ON THE REDUCED LENGTH OF A POLYNOMIAL WITH REAL COEFFICIENTS

Andrzej Schinzel

To Professor Eduard Wirsing with best wishes for his 75th birthday

Abstract: The length L(P) of a polynomial P is the sum of the absolute values of the coefficients. For $P \in \mathbb{R}[x]$ the properties of l(P) are studied, where l(P) is the infimum of L(PG) for G running through monic polynomials over \mathbb{R} . **Keywords:** length of a polynomial, unit circle.

We shall consider only polynomials with real coefficients. For such a polynomial $P = \sum_{i=0}^d a_i x^{d-i}$ the length L(P) is defined by the formula

$$L(P) = \sum_{i=0}^{d} |a_i|.$$

A. Dubickas [1] has introduced the reduced length by the formula

$$\widehat{l}(P) = \inf_{G \in \widehat{\Gamma}} L(PG),$$

where

$$\widehat{\Gamma} = \left\{ \sum_{i=0}^{n} b_i x^{n-i} \in \mathbb{R}[x], \text{ where } b_0 = 1 \text{ or } b_n = 1 \right\}.$$

It follows, see [1], p. 3, that

$$\widehat{l}(P) = \min \{l_0(P), l_0(P^*)\},\$$

where

$$l_0(P) = \inf_{G \in \Gamma_0} L(PG), \ \Gamma_0 = \left\{ \sum_{i=0}^n b_i x^{n-i} \in \mathbb{R}[x], \ b_n = 1 \right\}, \ P^* = x^{\deg P} P\left(x^{-1}\right).$$

2001 Mathematics Subject Classification: 12D99, 26C99.

Since polynomials with the leading coefficient 1 have a name (monic) and polynomials with the constant term 1 have no name, I prefer to work with

$$l(P) = l_0(P^*) = \inf_{G \in \Gamma} L(PG), \ \Gamma = \left\{ \sum_{i=0}^n b_i x^{n-i} \in \mathbb{R}[x], \ b_0 = 1 \right\}$$

Dubickas's results about l_0 translated in the language of l give the following

Proposition A. (Dubickas [1]) Suppose that $\omega, \eta, \psi \in \mathbb{R}$, $\nu \in \mathbb{C}$, $\overline{\nu}$ is the complex conjugate to ν , $|\omega| \ge 1$, $|\eta| < 1$, $|\nu| < 1$, then for every $Q \in \mathbb{R}[x]$

- (i) $l(\psi Q) = |\psi| l(Q)$,
- (ii) $l(x + \omega) = 1 + |\omega|$,
- (iii) if $T(x) = Q(x)(x \eta)$, then l(T) = l(Q),
- (iv) if $T(x) = Q(x)(x \nu)(x \overline{\nu})$, then l(T) = l(Q).

We shall prove the following

Proposition. For all monic polynomials P,Q in $\mathbb{R}[x]$ and all positive integers k

- (i) $\max\{l(P), l(Q)\} \leq l(PQ) \leq l(P)l(Q)$,
- (ii) $M(P) \leq l(P)$, where M is the Mahler measure,
- (iii) l(P(-x)) = l(P(x)),
- (iv) $l(P(x^k)) = l(P(x))$.

Theorem 1. If $P \in \mathbb{R}[x]$ is monic of degree d with $P(0) \neq 0$, then $l(P) = \inf_{Q \in S_d(P)} L(Q)$, where $S_d(P)$ is the set of all monic polynomials Q over \mathbb{R} divisible

by P with $Q(0) \neq 0$ and with at most d+1 non-zero coefficients, all belonging to the field K(P), generated by the coefficients of P.

Theorem 2. If $P \in \mathbb{R}[x]$ has all zeros outside the unit circle, then l(P) is attained and effectively computable, moreover $l(P) \in K(P)$ (l(P) is attained means that l(P) = L(Q), where $Q/P \in \Gamma$).

Corollary 1. If $P \in \mathbb{R}[x]$ has no zeros on the unit circle, then l(P) is effectively computable.

Theorem 3. Let $P,Q \in \mathbb{R}[x]$, Q be monic and have all zeros on the unit circle. Then for all $m \in \mathbb{N}$

$$l(PQ^m) = l(PQ).$$

Theorem 4. If $P \in \mathbb{R}[x]$ is monic and has all zeros on the unit circle, then $\widehat{l}(P) = l(P) = 2$, with l(P) attained, if and only if all zeros are roots of unity and simple.

Theorem 5. Let $P(x) = P_0(x)(x-\varepsilon)^e$, where $P_0 \in \mathbb{R}[x]$, $\varepsilon = \pm 1$, $e \in \mathbb{N}$ and all zeros of P_0 are outside the unit circle. Assume that the set Z of zeros of P_0 has a subset Z_0 , possibly empty, such that its elements are real of the same sign and the elements of $Z \setminus Z_0$ are algebraically independent over $\mathbb{Q}(Z_0)$. Then l(P) can be effectively computed. Moreover, if deg $P_0 = d_0$, then

$$l(P) \leqslant \inf_{Q \in S_{d\alpha}(P_0)} \Big\{ L(Q) + \big| Q(\varepsilon) \big| \Big\}.$$

For quadratic polynomials P Theorems 2, 4 and 5 together with Proposition A (iii) and (iv) exhaust all possibilities, so that l(P) can be effectively computed. A more precise information is given by the following

Theorem 6. If $P(x) = (x - \alpha)(x - \beta)$, where $|\alpha| \ge |\beta| \ge 1$, then

$$l(P) \geqslant 2|\alpha|$$

with the equality attained, if and only if $|\beta| = 1$.

Corollary 2. If $P \in \mathbb{R}[x]$ is of degree at most two with no zeros inside the unit circle, then

$$l(P) \in K(P)$$
.

Corollary 3. If $P(x) = (x - \alpha)(x - \beta)$, where $|\alpha| \ge |\beta| \ge 0$, then

$$\widehat{l}(P) = \begin{cases} |\alpha\beta|, & \text{if } |\beta| > 1, \\ 2|\alpha|, & \text{if } |\beta| = 1, \\ |\alpha| + \min\{1, |\alpha\beta|\}, & \text{if } |\alpha| > 1 > |\beta|, \\ 2, & \text{if } |\alpha| = 1, \\ 1, & \text{if } |\alpha| < 1. \end{cases}$$

Corollary 4. The function \hat{l} is not submultiplicative.

The last corollary is of interest, because of Proposition, part (i).

The problem of computing l(P) for cubic polynomials remains open already for $P = 2x^3 + 3x^2 + 4$. Another open question is whether $l(P) \in K(P)$ for all $P \in \mathbb{R}[x]$ with no zeros inside the unit circle.

We begin with

Proof of Proposition. We have by definition for all monic polynomials R, S in $\mathbb{R}[x]$

$$l(P) \leqslant L(PQR), \ l(PQ) \leqslant L(PQRS) \leqslant L(PR)L(QS)$$

hence

$$\begin{split} l(P) \leqslant \inf_{R \in \Gamma} L(PQR) &= l(PQ), \\ l(PQ) \leqslant \inf_{R \in \Gamma} L(PR) \inf_{S \in \Gamma} L(QS) &= l(P)l(Q). \end{split}$$

This proves (i). As to (ii) we have for every R in $\mathbb{R}[x]$

$$M(R) \leqslant L(R)$$

(see [4]), hence

$$M(P) \leqslant M(PQ) \leqslant L(PQ),$$

thus

$$M(P) \leqslant \inf_{Q \in \Gamma} L(PQ) = l(P)$$

and (ii) holds. The statement (iii) follows from

$$L(P(-x)) \le L(P(-x)Q(-x)(-1)^{\deg Q}) = L(PQ),$$

whence

$$l\bigg(P(-x)\bigg)\leqslant \inf_{Q\in\Gamma}L(PQ)=l(P).$$

Similarly,

$$l\bigg(P\left(x^{k}\right)\bigg)\leqslant L\bigg(P\left(x^{k}\right)Q\left(x^{k}\right)\bigg)=L(PQ),$$

whence

$$l\left(P\left(x^{k}\right)\right) \leqslant \inf_{Q \in \Gamma} L(PQ) = l(P).$$
 (1)

Finally, if

$$P(x^k) Q(x) = \sum_{i=0}^{k-1} x^i A_i(x^k), \text{ where } A_i \in \mathbb{R}[x],$$
 (2)

let $A_i = Q_i P + R_i$, where $Q_i, R_i \in \mathbb{R}[x]$ and $\deg R_i < \deg P$. It follows that

$$P\left(x^{k}\right) \mid \sum_{i=0}^{k-1} x^{i} R_{i}\left(x^{k}\right)$$

and since the degree of the sum is less than that of $P(x^k)$, $R_i = 0$ $(0 \le i < k)$. Let i be chosen so that $\deg x^i A_i(x^k)$ is the greatest. It follows from (2) that Q_i is monic. Hence, by (2)

$$L\left(P\left(x^{k}\right)Q(x)\right) \geqslant L\left(A_{i}\right) = L\left(PQ_{i}\right) \geqslant l(P),$$

thus $l(P(x^k)) \ge l(P)$, which together with (1) implies (iv).

Remark. The above proof of (iv), simpler than author's original proof, has been kindly suggested by A. Dubickas.

For the proof of Theorem 2 we need two lemmas

Lemma 1. Let $k \ge n$, $\boldsymbol{x} = (x_1, \dots, x_n)$, $L_i(\boldsymbol{x})$ for $i \le k$ be linear forms over \mathbb{R} ; L_1, \dots, L_n linearly independent, $a_i \in \mathbb{R}$ $(1 \le i \le k)$. Then

$$S(\boldsymbol{x}) = \sum_{i=1}^{k} |L_i(\boldsymbol{x}) + a_i|$$

attains its infimum.

Proof. Let $L_i(\mathbf{x}) = \sum_{j=1}^n a_{ij} x_j \ (1 \leqslant i \leqslant k), \ A = \max_{i,j \leqslant n} |a_{ij}|,$

$$D = \left| \det (a_{ij})_{i,j \le n} \right|, \quad s = \sum_{i=1}^{k} |a_i|.$$

Let s_0 be the infimum of $S(\boldsymbol{x})$ in the hypercube (degenerated if s=0)

$$H: \max_{1 \leqslant i \leqslant n} |x_i| \leqslant \frac{2n^{\frac{n-1}{2}} s A^{n-1}}{D}.$$

Since H is compact, there exists $\boldsymbol{x}_0 \in H$ such $S(\boldsymbol{x}_0) = s_0$. We shall show that $s_0 = \inf_{\boldsymbol{x} \in \mathbb{R}^n} S(\boldsymbol{x})$. Indeed, if for some $\boldsymbol{x}_1 \in \mathbb{R}^n$

$$S\left(\boldsymbol{x}_{1}\right) < s_{0},\tag{3}$$

then

$$\sum_{i=1}^{n} |L_i(\boldsymbol{x}_1)| < s_0 + s \leqslant 2s.$$

Solving the system $L_i(\mathbf{x}) = L_i(\mathbf{x}_1)$ $(1 \le i \le n)$ by means of Cramer's formulae and using Hadamard's inequality to estimate the relevant determinants we obtain

$$\max_{1 \le i \le n} |x_{1i}| < \frac{2n^{\frac{n-1}{2}} s A^{n-1}}{D},$$

hence $\boldsymbol{x}_1 \in H$, a contradiction with (3) and the definition of s_0 .

Lemma 2. Let $k \ge n$, $\boldsymbol{x} \in \mathbb{R}^n$, K be a subfield of \mathbb{R} , $L_1(\boldsymbol{x}), \ldots, L_k(\boldsymbol{x})$ be linear forms over K, n of them linearly independent, $a_i \in K$. There exists a point $\boldsymbol{x}_0 \in K^n$ in which $S(\boldsymbol{x}) = \sum_{i=1}^k |L_i(\boldsymbol{x}) + a_i|$ attains its infimum over \mathbb{R}^n and $L_i(\boldsymbol{x}_0) + a_i = 0$, for n indices $i = i_1, i_2, \ldots, i_n$ such that $L_{i_1}, L_{i_2}, \ldots, L_{i_n}$ are linearly independent.

