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Abstract: We obtain the precise asymptotics of the series

∞∑
k=1

dk

k
P (|Sk|> εk)

as ε ↓ 0 where Sk are partial sums of independent identically distributed random variables
attracted to a stable law of index α > 1 .
Keywords: Multidimensional indices, complete convergence, asymptotics over a small parame-
ter.

1. Introduction

Let {Xn, n > 1} be independent identically distributed random variables and
{Sn, n > 1} be their partial sums. The backbone of the classical probability theory
is the limit theorems for sums for various types of convergence. We deal with the
so-called complete convergence in this paper. To be specific, the random variables
Sn/n are said to converge to 0 completely if

∞∑
n=1

P(|Sn/n| > ε) <∞ for all ε > 0. (1.1)

By the Borel–Cantelli lemma, (1.1) implies the strong law of large numbers, that
is the almost sure convergence of Sn/n to zero. The complete convergence is
introduced by Hsu and Robbins [12] who proved, in particular, that (1.1) holds if

EX1 = 0, EX2
1 <∞. (1.2)

Erdös [5] was able to prove the converse, so that (1.1) and (1.2) are equivalent.
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Many results on series related to (1.1) have been obtained since then. For
example, Spitzer [21] studied the series

∞∑
n=1

1
n

P(|Sn/n| > ε) (1.3)

and proved that it converges for all ε > 0 if and only if

EX1 = 0. (1.4)

This condition is known to be equivalent to the strong law of large numbers, so
that series (1.3) converges for all ε > 0 if and only if the strong law of large
numbers holds.

Both series (1.1) and (1.3) depend on a parameter ε > 0. If the distribution
of terms Xn is not degenerate, then the limit of both series as ε ↓ 0 is infinite and
the question arises on how to obtain their precise asymptotics.

Heyde [10] solved the problem for the Hsu–Robbins–Erdös series by proving
that

lim
ε↓0

ε2
∞∑
n=1

P(|Sn/n| > ε) = σ2

where σ2 = EX2
1 . Note that the condition for the asymptotics is the same as just

for the convergence, namely the finiteness of the second moment.
The same problem for the Spitzer series have been studied in many papers

(see, for example, [4], [20], [17], [2]). The problem is not yet solved in a final form,
since sufficient conditions used to obtain the asymptotics of the Spitzer series are
stronger than the assumption needed for just the convergence of it. One of the
sufficient conditions for the asymptotics of the Spitzer series is

F belongs to the domain of attraction of an α -stable law with 1 < α 6 2 (1.5)

which together with (1.4) yields

lim
ε↓0

1
ln(1/ε)

∞∑
n=1

1
n

P(|Sn/n| > ε) =
α

α− 1
. (1.6)

In this paper, we investigate a similar problem but for double sums. Na-
mely let {X(m,n),m > 1, n > 1} be independent identically distributed random
variables and

S(m,n) =
m∑

i=1

n∑

j=1

X(i, j).

Consider the series ∞∑
m=1

∞∑
n=1

1
mn

P(|S(m,n)| > mnε). (1.7)

What is its asymptotics as ε ↓ 0?
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Double series (multiple series, in a more general setting) of probabilities
related to the complete convergence have been already studied in the literature
(see, for example [19], [9], [14]). The asymptotics of the series

R2(x) =
∞∑
m=1

∞∑
n=1

P(S(m,n) < x) (1.8)

is studied as x → ∞ in [7]. By analogy with the one-dimensional case the lat-
ter series is called the renewal function (constructed from a random walk with
two-dimensional time).

Series (1.7) can easily be transformed into an usual series involving Dirichlet
divisors function. Namely let dk be the number of solutions (m,n) of the equation
mn = k (solutions (m,n) and (n,m) are considered to be different for m 6= n).
Then series (1.7) is nothing else but

∞∑

k=1

dk
k

P(|Sk| > kε).

At the first glance, this series can be studied in a way similar to the one-dimensional
case. This is not true, however, since the weights wk = dk/k vary irregularly (the
regular variation is one of the assumptions in the classical theory). Nevertheless
we are able to obtain the result by using the fact that the partial sums of dk vary
regularly.

The paper is organized as follows. For the reader convenience, we collect in
Section 2 the main notation used throughout the paper. Section 3 contains the
main result and its proof. The idea of the proof is to show first that the behavior
of the series in the general case is the same as in the case of stable terms and then
to determine it for the stable case. We collect all auxiliary results needed for the
proof in Section 4. We briefly discuss an unsolved problem in Section 5.

