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1. Introduction

1.1. Setting the problem. Nonsmooth vector fields (NSVFs, for short)
have become certainly one of the common frontiers between Mathematics
and Physics or Engineering. Many authors have contributed to the
study of NSVFs (see for instance the pioneering work [7] or the didactic
works [1, 15], and references therein about details of these multi-valued
vector fields). In our approach Filippov’s convention is considered. So,
the vector field of the model is discontinuous across a switching manifold
and it is possible for its trajectories to be confined onto the switching
manifold itself. The occurrence of such behavior, known as sliding mo-
tion, has been reported in a wide range of applications. We can find
important examples in electrical circuits having switches, in mechanical
devices in which components collide into each other, in problems with
friction, sliding, or squealing, among others.

For planar smooth vector fields there is a very developed theory nowa-
days. This theory is based on some important results. A now exhaustive
list of such results include: the Existence and Uniqueness Theorem, the
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Hartman–Grobman Theorem, the Poincaré–Bendixson Theorem, and the
Peixoto Theorem among others (see the book [12]). A very interesting
and useful subject is to answer if these results are true or not at the
NSVFs scenario. It is already known that the statement of the first the-
orem is not true (see Example 1 and Figure 4 below) and the statement
of the last theorem is true (under suitable conditions, see [14]). Another
extension to NSVFs of classical results on planar smooth vector fields
include the concept of Poincaré Index of a vector field in relation to a
curve, as stated in [3].

The specific topic addressed in this paper deals with a Poincaré–Ben-
dixson Theorem for NSVFs and non-trivial minimal sets which arise
when the hypotheses of that theorem are not fulfilled. In smooth vector
fields, under relatively weak hypothesis, Poincaré–Bendixson Theorem
tells us which kind of limit set can arise on an open region of the Eu-
clidean space R2. In particular, minimal sets in smooth vector fields are
contained in the limit sets (as we show in this paper, it does not holds
for NSVFs). In summary, by requiring some hypothesis concerning the
switching manifold and avoiding sliding motion in some sense, we extend
the classical Poincaré–Bendixson Theorem for a infinitely greater class
of systems. In addition we show that, by allowing sliding motion, one
must add up extra hypothesis in order to obtain a version of such the-
orem. Indeed, in the presence of sliding motion, we can exhibit NSVFs
possessing positive Lebesgue measure minimal sets (which we call here
non-trivial) whose trajectories confined on it present strange behavior,
in the sense that it is not predicted in the classical theory of planar dif-
ferential systems. Indeed, some of them are pointed out and compared
with the classical theory of smooth vector fields. Lastly, we should men-
tion that, up to the best of our knowledge, such special sets have not
been considered in the literature until now.

The paper is organized as follows: In Subsection 1.2 the main results
are stated. In Section 2 some of the standard theory on NSVFs, a
brief introduction about Filippov systems, and new definitions on this
scenario are presented. Section 3 is devoted to prove Poincaré–Bendixson
Theorem for NSVFs and discuss some aspects on it. In Section 4 an
example of a NSVF presenting a non-trivial minimal set is exhibited
and discussed.

1.2. Statement of the main results. In this paper we are concerned
with limit sets and minimal sets of NSVFs on the plane. For the classical
theory, the well known Poincaré–Bendixson Theorem establishes that
the limit sets of a smooth vector field is either an equilibrium point or



Minimal Sets & Poincaré–Bendixson Theorem in NSVFs 115

a periodic orbit or a graph. In the main result of our paper we have an
analogous result for NSVFs allowing sliding motion only in a particular
way. In fact, in this case we add to the classical limit sets a pseudo-graph,
a pseudo-cycle, and an equilibrium point under the switching manifold
(for details see Section 2).

Let V ⊂ R2 an open set containing the origin. We consider a codi-
mension one manifold Σ of R2 given by Σ = f−1(0), where f : V → R
is a smooth function having 0 ∈ R as a regular value (i.e. ∇f(p) 6= 0,
for any p ∈ f−1(0)). We call Σ the switching manifold that is the
separating boundary of the regions Σ+ = {q ∈ V | f(q) ≥ 0} and
Σ− = {q ∈ V | f(q) ≤ 0}. In this paper we assume that f(x, y) = y.