Proof by induction on k**.** If k=1 we have n=1 and the assertion is trivial. Assume it is true for k-1 forms and consider the case of k forms, $k \ge 2$. If one of them, say L_k is identically 0, then among L_1, \ldots, L_{k-1} there are n linearly independent, hence $k-1 \ge n$ and applying the inductive assumption to L_1, \ldots, L_{k-1} we obtain the assertion. Therefore, we assume that all forms L_1, \ldots, L_k are non-zero. Suppose that $\inf S(\boldsymbol{x}) = S(\boldsymbol{x}_1)$ and $L_i(\boldsymbol{x}_1) + a_i \ne 0$ for all $i \le k$. Then there is an $\varepsilon > 0$ such that $|\boldsymbol{x} - \boldsymbol{x}_1| < \varepsilon$ implies $\operatorname{sgn}(L_i(\boldsymbol{x}) + a_i) =: \varepsilon_i$ for all $i \le k$. We have

$$S(\boldsymbol{x}) = \sum_{i=1}^{k} \varepsilon_i \left(L_i(\boldsymbol{x}) + a_i \right) = M \left(\boldsymbol{x} - \boldsymbol{x}_1 \right) + S \left(\boldsymbol{x}_1 \right),$$

where

$$M(\boldsymbol{x}) = \sum_{i=1}^{k} \varepsilon_i L_i(\boldsymbol{x}).$$

If $M \neq 0$, then there exists a point \mathbf{x}_0 with $|\mathbf{x}_0| < \varepsilon$ and $M(\mathbf{x}) < 0$, hence taking $\mathbf{x}_2 = \mathbf{x}_1 + \mathbf{x}_0$ we obtain $S(\mathbf{x}_2) < S(\mathbf{x}_1)$, a contradiction. Thus either $L_{i_1}(\mathbf{x}_1) + a_{i_1} = 0$ for a certain i_1 , or M = 0. In the latter case we take the point \mathbf{x}_2 nearest to \mathbf{x}_1 (or one of these) with $L_{i_2}(\mathbf{x}_2) + a_{i_2} = 0$ for a certain i_2 . Since the hyperplanes $L_i(x) + a_i = 0$ either are disjoint with the ball $|\mathbf{x} - \mathbf{x}_1| \leq |\mathbf{x}_2 - \mathbf{x}_1|$, or are tangent to it, taking $\langle \mathbf{x}_3, i_3 \rangle$ equal either to $\langle \mathbf{x}_1, i_1 \rangle$ or to $\langle \mathbf{x}_2, i_2 \rangle$ we obtain $S(\mathbf{x}_3) = S(\mathbf{x}_1)$ and $L_{i_3}(\mathbf{x}_3) + a_{i_3} = 0$. Without loss of generality we may assume that $i_3 = k$ and L_k is of positive degree in x_n . The equation $L_k(\mathbf{x}) + a_k = 0$ is equivalent to $x_n = C(x_1, \dots, x_{n-1}) + c$, where C is a linear form over K and $c \in K$. We now apply the inductive assumption to the forms $L'_i = L_i(x_1, \dots, x_{n-1}, C(x_1, \dots, x_{n-1}))$ and numbers $a'_i = a_i + L_i(0, \dots, 0, c)$ $(1 \leq i \leq k-1)$. By virtue of the theorem about the rank of the product of matrices, the number of linearly independent among forms L'_i is n-1. By the inductive assumption there exists a point $\mathbf{x}'_0 \in K^{n-1}$ such that $\sum_{i=1}^{k-1} |L'_i(\mathbf{x}') + a'_i| = S'(\mathbf{x}')$ attains at \mathbf{x}'_0 its infimum over \mathbb{R}^{n-1} and $L'_i(\mathbf{x}'_0) + a'_i = 0$ for n-1 indices $i = i'_1, \dots, i'_{n-1}$ such that $L'_{i_1}, \dots, L'_{i_{n-1}}$ are linearly independent. By the definition of L'_i and a'_i we have

$$S\left(\boldsymbol{x}_{3}\right)=S'\left(x_{3,1},\ldots,x_{3,n-1}\right)\geqslant\inf_{\boldsymbol{x}'\in\mathbb{R}^{n-1}}S'(\boldsymbol{x}')\geqslant\inf_{\boldsymbol{x}\in\mathbb{R}^{n}}S(\boldsymbol{x})=S\left(\boldsymbol{x}_{3}\right),$$

hence

$$S'(\boldsymbol{x}'_0) = \inf_{\boldsymbol{x}' \in \mathbb{R}^{n-1}} S'(\boldsymbol{x}') = \inf_{\boldsymbol{x} \in \mathbb{R}^n} S(\boldsymbol{x}).$$

Moreover, $L'_{i'_j}(\boldsymbol{x}'_0) + a'_{i'_j} = 0$ implies

$$L'_{i'_{i}}(x'_{01},\ldots,x'_{0n-1},C(\boldsymbol{x}'_{0})) + a_{ij} = 0$$

and the linear independence of $L'_{i'_1},\ldots,L'_{i'_{n-1}}$ implies the linear independence of the forms $L_{i'_1},\ldots,L_{i'_{n-1}}$. The latter forms are also linearly independent with L_k since identity

$$L_1(x_1,...,x_n) = \sum_{j=1}^{n-1} c_j L_{i'_j}(x_1,...,x_n), \quad c_j \in \mathbb{R}$$

gives on substitution $x_n = C(x_1, \dots, x_{n-1})$

$$0 = \sum_{j=1}^{n-1} c_j L'_{i_j}(x_1, \dots, x_n), \text{ hence } c_j = 0 \ (1 \le j < n).$$

Taking $\boldsymbol{x}_0 = (x'_{0\,1}, \dots, x'_{0\,n-1}, C(x'_0))$, $i_j = i'_j \ (1 \leqslant j < n)$, $i_n = k$ we obtain the inductive assertion.

Proof of Theorem 1. We have by definition

$$l(P) = \inf L(PG),$$

where G runs through all monic polynomials. Let $P = x^d + \sum_{i=1}^d a_i x^{d-i}$, $G = x^n + \sum_{i=1}^n x_i x^{n-i}$. We have

$$PG = x^{n+d} + \sum_{i=1}^{n+d} b_i x^{n+d-i},$$

where, with $a_0 = 1$ for $i \leq d$

$$b_i = a_i + \sum_{j=1}^{\min\{i,n\}} a_{i-j} x_j,$$

for i > d

$$b_i = \sum_{j=i-d}^{\min\{i,n\}} a_{i-j} x_j.$$

Therefore,

$$l(P) = 1 + \inf_{n, \boldsymbol{x} \in \mathbb{R}^n} \left\{ \sum_{i=1}^d |L_i(\boldsymbol{x}) + a_i| + \sum_{i=d+1}^{d+n} |L_i(\boldsymbol{x})| \right\},$$

where

$$L_i(\mathbf{x}) = \sum_{j=\max\{1,i-d\}}^{\min\{i,n\}} a_{i-j}x_j.$$

The forms L_i satisfy the assumptions of Lemma 2. Indeed, the n forms L_{d+1}, \ldots, L_{d+n} are linearly independent, since $L_{d+1}(\boldsymbol{x}) = \ldots = L_{d+n}(\boldsymbol{x}) = 0$ gives $PG \equiv 0 \pmod{x^n}$, hence $G \equiv 0 \pmod{x^n}$, i.e. $x_1 = \ldots = x_n = 0$. Applying Lemma 2 and Proposition A (iii) with $\eta = 0$ we obtain that for a given n, PG with the minimal length occurs in $S_d(P)$.

For the proof of Theorem 2 we need

Definition 1. Let $P = \prod_{s=1}^{r} (x - \alpha_s)^{m_s}$, where α_s are distinct and non-zero, $m_s \in \mathbb{N}$ $(1 \leq s \leq r)$, $m_1 + \ldots + m_r = d$, $n_0 > n_1 > \ldots > n_{d-1} > n_d \geqslant 0$ be integers. If $s \geqslant 1$, $1 \leq i \leq d$, $0 \leq j \leq d$, then i can be written in the form $i = m_1 + \ldots + m_{s-1} + g$ for some $1 \leq s \leq r$ and $1 \leq g \leq m_s$. We put

$$c_{ij} = \alpha_s^{n_j} \prod_{f=0}^{g-2} (n_j - n_f)$$
, where the empty product is 1

and for $\nu = 0, 1$

$$C(P; n_0, \dots, n_d) = (c_{ij})_{\substack{1 \le i \le d \\ 0 \le j \le d}}, \quad C_{\nu}(P; n_{\nu}, \dots, n_{d-1+\nu}) = (c_{ij})_{\substack{1 \le i \le d \\ \nu \le j < d+\nu}}.$$

Definition 2. $T_d(P) = \left\{ Q \in S_d(P) : Q = x^{n_0} + \sum_{i=1}^d b_i x^{n_i}, \text{ where } n_0 > n_1 > \dots > n_d = 0, |C_0(P; n_0, \dots, n_{d-1})| \neq 0 \neq |C_1(P; n_1, \dots, n_d)|, L(Q) \leqslant L(P) \right\}.$

Lemma 3. We have for $x_j \in \mathbb{C}$

$$\sum_{j=0}^{d} x_j x^{n_j} \equiv 0 \pmod{P} \tag{4_1}$$

if and only if

$$\sum_{i=0}^{d} c_{ij} x_j = 0 \quad (1 \leqslant i \leqslant d). \tag{42}$$

Proof. Clearly the condition (4_1) is equivalent to

$$\sum_{j=0}^{d} x_j \binom{n_j}{g-1} \alpha_s^{n_j} = 0 (1 \leqslant g \leqslant m_s, \ 1 \leqslant s \leqslant r),$$

that is to the vector equation

$$M\mathbf{x} = 0, (5)$$

where $\mathbf{x} = (x_0, x_1, \dots, x_d)^t$, $M = (m_{ij})_{\substack{1 \le i \le d \\ 0 \le j \le d}}$ and if $i = m_1 + \dots + m_{s-1} + g$, $1 \le g \le m_s$, then

$$m_{ij} = \binom{n_j}{g-1} \alpha_s^{n_j}. \tag{6}$$

Now define the numbers b_{qh} by the equation

$$\prod_{f=0}^{g-2} (x - n_f) = \sum_{h=1}^{g} b_{gh} \begin{pmatrix} x \\ h-1 \end{pmatrix}$$
 (7)

and put for $i = m_1 + \ldots + m_{s-1} + g$, $1 \leq g \leq m_s$, $1 \leq j \leq d$

$$a_{ij} = \begin{cases} b_{gh} & \text{if } j = m_1 + \ldots + m_{s-1} + h, \ 1 \leqslant h \leqslant g, \\ 0 & \text{otherwise,} \end{cases}$$
 (8)

$$A = (a_{ij})_{1 \le i \text{ idd}}. \tag{9}$$

The matrix A is lower triangular and non-singular, since $b_{gg}=(g-1)!$. Hence the equation (5) is equivalent to

$$AM\mathbf{x} = 0. (10)$$

However, by (6)–(9) the element in *i*-th row $(1 \leqslant i \leqslant d)$ and *j*-th column $(0 \leqslant j \leqslant d)$ of AM for $i = m_1 + \ldots + m_{s-1} + g$, $1 \leqslant g \leqslant m_s$ is

$$\sum_{t=1}^{d} a_{it} m_{tj} = \sum_{h=1}^{g} b_{gh} \binom{n_j}{h-1} \alpha_s^{n_j} = \alpha_s^{n_j} \prod_{f=0}^{g-2} (n_j - n_f) = c_{ij},$$

hence (4_1) is equivalent to (4_2) .

Lemma 4. We have $\inf_{Q \in S_d(P)} L(Q) = \inf_{Q \in T_d(P)} L(Q)$.

