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ON THE REDUCED LENGTH OF A POLYNOMIAL
WITH REAL COEFFICIENTS
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Abstract: The length L(P) of a polynomial P is the sum of the absolute values of the coef-
ficients. For P € R[z] the properties of I(P) are studied, where [(P) is the infimum of L(PG)
for G running through monic polynomials over R.
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We shall consider only polynomials with real coefficients. For such a polyno-

d ‘
mial P = " a;2%"" the length L(P) is defined by the formula
i=0

d
L(P)=>_lail.
i=0
A. Dubickas [1] has introduced the reduced length by the formula

1(P) = inf L(PG),
GeT

where
n
f = {Zbixn—i c R[Q:], where by =1 or b,, = 1} )
=0
It follows, see [1], p. 3, that
ZA(P) = min {ZO(P)7 ZO (P*)} 7

where

lo(P) = GigIﬁOL(PG), Iy = {Z biz" " € Rz], bn:1}, pPr=gd8Pp (z71).
=0
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Since polynomials with the leading coefficient 1 have a name (monic) and polyno-
mials with the constant term 1 have no name, I prefer to work with

U(P) =10 (P*) = inf L(PG), {be” : b0_1}

Dubickas’s results about [y translated in the language of | give the following

Proposition A. (Dubickas [1]) Suppose that w,n,¢ € R, v € C, ¥ is the complex
conjugate to v, |w| =1, |n| <1, |v| <1, then for every Q € Rz]
() 16Q) = [VII(Q),
(i) Uz +w) =1+ |o],
(ii) i T(x) = Q(z)(x 1), then I(T) = (Q).
(iv) if T(z) = Q(z)(x — v)(x — D), then I(T) =1(Q).

We shall prove the following

Proposition. For all monic polynomials P,Q in R[z] and all positive integers k
(i) max{l(P), I(Q)} < IU(PQ) < UP)UQ),
(i) M(P) < I(P), where M is the Mahler measure,
(iii) {(P(—-x)) = I(P(z)),
(iv) U(P(z*)) = U(P(x)).
Theorem 1. If P € Rx] is monic of degree d with P(0) # 0, then l[(P) =

o iélf(P) L(Q), where S4(P) is the set of all monic polynomials @ over R divisible
€54

by P with Q(0) # 0 and with at most d + 1 non-zero coefficients, all belonging
to the field K(P), generated by the coefficients of P.

Theorem 2. If P € R[z| has all zeros outside the unit circle, then [(P) is attained
and effectively computable, moreover [(P) € K(P) (I(P) is attained means that
I(P)=L(Q), where Q/P €T).

Corollary 1. If P € Rlz] has no zeros on the unit circle, then I(P) is effectively
computable.

Theorem 3. Let P,Q € R[z], Q be monic and have all zeros on the unit circle.
Then for all m € N

L(PQ™) = 1(PQ).
Theorem 4. If P € Rz] is monic and has all zeros on the unit circle, then

1(P)=1(P) =2, with I(P) attained, if and only if all zeros are roots of unity and
simple.

Theorem 5. Let P(z) = Py(x)(x —¢€)°, where Py € R[z], e = £1, e € N and all
zeros of Py are outside the unit circle. Assume that the set Z of zeros of Py has
a subset Zy, possibly empty, such that its elements are real of the same sign and
the elements of Z \ Z; are algebraically independent over Q(Zy). Then I(P) can
be effectively computed. Moreover, if deg Py = d, then

py< b {L@)+Qe)]}.

QESq, (Po)
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For quadratic polynomials P Theorems 2, 4 and 5 together with Propo-
sition A (iii) and (iv) exhaust all possibilities, so that {(P) can be effectively
computed. A more precise information is given by the following

Theorem 6. If P(z) = (x — a)(x — 3), where |a| > |5| > 1, then
I(P) > 2ol

with the equality attained, if and only if || = 1.

Corollary 2. If P € R[z] is of degree at most two with no zeros inside the unit
circle, then
I(P) e K(P).

Corollary 3. If P(x) = (x — «)(z — 8), where |a| > |5| = 0, then

lag|, if B >1,

. 2|al, if 8] =1,

I(P) =X |a|+min{l, |af|}, if |a|>1>|8|,
2, if |o| =1,
1, if ol < 1.

Corollary 4. The function T is not submultiplicative.

The last corollary is of interest, because of Proposition, part (i).

The problem of computing I(P) for cubic polynomials remains open already
for P = 223 + 32% + 4. Another open question is whether [(P) € K(P) for all
P € R[z] with no zeros inside the unit circle.

We begin with

Proof of Proposition. We have by definition for all monic polynomials R, S in
R(z]
I(P) < L(PQR), I(PQ) < L(PQRS) < L(PR)L(QS)

hence
I(P) < inf LIPQR) = I(PQ),

I(PQ) < Ii%rét;L(PR) éreltllL(QS) =1(P)(Q).
This proves (i). As to (ii) we have for every R in R[z]
M(R) < L(R)

(see [4]), hence
M(P) < M(PQ) < L(PQ),

thus
M(P) < jnf L(PQ) = I(P)
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and (ii) holds. The statement (iii) follows from

L(P(-0) < L(P<x>c2<z><1>deg@) ~ L(PQ),

whence

l(P(—a:)) < jnf L(PQ) = 1(P).
Similarly,

(Ph) <2(Pih el - ra)

whence

l(P (a:k)) < éréfFL(PQ) =I(P). (1)
Finally, if .

P (2%) Q(z) = z%xiAi (z¥), where A; € R[z], (2)

let A; = Q;P + R;, where Q;, R; € R[z] and deg R; < deg P. It follows that

and since the degree of the sum is less than that of P (z¥), R; =0 (0 <i<k).
Let i be chosen so that degz’A; (z*) is the greatest. It follows from (2) that Q;
is monic. Hence, by (2)

L(P () Q@) > L(4) = L(PQ) > 1(P)

thus [(P(z*)) > I(P), which together with (1) implies (iv).

Remark. The above proof of (iv), simpler than author’s original proof, has been
kindly suggested by A. Dubickas.

For the proof of Theorem 2 we need two lemmas

Lemma 1. Let k > n, £ = (21,...,2,), Li(x) for i <k be linear forms over
R; L1,..., L, linearly independent, a; € R (1 < < k). Then

k

S(z) =Y |Li(z) + ail

i=1

attains its infimum.
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Proof. Let Li(z) = ) a;;z; (1<i<k), A= max]a;l,
j=1

1,j<n

D = |det (aij)

B,j<n

k
, s:Z|ai|.
i=1

Let so be the infimum of S(2) in the hypercube (degenerated if s =0)

n—1

2n"z sA™ !
H: max |z;| { ————
1<i<n D

Since H is compact, there exists xg € H such S(z¢) = sg. We shall show that
S0 = min]fR S(z). Indeed, if for some z; € R"
R

S(x1) < so, 3)

then

n

> ILi(m1)] < s0+ s < 2s.
=1

Solving the system L;(x) = L;(z1) (1 <i < n) by means of Cramer’s formulae
and using Hadamard’s inequality to estimate the relevant determinants we obtain

n

2n T sAn1
max |ry;] <

1<i<n D ’

hence 2, € H, a contradiction with (3) and the definition of sg.

