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ON SOME ARITHMETICAL MULTIPLICATIVE FUNCTIONS
JEAN-LOUP MAUCLAIRE

Dedicated to Professor Eduard Wirsing
on the occasion of his 75th birthday

Abstract: We characterize some non-negative multiplicative functions f(n) such that
limgz 4 oo % > 1<n<= f(n) exists and is positive, but there exists a subset A(f) of N of den-
neA
sity 1 such that limz 4o % Z 1<n<a f(n) = 0. An application to the case of the Ramanujan
n€A(f)
7-function is provided.
Keywords: mean-value, multiplicative functions.

1. Introduction

Denoting the set of positive integers by N, we recall that a complex-valued mul-
tiplicative arithmetical function is a function f: N — C, such that f(1) =1 and
flmn) = f(m)f(n) whenever gcd(m,n) = 1. Moreover, we denote by P the set
of prime numbers.

1.1. A result of Wirsing. We recall the following result of Wirsing:

Theorem 1. Let f(n) be a non-negative multiplicative function such that for
some constant T > 0,

> f(p)logp = (T +0(1)), = — oo,

p<T

SN M F = o((logx) ™),

peP 2<k
f(p) =09 for some § < 1.
Then, as x — 400, the asymptotic formula
1+o(1 _ _
BINIOEE S | (R DT
1<n<Lz p<z 0Lk

holds, where I' is the gamma-function.
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This result ([7] p.65 Theorem 4.1 and same page Remark 1) leads to closer
consideration of the relationship between a property of the arithmetical meanvalue
of a non-negative multiplicative function f(n),

. 1
M(f)=lim — 1@2xf(n)

and a specificity of the product

[[Ta=pH> r@" ™, -+

p<T 0<k

considered as associated to an underlying probability space.

1.2. Main result. We shall prove the following result:

Theorem 2. Let H be the set of non-negative multiplicative functions f(n) sa-

tisfying the following conditions: for any d in N, lim > f(n) exists;

x
xr—-+00 1<n<e
d divides n

S S f(pF)pF is finite.

pEP 2Kk

Let us assume now that f is an element of 5 and Y (1— f(p)'/?)?/p is not finite.
peEP

Then, there exists a subset A of N of density 1 such that lim 1 > f(n)=0.

x
r——400 1<n<z
neA

Remark. Since f is non-negative, the existence of lim 1 > f(n) implies
z—+oo T 1<n<e

that f(n) = O(n), and with the condition that Y. > f(p¥)p~* is finite, this
peP 2<k
proves that there exists a positive number C' such that for all p in P, the inequality

3 f(p*)p~* < C holds.
k>0

1.3. Application. As an application of this result, we can consider the special
case of the Ramanujan 7-function. We recall the following classical notation:

n | m means n divides m,

ntm means n does not divide m,
and p* || m means p* | m, but pF*t!{m .

Now, we show that in fact, the function (T(n)n‘11/2)2 satisfies the hypothesis
of the above theorem. We shall get some information on the properties of the
function (T(n)n711/2)2 essentially from [5] p.234 et seq., [6] p.357 et seq.

Let 79(n) be defined by 75(n) = 7(n)n='1/2. By Deligne’s theorem [1], we
know that 79(p)=¢, + ¢, ', with |g,| = 1. For s = 0 +it, 0 > 1, we have

Sz =TT ((14+p7) (1= 3 )1 =52 )1 =) ),

1<n peP
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and it is not difficult to prove that there exists some positive number C such that

for all p in P, the inequality . 7o(p*)%p~* < C holds, and that Y. > 7(p*)%p~*
E>0 peP 2<k
is finite.

Now, we remark that

St = T Sty

1<n p || m k=0

| TI (@) (== -p) ")
peEP
ptm

and we write it as

( 11 ( (Z TO(Pa+k)2p—(a+k)s>

p||m k>0

x ((1 +p77) (= p (1 - ) —p‘s))»
(I (@) a-ma-g2rn - ™))

peEP

i.e.

5w~ = ( IT (X moetyeptee)

1<n p||m k>0

X ((1 Fp) T (=21 - ) (1 - p_s))>>
X ZTo(n)zn*S.

