nd−1

s(i)

)
16i,j6d

= det
(
c′ijα

−nd−1

s(i)

)
16i,j<d

+
d−1∑

k=1

(−1)k+dc′kdα
−nd−1

s(k) det
(
c′ijα

−nd−1

s(i)

)
i 6=k
j<d

,

hence, by (21) with h = d−1, I = {1, . . . , d}r{k} and by the condition αr = e = 1

∣∣∣∣∣∆0

d∏

i=1

α
−nd−1

s(i) − det
(
c′ijα

−nd−1

s(i)

)
16i,j<d

∣∣∣∣∣ (57)

< (d−1)
d+1

2 |αr−1|−nd−1



d−1∏

i=1

∣∣αs(i)
∣∣ng(i)−nd−1

g(i)−1∏

f=1

(nf − nd−1)


 max

16k<d
|c′kd| .

Since, by (52) nd−1 > n1 − nd−1 , we have

max
16k<d

|c′kd| 6
m−1∏

f=1

nf 6 (2nd−1)m−1
. (58)

In view of Definition 6 the right-hand side of (57) does not exceed

(d− 1)
d+1

2 |αr−1|−nd−1

∣∣∣∣det
(
c′ijα

−nd−1

s(i)

)
16i,j<d

∣∣∣∣
× E (P0;n1 − nd−1, . . . , nd−2 − nd−1, 0) 2m−1nm−1

d−1 .

Since, by (52),

nd−1 > ψ
(
|αr−1| ,m− 1, d(d− 1)

d+1
2 2m−1n

× E (P0;n1 − nd−1, . . . , nd−2 − nd−1, 0)
)

we have by Lemma 6 and (57)

|∆0| >
(

1− 1
dn

) ∣∣∣det
(
c′ij
)

16i,j<d

∣∣∣ , (59)
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hence by the Remark after Definition 6, ∆0 6= 0. Thus the system (56) is uniquely
solvable and since on replacing c′ij by c′ij we obtain the same system, rj are real
(1 6 j 6 d).

The determinant ∆k obtained by substituting in (c′ij)16i,j6d for the k -th
column the column [

c′1d, . . . , c
′
d−1 d , 0

]t
a

satisfies for k < d
∆k = ± (det c′ij

)
i<d
j 6=k

a,

hence developing the last determinant according to the last column, using Lemma 10,
Definition 6 and (58) we obtain

|∆k| 6 |a|
d−1∑

l=1

|c′ld| (d− 2)
d−2

2

d−1∏
i=1
i 6=l

∣∣αs(i)
∣∣ng(i)

g(i)−1∏

f=1

(nf − nd−1)

6 |a|(d− 1)(d− 2)
d−2

2 (2nd−1)m−1 |αr−1|−nd−1

∣∣∣det
(
c′ij
)

16i,j<d

∣∣∣
×E (P0;n1 − nd−1, . . . , nd−2 − nd−1) ,

where (d− 2)
d−2

2 = 1 for d = 2.
Since (d− 1)(d− 2)

d−2
2 < (d− 1)

d+1
2 we obtain, by virtue of (52),

|∆k| < dn− 1
d2n2

∣∣∣det
(
c′ij
)

16i,j<d

∣∣∣

hence, by (59), rk = ∆k/∆0 satisfies

|rk| < 1
dn

(1 6 k < d). (60)

It remains to consider k = d . In this case developing ∆d according to the last
column we obtain

|∆d| 6 |a|
d−1∑

l=1

|c′ld|
∣∣∣∣det

(
c′ij
)
i 6=l
j<d

∣∣∣∣ .

Using (21) with h = d − 1, I = {1, . . . , d} r {l} , the condition αr = e = 1 and
(58) we obtain

|∆d| 6 |a|(d− 1)
d+1

2 (2nd−1)m−1 |αr−1|−nd−1

×
d−1∏

i=1

∣∣αs(i)
∣∣ng(i)

g(i)−1∏

f=1

(nf − nd−1) 6 (d− 1)
d+1

2 2m−1nm−1
d−1 |αr−1|−nd−1

×
∣∣∣det

(
c′ij
)

16i,j<d

∣∣∣E (P0;n1 − nd−1, . . . , nd−2 − nd−1) .
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Again, by virtue of (52) and of Lemma 6,

|∆d| < dn− 1
d2n2

∣∣∣det
(
c′ij
)

16i,j<d

∣∣∣ ,

hence rd = ∆d/∆0 satisfies

|rd| < 1
dn
.