Lemma 2. Let k > n, x € R*, K be a subfield of R, Ly(&),...,Lx(x) be
linear forms over K, n of them linearly independent, a; € K. There exists a

k
point &y € K™ in which S(x) = ) |L;(x)+ a;| attains its infimum over R™ and
i=1

L7(.’II0) +a; = O, for n indices i = il, ig, . ,in such that Lil,LQ, ey L
linearly independent.

in are
Proof by induction on k. If k =1 we have n = 1 and the assertion is trivial.
Assume it is true for k — 1 forms and consider the case of k forms, k > 2.
If one of them, say Lj is identically 0, then among Lq,...,Li_1 there are n
linearly independent, hence & — 1 > n and applying the inductive assumption
to Ly,...,L;r_1 we obtain the assertion. Therefore, we assume that all forms
Ly, ..., Ly are non-zero. Suppose that inf S(2) = S(x1) and L;(x1)+a; # 0 for
all i < k. Then there is an £ > 0 such that | — 1| < ¢ implies sgn (L;(z) +
a;) =: ¢; for all i < k. We have

k
S(x) = & (Li(x)+a;) =Mz — 1)+ S (21),
=1
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where A
M(z)=> &Li(z).
=1

If M # 0, then there exists a point o with |2¢| < ¢ and M(z) < 0, hence
taking €2 = 21 + &y we obtain S(x2) < S(z1), a contradiction. Thus either
L, (x1) + a;; = 0 for a certain i;, or M = 0. In the latter case we take the
point &, nearest to x; (or one of these) with L;,(z2) + a;, = 0 for a cer-
tain is. Since the hyperplanes L;(x) + a; = 0 either are disjoint with the ball
|z — 21| < |22 — 1], Or are tangent to it, taking (x3,i3) equal either to (x1,41)
or to (&o,is) we obtain S(x3) = S(21) and L, (23) + a;; = 0. Without loss of
generality we may assume that i3 = k and Ly is of positive degree in z,,. The
equation Lg(@) + ar = 0 is equivalent to =, = C(x1,...,2,—1) + ¢, where C is
a linear form over K and ¢ € K. We now apply the inductive assumption to the
forms L} = L;i(z1,...,%n-1,C(21,...,2n—1)) and numbers a} = a;+L;(0,...,0,¢)
(1 <i<k—1).By virtue of the theorem about the rank of the product of matri-
ces, the number of linearly independent among forms L/ is n—1. By the inductive
k—1
assumption there exists a point z{, € K"~ ! such that Y |Li(z') + d}| = S'(z’)
i=1
attains at z{ its infimum over R"' and L(z() +a, = 0 for n — 1 indices
i =1q,...,4,_, such that Lg,l, ..., L}, are linearly independent. By the defini-

n—1

tion of L} and a/ we have

S(.’Eg) = S, (1‘371, AN ,1737”_1) = m/érﬁgfnfl S/(ZII/) = mlél]%n S((l?) = 5(233),

hence
S'(xzy)= inf S'(z')= inf S(x).
( 0) :l?’é]Rnfl ( ) .’Z?IER" ( )

Moreover, L., (x()+ a}, =0 implies
J J
Ly (w151 2n-1, C (24)) +ai; =0

and the linear independence of L/, ,...,L!,  implies the linear independence of
1 1

the forms Ly, ... ,Li; L The latter forms are also linearly independent with Lj
since identity

n—1
Li(21,..yan) = > ¢jLis (1,00 m0), ¢ €ER
j=1
gives on substitution z,, = C(z1,...,Tp_1)
n—1
0= chng (1,...,2,), hencec; =0 (1<j<n).
j=1

Taking 2o = (21, -,%0,-1,C(20)), ij =1; (1 <j<n), i, =k we obtain the
inductive assertion.
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Proof of Theorem 1. We have by definition
I(P) = inf L(PG),

d .
where G runs through all monic polynomials. Let P = z? + 3 a;297%, G =
i=1
n

2"+ 3 z;2" "% We have

i=1
n+d
PG ="+ " pam
i=1
where, with ag = 1 for i < d
min{é,n}

bi = a; + E ai,jxj7
Jj=1

for i > d
min{i,n}
bi = Z ai,j:rj.
j=i—d
Therefore,
d d+n
I(pP)y=1 +n’;ran {Z |Li(2) + ai| + Z |Lz‘($)|} ;
i=1 i=d+1
where

min{i,n}
Lz((t) = Z Aj—jTj.
j=max{1,i—d}
The forms L; satisfy the assumptions of Lemma 2. Indeed, the n forms Lgyq,...,
L4t are linearly independent, since Lgy1(&) = ... = Lgin(x) = 0 gives PG =
O(mod z™), hence G = 0(mod z"), i.e. 1 = ... = z, = 0. Applying Lemma 2
and Proposition A (iii) with 7 = 0 we obtain that for a given n, PG with the
minimal length occurs in Sy(P).
For the proof of Theorem 2 we need

T

Definition 1. Let P = [] (x — as)™<, where a, are distinct and non-zero, my €
s=1

N(d<s<r),m+...+4m. =d, ng >ny > ... >mng_1 >ng >0 be
integers. If s > 1, 1 < i < d, 0 < j < d, then 7 can be written in the form
i=mi+...+ms_1+g forsome 1 <s<rand 1<g<m,;. Weput
g—2
Cij = oy H (nj —ny), where the empty product is 1
=0

and for v = 0,1

C (P, oy ..., nd) = (C”)éijéz , CV (P, Nyyeony nd_H_l,) = (Cij) uéf‘iiiu
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d
Definition 2. T;(P) = {Q € Sa(P) : Q = x™ + > biz™, where ng > ng

=1
>”.>m:ﬂ,mﬂpmm“WWAH#O#KLGMuV”m@LL@)guPﬁ.

Lemma 3. We have for x; € C

d
ijx”j = 0(mod P) (41)
7=0
if and only if
d
X: =0 (1<i<d). (42)
=0
Proof. Clearly the Condltlo (41) is equivalent to
nj n;
> o) =0 <g<my 1< <)

that is to the vector equation

Mz =0, (5)
where & = (zo,21,...,2q)", M = (my;)1<ica and if ¢ = mq + ...+ ms_1 + g,
0<j<d

1 < g <mg, then

- U nj
my = (")) et ©

Now define the numbers by, by the equation

g—2 g
[T =0 (") @
f=0 h=1
and put for i=my +...+mg_1+g, 1 <g<mg, 1 <j5<d
1<h<

(8)
A= (aij)lgm‘gd' 9)

The matrix A is lower triangular and non-singular, since bgq = (g — 1)!. Hence
the equation (5) is equivalent to

a — bgn fj=mi+...+me1+h,
710  otherwise,

AMz = 0. (10)

However, by (6)—(9) the element in ¢-th row (1 < ¢ < d) and j-th column
(0<j<d)of AM fori=mi+...+ms_1+g, 1 <g<mygis

d g g—2
n; )
Sy =3 (2 ) = Ty = =
t=1 h=1

£=0

hence (4;) is equivalent to (4s3).
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Lemma 4. We have inf L(Q)= inf L(Q).
QESq(P) QETq(P)