1<n

The first term of this product is analytic in a neighborhood of ¢ > 1. As
a consequence of the famous result of Rankin on the analytic properties of the
series > 7o(n)?n=* ([6] p.360, Th.3), we can use the Ikehara’s theorem [7, p.322,

1<n
Theorem A.4.3] and get that the limit lim 1 37 79(n)? exists.

z—too ¥ty
m|n
Now, the fact that Y (1 —79(p))?/p is not finite is a simple consequence of
peP

the analytic properties of the Dirichlet series with coefficients 7o(n)? and 79(n)4,
and this has been already considered elsewhere ([4] p.146).
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This allows us to formulate the following result:

Proposition 3. There exists a subset A of N of density 1 such that

1 2
i + Z 711/2) -0
1<n<Lz

neA

2. Proof of the main result

2.1. Notation. If d is in N, the arithmetical function I;(n) is defined by I/;(n) =
1if d|n, and O otherwise.

E, is the discrete set (1,p,p?,...) and E, = E, U {p>} is the Alexandroff
one-point compactification of the infinite discrete, hence locally compact but not
compact space E, [7, p. 145]

E=]]E. E=]] E» B, = ][] E»

pEP pEP pEP
psy—1
Ey=]]E» Ey-= ][] E»» Eyr=1]]E»
pEP peEP peEP
y<p p<y—1 y<p

An element ¢t of E can be viewed as a sequence (pvp(t))

either a non-negative integer, or oco.
If t isin E, we denote the finite sequence ¢, = {p"P(t)}

pep Where vp(t) is

p<y—1 by ty—-

The product space E = Hpe p Ep, equipped with the product topology, is a
compact space.

We say that a subset of E is elementary (resp. almost elementary) if it can
be written as {,_} x E,, where 6,_ is in E,_ (resp. 0,_ is in F,_). An
elementary set is open.

2.2. Some lemmas. First,we have the following result:

Lemma 4. Let v be a probability Borel measure on E such that for any p in P,
v({p>}[lqep Eq) = 0. Then, given any open set O of E, there exists an open

q7#p
subset O* of O such that v(0) = v(O*) and O* can be written as a disjoint and
at most countable union of elementary subsets of E.

Proof. Let ¢ be in O. We remark that the sequence of almost elementary sub-
sets Oy = (Hpgk—1 {pvp(t)}) X Ek+ is ordered by inclusion, since we have
Ot k41 C Oy for any k > 1. Now, due to the topology of E, O contains an
almost elementary subset Oy, = (Hpg?rl {p”P(t)}) x E,+. We define y(t) by
y(t) = min {y >3t Eyy C O} and denote by O; the almost elementary sub-
set Oy ) = (Hpgy(t)—1 {p”P(t)}) X Ey(t)+a which is the maximal element of the
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decreasing sequence Oy, k > 3 . (We require the index y(t) to be greater than
2 only to avoid the trivial case O = Ej [l,ep Ep). If for some p < y(t) — 1,
vp(t) = oo, then t is in {p™}[[qep E4. Otherwise, O, is an elementary set

— q#Pp
tyt)—Eyt)+, and we define O* as the union of these sets. O* is an open subset of

O, and O — O" is contained in J,cp {p>} Hqip E,, which is of v-measure 0,
a#p

since it is a countable union of sets of v-measure 0. Now, we remark that if the in-

tersection of two elementary sets is not empty, then one of them is contained in the

other. Hence we get that the set O* can be written as O* = Uty,eA(O) ty—Eyy,
where A(O) is at most countable, and the union is disjoint. [ |

Lemma 5. Let v be a probability Borel measure on E such that for any p in

P, v({p>°} 1 qep E;) = 0. Then, given any open set O of E, and any positive ¢,
q#P
there exists an open subset O' of O such that v(O) —v(0’) < e, and O’ can be

written as a finite union of disjoint elementary subsets.