It follows now from (60) that

L(R) =
d∑

k=1

|rk| < 1
n
,

which proves (55).

Lemma 16. Assume, under the assumptions of Theorem 5, that ε = e = 1 . Then

l(P ) 6 inf
Q∈Sd−1(P0)

{
L(Q) +

∣∣Q(1)
∣∣
}
.

Proof. Let

Q = xq0 +
d−1∑

j=1

bjx
qj ,

where q0 > q1 > . . . > qd−1 and we may assume qd−1 = 0. By Lemma 15 with
a = Q(1), nj = nd−1 + qj (1 6 j < d), if

nd−1 > max
{
q1, ψ

(
|αr−1| ,m−1, d(d−1)

d+1
2 2m−1n

×E (P0; q1, . . . , qd−2) max
{

1,
nd

nd−1

∣∣Q(1)
∣∣
})}

there exists a polynomial R ∈ R[x] of degree at most n1 satisfying (53)–(55). We
consider the polynomial

S(x) = Q(x)xnd−1 +R(x)−Q(1).

It follows from (53)–(54) that

P0 | S, x− 1 | S, thus P | S
and since S is monic

l(P ) 6 L(S).

On the other hand, by (55)

L(S) 6 L(Q) + |Q(1)|+ 1
n
.

Since n is arbitrary, the lemma follows.
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Proof of Theorem 5. Since, by Proposition (iii), l(P (−x)) = l(P (x)), we may
assume that ε = 1 and, by virtue of Theorem 3, that e = 1. Thus Lemmas 15
and 16 are applicable. The second part of the theorem follows from Lemma 16. In
order to prove the first part we shall show that for every n > 1

0 > l(P )−
∗

min min {L (Q (P ;n0, . . . , nd−1, 0)) , L (Q (P0;n0 − nd−1, . . . ,

nd−2 − nd−1, 0)) + |Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0) (1)|} > − 1
n
,

(61)

where the min∗ is taken over all integers n0 > . . . > nd−1 > 0 such that

nj−1 − nj 6 dj (1 6 j < d) (62)

nd−1 6 ψ

(
|αr−1| ,m− 1, d(d− 1)

d+1
2 2m−1n

× E (P0;n1 − nd−1, . . . , nd−2 − nd) (63)

×max
{

1,
nd

nd− 1
|Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0) (1)|

})

and, in the notation of Definition 1

|C1 (P ;n1, . . . , nd−1, 0)| 6= 0. (64)

The condition (64) implies that there is a unique polynomial

Q = xn0 +
d−1∑

j=1

bjx
nj + bd

divisible by P , denoted in (61) by Q(P ;n0, . . . , nd−1, 0). Similarly Q (P0;
n0 − nd−1, . . . , nd−2 − nd−1, 0) is the unique polynomial

Q = xn0−nd−1 +
d−1∑

j=1

bjx
nj−nd−1

divisible by P0 . The inequality

l(P ) 6 min∗ L (Q (P ;n0, . . . , nd−1, 0))

is clear and the inequality

l(P ) 6 min∗ {L (Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0))

+ |Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0) (1)|}



On the reduced length of a polynomial with real coefficients 299

follows from Lemma 16. This shows the first of inequalities (61). In order to prove
the second one we notice that by Lemmas 4 and 14

l(P ) = inf L (Q (P ;n0, . . . , nd−1, 0)) , (65)

where 〈n0, . . . , nd−1〉 runs through all strictly decreasing sequences of d positive
integers satisfying (62) and (64). If (63) is satisfied then, clearly

L (Q (P ;n0, . . . , nd−1, 0)) > min∗ L (Q (P ;n0, . . . , nd−1, 0)) (66)

and, if not, then by Lemma 15 there exists a polynomial R ∈ R[x] of degree at
most n1 such that (53)–(55) hold with

a = Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0) (1).

Then the polynomial

S(x) = Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0)xnd−1 +R(x)

−Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0) (1)

is monic, satisfies
P | S(x)

and, by (64),
S(x) = Q (P ;n0, . . . , nd−1, 0) . (67)

By (55)

L(S) > L (Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0))

+ |Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0) (1)| − 1
n
.