Proof. Let P be as in Definition 1. We shall prove by induction with respect to n that

$$\inf_{\substack{Q \in S_d(P) \\ \deg Q \leqslant n+d}} L(Q) = \inf_{\substack{Q \in T_d(P) \\ \deg Q \leqslant n+d}} L(Q). \tag{11}$$

If n=0 then $Q \in S_d(P)$, $\deg Q \leqslant n+d$ implies Q=P. We shall show that $P \in T_d(P)$. Otherwise $P=x^{n_0}+\sum\limits_{i=1}^d a_ix^{n_i}$ $(n_i=d-i)$ and either $|C_0(P;n_0,\ldots,n_{d-1})|=0$, or $|C_1(P;n_1,\ldots,n_d)|=0$. In the former case there exists $[d_0,\ldots,d_{d-1}] \in \mathbb{C}^d \setminus \{\mathbf{0}\}$ such that

$$\sum_{j=0}^{d-1} c_{ij} d_j = 0 \quad (1 \leqslant i \leqslant d). \tag{12}$$

By Lemma 3

$$\sum_{j=0}^{d-1} d_j x^{n_j} \equiv 0 \pmod{P} \tag{13}$$

and, since $n_0 = d$, $\sum_{j=0}^{d-1} d_j x^{n_j} = d_0 P$; $d_0 \neq 0$, P(0) = 0, a contradiction. In the latter case, similarly, there exists $[e_1, \dots, e_d] \in \mathbb{C}^d \setminus \{\mathbf{0}\}$ such that

$$\sum_{j=1}^{d} c_{ij} e_j = 0 \quad (1 \leqslant i \leqslant d). \tag{14}$$

By Lemma 3

$$\sum_{j=1}^{d} e_j x^{n_j} \equiv 0 \pmod{P},\tag{15}$$

which is impossible since $n_1 < n_0 = d = \deg P$.

Assume now that the equality (11) holds with n replaced by n-1 and suppose that

$$\inf_{\substack{Q \in S_d(P) \\ \deg Q \leqslant n+d}} L(Q) = L(Q_0) \text{ ,where } Q_0 = x^{n_0} + \sum_{j=1}^d b_j x^{n_j} \in K(P)[x],$$

$$n_0 > n_1 > \dots > n_d \geqslant 0.$$
(16)

Clearly $L(Q_0) \leqslant L(P)$.

If $n_0 < n+d$ the inductive assertion follows immediately from the inductive assumption. If $n_0 = n+d$, let $L_i(x)$ be the linear forms defined in the proof of

Theorem 1 and a_i have the meaning of that proof, if $i \leq d$, $a_i = 0$ otherwise. We have

$$L\left(Q_{0}
ight)=\inf_{oldsymbol{x}\in\mathbb{R}^{n}}\sum_{i=1}^{n+d}\left|L_{i}(oldsymbol{x})+a_{i}
ight|,$$

hence, by Lemma 2, the above infimum is attained in a point \boldsymbol{x}_0 , such that for n indices i_1,\ldots,i_n simultaneously $L_{i_j}(\boldsymbol{x}_0)+a_{ij}=0$ and L_{i_1},\ldots,L_{i_n} are linearly independent. Since the system of equations $L_{i_j}(\boldsymbol{x}_0)+a_{i_j}=0$ $(1\leqslant j\leqslant n)$ determines \boldsymbol{x}_0 uniquely the coefficients of x^{n+d-i} in Q, where $i\neq i_1,\ldots,i_n$ (hence $n+d-i=n_1,n_2,\ldots,n_d$) are uniquely determined by the condition $Q\equiv 0 \pmod{P}$, Q monic in $\mathbb{C}[x]$. On the other hand, if $|C_0(P;n_0,\ldots,n_{d-1})|=0$, then there exists $[d_0,\ldots,d_{d-1}]\in\mathbb{C}^d\setminus\{\mathbf{0}\}$ such that (12) and (13) hold again. If $d_0=0$, then

$$Q_1 := Q_0 + \sum_{i=1}^{d-1} d_j x^{n_j} \equiv 0 \pmod{P},$$

where the Q_1 is again monic, contrary to the uniqueness property. If $d_0 \neq 0$, then by the uniqueness property

$$Q_0 = d_0^{-1} \sum_{j=1}^{d-1} d_j x^{n_j} = x^{n_{d-1}} Q_2, \quad Q_2 \in K(P)[x],$$

hence

$$L(Q_0) = L(Q_2), \quad \deg Q_2 < n + d$$

and, by the inductive assumption

$$L\left(Q_{0}\right) = \inf_{\substack{Q \in S_{d}(P) \\ \deg Q < n+d}} L(Q) = \inf_{\substack{Q \in T_{d}(P) \\ \deg Q < n+d}} L(Q) \geqslant \inf_{\substack{Q \in T_{d}(P) \\ \deg Q \leqslant n+d}} L(Q).$$

By (16) this gives (11).

If $|C_1(P; n_1, \ldots, n_d)| = 0$, then there exists $[e_1, \ldots, e_d] \in \mathbb{C}^d \setminus \{\mathbf{0}\}$ such that (14) and (15) hold again. We have

$$Q_3 := Q_0 + \sum_{j=1}^d e_j x^{n_j} \equiv 0 \pmod{P}$$

and Q_3 is again monic, contrary to the uniqueness property.

In the remaining case

$$|C_0(P; n_0, \dots, n_{d-1})| \neq 0 \neq |C_1(P; n_1, \dots, n_d)|$$

we have $Q_0 \in T_d(P)$, hence (11) holds again.

Lemma 5. Let in the notation of Definition 1, $i = m_1 + \ldots + m_{s(i)-1} + g(i)$, $1 \leq g(i) \leq m_{s(i)}$. Then for every $j \geq h \geq g(i) - 1$

$$|c_{ij}| \le |c_{ih}| \max \left\{ 1, \frac{g(i) - 1}{\log |\alpha_{s(i)}|} \right\}^{g(i) - 1}.$$
 (17)

Proof. For the sake of brevity, put s(i) = s, g(i) = g. For g = 1 we have $|c_{ij}| = |\alpha_s^{n_j}| \le |\alpha_s^{n_h}| = |c_{ih}|$. Assume g > 1. For every $f \le g - 2$ the function

$$\varphi(x) = \max\left\{1, \frac{g-1}{\log|\alpha_s|}\right\} |\alpha_s|^{\frac{n_h-x}{g-1}} - \frac{n_f-x}{n_f-n_h}$$

satisfies $\varphi(n_h) \geqslant 0$, $\varphi'(x) \leqslant 0$ for $x \leqslant n_h$. Hence $\varphi(n_j) \geqslant 0$,

$$\max\left\{1, \frac{g-1}{\log|\alpha_s|}\right\} |\alpha_s|^{\frac{n_h}{g-1}} \left(n_f - n_h\right) \geqslant |\alpha_s|^{\frac{n_j}{g-1}} \left(n_f - n_j\right)$$

and (17) follows on taking products over f from 0 to g-2.

Lemma 6. Let $a, b, c, x \in \mathbb{R}, a > 1, b \ge 0, c > 0, x > 0$. If

$$a^x/x^b \leqslant c,\tag{18}$$

then

$$x \leqslant \left(\frac{2b}{e\log a} + \sqrt{\frac{b^2}{e^2(\log a)^2} + \frac{\log c}{\log a}}\right)^2 =: \psi(a, b, c). \tag{19}$$

The function ψ is decreasing in a, increasing in b and c.

Proof. Put $x = y^2$, y > 0. It follows from (18) that

$$y^2 \log a - 2b \log y \leqslant \log c$$

and, since $\log y \leqslant y/e$

$$y^2 \log a - \frac{2b}{e} y \leqslant \log c.$$

Solving this inequality for y and squaring we obtain (19).

Lemma 7. For every subset I of $\{1, \ldots, d\}$ of cardinality h we have

$$\left| \det \left(c_{ij} \right)_{\substack{i \in I \\ 1 \le j \le h}} \right| \le h^{\frac{h}{2}} \prod_{i \in I} \left| \alpha_{s(i)} \right|^{n_{\max\{1, g(i) - 1\}}} \prod_{f = 0}^{g(i) - 2} (n_f - n_h)$$
 (20)

and

$$\left| \det \left(c_{ij} \right)_{\substack{i \in I \\ 0 \le j < h}} \right| \le h^{\frac{h}{2}} \prod_{i \in I} \left| \alpha_{s(i)} \right|^{n_{g(i)-1}} \prod_{f=0}^{g(i)-2} \left(n_f - n_{h-1} \right). \tag{21}$$

Proof. For all $i \in I$ and $j \leq g(i) - 2$ we have $c_{ij} = 0$, while for j > g(i) - 2

$$|c_{ij}| = \left|\alpha_{s(i)}\right|^{n_j} \prod_{f=0}^{g(i)-2} (n_f - n_h) \leqslant \begin{cases} \left|\alpha_{s(i)}\right|^{n_{\max\{1,g(i)-1\}}} \prod_{f=0}^{g(i)-2} (n_f - n_h) & \text{if } 1 \leqslant j \leqslant h, \\ \left|\alpha_{s(i)}\right|^{n_{g(i)-1}} \prod_{f=0}^{g(i)-2} (n_f - n_{h-1}) & \text{if } 0 \leqslant j < h, \end{cases}$$

hence (20) and (21) follow by Hadamard's inequality. Note that if g(i) > h + 1 or g(i) > h for $i \in I$, then both sides of (20) or (21), respectively, are zero.

Definition 3. In the notation of Definition 1 and of Lemma 5 put for a positive integer h < d, positive integers e_1, \ldots, e_h and a subset J of $\{1, \ldots, d\}$ of cardinality h+1 such that $\max_{i \in J} g(i) \leq h+1$

$$D(J; e_1, \dots, e_h) = \left| \det \left(\alpha_{s(i)}^{\sum_{\mu=j+1}^h e_{\mu}} \prod_{g(i)-2}^{g(i)-2} \sum_{\nu=f+1}^j e_{\nu} \right) \right| \times \prod_{i \in J} \left| \alpha_{s(i)} \right|^{-\sum_{\mu=\max\{2,g(i)\}}^h e_{\mu}} \prod_{i \in J} \prod_{f=0}^{g(i)-2} \left(\sum_{\nu=f+1}^h e_{\nu} \right)^{-1}.$$

Definition 4. $D(e_1, \ldots, e_h) = \max D(J; e_1, \ldots, e_h)$, where the maximum is taken over all subsets of $\{1, \ldots, d\}$ of cardinality h+1 such that $\max_{i \in J} g(i) \leq h+1$.

Remark. The definition is meaningful, since always there exists a subset J of $\{1,\ldots,d\}$ with the required property. If for all $i\leqslant d$ we have $g(i)\leqslant h+1$ this is clear and if for some $i_0:g(i_0)>h+1$ we take

$$J = \left\{ i : m_1 + \ldots + m_{s(i_0)-1} < i \leqslant m_1 + \ldots + m_{s(i_0)-1} + h + 1 \right\}.$$

Proof of Theorem 2. Using the notation of Definition 1 we define the sequence d_1, \ldots, d_d inductively as follows.

$$d_1 = \frac{\log(L(P) - 1)}{\log|\alpha_1|} \tag{22}$$

and, if d_1, \ldots, d_h $(d > h \ge 1)$ are already defined, put

$$D_{h+1} = (h+1)^{-1} h^{\frac{h}{2}} \min \left\{ D(e_1, \dots, e_h) : 1 \leqslant e_i \leqslant d_i, D(e_1, \dots, e_h) > 0 \right\}$$
 (23)

(the minimum over an empty set being ∞), $m = \max_{1 \leq s \leq r} m_s$,

$$d_{h+1} = \begin{cases} \max \left\{ d_1 + \dots + d_h, \\ \psi \left(|\alpha_r|, m - 1, \left(\max \left\{ 2, \frac{2(m-1)}{\log |\alpha_r|} \right\} \right)^{m-1} D_{h+1}^{-1} (L(P) - 1) \right) \right\} & (24) \\ 0 & \text{if } D_{h+1} \neq \infty, \end{cases}$$

We shall show that if $Q \in T_d(P)$, $Q = x^{n_0} + \sum_{j=1}^d b_j x^{n_j}$, then

$$n_{j-1} - n_j \leqslant d_j \quad (1 \leqslant j \leqslant d). \tag{25}$$

We proceed by induction on j. Since $Q \in T_d(P)$ the equation

$$\alpha_1^{n_0} + \sum_{j=1}^d b_j \alpha_1^{n_j} = 0$$

implies

$$|\alpha_1|^{n_0} \le |\alpha_1|^{n_1} \sum_{j=1}^d |b_j| \le |\alpha_1|^{n_1} (L(Q) - 1) \le |\alpha_1|^{n_1} (L(P) - 1),$$

which, in view of (22) gives (25) for j=1. Assume now that (25) holds for all $j\leqslant h$ (h< d) and consider the matrix $(c_{ij})_{\substack{1\leqslant i\leqslant d\\0\leqslant j\leqslant h}}$ for c_{ij} defined in Definition 1. Since $Q\in T_d(P)$ we have

rank
$$(c_{ij})_{\substack{1 \le i \le d \\ 0 \le j \le h}} = h + 1,$$

hence also

rank
$$\left(c_{ij}\alpha_{s(i)}^{-n_h}\right)_{\substack{1\leqslant i\leqslant d\\0\leqslant j\leqslant h}}=h+1.$$