Proof. Using Lemma 4, we replace O with O*,where O* = Uty,eA(O) ty—Eyi,
and A(O) is at most countable, the union being disjoint. We remark that an ele-
mentary set t, E,y is characterized by the integer N(t,—) =[], , p**{v-)TL.
For given such an integer, we know its greatest prime divisor will give the value of
y, and t,_ will be given by vp(ty—) = vp(N(ty—)/[l,<,-1P)-

Now, we remark that

v(0*) = lim > v(ty Eyy).

k—-+oco
ty_ €A(O)N(t, )<k

Since all the terms of this sum are non-negative, there exists an index K/(¢)

such that
vor-( % ity By)) <2

ty— €A(O),N(t,)<K(e)

and so, we define O’ by its characteristic function

Io = > I, . ]
ty—€A(O),N(ty-)<K(e)

Lemma 6. Let O; and Oz be two open sets, both being finite disjoint unions of
elementary subsets of E. Then, O1U Oz can be written as a finite disjoint union
of elementary subsets of E.

Proof. This is a simple consequence of the fact that if the intersection of two
elementary sets is not empty, then one of them is contained in the other one. M

Lemma 7. Let f(n) be a non-negative multiplicative function such that for any

din N, lim 1 3 I)(n)f(n) exists. Then, for any subset t,_FE,, with cha-
T—+00 1<n<Lz
racteristic function Iy,_,

. 1
lim —
r——4o0o I

S L, (i)

1<n<Lz
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exists and is equal to

f(tfj‘) I St ™| M,

p<y—10<k

where M(f)= lim 2 Y f(n).

T—=+00 T 1 <nka
Proof. Since Iy, (n) = [[,<,_1J e, (n) , with Jye(n) =
due to our hypothesis , M (I, f)= lim 1 ,_(n)f(n

T=+00 Y 1 ke
partial summation [7, p.54, lines 8-12], we have

Lya(n) = Laia(n),
) exists. Hence, by

D I, () f(mn=7 ~ M(L, f)lo—1)7",

1<n
as 0 — 14, and so,
M(Iy, f)
—Ullr? (o0 -1) ;Ity n)f(n)n=°

= lim (0 = 1) f(t,)t;7 > flmn=
ng(n’Hp@J—lp):l

= lim (0~ D)ft, 67 | [T S rehw™ 11> r*p*

p<y—1k20 pEP k=0
-1
= ftyott | T D@0 ) { dim o= | TT X "
p<y—1k2>0 pEP k>0

-1

=ttt | T Do @b e ™| M. L]

p<y—1k20

Lemma 8. Let f(n) be a non-negative multiplicative function such that for any
din N, hm 1% Ii(n)f(n) = M(I}f) exists. Then, there exists a unique

z—+00 1<nLz

probability Borel measure v¢ on E such that for any elementary subset t,_F,
-1
of E, the equality vy(ty—Ey) = f(t,—)t," (Hp<y1 k;)f(pk)p_k> holds.

Proof. The set A of arithmetical functions which can be written as h(n) =
>~ 1lqI)(n), where the sum is finite and the I; are real numbers, is the restriction to
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N of an algebra of continuous functions defined on E. By the Stone-Weierstrass
Theorem ([2], p. 101, note l.a), it is dense in the set of the real-valued func-
tions continuous on E, equipped with the uniform topology. Now, by Lemma 7,
the linear form (f,h) = M(fh)/M(f) is well defined, and it satisfies the re-
lation |(f,h)| < max(|h(n)|,n € N). As a consequence, this linear continuous
form can be extended to the whole set of real-valued functions continuous on E.
The Riesz representation Theorem ([2], p. 129, (11.37)) shows that (f,-) defines

a Borel measure vy on E. It is clearly of mass 1. The equality v;(t,_E,+) =
-1

flty—)tt (Hpgy1 g:o f(pk)p_k> is the immediate consequence of Lemma 7. B

Until this point, we remained in a rather general setting. From now on, we
shall specialize to the set K.