(68)

The formulae (66)–(68) imply

L (Q (P ;n0, . . . , nd−1, 0))

>min∗min
{
L (Q (P ;n0, . . . , nd−1, 0)) , L (Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0))

+ |Q (P0;n0 − nd−1, . . . , nd−2 − nd−1, 0) (1)|
}
− 1
n

for all sequences 〈n0, . . . , nd−1〉 satisfying (64), hence by (65) the second of the
inequalities (61) follows. The conditions (62) and (63) are for a given n satisfied
by only finitely many sequences 〈n0, . . . , nd−1〉 , since

nj − nd−1 6
d−1∑

µ=j+1

dj

and all such sequences can be effectively determined, hence l(P ) can be effectively
computed.
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For the proof of Theorem 6 we need

Definition 7. For α, β in C and n > m > 0

Qn(α, β) =




αn − βn
α− β if α 6= β,

nαn−1 if α = β,

En,m(αβ) =
∣∣∣∣
Qn(α, β)
Qm(α, β)

∣∣∣∣+ |αβ|m
∣∣∣∣
Qn−m(α, β)
Qm(α, β)

∣∣∣∣ ,

Fn,m(x, β) = xn − βn + |β|mxm(xn−m − βn−m)− (2x− 1)(xm − βm).

Lemma 17. In the notation of Definition 2, if P (x) = (x − α)(x − β) , αβ 6= 0 ,
then all elements of T2(P ) are of the form

xn − Qn(α, β)
Qm(α, β)

xm + (αβ)m
Qn−m(α, β)
Qm(α, β)

= Fn,m(x;α, β), (69)

where n > m > 0 , Qm(α, β)Qn−m(α, β) 6= 0 .

Proof. Let an element Q of T2(P ) be xn + Axm + B , where n > m > 0. By
Lemma 3 the condition Q ≡ 0(modP ) is equivalent to

ci0 + ci1A+ ci2B = 0 (i = 1, 2), (70)

where cij are given in Definition 1 for α1 = α , α2 = β , hence

c10 = αn, c11 = αm, c12 = 1;

c20 = βn, c21 = βm, c22 = 1, if β 6= α;

c20 = 0, c21 = (m− n)βm, c22 = −n, if β = α.

Since Q ∈ T2(P ) we have

|C0(P ;n,m)| 6= 0 6= |C1(P ;n,m)| ,

hence Qm(α, β)Qn−m(α, β) 6= 0. Solving the system (70) we obtain for Q the
form (69).

Lemma 18. If β ∈ R , |β| > 1 , then for all positive integers n > m and all
integers k > 0 we have

Gn,m,k(β) =
1
k!

dk

dxk
Fn,m(x, β)|x=|β| > 0

and if |β| > 1 for k = 0 or 1

inf
n>m

Gn,m,k(β) > 0.
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Proof. Consider first the case β > 0. For k = 0 we have Gn,m,k(β) = 0. For
k > 1 we have

Gn,m,k(β) =
(n
k

)
βn−k +

(n
k

)
βn+m−k −

(m
k

)
βn+m−k

− 2
(
m+ 1
k

)
βm−k+1 +

(m
k

)
βm−k + 2

(
1
k

)
βm−k+1

= βm−k
((n

k

)
βn−m +

(n
k

)
βn −

(m
k

)
βn

− 2
(
m+ 1
k

)
β +

(m
k

)
+ 2

(
1
k

)
β

)
.

The expression in the parenthesis is non-negative, since for β = 1 it is equal to

2
(n
k

)
− 2

(
m+ 1
k

)
+ 2

(
1
k

)
> 0

and its derivative with respect to β is
(n
k

)
(n−m)βn−m−1 +

((n
k

)
−
(m
k

))
nβn−1 − 2

(
m+ 1
k

)
+ 2

(
1
k

)

>
(
m+ 1
k

)
+
((

m+ 1
k

)
−
(m
k

))
(m+ 1)− 2

(
m+ 1
k

)
+ 2

(
1
k

)

= (k − 1)
(
m+ 1
k

)
+ 2

(
1
k

)
> 2

(
1
k

)
.

It follows that
Gn,m,k(β) > 2(β − 1)

and the obtained lower bound, independent of n,m is positive for β > 1. Consider
now the case β < 0. We distinguish four cases according to the parity of n,m .