Therefore, there exists a subset J of $\{1,\ldots,d\}$ of cardinality h+1 such that

$$\Delta(J) = \det \left(c_{ij} \alpha_{s(i)}^{-n_h} \right)_{\substack{i \in J \\ 0 \le i \le h}} \neq 0.$$
 (26)

For every subset J with the above property consider

$$M(J) = \max_{i \in J} \left| \left(c_{i0} + \sum_{j=1}^{h} c_{ij} b_j \right) \alpha_{s(i)}^{-n_h} \right|.$$

Solving the system of equations

$$\left(c_{i0}x_0 + \sum_{j=1}^h c_{ij}x_j\right)\alpha_{s(i)}^{-n_h} = \left(c_{i0} + \sum_{j=1}^h c_{ij}b_j\right)\alpha_{s(i)}^{-n_h} \quad (i \in J)$$

by means of Cramer's formulae and developing the numerator according to the first column we obtain

$$1 \leqslant \frac{(h+1)M(J) \max \left| \det \left(c_{ij} \alpha_{s(i)}^{-n_h} \right)_{\substack{i \in I \\ 1 \leqslant j \leqslant h}} \right|}{\left| \Delta(J) \right|},$$

where the maximum is taken over all subsets I of J of cardinality h. Now, by Lemma 7, since $|\alpha_{s(i)}| \ge 1$

$$\max \left| \det \left(c_{ij} \alpha_{s(i)}^{-n_h} \right)_{\substack{i \in I \\ 1 \leqslant j \leqslant h}} \right| \geqslant h^{\frac{-h}{2}} \prod_{i \in J} \left| \alpha_{s(i)} \right|^{n_{\max\{1,g(i)-1\}}} \prod_{f=0}^{g(i)-2} (n_f - n_h).$$

This gives, by Definitions 3 and 4, for every J satisfying (26)

$$M(J) \ge (h+1)^{-1}h^{-\frac{h}{2}}D(J; n_0 - n_1, \dots, n_{h-1} - n_h) > 0$$

and, since such J exist

$$\max^* M(J) \geqslant (h+1)^{-1} h^{-\frac{h}{2}} D(J; n_0 - n_1, \dots, n_{h-1} - n_h) < \infty,$$

where \max^* is taken over all subsets J of $\{1,\ldots,d\}$ such that $\operatorname{card} J=h+1$ and $\max_{i\in J}g(i)\leqslant h+1$.

By the inductive assumption and (23)

$$\max^* M(J) \ge D_{h+1} > 0$$
,

thus there exists a set $J_0 \subset \{1, \ldots, d\}$ such that

card
$$J_0 = h + 1$$
, $\max_{i \in J_0} g(i) \leqslant h + 1$ and
$$M(J_0) \geqslant D_{h+1}. \tag{27}$$

On the other hand, by Lemma 3

$$c_{i0} + \sum_{j=1}^{d} c_{ij} b_j = 0 \quad (i \in J_0),$$

hence

$$\left| \left(c_{i0} + \sum_{j=1}^{h} c_{ij} b_j \right) \alpha_{s(i)}^{-n_h} \right| \cdot \left| \alpha_{s(i)} \right|^{n_h} = \left| \sum_{j=h+1}^{d} c_{ij} b_j \right|. \tag{28}$$

By (27) for a certain $i_0 \in J_0$ the left-hand side is at least $D_{h+1}|\alpha_{s(i)}^{n_h}|$. As to the right-hand side, replacing in Lemma 5 h by h+1, we obtain

$$\left| \sum_{j=h+1}^{d} c_{i_0 j} b_j \right| \leq |c_{i_0,h+1}| \left(\max \left\{ 1, \frac{g(i_0) - 1}{\log \left| \alpha_{s(i_0)} \right|} \right\} \right)^{g(i_0) - 1} \sum_{j=h+1}^{d} |b_j|$$

$$\leq |c_{i_0,h+1}| \left(\max \left\{ 1, \frac{m_{s(i_0)} - 1}{\log \left| \alpha_{s(i_0)} \right|} \right\} \right)^{m_{s(i_0)} - 1} (L(P) - 1).$$
(29)

If $n_h - n_{h+1} \le n_0 - n_h$, we obtain $n_h - n_{h+1} \le d_1 + \ldots + d_h \le d_{h+1}$, hence the inductive assertion holds. If $n_h - n_{h+1} > n_0 - n_h$, then

$$|c_{i_{0},h+1}| = |\alpha_{s(i_{0})}|^{n_{h+1}} \prod_{f=0}^{g(i_{0})-2} (n_{f} - n_{h+1})$$

$$\leq |\alpha_{s(i_{0})}|^{n_{h+1}} \left(2 (n_{h} - n_{h+1})\right)^{g(i_{0})-1}$$

$$\leq |\alpha_{s(i_{0})}|^{n_{h+1}} 2^{m_{s(i_{0})}-1} (n_{h} - n_{h+1})^{m_{s(i_{0})}-1}.$$

$$(30)$$

Combining this inequality with (28) and (29) we obtain

$$\frac{D_{h+1} \left| \alpha_{s(i_0)} \right|^{n_h - n_{h+1}}}{(n_h - n_{h+1})^{m_{s(i_0)} - 1}} \leqslant \left(\max \left\{ 2, \frac{2 \left(m_{s(i_0)} - 1 \right)}{\log \left| \alpha_{s(i_0)} \right|} \right\} \right)^{m_{s(i_0)} - 1} (L(P) - 1), \quad (31)$$

hence, by Lemma 6,

$$\begin{split} & n_h - n_{h+1} \\ & \leqslant \max_{1 \leqslant s \leqslant r} \psi \left(\left| \alpha_s \right|, \, m_s - 1, \left(\max \left\{ 2, \frac{2 \left(m_s - 1 \right)}{\log \left| \alpha_s \right|} \right\} \right)^{m_s - 1} D_{h+1}^{-1} \left(L(P) - 1 \right) \right) \\ & \leqslant \psi \left(\left| \alpha_r \right|, \, m - 1, \left(\max \left\{ 2, \frac{2 \left(m - 1 \right)}{\log \left| \alpha_r \right|} \right\} \right)^{m - 1} D_{h+1}^{-1} \left(L(P) - 1 \right) \right) \leqslant d_{h+1}. \end{split}$$

The inductive assertion being proved, it follows that

$$n_0 - n_d \leqslant \sum_{h=1}^d d_h.$$

However, $n_d = 0$, hence

$$l(P) = \inf_{Q \in U_d(P)} L(Q),$$

where
$$U_d(P) = \left\{ Q \in T_d(P) : \deg Q \leqslant \sum_{h=1}^d d_h \right\}$$
.
The set $U_d(P)$ is finite and effectively computable, since for $Q = x^{n_0} + 1$

The set $U_d(P)$ is finite and effectively computable, since for $Q = x^{n_0} + \sum_{j=1}^d b_j x^{n_j} \in U_d(P)$ there are only finitely many choices for $\langle n_0, \dots, n_d \rangle$ and for each choice the coefficients b_j are determined uniquely and are effectively computable. Moreover, $Q \in T_d(P)$ implies $Q \in K(P)[x]$, hence $L(Q) \in K(P)$. The theorem follows.

Proof of Corollary 1. If $P(x) = a_0 \prod_{i=1}^{c} (x - \alpha_i) \prod_{i=c+1}^{d} (x - \alpha_i)$, where $|\alpha_i| > 1$ for $i \leq c$, $|\alpha_i| < 1$ for i > c, then by Proposition A

$$l(P) = |a_0| l \left(\prod_{i=1}^{c} (x - \alpha_i) \right)$$

and the right hand side is effectively computable by Theorem 2.

For the proof of Theorem 3 we need two lemmas.

Lemma 8. If $P_n \in \mathbb{R}[x]$, $p_n, q_n \in \mathbb{N} \cup \{0\}$ (n = 0, 1, ...) and

$$\lim_{n \to \infty} \inf L(P_n(x) - P_0(x^{p_n}) x^{q_n}) = 0, \tag{32}$$

then

$$\liminf_{n \to \infty} l(P_n) \leqslant l(P_0).$$
(33)

Proof. By definition of $l(P_0)$ for every n there exists G_n monic such that

$$L\left(P_0G_n\right) \leqslant l\left(P_0\right) + \frac{1}{n}.$$

By (32) there exists $k_n \in \mathbb{N}$ such that $k_n > n$ and

$$L(P_{k_n}(x) - P_0(x^{p_{k_n}}) x^{q_{k_n}}) \le \frac{1}{nL(G_n)}.$$

Hence

$$L(P_{k_{n}}(x)G_{n}(x^{p_{k_{n}}})) \leq L(P_{0}(x^{p_{k_{n}}})x^{q_{k_{n}}}G_{n}(x^{p_{k_{n}}}))$$

$$+ L((P_{k_{n}}(x) - P_{0}(x^{p_{k_{n}}})x^{q_{k_{n}}})G_{n}(x^{p_{k_{n}}})) \leq L(P_{0}G_{n})$$

$$+ L(P_{k_{n}}(x) - P_{0}(x^{p_{k_{n}}})x^{q_{k_{n}}})L(G_{n}) \leq l(P_{0}) + \frac{2}{n},$$

thus

$$l(P_{k_n}) \leqslant l(P_0) + \frac{2}{n}.$$

This implies (33).

Remark. The equality $\lim_{n\to\infty} L(P_n - P_0) = 0$ does not imply $\liminf_{n\to\infty} l(P_n) = l(P_0)$, as is shown by the example $P_n = x - \frac{n-1}{n}$, $P_0 = x - 1$, see Proposition A, (ii) and (iii).

Lemma 9. Let Q be a monic polynomial, irreducible over \mathbb{R} of degree $d \leq 2$ with the zeros on the unit circle. There exists a sequence of monic polynomials R_n such that

$$Q^2 \mid R_n \tag{34}$$

and

$$\lim_{n \to \infty} L\left(R_n - x^{dn}Q\right) = 0. \tag{35}$$

Proof. It suffices to take

$$R_n = x^{x+1} - \varepsilon \left(1 + \frac{1}{n}\right) x^n + \frac{\varepsilon^{n+1}}{n}, \quad \text{if} \quad d = 1, Q = x - \varepsilon$$

and

$$R_n = \left(x^{n+1} - \zeta\left(1 + \frac{1}{n}\right)x^n + \frac{\zeta^{n+1}}{n}\right)\left(x^{n+1} - \overline{\zeta}\left(1 + \frac{1}{n}\right)x^n + \frac{\overline{\zeta}^{n+1}}{n}\right),$$
if $d = 2$, $Q = (x - \zeta)(x - \overline{\zeta})$.

Indeed, we have for every ε

$$(x-\varepsilon)^2 \mid x^{n+1} - \varepsilon \left(1 + \frac{1}{n}\right) x^n + \frac{\varepsilon^{n+1}}{n},$$

which implies (34) and

$$L(R_n - x^{dn}Q) \leqslant \begin{cases} 2/n & \text{if } d = 1\\ (8n+4)/n^2 & \text{if } d = 2, \end{cases}$$

which implies (35).

Proof of Theorem 3. We proceed by induction with respect to the number N of irreducible factors of Q^{m-1} counted with multiplicities. If N=1, then m=2, Q is irreducible and by Lemma 9 we have

$$PQ^2 \mid PR_n \tag{36}$$

and

$$\lim_{n \to \infty} L\left(PR_n - x^{dn}PQ\right) = 0. \tag{37}$$

By (37) and Lemma 8 we have

$$\liminf_{n\to\infty} l\left(PR_n\right) \leqslant l(PQ).$$

However, by Proposition (i) and (36)

$$l(PQ) \leqslant l(PQ^2) \leqslant l(PR_n),$$

hence

$$l(PQ) \leqslant l(PQ^2) \leqslant l(PQ)$$
,

which gives the theorem for N+1.