We begin by remarking that the multiplicative function 1(n) defined by
1(n) =1 for all n is an element of H. So, the measure vy is well-defined. Now,
we prove the following lemma:

Lemma 9. Given f, an element of 3, the measure vy is orthogonal to vy if and
only if 3 (1— f(p)'/?)?/p is not finite.
peEP

Proof. 1) First, we prove that the measure v, is orthogonal to v if and only if

2

li -1 kyo—k | _ _ 1 ky1/2,—k = .
Jim (1=pD f@")p (L=p~H Y f")*p +00
p<y—1 k>0 0<k

Proof. Since the multiplicative function 1(n) defined by 1(n) =1 for all n is an
element of H, the measure vy is well-defined and by Lemma 9, we have

nt,-Ey) =t T dop*

p<y—10<k

-1

Since v1({p*}) =p~H(X p™") "t =p7F(1—p~!), we can write v ({p*}) as
ogr

—1

r=0
The Kakutani Theorem ([8], p. 109) shows that the measure vy is orthogonal

to vy if and only if
li | I 1/2 —
yilfoo /Ep wp dyl O’

psy—1

vi({p*}) = ({p" Pwp({p*}), where w, ({p*}) = f(p’“)<(1 —pH) > f(p’")p"“) -

1/2
lim L=p D @ )/ [a=p)D @ * =0

y——+o00
p<y—1 0<k k>0



226  Jean-Loup Mauclaire
since by a direct computation, we obtain

L= 0= s | 0= Y sohp

Eyp o<k k>0

This is equivalent to

psy—1 0<k k>0
ie.
2
lim [ OOV =) Y re et || =0,
Y p<y—1 o<k k>0
and again, since
1/2

DN I e WA S D (2 B
o<k k>0

this is equivalent to

S 1- ((1 - Y f(p’“)mp’“) / ((1 -y f(p’“)p’“) = +o0.

py—1

Since f(1) =1 and p > 2, we have
1 —1 Ky, —k
3 SA=p )Y f"p
k>0

and so, the above condition can be written as

p<y—1 k=0

all the terms being non-negative. [ |

2) The second step is to prove that

Y @ PR =pT (4 f () P = 0+ D f

0Lk 2<k

with a uniform O().



On some arithmetical multiplicative functions 227

Proof. Since

1 p—l Zf 1/2 —k ( _1)(1+f( )1/2 —1 Zf 1/2 —k:
o<k 2<k
we have
2
2
( 3 Fk) -’f) —(a=p D+ f)2p)
o<k

( Zf )12 —k)

x ( Y e (1—p‘1)(1+f(p)1/2p‘1))~

o<k
We have

PRt = (10 27 2) e (742) < a2 (602742 (742) ),
and so, we get that

FEY2 < (1/2) (fF0 )+ 07",
which implies that

(1—p Y Zf W2k < (1/2) (1 - p Zf p—k+zp—k

2<k 2<k 2<k
<Y f@h
2<k
; —k -2
since Y p~® < 2p~ 2.
2<k
Now, we remark that
Zf 1/2 71)(1+f(p)1/2 71 Zf 1/2 7k
o<k o<k

and using Cauchy inequality, we have

Y NV < 2(1p1)J (Z f(p’“)p—’“) (ZP"“)
o<k o<k o<k
=2(1 pl)J (Z f(p’“)p"") (1—p 1)t
o<k

= 2\] (Z f(p’“)p’“) (1-ph) <2VC.

0<k
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As a consequence, we obtain that

2
((1 -y f(pk)l/Qp"“) — ((1 —p (1 + f(zo)mp‘l))2

0<k

< (2\@> (Z FMp* +p‘2> : u

2<k

3) We end the proof of the Lemma.

Proof. From 1), we know that the measure v is orthogonal to v if and only if

DY ((ﬂ —p1>Zf(pk>p’“) - ((1 —MZf(p’“)l/?pk) ) = too.

p<y—1 k=0 0<k

Now, by 2), we have

2
((1 2D f(pk)1/2p‘k) = (@-p0+ f(p)l/Q;D‘l))2

o<k
+O [ Y re w2,
o<k

and as a consequence, we obtain

(((1 —pY) Zf(pk)p_'“> - ((1 -p ) Zf(pk)l/Qp"") )
k>0 o<k

= (=P )+ FEP) = (@ =p HA+ ) p7))?) + (Z f(p’“)p’“)

2<k
+0 (Z FMp~* + p2>
2<k
= (=P + @) = (L =p™) + 1) 27))?)