2. Main notation

Let dk be the number of divisors of an integer number k > 1 and Dk =
∑k
i=1 di ,

k > 1. Note that dk can equivalently be defined as the number of solutions (i, j)
of the equation ij = k (if solutions (i, j) and (j, i) are considered to be different
for i 6= j ).

Put wk = dk/k , k > 1; W0 = 0 and Wk =
∑k
i=1 wi for k > 1. It is clear

that
wn = o(Wn), n→∞. (2.1)

We extend the definition of W for real positive arguments:

W (x) = Wk + (x− k)(Wk+1 −Wk), x ∈ [k, k + 1), k > 0. (2.2)
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We denote by {bn, n > 1} the normalizing sequence in the attraction of di-
stributions of partial sums of independent identically distributed random variables
to the limit stable law. These normalizations necessarily are of the form (4.9). Put

ψ(x) =
x

b(x)
. (2.3)

If ψ is continuous and increasing, then its inverse ψ−1 exists. Let

U(t) = W
(
ψ−1(x)

)
(2.4)

in such a case.

3. Main result

Theorem 3.1. Let X , {Xn, n > 1} be independent identically distributed ran-
dom variables with distribution function F . Let F be not concentrated at a single
point. Assume that conditions (1.4) and (1.5) hold. Then

lim
ε↓0

1

(ln(1/ε))2

∞∑

k=1

dk
k

P(|Sk| > εk) =
(

α

α− 1

)2

. (3.1)

Proof. Let sequences {bn, n > 1} and {an, n > 1} be such that the distributions
of Sn/bn − an weakly converge to an α -stable limit law (such sequences exist in
view of condition (1.5)). Then there is a stable law Gα such that the distributions
of Sn/bn weakly converge to Gα . Moreover if Zα is a random variable with the
distribution function Gα , then EZα = 0. This result can be found in several
books (see translator’s note on p. 175 in [8] or Theorem 3, §5, Chapter XVII in
[6]). In any case, bn = n1/αh(n) and h is a slowly varying function (see (4.9)).
Without loss of generality one can assume that h is continuous, since any slowly
varying function has a continuous equivalent version (see Proposition at the end of
Section 1.4 in [18]). The attraction to the limit laws holds for this version, too, in
view of the Slutsky theorem (see, e.g., Theorem 1 in Chow and Teicher [3], p. 249).

Further, one can also assume that the normalizing sequence {bn, n > 1} is
such that the function x/b(x) is increasing. This follows from 4◦ of Section 1.4 in
[18] where it is proved that any regularly varying function of a positive order has
an increasing equivalent version.

Summarizing all we discussed above concerning the sequences {an, n > 1}
and {bn, n > 1} , we assume without loss of generality that bn = n1/αh(n), h
is a continuous slowly varying function, x/b(x) is increasing, and Sn/bn weakly
converge to an α -stable random variable Zα such that EZα = 0.

We split the further proof into five steps. Recall the definitions (2.2), (2.3),
and (2.4) of the functions W , ψ , and U , respectively.
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Step 1. Put

∆n = sup
x
|P(|Sn| > bnx)− P(|Zα| > x)|.

Then
lim
ε↓0

1
U (1/ε)

∑

k6ψ−1(1/ε)

wk∆k = 0. (3.2)

Indeed, Gα is continuous (see [8], p. 183), and thus ∆n → 0 as n→∞ . Therefore

lim
m→∞

1
Wm

m∑

k=1

wk∆k = 0,

whence relation (3.2) follows, since both W and U are slowly varying functions
(see Lemma 4.1).

Step 2. It holds

lim
ε↓0

1
U (1/ε)

∑

k>ψ−1(1/ε)

wkP (|Zα| > εψk) = 0. (3.3)

Putting t = ψ−1(1/ε) we rewrite (3.3) in an equivalent form

lim
t→∞

1
W (t)

∑

k>t

wkP

(
|Zα| > ψk

ψ(t)

)
= 0.

Using (4.6) we conclude that the latter relation follows from

lim
t→∞

ψα(t)
W (t)

∑

k>t

wk
ψαk

= 0.