Proof. Let P be as in Definition 1. We shall prove by induction with respect to
n that

i, DO = it 1Q) an
deg Q<n+d deg Q<n+d

If n =0 then Q € S4(P), deg@ < n + d implies Q = P. We shall show that
d
P e Ty(P). Otherwise P = 2" + > a;z™ (n; = d—1) and either |Co(P;no,...,

i=1
ng—1)] = 0, or |C1(P;nq,...,ng)| = 0. In the former case there exists [dp,...,
dg—1] € C? < {0} such that
d—1
Zcijdj =0 (1 S 1 S d) (12)
§=0
By Lemma 3
d—1
Z d;z™ = 0(mod P) (13)
3=0

d—1
and, since ng = d, . djz™ = doP; do # 0, P(0) = 0, a contradiction. In the
§=0

latter case, similarly, there exists [e1, ..., eq] € C? \ {0} such that
d
D cije; =0 (1<i<d). (14)
j=1
By Lemma 3
d
> eja" = 0(mod P), (15)
j=1

which is impossible since ny < ng =d = degP.
Assume now that the equality (11) holds with n replaced by n — 1 and
suppose that

d
Lt L(Q) = L(Qo) where Qo = 2™ + Y "bja" € K(P)la],

deg Q<n+d j=1

ng>mny>...>ng = 0.

(16)

Clearly L(Qo) < L(P).
If ng < n+d the inductive assertion follows immediately from the inductive
assumption. If ng = n +d, let L;(x) be the linear forms defined in the proof of
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Theorem 1 and a; have the meaning of that proof, if ¢ < d, a; = 0 otherwise. We

have
n+d

L(Qo) = jinf > |Li(w) +ail,
i=1

hence, by Lemma 2, the above infimum is attained in a point &, such that for n
indices i1, ...,4, simultaneously L; (xo) +a;; =0 and L;,,...,L;, are linearly
independent. Since the system of equations L; (zo) +a; = 0 (1 < j < n)
determines @ uniquely the coefficients of #"t%~% in Q, where i # iy,...,in
(hence n+d —i =mnq,ng,...,nq) are uniquely determined by the condition @ =
0(mod P), @ monic in C[z]. On the other hand, if |Co(P;ng,...,nq-1)] = 0,
then there exists [d, . ..,dq—1] € C? \ {0} such that (12) and (13) hold again. If
do = 0, then

in

d—1

Q1 := Qo+ Zdjx”f = 0(mod P),

i=1
where the ()1 is again monic, contrary to the uniqueness property. If dy # 0, then

by the uniqueness property

d—1

Qo=dy' Y dja™ =a™Qy, Qs € K(P)lal,

j=1

hence
L(Qo) =L(Q2), degQz<n+d

and, by the inductive assumption

LQ)= _inf L@~ _inf LQ> inf LQ.
deg Q<n+d deg Q<n+d deg Q<n+d

By (16) this gives (11).

If |C1(P;n1,...,n4)| = 0, then there exists [ey, ..., eq] € C¢\ {0} such that
(14) and (15) hold again. We have

d
Qs = Qo + Z e;jz" = 0(mod P)
j=1

and (3 is again monic, contrary to the uniqueness property.
In the remaining case

|Co (P;ng,...,ng-1)] #0#|C1 (P;nq,...,n4)|

we have Qo € Ty(P), hence (11) holds again.
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Lemma 5. Let in the notation of Definition 1, i = my + ... + Mmgi—1 + g(i),
1 < g(i) < my(. Then for every j > h > g(i) — 1

(i) —1 g9(i)—-1
g\t) —
leij| < leipmax § 1, ———— . (17)
log |y |

Proof. For the sake of brevity, put s(i) = s, g(i) = g. For ¢ = 1 we have
lcij] = |as?| < |a| = |cin|. Assume g > 1. For every f < g — 2 the function

(@) e

) =max<{1l,——— b |ag| 9T — ————

4 “loglas| J T ng —np

satisfies p(ny) >0, ¢'(z) <0 for < ny. Hence ¢(n;) >0,

g—1 "k i
max<1l,——— plag|9 T (nf—np) = |ag|9=t (nf —n,;
{1 bl o = ) >l 7 G =)

and (17) follows on taking products over f from 0 to g — 2.
Lemma 6. Let a,b,c,x € R, a>1,b>0,¢c>0, z>0.If

a:”/xb <e, (18)

then
2

2b b2 log ¢
< =: ,b,c). 19
* (eloga + \/62(log a)? * loga> ¥(a,b,¢) (19)

The function 1 is decreasing in a, increasing in b and c.

Proof. Put x = y?, y > 0. It follows from (18) that
y?loga — 2blogy < logc
and, since logy < y/e
9 2b
y“loga — —y < logec.
e
Solving this inequality for y and squaring we obtain (19).
Lemma 7. For every subset I of {1,...,d} of cardinality h we have
9(i)—2

<2 [T a0 T (ng = na) (20)

iel f=0

‘det (Cij) iel

1<j<h

and
g(i)—2

<h* [Tlaso ™7 TT (ng = nna). (1)

iel =0

’det (Cij) iel

0<j<h
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Proof. For all i € I and j < ¢g(¢) — 2 we have ¢;; = 0, while for j > ¢(i) — 2

v 9(i)=2
Mmax{1,g(i)—1} H (nf — nh) if 1 < _] g h’?

9(i)—2 |Oés(i)
leis| = || H (ny —np) < )2
1= s ["*O7 T (g —maen) O <G<h,

hence (20) and (21) follow by Hadamard’s inequality. Note that if g(é) > h+1 or
g(i) > h for i € I, then both sides of (20) or (21), respectively, are zero.

Definition 3. In the notation of Definition 1 and of Lemma 5 put for a posi-
tive integer h < d, positive integers ej,...,e, and a subset J of {1,...,d} of
cardinality h + 1 such that max g(i) <h+1

1€

h
> en g2
D(Ja el""7€h) = det a;b(j;+1 H Z .

f=0 v=f+1

ieJ
0<i<h
h 4 1
- > e g(1)—2 h
x H |ty | #mmex o H H E e,
ieJ i€J f=0 \v=f+1
Definition 4. D(ey,...,e) = max D(J;eq,...,ep), where the maximum is taken

over all subsets of {1,...,d} of cardinality h + 1 such that max g(i) < h+1.
1€

Remark. The definition is meaningful, since always there exists a subset J of
{1,...,d} with the required property. If for all i < d we have ¢g(i) < h+1 this is
clear and if for some g : g(ip) > h + 1 we take

J:{i:ml—I—...—i—mS(io),l<i<m1+...+ms(i0),1—|—h+1}.

Proof of Theorem 2. Using the notation of Definition 1 we define the sequence
di,...,dq inductively as follows.

B log(L(P) — 1)

dy = (22)

log |ay|

and, if dy,...,dp (d>h > 1) are already defined, put

Dpi1=(h+ 1) "hEmin{D(e1,...,en) : 1 <e; <di,D(e,...,en) >0} (23)
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(the minimum over an empty set being oo), m = max m,,
<s<r
max{dl + ...+ dp,

P O <|ar 1, <max {2, m})m_thil(L(P) - 1))}

if Dh+1 75 oo,

0 otherwise.
d
We shall show that if Q € Ty(P), Q =z + Y b;jz", then
j=1
nj-1—nj<d; (1<j<d).