+0 (Z FMp" +p‘2) :

2<k
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Recalling that > > f(p*)p~* and > p~2 are finite, we get
pEP k>2 peEP

LINDY (((1 —p‘l)Zf(p’“)p‘k) - ((1 pl)Zf(pk)l/Qp’“)) = +00
p<y—1 k>0 o<k

if and only if

Jm D

p<y—1

(= A+ fp ) — (= p )+ f(p)1/2p_1))2‘ — oo,

i.e.

L > ’(1 +fppH—-(1-p H(1+ f(p)mpil)z’ = oo
py—1

Now, we have

(14 f)p™") = (1 =p )0+ f(0)?p7")?

= |+ £ = (1= L+ 26 E) 27+ S|

= (1 £ = L+ 26 E) 27+ F ) + (1420 (0) 2™ + f()p )|
= L Fp T = 1= 2f ) 2 = SO T+ 200 4 (o

= [F@ T =2 )2 7 = F 20 () 2+ F o

= (1= f)"2)p " +2f () 2072 = flp)p ™ + f(p)p‘?"

= W= @22 (P 2 ) = FE) + (07 f)p )

= |1 = £ 22 = (1= F )P 7 )|

= (1= @) 1=p )+ 002 + fp)p~?).

> p~? is finite, and since f(p) = O(p), Y. f(p)p~3 also is finite.

peEP peP

As a consequence, we get that

L ;1 ’((1 +fEp ) = (A =p H(+ f(p) /)| = +o0

if and only if
I 1— 1/2y2. ~1 _ .
Jim Y (1= f(0)?)% = oo

This ends the proof of the Lemma. [ |
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Proposition 10. Let A be a Borel set, f in H. Then, there exists a subset C' of
N of density v4(A) such that

vi(AM(f) = lim 2=" 37 f(n)
e

Proof. 1) First of all, we prove shall that there exists a sequence X} of elements
of N and a sequence of subsets O of N, k € N, such that if X > X, the
inequalities

XY Io,(n) = ni(A)| < (2k) 72

n<X

and

X737 f(n)Io,(n) = M(f)vs(A)| < (2k)72)

n<X

hold. We begin with the simple remark that for any p in P, v1({p®}[[¢epr E,)
— q7#p
and vy({p>}[[qep Eq4) are equal to zero.
#

Now, sincqupis a Borel set, by Lusin criterion ([3], p. 68, (vii)), there exists a
sequence Ay 1 (resp. Ay r) of open sets of E such that A C Ag1 (resp. AC Ag5)
and 0 < v1(Axy) — 1(4) < (4h)2 (resp. 0 < M(f) (vy(Ays) — v(A)) <
(4k)=2, for 0 < M(f) < +o0). Since A C Ap; and A C Ay, we know
that A C Ay, where Ay is defined as Ay = A1 N A, y and moreover, that
0 < n(Ay) — () < (4B)2 (resp. 0 < M(f) (v (A) — vp(A)) < (4)2).
Now, by Lemma 5 , there exists Aj (resp. A} ) a finite union of elementary sub-
sets of E such that Al C Ay (resp. A) C Ap) and 0 < 11(Ax) —11(4}) <
(4k)™2 (vesp. 0 < M(f) (vy(Ax) —ve(AY)) < (4k)72). Let Oy be defined by
Or = A}, UA). By Lemma 6, we know that Oy is a finite disjoint union of
elementary subsets of E and that A}, C O, C Ay , which implies that 0 <
v1(Ag) —v1(0y) < (4k)2, and similarly, 0 < M (f) (v¢(Ax) — v¢(O)) < (4k)72
Since 0 < v1(Ag) —v1(A) < (4k)~2 and 0 < M(f) (vp(Ar) — vp(A)) < (4k)~2
deduce that [v1(Og) — v1(A)] < 273k72 and M (f) |vs(Ok) — vp(A)| < 273k2

Now, since Oy is a finite disjoint union of elementary subsets of E, by
Lemma 7, Ip,(n) and f(n)lp,(n) have a meanvalue, respectively v;(Of) and
M(f)vs(Og), and moreover, there exists an integer Xj(1) (resp. Xj;(f)) such
that for any X > Xi(1) (resp. X > Xk(f)), the inequalities