Now we apply (4.3) and get

∑

k>t

wk
ψαk

6 const
ln(t)
tα−1 h

α(t),

whence the preceding relation follows (see Lemma (4.1)), thus relation (3.3), too.
Step 3. We show that

lim
ε↓0

1
U (1/ε)

∑

k>ψ−1(1/ε)

kwkP (|X| > kε) = 0. (3.4)

We put again t = ψ−1(1/ε) and rewrite (3.4) in an equivalent form

lim
t→∞

1
W (t)

∑

k>t

kwkP (|X| > k/ψ(t)) = 0.
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According to (4.10) this is equivalent to

lim
t→∞

ψα(t)
W (t)

∑

k>t

wk
kα−1 q(k/ψ(t)) = 0.

With θ = 1/ψ(t) we use (4.3) and get

∑

k>t

wk
kα−1 q(θk) 6 const

ln(t)
tα−1 q(θt),

whence
ψα(t)
W (t)

∑

k>t

wk
kα−1 q(k/ψ(t)) 6 const

ln(t)
W (t)

· tq(b(t))
bα(t)

.

The first factor is o(1) as t→∞ (see Lemma 4.1), while the second one is bounded
by (4.11). This proves (3.4).

Step 4. We will show that

lim
ε↓0

1
U (1/ε)

∑

k>ψ−1(1/ε)

wkP (|Sk| > εk) = 0. (3.5)

First we treat the case of α < 2. It follows from (4.13) that P (|Sk| > εk) 6
constkP(|X| > εk) for all ε > 0 and k > 1. Thus (3.5) follows from (3.4).

Now let α = 2. Fix 1 < η < 2. Relation (3.5) is equivalent to

lim
t→∞

1
W (t)

∑

k>t

wkP (|Sk| > k/ψ(t)) = 0.

We use the Markov inequality and (4.12):

P (|Sk| > k/ψ(t)) 6 ψη(t)
bηk
kη

sup
i>1

[
E|Si|η
bηi

]
6 constψη(t)

bηk
kη
.

Now ∑

k>t

wk
bηk
kη

6 const
ln(t)hη(t)
tη(α−1)/α

by (4.3), whence

1
W (t)

∑

k>t

wkP (|Sk| > k/ψ(t)) 6 const
ln(t)
W (t)

· ψ
η(t)hη(t)
tη(α−1)/α

→ 0 as t→∞ .

By Lemma 4.1 this proves (3.5) for α = 2.
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Step 5. Using (3.2), (3.3), and (3.5) we prove that

lim
ε↓0

1
U (1/ε)

∣∣∣∣∣
∞∑

k=1

wkP (|Sk| > εk)−
∞∑

k=1

wkP (|Zα| > εψk)

∣∣∣∣∣ = 0.

Lemma 3.1 completes the proof of the theorem by Lemma 4.1.

Lemma 3.1. The series

Q(ε) =
∞∑

k=1

wkP(|Zα| > εψk) (3.6)

converges for all ε > 0 . Moreover

lim
ε↓0

Q(ε)
U (1/ε)

= 1. (3.7)

Proof. To prove the convergence of series (3.6) let 1 < η < α . Then

Q(ε) 6 E|Zα|η
εη

∞∑

k=1

wk
ψηk

by (4.7) and the Chebyshev inequality, and thus Q(ε) <∞ in view of (4.1).
Now we pass to the proof of (3.7):

∞∑

k=1

wkP(|Zα| > εψk) =
∞∑

k=1

wk

∞∑

j=k

∫

Ij(ε)
f(t) dt,

where f is the density of |Zα| and Ij(ε) = [εψj , εψj+1). Changing the order of
summation we get

∞∑

k=1

wkP(|Zα| > εψk) =
∞∑

j=1

W (j)
∫

Ij(ε)
f(t) dt

=
∞∑

j=1

∫

Ij(ε)
W
(
ψ−1 (t/ε)

)
f(t) dt

+
∞∑

j=1

∫

Ij(ε)

[
W (j)−W (

ψ−1 (t/ε)
)]
f(t) dt

≡ Q1(ε) + Q2(ε).

We will prove that

Q1(ε) ∼ U (1/ε) as ε ↓ 0, (3.8)

Q2(ε) = o (U (1/ε)) as ε ↓ 0. (3.9)
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First we prove (3.8). Without loss of generality let h1 = 1. Then

Q1(ε) =
∫ ∞
ε

U (t/ε) f(t) dt.