We proceed by induction on j. Since @ € Ty(P) the equation
d
al® + Z bja)’ =
j=1
implies

d
o | < o™ D bl < fen|™ (L(Q) = 1) < |aa[™ (L(P) — 1),
j=1

283

(24)

(25)

which, in view of (22) gives (25) for j = 1. Assume now that (25) holds for all

j < h (h<d) and consider the matrix (c;;)
Since @ € Ty(P) we have

1<
0<j<

rank (ci;)1<i<a =h+1,
0<i<h
hence also
rank (cija;(?)") rcica = h+ 1.

0<j<h

i<a for c¢;; defined in Definition 1.
i<d :

Therefore, there exists a subset J of {1,...,d} of cardinality h + 1 such that

A(J) = det <cija;(?)h) s 70

0<s<h

For every subset J with the above property consider

icJ

h
M(J) =max || c;o + Z cijb; a;(?)h .
j=1

(26)
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Solving the system of equations
h h
CioTo + Z%‘Ij O‘S_(?)h = | G0+ Zcijbj O‘S_(?)h (tel)
j=1

Jj=1

by means of Cramer’s formulae and developing the numerator according to the
first column we obtain

(h 4+ 1)M(J) max

det (Cij Ols_(?)h ) ier

1Sj<h

1< :
AW

where the maximum is taken over all subsets I of J of cardinality h. Now, by
Lemma 7, since [agq;| > 1

g(i)—2

> 17 [ oo™ T (ng =)

ieJ =0

max

det (Cij()és_(?)h) rer

1<j<h
This gives, by Definitions 3 and 4, for every J satisfying (26)
M(J) > (h+ 1)71h7%D(J;n0 — N1, ,Np_1 —np) >0
and, since such J exist
max* M(J) > (h+ 1)_1h_%D (Jimo — N1y, np—1 — np) < 00,

where max* is taken over all subsets J of {1,...,d} such that cardJ = h +1
and majcg(i) <h+1.

1€

By the inductive assumption and (23)

max”* M(J) > Dpy1 > 0,
thus there exists a set Jy C {1,...,d} such that

card Jo = h + 1, m%xg(i)<h+l and
1€Jo

M (Jo) > Dyas. (27)
On the other hand, by Lemma 3

d
C¢0+Zcijbj =0 (Z S Jo),
j=1
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hence
h d
cio + ey | agir| - lasw|™ =1 Y eibs|- (28)
J=1 j=h+1

By (27) for a certain ig € Jo the left-hand side is at least Dpy1]a((;)|. As to the
right-hand side, replacing in Lemma 5 h by h + 1, we obtain

d (ig) — 1 g(io)=1 4
D cinibi| < lcig il (maX{l go}) > bl

2 "log |t (ig) | Pt 29)
) o 1 ms(i0)71
< |Cig ht1] (max {1, Mstio) = 2 }) (L(P) -1).
10g |0t i) |

If np, —npy1 <ng —nyp, we obtain np —npyq1 <dp+ ... +dp < dpy1, hence the
inductive assertion holds. If n, — np41 > ng — np, then

g(i0)—2

lcignr1l = |asap]™ ™ T (= nas)
=0

_ g(io)—1
< vsioy| (2 (nn —nh+1)>

Th+1 2ms<i0)_1 ( Ms(ig)—1 ]

< asgio)| nh = i)

Combining this inequality with (28) and (29) we obtain

e —n Ms(ig)—1
Dit |asgioy|™ ™ < (max{Q Q(mH‘l)}) " (L(P)—1), (31)

(np — nh+1)ms(i“)71 log |as(i0)|

hence, by Lemma 6,

Np—Nh+1
2 (ms—1) 1™
< 1%1337’[)0% ; ms—1, (max {27 log|as|}> Dh1+1(L(P)1)>
2(m—-1)1\""
< 'l/)<|ar| ; m—1, <max{2, w}) DL, (L(P)—1)> < dpya.

The inductive assertion being proved, it follows that

No — Ng < Zdh
h=1
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However, ng = 0, hence

)= Qegldf(P) L@

d
where Uy(P) = {Q €Ty(P):degQ < > dh}.
h=1
The set Uy(P) is finite and effectively computable, since for @ = x™ +

d

> bja™ € Ug(P) there are only finitely many choices for (ng,...,nq) and for each
j=1
choice the coefficients b; are determined uniquely and are effectively computable.
Moreover, @ € T;(P) implies @ € K(P)[z], hence L(Q) € K(P). The theorem

follows.

c d
Proof of Corollary 1. If P(z) =ag [[(z— ;) ]| (z—a;), where |a;| > 1 for
i=1 i=ctl
i<e, |ag| <1 for i > ¢, then by Proposition A

I(P) = [ao|l (H (z - ai))

i=1
and the right hand side is effectively computable by Theorem 2.

For the proof of Theorem 3 we need two lemmas.

Lemma 8. If P, € R[z], pn,q, € NU{0} (n=0,1,...) and

liminf L (P, (x) — Py (zP*) 2%) = 0, (32)
then
liminfl (P,) < 1 (Pp). (33)

Proof. By definition of {(Py) for every n there exists G,, monic such that
1
L(PyG,) <1 (Py)+ —

By (32) there exists k, € N such that k, > n and

1

L (P, (z) — Py (xPFn ) x¥n) < WL Gl

Hence
L (Py, (@)Go (a77)) < L (Py (aP*n) % Gy ()
+ L ((Pr, (z) = Py (an) a%n) G (aP*)) < L (PoGr)

4 L (P, (&) — Py (%) 2% ) L (Gr) < 1(Py) + %

thus 5
1(P,) <1(Py)+ —

This implies (33).
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Remark. The equality lim L(P,—Py) = 0 does not imply liminfl(P,) = I(Fp),
n—oo n—od
i

)
as is shown by the example P, = x — =1 Py =z —1, see Proposition A, (ii) and

n
(iii).
Lemma 9. Let (Q be a monic polynomial, irreducible over R of degree d < 2
with the zeros on the unit circle. There exists a sequence of monic polynomials R,
such that
Q| Ry (34)

and
lim L (R, —2™"Q) = 0. (35)

n—oo
Proof. It suffices to take

r+1 1 n €n+1 :
R,== —ell4+—=)2"+ , if d=1,Q=x—¢
n n

and

n —n+1
n n n n
if d=2, Q= (z-(z—7).

Indeed, we have for every ¢

2 n+1 1 n EnJrl
(x—e)|a" —e(14+— )"+ )
n

n
which implies (34) and

o 2/n ifd—1
L (R~ Q><{(8n+4)/n2 itd—o2,

which implies (35).
Proof of Theorem 3. We proceed by induction with respect to the number N

of irreducible factors of @™~ ! counted with multiplicities. If N = 1, then m = 2,
Q@ is irreducible and by Lemma 9 we have

PQ? | PR, (36)

and
lim L (PR, — 2" PQ) = 0. (37)
By (37) and Lemma 8 we have
liminf! (PR,) < [(PQ).

n—oo
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However, by Proposition (i) and (36)

(PQ) <1(PQ?) <IU(PRy),
hence

(PQ) <1(PQ*) <1(PQ),

which gives the theorem for N + 1.

Assume now that the number of irreducible factors of Q™1 is N > 1 and
the theorem is true for the number of irreducible factors less than N. If m > 2
then the number of irreducible factors of Q™ 2 and of @ is less than N, hence
applying the inductive assumption with P replaced first by PQ we obtain

L(PQ™) =1(PQ?) = I(PQ).