Assume now that the number of irreducible factors of Q^{m-1} is N > 1 and the theorem is true for the number of irreducible factors less than N. If m > 2 then the number of irreducible factors of Q^{m-2} and of Q is less than N, hence applying the inductive assumption with P replaced first by PQ we obtain

$$l(PQ^m) = l(PQ^2) = l(PQ).$$

If m=2 and the number of irreducible factors of Q^{m-1} is N>1, then Q is reducible, $Q=Q_1Q_2$, where $\deg Q_i>1$ (i=1,2). The number of irreducible factors of Q_i is less than N, hence applying the inductive assumption with P replaced first by PQ_1^2 and then by PQ_2 we obtain

$$l(PQ^2) = l(PQ_1^2Q_2^2) = l(PQ_1^2Q_2) = l(PQ_1Q_2) = l(PQ).$$

The inductive proof is complete.

Proof of Theorem 4. By Theorem 3 and Proposition A (ii) we have for $d \in \mathbb{N}$

$$l((x-1)^d) = l(x-1) = 2. (38)$$

Now, let

$$P(x) = \prod_{j=1}^{d} (x - \exp 2\pi i r_j), \text{ where } r_j \in \mathbb{R}.$$

By Dirichlet's approximation theorem for every positive integer n there exists a positive integer p_n such that

$$||p_n r_j|| \leqslant \frac{1}{2\pi n} \quad (1 \leqslant j \leqslant d),$$

hence

$$|\exp 2\pi i p_n r_j - 1| < \frac{1}{n}.$$

It follows that the polynomial

$$Q_n(x) = \prod_{j=1}^d \left(x^{p_n} - \exp 2\pi i p_n r_j \right)$$

satisfies

$$P \mid Q_n \tag{39}$$

and

$$L\left(Q_n - (x^{p_n} - 1)^d\right) \leqslant \left(2 + \frac{1}{n}\right)^d - 2^d.$$
 (40)

Now, (39) implies by Proposition (i)

$$l(P) \leqslant \liminf_{n \to \infty} l(Q_n)$$
,

while (40), Lemma 8 and (38) imply

$$\liminf_{n \to \infty} l(Q_n) \leqslant l((x-1)^d) = 2.$$

Hence $l(P) \leq 2$. On the other hand, if $P \mid Q$, $Q = x^n + \sum_{j=1}^n b_j x^{n-j}$, then for a zero α of P we have

$$1 = |\alpha|^n = \left| \sum_{j=1}^n b_j x^{n-j} \right| \le \sum_{j=1}^n |b_j| = L(Q) - 1,$$

hence $L(Q) \ge 2$; so

$$l(P) \geqslant 2$$
,

which gives the first part of the theorem. In order to prove the second part assume that $P \mid Q$, Q monic and L(Q) = 2. Let

$$Q = x^n + \sum_{j=1}^n b_j x^{n-j}, \quad b_n \neq 0.$$

For every zero α of P we have

$$\alpha^n + \sum_{j=1}^n b_j \alpha^{n-j} = 0, \tag{41}$$

hence

$$\left| \sum_{i=1}^{n} b_i \alpha^{n-i} \right| = |\alpha^n| = 1 = \sum_{i=1}^{n} |b_i|.$$

It follows that for every j with $b_i \neq 0$

$$\arg b_i \alpha^{n-j} = \arg b_n.$$

Since $\arg b_i = 0$ or π , either α is a root of unity, or $b_j = 0$ for all j < n. However the latter case, by virtue of (41) leads to the former. Suppose now that α is a multiple zero of P, hence also of Q. Then

$$n\alpha^{n-1} + \sum_{j=1}^{n-1} b_j(n-j)\alpha^{n-j-1} = 0,$$

hence

$$\left| \sum_{j=1}^{n-1} b_j(n-j)\alpha^{n-j-1} \right| = |n\alpha^n| = n > \sum_{j=1}^{n-1} |b_j| \, n,$$

which is impossible, since for each j < n, $|b_j(n-j)\alpha^{n-j-1}| \le |b_j|n$. Thus all zeros of P are roots of unity and simple. If this condition is satisfied, then $P \mid x^m - 1$, where m is the least common multiple of orders of the roots of unity in question and

$$L\left(x^m - 1\right) = 2.$$

For the proof of Theorem 5 we need seven lemmas.

Lemma 10. Let d>2, I be a subset of $\{1,2,\ldots,d-1\}$ and J a subset of $\{0,\ldots,d-2\}$ both of cardinality d-2. Then

$$\left| \det \left(c_{ij} \right)_{\substack{i \in I \\ j \in J}} \right| \leqslant (d-2)^{\frac{d-2}{2}} \prod_{i \in I} \left| \alpha_{s(i)} \right|^{n_{g(i)-1}} \prod_{f=0}^{g(i)-2} \left(n_f - n_{d-2} \right).$$

Proof. is similar to the proof of Lemma 7.

Lemma 11. Under the assumptions of Theorem 5 we have, in the notation of Definition 1, for every $h \le d - e$ and $\nu = 0, 1$

$$D_{h\nu} = \det\left(c_{ij}\right)_{\substack{1 \leqslant i \leqslant h \\ \nu \leqslant j \leqslant h + \nu}} \neq 0. \tag{42}$$

Proof. In the notation of Definition 1 we have $|\alpha_s| > 1$ for s < r, $\alpha_r = \varepsilon$, $m_r = e$. Assume that $\alpha_s \in Z_0$, if and only if $s \in S_0$. In the notation of Lemma 5

$$h = m_1 + \ldots + m_{s(h)-1} + g(h), \quad 1 \le g(h) \le m_{s(h)}.$$

If $\nu = 0$ or 1, $D_{h\nu} = 0$ and $\alpha_s \in Z_0$ for all $s \leqslant s(h)$, the system of equations

$$\sum_{i=\nu}^{h-1+\nu} c_{ij} x_j = 0 \qquad (1 \leqslant i \leqslant h)$$

has a solution $\langle x_{\nu}, \dots, x_{h-1+\nu} \rangle \in \mathbb{R}^h \setminus \{0\}$. It follows by Lemma 3 that

$$\sum_{j=\nu}^{h-1+\nu} x_j x^{n_j} \equiv 0 \left(\text{mod } \prod_{s=1}^{s(h)-1} (x - \alpha_s)^{m_s} (x - \alpha_{s(h)})^{g(h)} \right)$$

hence the polynomial $\sum_{j=\nu}^{h-1+\nu} x_j x^{n_j} \in \mathbb{R}[x]$ has h zeros of the same sign, counted

with multiplicities. This, however, contradicts the Descartes rule of signs (see [5], Satz 12), hence, if $\alpha_s \in Z_0$ ($s \leq s(h)$) (42) holds. It also shows that $D_{h\nu}$ as a polynomial in α_s ($s \notin S_0$) is not identically zero for any fixed $\alpha_s \in Z_0$. Since the coefficients of the polynomial in question belong to $\mathbb{Q}(Z_0)$, the algebraic independence of α_s ($s \notin S_0$) over $\mathbb{Q}(Z_0)$ implies $D_{h\nu} \neq 0$.

Lemma 12. Under the assumptions of Theorem 5 let P_0 be of degree d-e. For all positive integers e_1, \ldots, e_{d-e} there exists a unique polynomial $Q = Q(P_0; e_1, \ldots, e_{d-e})$ such that

$$Q = x^{\sum_{\mu=1}^{d-e} e_{\mu}} + \sum_{j=1}^{d-e} b_{j} x^{\sum_{\mu=j+1}^{d-e} e_{\mu}}$$

and

$$Q \equiv 0 \pmod{P_0}. \tag{43}$$

Moreover, $Q \in \mathbb{R}[x]$.

Proof. For j = 0, ..., d - e put $n_j = \sum_{\nu=j+1}^{d-e} e_{\nu}$ and for $i \leq d - e$, let c_{ij} be defined by Definition 1 with P replaced by P_0 . By Lemma 3 the congruence (43) is equivalent to

$$\sum_{j=1}^{d-e} c_{ij} b_j = -c_{i0} \quad (1 \leqslant i \leqslant d - e).$$

By Lemma 11 with h=d-e and $\nu=1$ the determinant of this system is non-zero, hence b_j are uniquely determined. If we replace c_{ij} by \overline{c}_{ij} we obtain the same system of equations, hence $b_j \in \mathbb{R}$.

Lemma 13. For every positive integer h < d-e and all positive integers e_1, \ldots, e_h we have in the notation of Definition 3

$$D(\{1,\ldots,h+1\},e_1,\ldots,e_h)>0.$$

Proof. We have

$$\max_{i \le h+1} g(i) \le \max_{i \le h+1} i = h+1,$$

hence $D(\{1,\ldots,h+1\},e_1,\ldots,e_h)$ is defined. Its only factor, which could possibly vanish is

$$\det \left(\alpha_{s(i)}^{\sum\limits_{\mu=j+1}^{h} e_{\mu}} \prod_{j=0}^{g(i)-2} \sum_{\nu=f+1}^{j} e_{\nu} \right)_{\substack{1 \leqslant i \leqslant h+1 \\ 0 \leqslant j \leqslant h}} = \det \left(c_{ij} \alpha_{s(i)}^{-n_h} \right)_{\substack{1 \leqslant i \leqslant h+1 \\ 0 \leqslant j \leqslant h}},$$

where $n_j = \sum_{\mu=j+1}^d e_{\mu}$. By (42) with $\nu = 0$ the above determinant is non-zero.

Definition 5. Let the sequence $d_i(1 \le i \le d-e)$ be defined inductively as follows.

$$d_1 = \frac{\log(L(P) - 1)}{\log|\alpha_1|} \tag{44}$$

and if d_1, \ldots, d_h (h < d - e) are already defined

$$D_{h+1} = (h+1)^{-1} h^{\frac{-h}{2}} \min\{D(\{1,\dots,h+1\},e_1,\dots,e_h) : 1 \le e_i \le d_i\},$$
 (45)

$$d_{h+1} = \max \left\{ d_1, \dots, d_h, \right. \tag{46}$$

$$\psi\left(\left|\alpha_{s(i)}\right|, m-1, \left(\max\left\{2, \frac{2(m-1)}{\log|\alpha_s(h+1)|}\right\}\right)^{m-1}\right) D_{h+1}^{-1}(L(P)-1)\right\}.$$

Lemma 14. For every $Q \in T_d(P)$, $Q = x^{n_0} + \sum_{j=1}^d b_j x^{n_j}$ we have

$$n_{j-1} - n_j \leqslant d_j \quad (1 \leqslant j < d). \tag{47}$$

Proof is by induction on j. Since $Q \in T_d(P)$ the equation

$$\alpha_1^{n_0} + \sum_{j=1}^d b_j \alpha_1^{n_j} = 0$$

implies

$$|\alpha_1|^{n_0} \le |\alpha_1|^{n_1} \sum_{j=1}^d |b_j| \le |\alpha_1|^{n_1} (L(Q) - 1) \le |\alpha_1|^{n_1} (L(P) - 1),$$

which, in view of (44) gives (47) for j=1. Assume now that (47) holds for all $j \leq h$ (h < d-1). By Lemma 11 we have

$$\Delta = \det \left(c_{ij} \alpha_{s(i)}^{-n_h} \right)_{\substack{1 \le i \le h+1 \\ 0 \le j \le h}} \neq 0.$$

Let

$$M = \max_{1 \le i \le h+1} \left| \left(c_{i0} + \sum_{j=1}^{h} c_{ij} b_j \right) \alpha_{s(i)}^{-n_h} \right|.$$

Solving the system of equations

$$\left(c_{i0}x_0 + \sum_{j=1}^h c_{ij}x_j\right)\alpha_{s(i)}^{-n_h} = \left(c_{i0} + \sum_{j=1}^h c_{ij}b_j\right)\alpha_{s(i)}^{-n_h} \qquad (1 \leqslant i \leqslant h+1)$$

by means of Cramer's formulae and developing the numerator according to the first column we obtain

$$1 \leqslant \frac{(h+1)M \max \left| \det \left(c_{ij} \alpha_{s(i)}^{-n_h} \right)_{\substack{i \in I \\ 1 \leqslant j \leqslant h}} \right|}{|\Delta|},$$

where the maximum is taken over all subsets I of $\{1, \ldots, h+1\}$ of cardinality h. Now, by Lemma 7, since $|\alpha_{s(i)}| > 1$, we have

$$\max \left| \det \left(c_{ij} \alpha_{s(i)}^{-n_h} \right)_{\substack{i \in I \\ 1 \leqslant j \leqslant h}} \right| \leqslant h^{\frac{h}{2}} \prod_{i=1}^{h+1} \left| \alpha_{s(i)} \right|^{n_{\max\{1,g(i)-1\}}} \prod_{f=0}^{g(i)-2} \left(n_f - n_h \right).$$