Fix A > 0. For 0 < ε < A , we have
∫ ∞
A

U (t/ε) f(t) dt 6
∫ ∞
ε

U (t/ε) f(t) dt

and thus

lim inf
ε↓0

1
U (1/ε)

∫ ∞
ε

U (t/ε) f(t) dt > lim
ε↓0

1
U (1/ε)

∫ ∞
A

U (t/ε) f(t) dt =
∫ ∞
A

f(t) dt

in view of Theorem 4.1 (i) (with x = 1/ε) and condition 4.7. Since A > 0 is
arbitrary,

lim inf
ε↓0

1
U (1/ε)

∫ ∞
ε

U (t/ε) f(t) dt >
∫ ∞

0
f(t) dt = 1. (3.10)

Next, fix B > 0 and write

∫ ∞
ε

U (t/ε) f(t) dt 6
∫ B

0
U (t/ε) f(t) dt+

∫ ∞
B

U (t/ε) f(t) dt,

whence

lim sup
ε↓0

1
U (1/ε)

∫ ∞
ε

U (t/ε) f(t) dt

6 lim
ε↓0

1
U (1/ε)

∫ B

0
U (t/ε) f(t) dt+ lim

ε↓0
1

U (1/ε)

∫ ∞
B

U (t/ε) f(t) dt (3.11)

=
∫ B

0
f(t) dt+

∫ ∞
B

f(t) dt = 1,

according to Theorem 4.2 (i) together with condition 4.7 and Theorem 4.1 (i)
together with condition (4.8). Therefore, (3.10) and (3.11) imply (3.8).

To prove (3.9), we estimate

|Q2(ε)| 6
∞∑

j=1

(W (j + 1)−W (j))
∫

Ij(ε)
f(t) dt =

∞∑

j=1

w(j + 1)
∫

Ij(ε)
f(t) dt,

since the function W ◦ ψ−1 is nondecreasing. Fix δ > 0 and choose j0 such that
wj+1 6 δWj for all j > j0 (see (2.1)). Then

|Q2(ε)| 6
∑

j<j0

w(j + 1)
∫

Ij(ε)
f(t) dt+ δ

∑

j>j0
Wj

∫

Ij(ε)
f(t) dt. (3.12)
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For a fixed j < j0 and 0 < η < 1

lim sup
ε↓0

1
U (1/ε)

∫

Ij(ε)
f(t) dt 6 lim sup

ε↓0

εηψηj+1

U (1/ε)

∫

Ij(ε)
t−ηf(t) dt = 0 (3.13)

in view of (4.8), Lemma 4.1, and
∫

Ij(ε)
t−ηf(t) dt 6 E|Zα|−η.

Further ∑

j>j0
Wj

∫

Ij(ε)
f(t) dt 6

∑

j>1

∫

Ij(ε)
U(t/ε)f(t) dt = Q1(ε).

Now we use (3.12), (3.13), and (3.8) and complete the proof of (3.9), since δ is
arbitrary.

4. Auxiliary results

Dirichlet divisors function. Below are two properties of the Dirichlet divisors
functions d and D :

dk = o (kν) for any ν > 0, k →∞, (4.1)

Dk = k ln(k) + (2γ − 1)k +O(k), k →∞, (4.2)

where γ = 0.577 . . . is an Euler constant. Properties (4.1) and (4.2) can be found
in any textbook on number theory (see, for example, Theorem 7.3 in [16]).

Related to the Dirichlet divisors function D are the functions W and U
defined by (2.2) and (2.4), respectively. The function U depends on the normalizing
function b involved in the attraction to the stable law via ψ defined by (2.3). The
function b necessarily is such that (4.9) holds.

Lemma 4.1. If ψ is continuous and increasing, then both W and U are slowly
varying functions. Moreover

lim
x→∞

W (x)

ln2(x)
= 1,

lim
x→∞

U(x)

ln2(x)
=
(

α

α− 1

)2

.

Proof. The assumption that ψ is continuous and increasing guarantees that ψ−1

exists and thus U is well defined. The first relation follows from (4.2) and Abel’s
partial summation formula:

n∑

k=m

∆[Ak]Bk = AnBn −Am−1Bm−1 +
n−1∑

k=m

Ak∇[Bk]
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where {An, n > 1} and {Bn, n > 1} are arbitrary sequences and ∆[Ak] = Ak −
Ak−1 and ∇[Bk] = Bk−Bk+1 . The second relation follows from the first one and
(2.4), since ψ−1 is regularly varying of index α/(α− 1).

In the proof of the main result we need upper bounds for the series

∑

k>t

dk
kαL(k)

for α > 1 and slowly varying functions L . The estimates are easily obtained
via Abel’s partial summation formula for Ak = Dk and Bk = 1/kαL(k). Since
Ak∇[Bk] 6 constk ln(k)∇[Bk] by (4.2),

n−1∑

k=m

Ak∇[Bk] 6 const
n−1∑

k=m

k ln(k)∇[Bk].