If m = 2 and the number of irreducible factors of Q™! is N > 1, then Q is
reducible, @ = Q1Q2, where deg@; > 1 (i = 1,2). The number of irreducible
factors of @; is less than NN, hence applying the inductive assumption with P
replaced first by PQ? and then by PQy we obtain

L(PQ?) =1 (PQIQ3) = 1 (PQIQ2) =1 (PQ1Q2) = I(PQ).

The inductive proof is complete.
Proof of Theorem 4. By Theorem 3 and Proposition A (ii) we have for d € N

(=1 =lz—1)=2 (38)
Now, let
d
P(x) = H (x — exp2mir;), where r; € R.
j=1

By Dirichlet’s approximation theorem for every positive integer n there exists a
positive integer p, such that

1 .
[pnr;ll < 2 (1<j<ad),

hence

) 1
lexp 2mip,r; — 1] < —.
n
It follows that the polynomial
d
Qn(x) = H (P — exp 2mipyT;)
j=1

satisfies
PlQn (39)
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and
L (Qn ~ (aPn — 1)d) < (2 + ;)d —9d, (40)

Now, (39) implies by Proposition (i)
I(P) < liminfl(Q,),

while (40), Lemma 8 and (38) imply
liminf 1 (Q,) <1 ((x —1)%) =2.

n—oo

Hence [(P) < 2. On the other hand, if P | Q, @ = 2™ + > bja" 7, then for
j=1
a zero « of P we have

n

L=o|" =Y bjz" | <Y || = L(Q) — 1,
j=1

=1

hence L(Q) > 2; so
I(P) > 2,

which gives the first part of the theorem. In order to prove the second part assume
that P | @, @ monic and L(Q) = 2. Let

Q=a"+> bia"7, b, #0.
j=1
For every zero a of P we have
n )
a4+ bja" I =0, (41)
j=1

hence
n

Z bian—i

i=1

It follows that for every j with b; # 0

n

=la"=1=> |b].

i=1

argb; Q" = argh,.

Since argb; = 0 or 7, either « is a root of unity, or b; = 0 for all j < n. However
the latter case, by virtue of (41) leads to the former. Suppose now that « is a
multiple zero of P, hence also of (). Then

n—1
na™ "t 4 Z bj(n—j)a" "t =0,

j=1
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hence
n—1 n—1
Z bj(n—j)a" 7 =|na" =n > Z |bj| n,
j=1 j=1

which is impossible, since for each j < n, |b;j(n—7)a" 971 < |bj|n. Thus all zeros
of P are roots of unity and simple. If this condition is satisfied, then P | 2™ — 1,
where m is the least common multiple of orders of the roots of unity in question
and

L(z™-1)=2.

For the proof of Theorem 5 we need seven lemmas.

Lemma 10. Let d > 2, I be a subset of {1,2,...,d — 1} and J a subset of
{0,...,d — 2} both of cardinality d — 2. Then

g(i)—2
a-2 Ng(i)—1
‘det (€ij) ier| < (d—2)7 [Tlaswl™ TT (5 = na-2).
el =0

Proof. is similar to the proof of Lemma 7.

Lemma 11. Under the assumptions of Theorem 5 we have, in the notation of
Definition 1, for every h < d—e and v =0, 1

Dh,/ = det (Cij) 1<i<h 75 0. (42)

v<j<h+v

Proof. In the notation of Definition 1 we have |as| > 1 for s < r, a, = ¢,
m, = e. Assume that o, € Zy, if and only if s € Sy. In the notation of Lemma 5

h=mi+...+mgp—1+9gh), 1<g(h)<mgp.

If v=0or 1, Dy, =0 and a, € Z for all s < s(h), the system of equations

h—14+v
Z CijTj = 0 (1 < )
Jj=v

N

h)

has a solution (z,,...,25_14,) € R" \ {0}. It follows by Lemma 3 that

h—1+v s(h)-1
Z z;2" =0 | mod H (z — as)ms (9C - Oés(h))g(h)
j=v s=1

h—14v
hence the polynomial EJF z;xz™ € Rlz] has h zeros of the same sign, counted
J=v
with multiplicities. This, however, contradicts the Descartes rule of signs (see [5],
Satz 12), hence, if as € Zy (s < s(h)) (42) holds. It also shows that Dy, as a
polynomial in a; (s & Sp) is not identically zero for any fixed a, € Zy. Since the
coefficients of the polynomial in question belong to Q(Zy), the algebraic indepen-
dence of ay (s € Sy) over Q(Zp) implies Dy, # 0.
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Lemma 12. Under the assumptions of Theorem 5 let P, be of degree
d — e. For all positive integers eq,...,eq_ there exists a unique polynomial
Q = Q(Po;e1,...,eq—e) such that

d—e d—e
Z eu d—e Z eu
Q= zr=1 +ijxu=j+1
j=1

and
Q=0 (modF). (43)

Moreover, @ € Rz].

d—e
Proof. For j = 0,...,d —e put n; = > e, and for i < d —e, let ¢;; be
v=3+1
defined by Definition 1 with P replaced by Py. By Lemma 3 the congruence (43)
is equivalent to

d—e
S eyby = —co (1<i<d—e).
Jj=1

By Lemma 11 with A = d—e and v = 1 the determinant of this system is non-zero,
hence b; are uniquely determined. If we replace c;; by ¢;; we obtain the same
system of equations, hence b; € R.

Lemma 13. For every positive integer h < d—e and all positive integers e, ..., ey
we have in the notation of Definition 3

D{1,...,h+1},e1,...,ex) > 0.

Proof. We have

max ¢(i) < max i =h+1,
i<ht1 i<h+1

hence D({1,...,h+1},e1,...,ep) is defined. Its only factor, which could possibly
vanish is

h
doen gli)-2

p=j+1 _ P 1
det Q) H Z ey = det (Cwas(z')h) 1<i<ht1 !
f=0 v=Ff+1 0<i<h
1<i<h+1
0<y<h
d
where nj = > e,. By (42) with v =0 the above determinant is non-zero.

p=j+1
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Definition 5. Let the sequence d;(1 < ¢ < d—e) be defined inductively as follows.

_ log(L(P) 1)
log ||

and if dy,...,dp, (h <d—e) are already defined
Dpyr = (h+ 1) "W min{D ({1,...,h+ 1}, e1,...,en) : 1 < e; < di},

dh+1 = max{dh N ,dh,
(& (’as(i)
d

Lemma 14. For every Q € Ty(P), Q@ =™ + Y b;jz™ we have
j=1

nj_l—njgdj (1<]<d)

Proof is by induction on j. Since @ € T,;(P) the equation
d
af® + Z bjal’ =0
j=1

implies

d
o " < o "™ 7 ;] < Joa " (L(Q) — 1) < fen ™ (L(P) — 1),

j=1

(44)

,m—1, (max {2, %})mj Dy (L(P) = 1) }

which, in view of (44) gives (47) for j = 1. Assume now that (47) holds for all

j<h (h<d—1). By Lemma 11 we have
A = det (Cijas_(?)h) L<ichin 7é 0.

0<j<h

h

M = max Ci +E ciibi | oM.