This gives, by Definition 3,

$$m \ge (h+1)^{-1}h^{-\frac{1}{2}}D(\{1,\ldots,h+1\},n_0-n_1,\ldots,n_{h-1}-n_h)$$

and by the inductive assumption and (45)

$$M \geqslant D_{h+1}. (48)$$

On the other hand, by Lemma 3

$$c_{i0} + \sum_{j=1}^{d} c_{ij} b_j = 0$$
 $(1 \le i \le h+1),$

hence

$$\left| \left(c_{i0} + \sum_{j=1}^{h} c_{ij} b_j \right) \alpha_{s(i)}^{-n_h} \right| \cdot \left| \alpha_{s(i)} \right|^{n_h} = \left| \sum_{j=1}^{h} c_{ij} b_j \right|. \tag{49}$$

By (48) for a certain $i_0 \leq h+1$ the left-hand side is at least $D_{h+1}|\alpha_{s(i)}|^{n_h}$. As to the right-hand side, by (29) we obtain

$$\left| \sum_{j=1}^{d} c_{i_0 j} b_j \right| \leq |c_{i_0, h+1}| \left(\max \left\{ 1, \frac{m_{s(i_0) - 1}}{\log |\alpha_{s(i_0)}|} \right\} \right)^{m_{s(i_0)} - 1} \left(L(P) - 1 \right). \tag{50}$$

If $n_h - n_{h+1} \le n_0 - n_h$, we obtain $n_h - n_{h+1} \le d_1 + \ldots + d_h \le d_{h+1}$, hence the inductive assumption holds. If $n_h - n_{h+1} > n_0 - n_h$, then by (30)

$$|c_{i_0,h+1}| \le |\alpha_{s(i_0)}|^{n_{h+1}} 2^{m_{s(i_0)}-1} (n_h - n_{h+1})^{m_{s(i_0)}-1}$$

Combining the inequality with (49) and (50) we obtain (31), where, however, D_{h+1} has the new meaning given by (45).

It follows, by Lemma 6

$$n_h - n_{h+1}$$

$$\leqslant \max_{1\leqslant s\leqslant s(h+1)} \psi\left(|\alpha_s|, m_s - 1, \left(\max\left\{2, \frac{2(m_s - 1)}{\log|\alpha_s|}\right\}\right)^{m_s - 1} \times D_{h+1}^{-1}(L(P) - 1)\right)
\leqslant \psi\left(\alpha_{s(h+1)}, m - 1, \left(\max\left\{2, \frac{2(m - 1)}{\log|\alpha_{s(h+1)}|}\right\}\right)^{m - 1} D_{h+1}^{-1}(L(P) - 1)\right) \leqslant d_{h+1}$$

and the inductive proof is complete.

Definition 6. Assume that, under the assumptions of Theorem 5, e = 1. Put for positive integers $n_1 > ... > n_{d-2} > n_{d-1}$

$$(c'_{ij})_{\substack{1 \le i < d \\ 1 \le j \le d}} = C(P_0; n_1, \dots, n_{d-1}, 0), \quad c'_{dj} = 1 \quad (1 \le j \le d),$$

$$E(P_0; n_1 - n_{d-1}, \dots, n_{d-2} - n_{d-1})$$

$$= \left| \det \left(c'_{ij} \alpha_{s(i)}^{-n_{d-1}} \right)_{1 \leq i, j < d} \right|^{-1} \prod_{i=1}^{d-1} \left| \alpha_{s(i)} \right|^{n_{g(i)} - n_{d-1}} \prod_{f=1}^{g(i) - 1} (n_f - n_{d-1}).$$
(51)

Remark. $E(P_0; n_1 - n_{d-1}, \dots, n_{d-2} - n_{d-1})$ is well defined since $\det(c'_{ij}\alpha_{s(i)}^{-n_{d-1}})$ is non-zero by Lemma 11 with h = d - 1, $\nu = 0$. Moreover the right-hand side of (51) depends only on P_0 and the differences $n_j - n_{d-1}$ $(1 \le j \le d - 2)$.

Lemma 15. Assume that, under the assumptions of Theorem 5 and in the notation of Definition 1, e = 1. If for positive integers $n_1 > ... > n_{d-1}$ and for n > 1, $a \in \mathbb{R}$

$$n_{d-1} > \max \left\{ n_1 - n_{d-1}, \psi \left(|\alpha_{r-1}|, m-1, d(d-1)^{\frac{d+1}{2}} 2^{m-1} n \right) \right.$$

$$\times E\left(P_0; n_1 - n_{d-1}, \dots, n_{d-2} - n_{d-1} \right) \max \left\{ 1, \frac{nd|a|}{nd-1} \right\} \right\},$$

$$(52)$$

then there exists a polynomial $R \in \mathbb{R}[x]$ of degree at most n_1 such that

$$P_0 \mid R(x) - a, \tag{53}$$

$$x - 1 \mid R(x), \tag{54}$$

$$L(R) < \frac{1}{n}. (55)$$

Proof. Put

$$R(x) = \sum_{j=1}^{d-1} r_j x^{n_j} + r_d, \quad r_j \in \mathbb{C}.$$

By Lemma 3 the conditions (53) and (54) are equivalent to the following system of linear equations for r_j

$$\sum_{j=1}^{d} c'_{ij} r_j = c'_{id} a \quad (1 \leqslant i < d)$$

$$\sum_{j=1}^{d} c'_{dj} r_j = 0.$$
(56)

The determinant of this system equals

$$\Delta_0 = \prod_{i=1}^d \alpha_{s(i)}^{n_{d-1}} \det \left(c'_{ij} \alpha_{s(i)}^{-n_{d-1}} \right)_{1 \le i, j \le d}.$$

Developing the last determinant according to the last column we obtain

$$\begin{split} &\det\left(c'_{ij}\alpha_{s(i)}^{-n_{d-1}}\right)_{1\leqslant i,j\leqslant d} \\ &= \det\left(c'_{ij}\alpha_{s(i)}^{-n_{d-1}}\right)_{1\leqslant i,j\leqslant d} + \sum_{k=1}^{d-1} (-1)^{k+d}c'_{kd}\alpha_{s(k)}^{-n_{d-1}} \det\left(c'_{ij}\alpha_{s(i)}^{-n_{d-1}}\right)_{\substack{i\neq k\\j\leqslant d}}, \end{split}$$

hence, by (21) with h=d-1, $I=\{1,\ldots,d\}\smallsetminus\{k\}$ and by the condition $\alpha_r=e=1$

$$\left| \Delta_{0} \prod_{i=1}^{d} \alpha_{s(i)}^{-n_{d-1}} - \det \left(c'_{ij} \alpha_{s(i)}^{-n_{d-1}} \right)_{1 \leqslant i,j < d} \right|$$

$$< (d-1)^{\frac{d+1}{2}} |\alpha_{r-1}|^{-n_{d-1}} \left(\prod_{i=1}^{d-1} |\alpha_{s(i)}|^{n_{g(i)}-n_{d-1}} \prod_{f=1}^{g(i)-1} (n_{f} - n_{d-1}) \right) \max_{1 \leqslant k < d} |c'_{kd}|.$$

$$(57)$$

Since, by (52) $n_{d-1} > n_1 - n_{d-1}$, we have

$$\max_{1 \leqslant k < d} |c'_{kd}| \leqslant \prod_{f=1}^{m-1} n_f \leqslant (2n_{d-1})^{m-1}.$$
 (58)

In view of Definition 6 the right-hand side of (57) does not exceed

$$(d-1)^{\frac{d+1}{2}} |\alpha_{r-1}|^{-n_{d-1}} \left| \det \left(c'_{ij} \alpha_{s(i)}^{-n_{d-1}} \right)_{1 \leqslant i,j < d} \right|$$

$$\times E(P_0; n_1 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0) 2^{m-1} n_{d-1}^{m-1}.$$

Since, by (52),

$$n_{d-1} > \psi\left(|\alpha_{r-1}|, m-1, d(d-1)^{\frac{d+1}{2}} 2^{m-1} n\right)$$

 $\times E\left(P_0; n_1 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)$

we have by Lemma 6 and (57)

$$|\Delta_0| > \left(1 - \frac{1}{dn}\right) \left| \det \left(c'_{ij}\right)_{1 \leqslant i,j < d} \right|, \tag{59}$$

hence by the Remark after Definition 6, $\Delta_0 \neq 0$. Thus the system (56) is uniquely solvable and since on replacing c'_{ij} by \overline{c}'_{ij} we obtain the same system, r_j are real

The determinant Δ_k obtained by substituting in $(c'_{ij})_{1 \leq i,j \leq d}$ for the k-th column the column

$$[c'_{1d},\ldots,c'_{d-1\,d},0]^t a$$

satisfies for k < d

$$\Delta_k = \pm \left(\det c'_{ij} \right)_{\substack{i < d \\ j \neq k}} a,$$

hence developing the last determinant according to the last column, using Lemma 10, Definition 6 and (58) we obtain

$$\begin{aligned} |\Delta_k| &\leqslant |a| \sum_{l=1}^{d-1} |c'_{ld}| \left(d-2\right)^{\frac{d-2}{2}} \prod_{\substack{i=1\\i\neq l}}^{d-1} \left|\alpha_{s(i)}\right|^{n_{g(i)}} \prod_{f=1}^{g(i)-1} \left(n_f - n_{d-1}\right) \\ &\leqslant |a| (d-1) (d-2)^{\frac{d-2}{2}} \left(2n_{d-1}\right)^{m-1} \left|\alpha_{r-1}\right|^{-n_{d-1}} \left|\det\left(c'_{ij}\right)_{1\leqslant i,j < d}\right| \\ &\times E\left(P_0; n_1 - n_{d-1}, \dots, n_{d-2} - n_{d-1}\right), \end{aligned}$$

where $(d-2)^{\frac{d-2}{2}} = 1$ for d=2. Since $(d-1)(d-2)^{\frac{d-2}{2}} < (d-1)^{\frac{d+1}{2}}$ we obtain, by virtue of (52),

$$|\Delta_k| < \frac{dn-1}{d^2n^2} \left| \det \left(c'_{ij} \right)_{1 \leqslant i,j < d} \right|$$

hence, by (59), $r_k = \Delta_k/\Delta_0$ satisfies

$$|r_k| < \frac{1}{dn} \quad (1 \leqslant k < d). \tag{60}$$

It remains to consider k=d. In this case developing Δ_d according to the last column we obtain

$$|\Delta_d| \leqslant |a| \sum_{l=1}^{d-1} |c'_{ld}| \left| \det \left(c'_{ij} \right)_{\substack{i \neq l \\ j < d}} \right|.$$

Using (21) with h = d - 1, $I = \{1, ..., d\} \setminus \{l\}$, the condition $\alpha_r = e = 1$ and (58) we obtain

$$\begin{split} |\Delta_d| &\leqslant |a| (d-1)^{\frac{d+1}{2}} \left(2n_{d-1}\right)^{m-1} \left|\alpha_{r-1}\right|^{-n_{d-1}} \\ &\times \prod_{i=1}^{d-1} \left|\alpha_{s(i)}\right|^{n_{g(i)}} \prod_{f=1}^{g(i)-1} \left(n_f - n_{d-1}\right) \leqslant (d-1)^{\frac{d+1}{2}} 2^{m-1} n_{d-1}^{m-1} \left|\alpha_{r-1}\right|^{-n_{d-1}} \\ &\times \left|\det \left(c'_{ij}\right)_{1 \leqslant i,j < d}\right| E\left(P_0; n_1 - n_{d-1}, \dots, n_{d-2} - n_{d-1}\right). \end{split}$$

Again, by virtue of (52) and of Lemma 6,

$$|\Delta_d| < \frac{dn-1}{d^2n^2} \left| \det \left(c'_{ij} \right)_{1 \leqslant i,j < d} \right|,$$

hence $r_d = \Delta_d/\Delta_0$ satisfies

$$|r_d| < \frac{1}{dn}.$$

It follows now from (60) that

$$L(R) = \sum_{k=1}^{d} |r_k| < \frac{1}{n},$$

which proves (55).