-1 Z Iok — 1 Ok) < (4]<))_2

n<X

XY f(n)o,(n) = M(f)rs(Ox)| < (4k) 7

n<X
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hold. Now, since 0 < [v1(A) —v1(Ok)] < 275(2k)™2 and 0 < M(f) |vs(Ok)—
vi(A)] < 271(2k)72, we get that

X7 o, (n) —vi(A)| < (2k) 2

n<X

and

Y f(n)Io, (n) = M(f)ve(A)| < (2k) 72

n<X

These inequalities hold a fortiori if X > X, where X} is defined as X, =
Max(Xk(l), X}C(f)) .
2) End of the proof of the Proposition.

Let Yy, & > 1, be defined by Y, = > Xj, and C be a subset of N
1<r<k+1
with characteristic function I(n) defined by

f) = Io, ) Vet +1 €< k2
In)=1 if1<ngY.

We shall prove that M(I) = 1v1(A) and M(If) =v;(A)M(f).
Let z be a positive integer, and let k(z) = max{k > 0; Yy +1 < 2 < Yi41}.
We denote by g(n) any of the functions f(n) or 1. We have

> I(n)g(n) > Yoo Imgm)+ > I(n)g(n)

n<z 0<k<k(z)—1 Y +1<n< Y41 Yi(z)+1<n<e

= > > o)+ D0 oy, ()a(n).
0<k<h(z)—1 Yi+1<n< Vs Yi(ey+1<n<z

Since Yy > X, we obtain using 1),

Y. Im)g(n) = Vi1 M(g)vy(A)| < Yiga (2k) 72,

1<n<Yiq

Y. I(n)g(n) = YeM(g)vy(A)| < Yi(2k)

1<n<Ys

and as a consequence, since

Yo Imgy= Y Imgn) - Y In)g(n),

Yie+1<n<Ye 41 1<n<Ye 41 1<n<Ys
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we get

Y Ln)g(n) = (Y = Yi)M(9)rg(A)| < (Yiws + Yi) (26) 7% < 2Y5pa (2K)

YiH1<n<Yiq

< Vi (k)72

And similarly,

> I(n)g(n) = (& = Yig)) M(9)vg(A)| < ( + Vi) (2k(x)) 2 < 22(2k(x)) >

Yi(z)+1<n<z

< wk(z) ™2

Hence, we get that

D oImgn) = (Y (Vi = Yi)M(g)vg(A) + (& — Yi(z)) M(g)vg(A))

n<z 0<k<k(z)—1

< Z Yie1k ™2 + ak(x) 2,
1<k<k(z)—1

i.e.

S 1mg(n) —eM(ghy(A)| € S Vieah? + ak(a) 2
n<x 1<k<k(z)—1
We remark that the right hand side of this inequality can be written as
> Yk 2+ ak(z)
1<k<k(z)—1
= Z Yk+1k72 =+ Z Yk+1k'72 + xk($)72.

1<k<k(Va)—1 k(v/@) <k<k(z)—1

Since for k < k(y/z) — 1, we have Y41 < /z, we get

Yo YenkT< ) VERTIKVEY R
1<k<k(Va) -1 1<k<k(Va) -1 1<k
and since Yj;y1 < x, we have

Z Y1k 2 4 zk(2) 72 < Z xk™? 4+ xk(z) 2
k(B <h<h(z)-1 k(y/E) Shk(z)-1

<z Z k2.

k(va)<k<k(z)
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Hence, we get that

> I(n)g(n) —aM(g)vg(A)| < Va I k24 Y kT

n<w 1<k k(V/E) <h<h(z)
= O(vx) + zo(1), x — 400,

and so, we obtain

> I(n)g(n) — xM(g)vg(A)) = o(z), & — +oc.

nx

Substituting g(n) with 1 and then with f(n), we see that the set C with
characteristic function I(n) as defined above, fulfils the conditions of the Propo-
sition. [ |

2.3. Conclusion of the proof of the main result. By Lemma 9, the measure
vy is orthogonal to vq. So, there exists a Borel set A such that v;(A) =1 and
v1(A) = 0. Proposition10 gives the conclusion. [ |
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