1<i<htl 10 - 1Y) s(7)
J:

Solving the system of equations

h

h
CioTo + Zcijl‘j ag(%h = | cio + Zcijbj a;(?)h (1 <i<h+ 1)
j=1

Jj=1
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by means of Cramer’s formulae and developing the numerator according to the
first column we obtain

(h + 1)M max |det (cijas_(?)“) ier
1< 1<i<h
Al ’
where the maximum is taken over all subsets I of {1,...,h+ 1} of cardinality h.
Now, by Lemma 7, since |as(;)| > 1, we have
. bl g9(i)—2
_ b Nmax{1,g(i)—
max |det (cijas(?)h) e | SR2 H |as(i) {e®-13 H (nf—mnp).
1<ji<h i=1 f=0

This gives, by Definition 3,
m>=h+1)""W D1, h+ 1} ng —n1,...,na1 —np)
and by the inductive assumption and (45)
M > Dpy. (48)
On the other hand, by Lemma 3

d
ciot+ Y cijbj=0 (1<i<h+1),
j=1
hence
h h
cio+ iy | |- s |™ = D by - (49)
j=1 j=1

By (48) for a certain 9 < h+1 the left-hand side is at least Djy1|asi)|™ . As to
the right-hand side, by (29) we obtain

d Ms(ig) ~1
Mg(in)—
> cigibi| < leignsl (maX {1 W}) (L(P) - 1). (50)
j=1

log (i) |
If np, —npy1 <ng —nyp, we obtain np —npp1 <dp+ ... +dp < dpy1, hence the
inductive assumption holds. If ny, — np41 > ng — ny, then by (30)

Nh+41 2ms(i0)71 ( ms(,io)fl )

|Cig ht1] < |as(i0)| Ny — Nht1)

Combining the inequality with (49) and (50) we obtain (31), where, however, Dp 1
has the new meaning given by (45).
It follows, by Lemma 6

Np — Np+1
2(ms — 1) Mot 1
<
\lgsrélsa()fi 1)1/)<|as|,ms 1, (max{?, 1 | S| }) XDh 1(L(p) 1)

m—1
2m —1 _
<Y | ashpr), m—1, | maxq 2, ¥ Dhil (L(P) — 1) < dpta
log |cvg(n1)|

and the inductive proof is complete.
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Definition 6. Assume that, under the assumptions of Theorem 5, e = 1. Put for
positive integers ny > ... > ng_o > ng4_1

(c;j) r<ica = C (Po;ny, ... ,ng—1,0), cilj =1 (1<j<d),

1<5<d

E(Po;ny —ng—1,---,Nd—2 — Nd—1)
-1 d—1 g(i)—1 (51)
_ /o —Ma— Mg (i) —Md—1
= |det (CijaS(i)d 1)1<ij<d H Jevsgy | ]._.[ (nf —na-1).
’ i=1 f=1
Remark. E(Py;n1 —ng—1,---,nd—2 —ng—1) is well defined since det(c’ija;(gd’l)

is non-zero by Lemma 11 with o =d — 1, v = 0. Moreover the right-hand side of
(51) depends only on Py and the differences n; —ng—1 (1 <j<d—2).

Lemma 15. Assume that, under the assumptions of Theorem 5 and in the nota-
tion of Definition 1, e = 1. If for positive integers ny > ... > ng_1 and for n > 1,
a R

Ng—1 > max{m — ndl,w<|a,«1| ,m—1,d(d - 1)%27"_111

(52)
nd|al
E(Py;ny —ng—1,...,Ng—2 — Ng_ 1
X E(Po;ny —Na-1,...,Nd—2 — Na 1)max{ " — 1})},
then there exists a polynomial R € R[z]| of degree at most ny such that
Fo | R(z) — a, (53)
x—1]| R(x), (54)
1
L(R) < —. 55
(R) < - (55)
Proof. Put
d—1
R(z) = erx"f +rq, r;€C.
j=1

By Lemma 3 the conditions (53) and (54) are equivalent to the following system
of linear equations for r;

(56)
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The determinant of this system equals

d
_ Nd—1 —Nd—1
Ng = Hag(l det (c 0 >1<Z_j<d.
i=1 e
Developing the last determinant according to the last column we obtain

—ng—1
det( z] s(l) )1<i,j<d

d—1

nd—1 k+d v o -t
= det ( ag )1<i’j<d + kZ(—l) ChaCrygyy  det ( (i) ) i
1

ji<d

hence, by (21) with h = d—1, I = {1,...,d}~{k} and by the condition o, = e =1

d
A “Ma-1 _ et ( nd—l)
| 0 g as(z € ZJ s(z) 1<i,j<d (57)
. g()—1
== —MNg— MNg(i) —MNd—1
< (d=1)7 oo 7" ] |esn] ™ f_l(nf —na-1) | max, |Chal -
Since, by (52) n4—1 > ni; —ng—1, we have
2 m—1
oax [yl < 1:[ (2na-1)™ (58)
In view of Definition 6 the right-hand side of (57) does not exceed
Ndg—1 Nd—1
(d— 1) \ar 1~ det (cwas(l) )1<i1j<d
X E(Pyp;n1 — Ndg—1,---,Ndg—2 — Ng—1,0) 2™~ 1n2" 11.
Since, by (52),
Na_1 > 1 <|ar,1| m—1,d(d—1)F 2 1p
x E(Po;ni —ng—1,...,Nd—2 — nd—170)>
we have by Lemma 6 and (57)
1Ao| > (1 - ) (det ) ciseal (59)
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hence by the Remark after Definition 6, Ay # 0. Thus the system (56) is uniquely
solvable and since on replacing c;j by E;j we obtain the same system, r; are real
(1<j<d).
The determinant Ay obtained by substituting in (cj;)1<i j<a for the k-th
column the column
/ / t
[Cld,...,cd_ld,o] a

satisfies for k < d

Ay, = £ (det ¢};) i G
hence developing the last determinant according to the last column, using Lemma 10,
Definition 6 and (58) we obtain

d—1 ulo d—1 g(i)—1
a-2 Ng(i
1Akl < lal Y legal (d=2)7 [T lesw ™™ T (g —na-)
=1 i=1 f=1
i#l

<lal(d = 1)(d = 2)= (2ng-1)™ " ot ™

x E(Po;ny —na—1,..-,NMd—2 —Nd—1) ,

det ( )1<m<d‘

where (d — 2)¥ =1 for d =2.
Since (d —1)(d — 2)%;2 < (d- 1)% we obtain, by virtue of (52),

|Ak| < d2 2 ‘det )1<”<d’
hence, by (59), rp = Ax/Ao satisfies
1
Irel < — (1< k<d). (60)

dn

It remains to consider k& = d. In this case developing A, according to the last

column we obtain
d—1
|Adl < lal D |efl
=1

Using (21) with h =d—1, I = {1,...,d} ~ {l}, the condition a, = e =1 and
(58) we obtain

det (ci;) izt

Al < fal(d = 1) (2na-1)™ " faya| "

g(i)—1
% H |as(i)|ng(i) H (TLf —ng_ 1) (d _ 1) 2m 1nd—711 |Oér,1|7nd_1
- i

()1 <d‘ E(Po;ni —na—1,---,Nd—2 — Nd—1) -
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Again, by virtue of (52) and of Lemma 6,

dn —1 ,
|Ad] < 22 ‘det (Cij)1<i,j<d J
hence ry = Ag/Ag satisfies
1
< —.
[ral < =~

It follows now from (60) that

d

1

L(R) = Y Il < -
k=1

which proves (55).