If n ≡ m ≡ 0(mod 2), then

Gn,m,k(β) = Gn,m,k
(|β|)

and the case reduces to the former.
If n ≡ 0, m ≡ 1(mod 2), then

Gn,m,0(β) = 2
(|β|)m (|β|n − 2|β|+ 1) > 2

(|β| − 1
)2

and the obtained lower bound, independent of n,m is positive for |β| > 1. Further,
for k > 1

Gn,m,k(β) =
(n
k

)
|β|n−k +

(n
k

)
|β|n+m−k +

(m
k

)
|β|n+m−k

− 2
(
m+ 1
k

)
|β|m−k+1 +

(m
k

)
|β|m−k − 2

(
1
k

)
|β|m−k+1

= |β|m−k
((n

k

)
|β|n−m +

(n
k

)
|β|n +

(m
k

)
|β|n − 2

(
m+ 1
k

)
|β|

+
(m
k

)
− 2

(
1
k

)
|β|
)
.
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The expression in the parenthesis is non-negative, since

(n
k

)
|β|n−m +

(n
k

)
|β|n > 2

(
m+ 1
k

)
|β|

and (m
k

)
|β|n +

(m
k

)
>
(m
k

) (|β|2 + 1
)

> 2
(

1
k

)
|β|.

If n ≡ 1, m ≡ 0(mod 2), then

Gn,m,k(β) > Gn,m,k
(|β|)

and the case reduces to the already considered one.
Finally, if n ≡ m ≡ 1mod 2, then

Gn,m,0(β) = 2|β|m (|β|n−m − 2|β|+ 1
)

> 2 (|β| − 1)2

and the obtained lower bound, independent of n,m is positive for |β| > 1.
Further, for k > 1

Gn,m,k(β) =
(n
k

)
|β|n−k +

(n
k

)
|β|n+m−k −

(m
k

)
|β|n+m−k

− 2
(
m+ 1
k

)
|β|m−k+1 +

(m
k

)
|β|m−k − 2

(
1
k

)
|β|m−k+1

= |β|m−k
((n

k

)
|β|n−m +

(n
k

)
|β|n −

(m
k

)
|β|n − 2

(
m+ 1
k

)
|β|

+
(m
k

)
− 2

(
1
k

)
|β|
)
.

The expression in the parenthesis is non-negative, since for |β| = 1 it is equal to

2
(n
k

)
− 2

(
m+ 1
k

)
− 2

(
1
k

)
> 2

(
m+ 2
k

)
− 2

(
m+ 1
k

)
− 2

(
1
k

)
> 0

and its derivative with respect to |β| is

(n
k

)
(n−m)|β|n−m−1+

(n
k

)
n− |β|n−1−

(m
k

)
n|β|n−1− 2

(
m+ 1
k

)
− 2

(
1
k

)

>
(n
k

)
(n−m) +

(n
k

)
n−

(m
k

)
n− 2

(
m+ 1
k

)
− 2

(
1
k

)

> 2
(
m+ 2
k

)
+
((

m+ 2
k

)
−
(m
k

))
(m+ 2)− 2

(
m+ 1
k

)
− 2

(
1
k

)
> 0.

Proof of Theorem 6. Consider first the case of α, β real. Since, by Proposi-
tion (iii), l(P (−x)) = l(P (x)), we may assume that α > 0, hence α > |β| .
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By the Taylor formula we have in the notation of Lemma 18

(αm − βm) (En,m(α, β)− 2α+ 1) =
n∑

k=0

Gn,m,k(β)
(
α− |β|)k,

hence, by the said lemma,

(αm − βm) (En,m(α, β)− 2α+ 1) > 0 (71)

and, if α > |β| > 1

inf
n>m

(αm − βm) (En,m(α, β)− 2α+ 1) > 0. (72)

If α 6= ±β then (71) gives

En,m(α, β) > 2α− 1,

hence by Lemma 17
inf

Q∈T2(P )
L(Q) > 2α

and by Lemma 4,
l(P ) > 2α. (73)

Now, if β = −1, then L(P ) = 2α , hence l(P ) 6 2α and, by (73), l(P ) = 2α . If
β = 1, then by Theorem 5 with P0 = x− α

l(P ) 6 L (P0) + |P0(1)| = 1 + α+ α− 1 = 2α

and, by (73), l(P ) = 2α again.
If α > |β| > 1, then by (72)

inf
n>m
m<m0

En,m(α, β) > 2α− 1 (74)

for every m0 . Choose now

m0 =
log 4α− log

(
α− |β|)

log |β| .

Then for m > m0 : En,m(α, β) > |αβ|mα−|β|
2αm > 2α and, by (74)

inf
n>m

En,m(α, β) > 2α− 1.

Using, as above, Lemmas 17 and 4 we obtain

l(P ) > 2α.
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If α = −β , then P (x) = x2 − α2 and by Proposition (iv) and Proposition A (ii)

l(P ) = l
(
x− α2) = 1 + α2

{
= 2α if α = 1,
> 2α, otherwise.