Applying the Abel partial summation formula once more, now with Ak = k ln(k)
and the same Bk , we get

n∑

k=m

∆[Ak]Bk 6 AnBn + const

[
n∑

k=m

∆[k ln(k)]Bk + (m− 1) ln(m− 1)Bm−1

]
.

Passing to the limit as n→∞ we obtain

∞∑

k=m

dk
kαL(k)

6 const
ln(m)

mα−1L(m)
, (4.3)

since ∆[k ln(k)] = O(ln(k)) and ln(x)/L(x) is a slowly varying function. Note
that we used property (4.14) for α > 1 and the slowly varying function M(x) =
ln(x)/L(x) at the very last stage of the proof of (4.3).

Stable random variables and their distribution functions. A random va-
riable Zα is called stable of index α , 0 < α 6 2 if its characteristic function hα
is such that

hα(t) = exp {iat− c|t|α (1− iβsign(t)ωα(t))} , (4.4)

where a is a real number, c and β are real numbers such that c > 0, |β| 6 1, and

sign(t) =

{−1, t < 0,
0, t = 0,
1, t > 0,

ωα(t) =
{

tgπα2 , α 6= 1,
− 2
π log |t|, α = 1.

By Gα and hα we denote the distribution function and characteristic function of
Zα , respectively.

It is well known that

Gα possesses the continuous density gα (4.5)
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(see [8], p. 183) and there is a finite constant Cα > 0 (Cα > 0 if α 6= 2) such that

lim
x→∞

xαP(|Zα| > x) = Cα (4.6)

(see [8], p. 182). This implies, in particular, that

E|Zα|η <∞ (4.7)

for any 0 < η < α . In addition,

E|Zα|−η <∞ for all 0 6 η < 1 , (4.8)

so that (4.7) holds for −1 < η < α . We prove (4.8) below.

Proof of (4.8). Note that (4.8) is obvious for c = 0 in (4.4), so that we treat the
case of c > 0. It follows from (4.4) that |hα(t)| = exp {−c|t|α} and hα is absolute
integrable on R . Now, the function

hα(t)
∫ 1

−1
|x|−ηe−itx dx

is absolute integrable on R , since 0 6 η < 1. According to (4.5) Zα possesses the
density and moreover

gα(x) =
1

2π

∫ ∞
−∞

e−itxhα(t) dt.

Thus

2π
∫ 1

−1
|x|−ηgα(x) dx =

∫ 1

−1
|x|−η

∫ ∞
−∞

e−itxhα(t) dt dx

=
∫ ∞
−∞

[
hα(t)

∫ 1

−1
|x|−ηe−itx dx

]
dt <∞.

This completes the proof of (4.8), since E|Zα|−η =
∫∞
−∞ |x|−ηgα(x) dx and

∫

|x|>1
|x|−ηgα(x) dx 6

∫

|x|>1
gα(x) dx 6 1.

Domains of attraction. A distribution function F is said to belong to the
domain of attraction of a distribution function G if there are sequences {bn, n > 1}
and {an, n > 1} of real numbers such that bn > 0 and the distributions of
Sn/bn − an weakly converge to G where {Sn, n > 1} is the sequence of partial
sums constructed from a sequence of independent identically distributed random
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variables with the distribution function F . It is well known that G necessarily is
stable and there exists 0 < α 6 2 such that

bn = n1/αh(n) where h is a slowly varying function. (4.9)

The function G corresponds to the characteristic function given by (4.4) and the
number α there is the same as α in (4.9). If a distribution function F is attracted
to a stable law, then

P(|X| > x) =
q(x)
xα

with a slowly varying function q (4.10)

where X is a random variable distributed by the law F (Theorem 2.6.1 in [13]).
The normalizing sequence {bn, n > 1} and the function q(x) in (4.10) are related
each to other as follows

lim
n→∞

nP(|X| > bn) = lim
n→∞

nq (bn)
bαn

= Pα (4.11)

where 0 6 Pα <∞ .
One of the useful facts about Sk follows from Lemma 5.2.2 in [13], namely

sup
n>1

E

[ |Sn|
bn

]η
<∞ (4.12)

if 0 < η < α .
Finally, we mention another bound for large deviation probabilities:

sup
x>0

sup
n>1

P(|Sn| > xbn)
nP(|X| > xbn)

<∞. (4.13)

This bound is proved in [2] where a result of [11] is generalized.