Lemma 16. Assume, under the assumptions of Theorem 5, that $\varepsilon=e=1$. Then

$$l(P) \leqslant \inf_{Q \in S_{d-1}(P_0)} \Big\{ L(Q) + \left| Q(1) \right| \Big\}.$$

Proof. Let

$$Q = x^{q_0} + \sum_{j=1}^{d-1} b_j x^{q_j},$$

where $q_0>q_1>\ldots>q_{d-1}$ and we may assume $q_{d-1}=0$. By Lemma 15 with a=Q(1), $n_j=n_{d-1}+q_j$ $(1\leqslant j< d)$, if

$$n_{d-1} > \max \left\{ q_1, \psi \left(|\alpha_{r-1}|, m-1, d(d-1)^{\frac{d+1}{2}} 2^{m-1} n \right) \right\}$$

$$\times E\left(P_0; q_1, \dots, q_{d-2} \right) \max \left\{ 1, \frac{nd}{nd-1} |Q(1)| \right\}$$

there exists a polynomial $R \in \mathbb{R}[x]$ of degree at most n_1 satisfying (53)–(55). We consider the polynomial

$$S(x) = Q(x)x^{n_{d-1}} + R(x) - Q(1).$$

It follows from (53)–(54) that

$$P_0 \mid S$$
, $x-1 \mid S$, thus $P \mid S$

and since S is monic

$$l(P) \leqslant L(S)$$
.

On the other hand, by (55)

$$L(S) \leqslant L(Q) + |Q(1)| + \frac{1}{n}.$$

Since n is arbitrary, the lemma follows.

Proof of Theorem 5. Since, by Proposition (iii), l(P(-x)) = l(P(x)), we may assume that $\varepsilon = 1$ and, by virtue of Theorem 3, that e = 1. Thus Lemmas 15 and 16 are applicable. The second part of the theorem follows from Lemma 16. In order to prove the first part we shall show that for every n > 1

$$0 \ge l(P) - \min^{*} \min \left\{ L\left(Q\left(P; n_{0}, \dots, n_{d-1}, 0\right)\right), L\left(Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-1}, \dots, n_{d-1}, 0\right)\right) + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right| + \left|Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-2}, 0\right| + \left|Q\left(P_{0}; n_{0} - n_{d-2}, \dots, n_{d-2} - n_{d-2}, 0\right|\right| + \left|Q\left(P_{0}; n_{0} - n_{d-2}, \dots, n_{d-2} - n_{d-2}, 0\right|\right| + \left|Q\left(P_{0}; n_{0} - n_{d-2}, \dots, n_{d-2} - n_{d-2}, 0\right|\right| + \left|Q\left(P_{0}; n_{0} - n_{d-2}, \dots, n_{d-2}$$

where the min^{*} is taken over all integers $n_0 > \ldots > n_{d-1} > 0$ such that

$$n_{j-1} - n_{j} \leq d_{j} \quad (1 \leq j < d)$$

$$n_{d-1} \leq \psi \left(|\alpha_{r-1}|, m-1, d(d-1)^{\frac{d+1}{2}} 2^{m-1} n \right)$$

$$\times E\left(P_{0}; n_{1} - n_{d-1}, \dots, n_{d-2} - n_{d} \right)$$

$$\times \max \left\{ 1, \frac{nd}{nd-1} |Q\left(P_{0}; n_{0} - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0 \right) (1) | \right\}$$

$$(62)$$

and, in the notation of Definition 1

$$|C_1(P; n_1, \dots, n_{d-1}, 0)| \neq 0.$$
 (64)

The condition (64) implies that there is a unique polynomial

$$Q = x^{n_0} + \sum_{j=1}^{d-1} b_j x^{n_j} + b_d$$

divisible by P, denoted in (61) by $Q(P; n_0, \ldots, n_{d-1}, 0)$. Similarly $Q(P_0; n_0 - n_{d-1}, \ldots, n_{d-2} - n_{d-1}, 0)$ is the unique polynomial

$$Q = x^{n_0 - n_{d-1}} + \sum_{j=1}^{d-1} b_j x^{n_j - n_{d-1}}$$

divisible by P_0 . The inequality

$$l(P) \leq \min^* L(Q(P; n_0, \dots, n_{d-1}, 0))$$

is clear and the inequality

$$l(P) \leqslant \min^* \left\{ L\left(Q\left(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + |Q\left(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)(1)| \right\}$$

follows from Lemma 16. This shows the first of inequalities (61). In order to prove the second one we notice that by Lemmas 4 and 14

$$l(P) = \inf L(Q(P; n_0, \dots, n_{d-1}, 0)),$$
 (65)

where $\langle n_0, \ldots, n_{d-1} \rangle$ runs through all strictly decreasing sequences of d positive integers satisfying (62) and (64). If (63) is satisfied then, clearly

$$L(Q(P; n_0, \dots, n_{d-1}, 0)) \ge \min^* L(Q(P; n_0, \dots, n_{d-1}, 0))$$
 (66)

and, if not, then by Lemma 15 there exists a polynomial $R \in \mathbb{R}[x]$ of degree at most n_1 such that (53)–(55) hold with

$$a = Q(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0) (1).$$

Then the polynomial

$$S(x) = Q(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0) x^{n_{d-1}} + R(x)$$
$$- Q(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0) (1)$$

is monic, satisfies

$$P \mid S(x)$$

and, by (64),

$$S(x) = Q(P; n_0, \dots, n_{d-1}, 0).$$
 (67)

By (55)

$$L(S) > L\left(Q\left(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + |Q\left(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)(1)| - \frac{1}{n}.$$
(68)

The formulae (66)–(68) imply

$$L(Q(P; n_0, \ldots, n_{d-1}, 0))$$

$$\geqslant \min^* \min \left\{ L\left(Q\left(P; n_0, \dots, n_{d-1}, 0\right)\right), L\left(Q\left(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right)\right) + |Q\left(P_0; n_0 - n_{d-1}, \dots, n_{d-2} - n_{d-1}, 0\right) (1)| \right\} - \frac{1}{n}$$

for all sequences $\langle n_0, \ldots, n_{d-1} \rangle$ satisfying (64), hence by (65) the second of the inequalities (61) follows. The conditions (62) and (63) are for a given n satisfied by only finitely many sequences $\langle n_0, \ldots, n_{d-1} \rangle$, since

$$n_j - n_{d-1} \leqslant \sum_{\mu=j+1}^{d-1} d_j$$

and all such sequences can be effectively determined, hence l(P) can be effectively computed.

For the proof of Theorem 6 we need

Definition 7. For α, β in \mathbb{C} and n > m > 0

$$Q_{n}(\alpha, \beta) = \begin{cases} \frac{\alpha^{n} - \beta^{n}}{\alpha - \beta} & \text{if } \alpha \neq \beta, \\ n\alpha^{n-1} & \text{if } \alpha = \beta, \end{cases}$$

$$E_{n,m}(\alpha\beta) = \left| \frac{Q_{n}(\alpha, \beta)}{Q_{m}(\alpha, \beta)} \right| + |\alpha\beta|^{m} \left| \frac{Q_{n-m}(\alpha, \beta)}{Q_{m}(\alpha, \beta)} \right|,$$

$$F_{n,m}(x, \beta) = x^{n} - \beta^{n} + |\beta|^{m} x^{m} (x^{n-m} - \beta^{n-m}) - (2x - 1)(x^{m} - \beta^{m}).$$

Lemma 17. In the notation of Definition 2, if $P(x) = (x - \alpha)(x - \beta)$, $\alpha\beta \neq 0$, then all elements of $T_2(P)$ are of the form

$$x^{n} - \frac{Q_{n}(\alpha, \beta)}{Q_{m}(\alpha, \beta)}x^{m} + (\alpha\beta)^{m} \frac{Q_{n-m}(\alpha, \beta)}{Q_{m}(\alpha, \beta)} = F_{n,m}(x; \alpha, \beta), \tag{69}$$

where n > m > 0, $Q_m(\alpha, \beta)Q_{n-m}(\alpha, \beta) \neq 0$.

Proof. Let an element Q of $T_2(P)$ be $x^n + Ax^m + B$, where n > m > 0. By Lemma 3 the condition $Q \equiv 0 \pmod{P}$ is equivalent to

$$c_{i0} + c_{i1}A + c_{i2}B = 0 \quad (i = 1, 2), \tag{70}$$

where c_{ij} are given in Definition 1 for $\alpha_1 = \alpha$, $\alpha_2 = \beta$, hence

$$c_{10} = \alpha^n, \ c_{11} = \alpha^m, \ c_{12} = 1;$$

$$c_{20} = \beta^n, \ c_{21} = \beta^m, \ c_{22} = 1, \ \text{if} \ \beta \neq \alpha;$$

$$c_{20} = 0, \ c_{21} = (m - n)\beta^m, \ c_{22} = -n, \ \text{if} \ \beta = \alpha.$$

Since $Q \in T_2(P)$ we have

$$|C_0(P; n, m)| \neq 0 \neq |C_1(P; n, m)|,$$

hence $Q_m(\alpha,\beta)Q_{n-m}(\alpha,\beta) \neq 0$. Solving the system (70) we obtain for Q the form (69).

Lemma 18. If $\beta \in \mathbb{R}$, $|\beta| \ge 1$, then for all positive integers n > m and all integers $k \ge 0$ we have

$$G_{n,m,k}(\beta) = \frac{1}{k!} \frac{d^k}{dx^k} F_{n,m}(x,\beta)|_{x=|\beta|} \geqslant 0$$

and if $|\beta| > 1$ for k = 0 or 1

$$\inf_{n>m} G_{n,m,k}(\beta) > 0.$$

Proof. Consider first the case $\beta > 0$. For k = 0 we have $G_{n,m,k}(\beta) = 0$. For $k \ge 1$ we have

$$G_{n,m,k}(\beta) = \binom{n}{k} \beta^{n-k} + \binom{n}{k} \beta^{n+m-k} - \binom{m}{k} \beta^{n+m-k}$$
$$-2 \binom{m+1}{k} \beta^{m-k+1} + \binom{m}{k} \beta^{m-k} + 2 \binom{1}{k} \beta^{m-k+1}$$
$$= \beta^{m-k} \binom{n}{k} \beta^{n-m} + \binom{n}{k} \beta^n - \binom{m}{k} \beta^n$$
$$-2 \binom{m+1}{k} \beta + \binom{m}{k} + 2 \binom{1}{k} \beta \right).$$

The expression in the parenthesis is non-negative, since for $\beta = 1$ it is equal to

$$2\binom{n}{k} - 2\binom{m+1}{k} + 2\binom{1}{k} \geqslant 0$$

and its derivative with respect to β is

$$\binom{n}{k} (n-m)\beta^{n-m-1} + \left(\binom{n}{k} - \binom{m}{k} \right) n\beta^{n-1} - 2 \binom{m+1}{k} + 2 \binom{1}{k}$$

$$\geqslant \binom{m+1}{k} + \left(\binom{m+1}{k} - \binom{m}{k} \right) (m+1) - 2 \binom{m+1}{k} + 2 \binom{1}{k}$$

$$= (k-1) \binom{m+1}{k} + 2 \binom{1}{k} \geqslant 2 \binom{1}{k} .$$

It follows that

$$G_{n,m,k}(\beta) \geqslant 2(\beta - 1)$$

and the obtained lower bound, independent of n, m is positive for $\beta > 1$. Consider now the case $\beta < 0$. We distinguish four cases according to the parity of n, m.

If $n \equiv m \equiv 0 \pmod{2}$, then

$$G_{n,m,k}(\beta) = G_{n,m,k}(|\beta|)$$

and the case reduces to the former.