If α = β , then

En,m(α, β)− 2α+ 1 =
nαn−m + (n−m)αn

m
− 2α+ 1.

The right-hand side is equal to 2(n−m)/m > 0 for α = 1 and its derivative with
respect to α is

n(n−m)
m

(
αn−m−1 + αn−m

)− 2 > α− 1.

For α = β = 1, l(P ) = 2 = 2α , by Theorem 4; otherwise

inf
n>m

En,m(α, α) > 2α− 1

and, by Lemmas 17 and 4, l(P ) > 2α .
Consider now the case, where α, β are complex conjugate:

α = |α|e2iϕ, β = |α|e−2iϕ, ϕ ∈
(

0,
π

2

)
, |α| > 1

(the case |α| = 1 is settled by Theorem 4). Then

En,m(α, β) = |α|n−m
∣∣∣∣

sinnϕ
sinmϕ

∣∣∣∣+ |α|n
∣∣∣∣
sin(n−m)ϕ

sinmϕ

∣∣∣∣ ,

where, by virtue of the condition Qm(α, β) 6= 0 we have sinmϕ 6= 0. Since

| sinmϕ| 6 | sinnϕ|+ | sin(n−m)ϕ| (75)

we have
En,m(α, β) > |α|n−m > |α|2

unless n−m = 1. In this final case we have, by (75)

∣∣∣∣
sinnϕ
sinmϕ

∣∣∣∣ > 1−
∣∣∣∣

sinϕ
sinmϕ

∣∣∣∣

and by the well known inequality

∣∣∣∣
sinϕ

sinmϕ

∣∣∣∣ >
1
m
.
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Hence

En,m(α, β) > |α|
(

1−
∣∣∣∣

sinϕ
sinmϕ

∣∣∣∣
)

+ |α|m+1

∣∣∣∣
sinϕ

sinmϕ

∣∣∣∣

> |α|+ |α|
m+1 − |α|
m

> |α|+ |α|(|α| − 1
)

= |α|2,

where in the middle we have used Bernoulli’s inequality. It follows, by Lemma 17,
that L(Q) > 1 + |α|2 for every Q ∈ T2(P ), hence, by Lemma 4,

l(P ) > 1 + |α|2 > 2|α|.

Proof of Corollary 2. If degP = 1, then l(P ) ∈ K(P ) follows from Proposi-
tion A. If P = a(x−α)(x− β), where |α| > |β| > 1, then, by Theorem 2, l(P ) is
attained and by Theorem 1, l(P ) ∈ K(P ). If P = a(x−α)(x−β), where |β| = 1,
then, by Theorem 6, l(P ) = 2|aα| . Since either |α| = 1 or α ∈ R , l(P ) ∈ K(P )
follows.

Proof of Corollary 3. If, in the notation of the Corollary, |β| > 1, then, by
Proposition A, l(P ∗) = |αβ| and, by Proposition (ii) l(P ) > |αβ| , thus l̂(P ) =
|αβ| . If |α| > 1 = |β| , then, by Proposition (iii) and Theorem 6, l(P ∗) = 2|α| =
l(P ), thus l̂(P ) = 2|α| . If |α| > 1 > |β| , then, by Proposition A, l(P ∗) = 1 + |α| ,
l(P ) = |αβ|(1 + |β|−1), hence l̂(P ) = |α|+ min{1, |αβ|} . If |α| = 1 = |β| , then by
Theorem 6, l(P ) = l(P ∗) = 2. If |α| = 1 > |β| , then, by Proposition A, l(P ) = 2,
by Theorem 6, l(P ∗) = |αβ|2|β|−1 = 2, thus l̂(P ) = 2. Finally, if |α| < 1, then
by Proposition A, l(P ) = 1, by Proposition (ii) l(P ∗) > 1, thus l̂(P ) = 1.

Proof of Corollary 4. If |α| > 1 > |β| > 0 we have l̂(x−α) = |α| , l̂(x−β) = 1,

l̂((x− α)(x− β)) = |α|+ min{1, |αβ|} > |α|.

Note added in proof. An apparently similar problem has been considered in
[2] and [3]. However, the restriction of G in the definition of l(P ) to polynomials
with integer coefficients makes a great difference, shown by the fact, clear from
Lemma 17 above, that no analogue of Lemma 2 of [2] or Lemma 3 of [3] holds in
our case.
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