Lemma 16. Assume, under the assumptions of Theorem 5, that ¢ = e = 1. Then

(P)<  inf {L(Q)+\Q(1)|}.

~X
QESq—1(Po)
Proof. Let
d—1
Q=z% + ijxqj’
j=1
where g9 > q¢1 > ... > qq—1 and we may assume ¢4—1 = 0. By Lemma 15 with
a=Q1), nj=ng_1+¢q; 1<j<d)),if

d+1

Ng_1 > max{ql,w<ar_1 ,m—1,d(d—1)"z 2™ 1p

xE (PQ; q1y .-, qd,Q) max {1, ngdl|Q<1)|})}

there exists a polynomial R € R[z] of degree at most ny satisfying (53)—(55). We
consider the polynomial

S(x) = Qz)a"™ " + R(x) — Q(1).
It follows from (53)—(54) that
Pyl S, z—1|5, thusP|S

and since S is monic

I(P) < L(S).
On the other hand, by (55)

L(S) < L(@) + |Q()| + -

Since n is arbitrary, the lemma follows.
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Proof of Theorem 5. Since, by Proposition (iii), {(P(—z)) = I(P(x)), we may
assume that ¢ = 1 and, by virtue of Theorem 3, that e = 1. Thus Lemmas 15
and 16 are applicable. The second part of the theorem follows from Lemma 16. In
order to prove the first part we shall show that for every n > 1

0>1(P) - m*inmin {L(Q(P;ng,...,n4-1,0)), L(Q (Po;no—ng—1,.-., ol
na—2 — Na-1,0)) +[Q (Po;no — Ng—1, ..., Na—2 — na—1,0) ()|} > —%, o
where the min* is taken over all integers ng > ... > ng_1 > 0 such that
nj1—mn; <d; (1<j<d) (62)
ng_1 < ¢<|ar_1| om—1,d(d—1)% 2" 1n
X E(Py;n1 — Nd—1,---,Nd—2 — Ng) (63)

n

d
X max{l, nd —1 |Q(P0;n0 —Ng—1y---,Nd—2 —TLdfl,O) (1)|}>

and, in the notation of Definition 1
‘Cl (P;n17"-and—170)|7£0' (64)

The condition (64) implies that there is a unique polynomial
d—1
Q=2ax"+ Z bjx" 4 by

Jj=1

divisible by P, denoted in (61) by Q(P;ng,...,n4-1,0). Similarly Q (Py;
ng — Ng—1,.--,Nd—2 — Ng—1,0) is the unique polynomial

d—1
Q=" a1 4 Z bjxnj—nd,l
j=1
divisible by FP,. The inequality
I(P) < min* L(Q (P;no,...,ng—1,0))

is clear and the inequality

I(P) < min* {L(Q (Po;no — Mg—1,- - ;Nd—2 — Ndg—1,0))
+|Q (Po;no — na—1,--.,Ndg—2 — na—1,0) (1)|}
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follows from Lemma 16. This shows the first of inequalities (61). In order to prove
the second one we notice that by Lemmas 4 and 14

I(P)=inf L(Q (P;no,...,n4-1,0)), (65)

where (ng,...,ng—1) runs through all strictly decreasing sequences of d positive
integers satisfying (62) and (64). If (63) is satisfied then, clearly

L(Q(P;no,...,na-1,0)) = min®™ L(Q (P;no, . .., na-1,0)) (66)

and, if not, then by Lemma 15 there exists a polynomial R € R[z] of degree at
most n; such that (53)—(55) hold with

a=Q (Po;no —na—1,.--,na—2 —ng—1,0) (1).
Then the polynomial
S(x) = Q (Po;no — na—1,---,Nd—2 — Na—1,0) z"*~* + R(x)
—Q (Po;no —Ng—1,---,Ndg—2 — ng—1,0) (1)

is monic, satisfies

P|S(x)

and, by (64),
S(x):Q(P;nOV"vnd—lvO)' (67)

By (55)
L(S) > L (Q (PO;’ILO —Nd—1y++-,Nd—2 — Nd—1, 0))
1 (68)
+1Q (Po;no — ng—1,- - -, Ng—2 — ng—1,0) (1)| — e
The formulae (66)—(68) imply
L (Q (P;nOa s and—lyo))
>min* min{L (Q(P;ng,...,n4-1,0)), L(Q (Po;no — Ng—1,- - -, Nd—2 — Ng—1,0))

1
n

+1Q (Posmo —nd—1,---,Nd—2 — Nd—1,0) (1)|} -
for all sequences (ng,...,nq4—1) satisfying (64), hence by (65) the second of the

inequalities (61) follows. The conditions (62) and (63) are for a given n satisfied
by only finitely many sequences (ng,...,nq4—1), since

nj —Ng-1 < dj

and all such sequences can be effectively determined, hence I(P) can be effectively
computed.



300  Andrzej Schinzel

For the proof of Theorem 6 we need

Definition 7. For «,3 in C and n>m >0

a — 677, )
Quf)={ o TaFh
no” ! if =0,
_ Qn(aaﬁ) ‘ m Qn—m(avﬂ)
@D =g | 1 Qe |

Fn,m(x7ﬂ) L /Bn 4 |5|mxm(mn—m _ ﬁn—m) _ (2$ _ 1)($m _ /Bm)

Lemma 17. In the notation of Definition 2, if P(z) = (zr — a)(x — 3), a8 # 0,
then all elements of To(P) are of the form

Q@) o Qe B)
T O )t TG )
where 1> m > 0, Qo (0, 8)Qn—m(a, ) £ 0.

Proof. Let an element @ of T5(P) be z™ 4+ Ax™ + B, where n > m > 0. By
Lemma 3 the condition @ = 0(mod P) is equivalent to

= Fn,m(x;avﬂ)v (69)

cio+cnA+cpB=0 (i=1,2), (70)
where c¢;; are given in Definition 1 for oy = a, ap = 3, hence

cio=a", c;1=a™, ci2=1;
co0 =", co1 =B, coa =1, if B # a;
co0 =0, co1 = (m—n)p", coa =—n, if f=a.

Since @ € T»(P) we have
[Co(P;n,m)| # 0 # [C1(P;n,m)],

hence Q. (e, 8)Qn-m(a,B8) # 0. Solving the system (70) we obtain for @ the
form (69).