If $n \equiv 0$, $m \equiv 1 \pmod{2}$, then

$$G_{n,m,0}(\beta) = 2(|\beta|)^m (|\beta|^n - 2|\beta| + 1) \ge 2(|\beta| - 1)^2$$

and the obtained lower bound, independent of n,m is positive for $|\beta|>1$. Further, for $k\geqslant 1$

$$G_{n,m,k}(\beta) = \binom{n}{k} |\beta|^{n-k} + \binom{n}{k} |\beta|^{n+m-k} + \binom{m}{k} |\beta|^{n+m-k}$$

$$-2 \binom{m+1}{k} |\beta|^{m-k+1} + \binom{m}{k} |\beta|^{m-k} - 2 \binom{1}{k} |\beta|^{m-k+1}$$

$$= |\beta|^{m-k} \binom{n}{k} |\beta|^{n-m} + \binom{n}{k} |\beta|^n + \binom{m}{k} |\beta|^n - 2 \binom{m+1}{k} |\beta|$$

$$+ \binom{m}{k} - 2 \binom{1}{k} |\beta| .$$

The expression in the parenthesis is non-negative, since

$$\binom{n}{k} |\beta|^{n-m} + \binom{n}{k} |\beta|^n \geqslant 2 \binom{m+1}{k} |\beta|$$

and

$$\binom{m}{k} |\beta|^n + \binom{m}{k} \geqslant \binom{m}{k} (|\beta|^2 + 1) \geqslant 2 \binom{1}{k} |\beta|.$$

If $n \equiv 1$, $m \equiv 0 \pmod{2}$, then

$$G_{n,m,k}(\beta) \geqslant G_{n,m,k}(|\beta|)$$

and the case reduces to the already considered one.

Finally, if $n \equiv m \equiv 1 \mod 2$, then

$$G_{n,m,0}(\beta) = 2|\beta|^m (|\beta|^{n-m} - 2|\beta| + 1) \ge 2(|\beta| - 1)^2$$

and the obtained lower bound, independent of n,m is positive for $|\beta|>1$. Further, for $k\geqslant 1$

$$G_{n,m,k}(\beta) = \binom{n}{k} |\beta|^{n-k} + \binom{n}{k} |\beta|^{n+m-k} - \binom{m}{k} |\beta|^{n+m-k}$$

$$-2 \binom{m+1}{k} |\beta|^{m-k+1} + \binom{m}{k} |\beta|^{m-k} - 2 \binom{1}{k} |\beta|^{m-k+1}$$

$$= |\beta|^{m-k} \binom{n}{k} |\beta|^{n-m} + \binom{n}{k} |\beta|^n - \binom{m}{k} |\beta|^n - 2 \binom{m+1}{k} |\beta|$$

$$+ \binom{m}{k} - 2 \binom{1}{k} |\beta|.$$

The expression in the parenthesis is non-negative, since for $|\beta| = 1$ it is equal to

$$2 \binom{n}{k} - 2 \binom{m+1}{k} - 2 \binom{1}{k} \geqslant 2 \binom{m+2}{k} - 2 \binom{m+1}{k} - 2 \binom{1}{k} \geqslant 0$$

and its derivative with respect to $|\beta|$ is

$$\binom{n}{k} (n-m)|\beta|^{n-m-1} + \binom{n}{k} n - |\beta|^{n-1} - \binom{m}{k} n|\beta|^{n-1} - 2\binom{m+1}{k} - 2\binom{1}{k}$$

$$\geqslant \binom{n}{k} (n-m) + \binom{n}{k} n - \binom{m}{k} n - 2\binom{m+1}{k} - 2\binom{1}{k}$$

$$\geqslant 2\binom{m+2}{k} + \binom{m+2}{k} - \binom{m}{k} (m+2) - 2\binom{m+1}{k} - 2\binom{1}{k} \geqslant 0.$$

Proof of Theorem 6. Consider first the case of α, β real. Since, by Proposition (iii), l(P(-x)) = l(P(x)), we may assume that $\alpha > 0$, hence $\alpha \ge |\beta|$.

By the Taylor formula we have in the notation of Lemma 18

$$(\alpha^m - \beta^m) (E_{n,m}(\alpha, \beta) - 2\alpha + 1) = \sum_{k=0}^n G_{n,m,k}(\beta) (\alpha - |\beta|)^k,$$

hence, by the said lemma,

$$(\alpha^m - \beta^m) \left(E_{n,m}(\alpha, \beta) - 2\alpha + 1 \right) \geqslant 0 \tag{71}$$

and, if $\alpha > |\beta| > 1$

$$\inf_{n>m} \left(\alpha^m - \beta^m\right) \left(E_{n,m}(\alpha,\beta) - 2\alpha + 1\right) > 0.$$
 (72)

If $\alpha \neq \pm \beta$ then (71) gives

$$E_{n,m}(\alpha,\beta) \geqslant 2\alpha - 1,$$

hence by Lemma 17

$$\inf_{Q \in T_2(P)} L(Q) \geqslant 2\alpha$$

and by Lemma 4,

$$l(P) \geqslant 2\alpha. \tag{73}$$

Now, if $\beta=-1$, then $L(P)=2\alpha$, hence $l(P)\leqslant 2\alpha$ and, by (73), $l(P)=2\alpha$. If $\beta=1$, then by Theorem 5 with $P_0=x-\alpha$

$$l(P) \leq L(P_0) + |P_0(1)| = 1 + \alpha + \alpha - 1 = 2\alpha$$

and, by (73), $l(P) = 2\alpha$ again.

If $\alpha > |\beta| > 1$, then by (72)

$$\inf_{\substack{n>m\\m\le m_0}} E_{n,m}(\alpha,\beta) > 2\alpha - 1 \tag{74}$$

for every m_0 . Choose now

$$m_0 = \frac{\log 4\alpha - \log(\alpha - |\beta|)}{\log |\beta|}.$$

Then for $m \ge m_0 : E_{n,m}(\alpha,\beta) \ge |\alpha\beta|^m \frac{\alpha-|\beta|}{2\alpha^m} \ge 2\alpha$ and, by (74)

$$\inf_{n>m} E_{n,m}(\alpha,\beta) > 2\alpha - 1.$$

Using, as above, Lemmas 17 and 4 we obtain

$$l(P) > 2\alpha$$
.

If $\alpha = -\beta$, then $P(x) = x^2 - \alpha^2$ and by Proposition (iv) and Proposition A (ii)

$$l(P) = l(x - \alpha^2) = 1 + \alpha^2 \begin{cases} = 2\alpha & \text{if } \alpha = 1, \\ > 2\alpha, & \text{otherwise.} \end{cases}$$

If $\alpha = \beta$, then

$$E_{n,m}(\alpha,\beta) - 2\alpha + 1 = \frac{n\alpha^{n-m} + (n-m)\alpha^n}{m} - 2\alpha + 1.$$

The right-hand side is equal to 2(n-m)/m>0 for $\alpha=1$ and its derivative with respect to α is

$$\frac{n(n-m)}{m}\left(\alpha^{n-m-1} + \alpha^{n-m}\right) - 2 > \alpha - 1.$$

For $\alpha = \beta = 1$, $l(P) = 2 = 2\alpha$, by Theorem 4; otherwise

$$\inf_{n>m} E_{n,m}(\alpha,\alpha) > 2\alpha - 1$$

and, by Lemmas 17 and 4, $l(P) > 2\alpha$.

Consider now the case, where α, β are complex conjugate:

$$\alpha = |\alpha| e^{2i\varphi}, \quad \beta = |\alpha| e^{-2i\varphi}, \quad \varphi \in \left(0, \frac{\pi}{2}\right), \quad |\alpha| > 1$$

(the case $|\alpha| = 1$ is settled by Theorem 4). Then

$$E_{n,m}(\alpha,\beta) = |\alpha|^{n-m} \left| \frac{\sin n\varphi}{\sin m\varphi} \right| + |\alpha|^n \left| \frac{\sin(n-m)\varphi}{\sin m\varphi} \right|,$$

where, by virtue of the condition $Q_m(\alpha, \beta) \neq 0$ we have $\sin m\varphi \neq 0$. Since

$$|\sin m\varphi| \le |\sin n\varphi| + |\sin(n-m)\varphi| \tag{75}$$

we have

$$E_{n,m}(\alpha,\beta) \geqslant |\alpha|^{n-m} \geqslant |\alpha|^2$$

unless n - m = 1. In this final case we have, by (75)

$$\left| \frac{\sin n\varphi}{\sin m\varphi} \right| \geqslant 1 - \left| \frac{\sin \varphi}{\sin m\varphi} \right|$$

and by the well known inequality

$$\left|\frac{\sin\varphi}{\sin m\varphi}\right|\geqslant \frac{1}{m}.$$

Hence

$$E_{n,m}(\alpha,\beta) \geqslant |\alpha| \left(1 - \left| \frac{\sin \varphi}{\sin m\varphi} \right| \right) + |\alpha|^{m+1} \left| \frac{\sin \varphi}{\sin m\varphi} \right|$$
$$\geqslant |\alpha| + \frac{|\alpha|^{m+1} - |\alpha|}{m} \geqslant |\alpha| + |\alpha| (|\alpha| - 1) = |\alpha|^2,$$

where in the middle we have used Bernoulli's inequality. It follows, by Lemma 17, that $L(Q) \ge 1 + |\alpha|^2$ for every $Q \in T_2(P)$, hence, by Lemma 4,

$$l(P) \geqslant 1 + |\alpha|^2 > 2|\alpha|.$$

Proof of Corollary 2. If deg P=1, then $l(P)\in K(P)$ follows from Proposition A. If $P=a(x-\alpha)(x-\beta)$, where $|\alpha|\geqslant |\beta|>1$, then, by Theorem 2, l(P) is attained and by Theorem 1, $l(P)\in K(P)$. If $P=a(x-\alpha)(x-\beta)$, where $|\beta|=1$, then, by Theorem 6, $l(P)=2|a\alpha|$. Since either $|\alpha|=1$ or $\alpha\in\mathbb{R}$, $l(P)\in K(P)$ follows.

Proof of Corollary 3. If, in the notation of the Corollary, $|\beta| > 1$, then, by Proposition A, $l(P^*) = |\alpha\beta|$ and, by Proposition (ii) $l(P) \geqslant |\alpha\beta|$, thus $\hat{l}(P) = |\alpha\beta|$. If $|\alpha| > 1 = |\beta|$, then, by Proposition (iii) and Theorem 6, $l(P^*) = 2|\alpha| = l(P)$, thus $\hat{l}(P) = 2|\alpha|$. If $|\alpha| > 1 > |\beta|$, then, by Proposition A, $l(P^*) = 1 + |\alpha|$, $l(P) = |\alpha\beta|(1+|\beta|^{-1})$, hence $\hat{l}(P) = |\alpha| + \min\{1, |\alpha\beta|\}$. If $|\alpha| = 1 = |\beta|$, then by Theorem 6, $l(P) = l(P^*) = 2$. If $|\alpha| = 1 > |\beta|$, then, by Proposition A, l(P) = 2, by Theorem 6, $l(P^*) = |\alpha\beta| 2|\beta|^{-1} = 2$, thus $\hat{l}(P) = 2$. Finally, if $|\alpha| < 1$, then by Proposition A, l(P) = 1, by Proposition (ii) $l(P^*) \geqslant 1$, thus $\hat{l}(P) = 1$.

Proof of Corollary 4. If $|\alpha| > 1 > |\beta| > 0$ we have $\widehat{l}(x - \alpha) = |\alpha|$, $\widehat{l}(x - \beta) = 1$,

$$\widehat{l}((x-\alpha)(x-\beta)) = |\alpha| + \min\{1, |\alpha\beta|\} > |\alpha|.$$

Note added in proof. An apparently similar problem has been considered in [2] and [3]. However, the restriction of G in the definition of l(P) to polynomials with integer coefficients makes a great difference, shown by the fact, clear from Lemma 17 above, that no analogue of Lemma 2 of [2] or Lemma 3 of [3] holds in our case.

References

- [1] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70–80.
- [2] M. Filaseta, M. Robinson and F. Wheeler, *The minimal Euclidean norm of an algebraic number is effectively computable*, J. Algorithms 16 (1994), 309–333.
- [3] M. Filaseta and I. Solan, Norms of factors of polynomials, Acta Arith. 82 (1997), 243–255.

306 Andrzej Schinzel

[4] K. Mahler, Some inequalities for polynomials in several variables, J. London Math. Soc. 37 (1962), 341–344.

[5] O. Perron, Algebra, Bd. II, de Gruyter 1927.

Address: Institute of Mathematics PAN, P.O.Box 21, 00-956 Warszawa 10, Poland

 $\textbf{E-mail:} \ \texttt{a.schinzel@impan.gov.pl}$

Received: 24 March 2005; revised: 31 May 2005