Slowly varying functions. A positive function ` defined for x > 0 is called
slowly varying (at infinity) in the Karamata sense if

lim
t→∞

`(ct)
`(t)

= 1 for all c > 0 .

Any function f(t) = xν`(t) is called regularly varying of order ν . If ` is a slowly
varying function and α > 1, then

∞∑

k=m

`(k)
kα

6 const
`(m)
mα−1 . (4.14)

For the sake of completeness we prove this result, despite it is well known in the
theory of regular variation. Fix ν > 0 such that α− ν > 1. Then according to 4◦

of Section 1.4 in [18] introduce an increasing equivalent version of xν/`(x) (let it
be xν/`1(x)). Thus

∞∑

k=m

`(k)
kα

6 `1(m)
mν

∞∑

k=m

1
kα−ν

and result follows, since `1 ∼ ` .
Our proof of Theorem 3.1 makes use of the following two results due to

Aljanĉić, Bojanić and Tomić [1] (also see [18]).
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Theorem 4.1. Assume that f is a real function and U is a slowly varying func-
tion. Let the Lebesgue integral

∫ ∞
A

tηf(t) dt (4.15)

be well-defined for some η > 0 and A > 0 . Then,
∫ ∞
A

U(xt)f(t) dt

is well-defined if either
(i) η > 0 , or
(ii) η = 0 and U(t) is eventually non-increasing on (0,∞). In either case,

∫ ∞
A

U(xt)f(t) dt ∼ U(x)
∫ ∞
A

f(t) dt as x→∞ .

Theorem 4.2. Assume that f is a real function and U is a slowly varying func-
tion. Let the Lebesgue integral

∫ B

0
tηf(t) dt (4.16)

be well-defined for some η 6 0 and B > 0 . Then,

∫ B

0
U(xt)f(t) dt ∼ U(x)

∫ B

0
f(t) dt as x→∞

if either
(i) η < 0 , or
(ii) η = 0 and U(t) is eventually non-decreasing on (0,∞).

5. Concluding remark

Let R(x) = R1(x) be the renewal function defined by

R1(x) =
∞∑
n=1

P(Sn < x)

constructed from a random walk {Sn} and R(x) = R2(x) be defined by (1.8) in the
two-dimansional case. Let V1(x) be the precise asymptotics of R1(x) and let V2(x)
be the precise asymptotics of R2(x) (that is, R1(x) ∼ V1(x) and R2(x) ∼ V2(x) as
x→∞). The exact form of functions V1 and V2 is known but it does not matter
for the below discussion. What is important is that V2(x) = V1(x) ln(x) (see [15]).
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This result requires only the “rought” asymptotics of D like D(x) ∼ x ln(x).
However one can also prove that

R2(x)− V1(x)P(ln(x)) = o(xr) (5.1)

where P(x) = x + (2γ − 1) and 0 < r < 1 is a number such that D(x) =
xP(ln(x)) + o(xr) (see [15]). Since V1(x) = cx for some c > 0, relation (5.1) tells
us somewhat more than just the asymptotics R2(x) ∼ V2(x). Of course, there is
a price we pay for relation (5.1) (the price can be stated in terms of the existence
of moments of random variables; again the form of the assumptions do not matter
for this discussion). Relation (5.1) implies that the exact approximation in the
renewal theorem for random walks with multidimensional time depends on the
solution of the Dirichlet divisors problem which, in turn, depends on the solution
of the Riemann conjecture on zeros of the ζ function.

Now we come back to the function studied in this paper. The proof of The-
orem 3.1 also uses the fact that the Dirichlet divisors function D(x) is equivalent
to x ln(x) as x→∞ and does not use any further information on the remainder
term in this approximation. Denoting by U1(ε) the normalizing function for the
one-dimensional case, we see from (1.6) that U1(ε) = ln(1/ε), while U2(ε) deno-
ting the normlizing function for series (1.7) is ln2(1/ε) (see Theorem 3.1), that is
U2(ε) = U1(ε) ln(1/ε). Having in mind an analogy between the series

∞∑
n=1

P(|Sn| > nε)

and the renewal function (1.8) and the above discussion of relation (5.1), a natural
question arises on whether or not an additional information (like expansion (4.2))
may help to sharpen the result of Theorem 3.1 in a direction like (5.1)?
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