Lemma 18. If § € R, || > 1, then for all positive integers n > m and all
integers k > 0 we have

1 d*
= *7an
kldzk™ ™

Gn,m,k(ﬁ) (x75)‘m:\5\ 20

and if |8] > 1 for k=0 or 1

inf Gn,qu(ﬁ) > 0.

n>m
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Proof. Consider first the case 8 > 0. For k = 0 we have Gy () = 0. For
k > 1 we have

Gmmk@):(Z)ﬁhk+(2)5kakf(Z)ﬂmWfk
(e (e ()
=0 () ()= () o
_2(m+1>ﬁ+( )+2<;>ﬁ>.
The expression in the parenthesis is non-negative, since for 4 =1 it is equal to
o) -a(" )2 (1) o1

and its derivative with respect to 3 is
(o) = ma =t () - (m))nﬁ“*(mil)”(i)
() (7))o () ()
e (7 ex(1) ()

It follows that
Gn,m,k(ﬁ) P 2(6 - 1)

and the obtained lower bound, independent of n, m is positive for 3 > 1. Consider
now the case 4 < 0. We distinguish four cases according to the parity of n,m.
If n =m = 0(mod?2), then

Gn,m,k(ﬁ) = Gn,m,k (|ﬂ|)

and the case reduces to the former.
If n =0, m = 1(mod 2), then

Grmo(B) = 2(18))™ (181" — 28] + 1) = 2(8] — 1)

and the obtained lower bound, independent of n, m is positive for || > 1. Further,
for k>1

Grms(8) = () 1814+ () |ﬁ|n+m—k + (M) 1apemk

(MYl () lat 2 () ik
~ 18- k((’;)m" me (e () e -2 (")
1))
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The expression in the parenthesis is non-negative, since

(oo (e =2 (") 1o

()= (F) e =2 () ) 1o
If n=1, m = 0(mod?2), then

and

Gn,mJg(ﬁ) = Gn,m,k (|ﬁ|)

and the case reduces to the already considered one.
Finally, if n = m = 1lmod 2, then

Grmo(B) = 218™ (18" ™™ — 2|8 + 1) > 2(18] — 1)°

and the obtained lower bound, independent of n,m is positive for |3] > 1.
Further, for k£ > 1

G () = () 18175+ (T ) 11t = () e

m+1 m—k m m—k 1 m—k
—2( A )IBI ()8 —2<k>|ﬂ +
_ m—k n n—m n n m n m+1
=1+ (e (e = () 1e =2 (") o
m 1
)-(2)m).

The expression in the parenthesis is non-negative, since for |3| =1 it is equal to
n m-+1 1 m+ 2 m+1 1
(02 (") -2 ) 22 (") 2 (") 2 ) 0

and its derivative with respect to |3| is
1 1
(1) =gt () n=tar == ()l =2 () =2 ()
n n m m+1 1
(k)(”_mH(k)”_(k)”_Q( k )_2(k>
m+2 m+ 2 m m+1 1
>2< . )+(< . )—(k)>(m+2)—2< . )—2(k>>0.

Proof of Theorem 6. Consider first the case of «,( real. Since, by Proposi-
tion (iii), I(P(—z)) = I(P(x)), we may assume that « > 0, hence a > |0]|.

WV
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By the Taylor formula we have in the notation of Lemma 18
(@™ = ") (Enm(a, B) —2a+ 1) ZGnmk a—\ﬁD

hence, by the said lemma,

(@™ = B") (Enm(a,8) —2a+1) =20 (71)
and, if o> 5] > 1
n11>17fn (@™ = 0™) (Enm(a,f) —2a+1) > 0. (72)

If oo # £ then (71) gives
E,m(a,B) =20 — 1,

hence by Lemma 17

inf L > 2«
ocht (Q)

and by Lemma 4,
I(P) = 2a. (73)

Now, if § = —1, then L(P) = 2«, hence I(P) < 2« and, by (73), I(P) = 2a. If
B =1, then by Theorem 5 with Py =z — «
(P)SL(P)+|P()|=1+a+a—1=2«

and, by (73), I[(P) = 2« again.
If a> |8 > 1, then by (72)

inf E, mla, ) >2a—1 (74)
m<mq

for every mg. Choose now

log 4av — log(a — |5|)
log || '

mo =

Then for m > mg : En (o, 8) > |af]™ 5 Bl > 20 and, by (74)

2am

igf Epm(a,8) > 20— 1.

Using, as above, Lemmas 17 and 4 we obtain

I(P) > 2a.
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If « = —f3, then P(x) = 22 — o? and by Proposition (iv) and Proposition A (ii)

=2a ifa=1,

U(pP)=1 (x Q@ ) 1+ o { > 2a, otherwise.

If « =3, then

na™~ ™ 4+ (n —m)a™

Epm(a,B)—2a+1= —2a+ 1.

m

The right-hand side is equal to 2(n —m)/m > 0 for a = 1 and its derivative with
respect to « is

n(n — m) (an—m—l + an—m) —2>a-1
m .

For a« = =1, I(P) =2 = 2«a, by Theorem 4; otherwise

inf B, m(a,a) >20—1

n>m

and, by Lemmas 17 and 4, I(P) > 2.
Consider now the case, where a, 3 are complex conjugate:

a=lale??, =lale™* pe(0.3). lal>1

(the case |a| =1 is settled by Theorem 4). Then

nm | SIN TP
En,m(aaﬂ) = |O[‘ NN,

\ Tl

sin(n — m)p
sinm sinme |’
where, by virtue of the condition Q.,,(c,3) # 0 we have sinmep # 0. Since

| sinmy| < |sinng| + |sin(n —m)y| (75)

we have
E’n,m(avﬂ) = |a|n7m =2 |Oé|2

unless n —m = 1. In this final case we have, by (75)

z1-

sin ngp ’

sin ¢ ’

sin me sin me

and by the well known inequality

sin ¢ ‘> 1

. =
sinmep m
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Hence

sing ‘

sin ¢ ™+
sin me
| S

sin m<p
—la

L™ ol a1 el (el = 1) = fof2,

where in the middle we have used Bernoulli’s inequality. It follows, by Lemma 17,
that L(Q) =1+ |a|? for every Q € Ty(P), hence, by Lemma 4,

I(P) =1+ |al® > 2|al.

Proof of Corollary 2. If deg P = 1, then I(P) € K(P) follows from Proposi-
tion A. If P = a(z —a)(x — ), where |a| > |8] > 1, then, by Theorem 2, [(P) is
attained and by Theorem 1, [(P) € K(P). If P = a(x —a)(x — (), where |§] =1,
then, by Theorem 6, I[(P) = 2|ac|. Since either |a] =1 or a € R, I(P) € K(P)
follows.

Proof of Corollary 3. If, in the notation of the Corollary, |3| > 1, then, by
Proposition A, I[(P*) = |af| and, by Proposition (i) I(P) > |ag|, thus lA(P) =
laB|. If |a| > 1 = |3], then, by Proposition (iii) and Theorem 6, I(P*) = 2|a| =
I(P), thus [(P) = 2|a|. If |a| > 1> |B|, then, by Proposition A, {(P*) =1+ |a],
I(P) = |aB|(1+|8]71), hence lA(P) = |a| + min{l, |ag|}. If |a| =1 =8|, then by
Theorem 6, I[(P) =I(P*) = 2. If |a| =1 > |8|, then, by Proposition A, I(P) =2
by Theorem 6, [(P*) = |a3[2|8|~! = 2, thus A(P) = 2. Finally, if |a| < 1, then

l
by Proposition A, I[(P) = 1, by Proposition (ii) I(P*) > 1, thus Z\(P) =1
Proof of Corollary 4. If || > 1> || > 0 we have l(z —a) = ||, l(z— ) =1,

I((z = a)(x = B)) = |a] + min{1, |aB]} > |al.

Note added in proof. An apparently similar problem has been considered in
[2] and [3]. However, the restriction of G in the definition of [(P) to polynomials
with integer coefficients makes a great difference, shown by the fact, clear from
Lemma 17 above, that no analogue of Lemma 2 of [2] or Lemma 3 of [3] holds in
our case.
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