Designate by χ the space of Cr-vector fields on V ⊂ R2, with r ≥ 1
large enough for our purposes. Call Ω the space of vector fields Z : V →
R2 such that

(1) Z(x, y) =

{
X(x, y), for (x, y) ∈ Σ+,

Y (x, y), for (x, y) ∈ Σ−,

where X=(X1, X2), Y =(Y1, Y2) ∈ χ. The trajectories of Z are solutions
of q̇ = Z(q) and we accept that Z is multi-valued at points of Σ. The
basic results of NSVFs were stated by Filippov in [7].

In the sequel we state the main results of the paper. They deal with
limit sets of trajectories and limit sets of points.

Theorem 1. Let Z = (X,Y ) ∈ Ω. Assume that Z has a maximal trajec-
tory ΓZ(t, p) whose positive trajectory Γ+

Z (t, p) is contained in a compact
subset K ⊂ V and Z does not have sliding motion in a Z-invariant
neighborhood of K. Suppose also that X and Y have a finite number of
critical points in K and a finite number of tangency points with Σ. Then,
the ω-limit set ω(ΓZ(t, p)) of ΓZ(t, p) is one of the following objects:

(i) an equilibrium of X or Y ;

(ii) a periodic orbit of X or Y ;

(iii) a graph of X or Y ;

(iv) a pseudo-cycle;

(v) a pseudo-graph;

(vi) a singular tangency.

For a precise definition of pseudo-cycle, pseudo-graph, and singular
tangency, see Section 2.
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As a consequence of Theorem 1, since the uniqueness of orbits and
trajectories passing through a point is not achieved, we have the following
corollary (see definitions of orbits and trajectories in Section 2):

Corollary 1. Under the same hypothesis of Theorem 1 the ω-limit
set ω(p) of a point p ∈ V is one of the objects described in items (i),
(ii), (iii), (iv), (v), and (vi) or a finite union of them.

The same holds for the α-limit set, reversing time.

For the general case where sliding motion is allowed in the compact
set K, we can not exhibit an analogous result. In fact, as shown in
Example 3 and in Propositions 1 and 2, there exist non-trivial minimal
sets (i.e., minimal sets distinct from an equilibrium point or of a closed
trajectory) in this scenario.

Remark 1. Besides the classical version of the Poincaré–Bendixson The-
orem conceived for vector fields defined in two dimensional manifolds
(see [12]), there are also a version of such theorem for hybrid sys-
tems (see [11] and [13]). In fact, a hybrid system is a kind of piece-
wise smooth system but we stress that in both references the authors
assume the existence of resets which switch the flows into different do-
mains, which does not happen in our version of the Poincaré–Bendixson
Theorem for PSVFs (piecewise smooth vector fields). Also, the possibil-
ities we can obtain as limit sets include a union of distinct objects (see
Corollary 1), which does not happen in the theorem of [13]. Another
issue we can point out which distinguishes our work in comparison to
these ones done for hybrid systems is that while our Theorem 1 ask for
only some few hypotheses, the version presented in [11] assume several
of them. Still, the hypotheses assumed in [11] are stronger than the
ones presented in [13], since in the last reference they do not allow Zeno
states, where a sewed focus is reached for a finite time.

2. Preliminaries

Consider Lie derivatives

X.f(p) = 〈∇f(p), X(p)〉 and Xi.f(p) = 〈∇Xi−1.f(p), X(p)〉, i ≥ 2,

where 〈 , 〉 is the usual inner product in R2.

We distinguish the following regions on the discontinuity set Σ:

(i) Σc ⊆ Σ is the sewing region if (X.f)(Y.f) > 0 on Σc.

(ii) Σe ⊆ Σ is the escaping region if (X.f) > 0 and (Y.f) < 0 on Σe.

(iii) Σs ⊆ Σ is the sliding region if (X.f) < 0 and (Y.f) > 0 on Σs.
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The sliding vector field associated to Z ∈ Ω is the vector field Zs

tangent to Σs and defined at q ∈ Σs by Zs(q) = m − q, with m being
the point of the segment joining q+X(q) and q+ Y (q) such that m− q
is tangent to Σs (see Figure 1). It is clear that if q ∈ Σs then q ∈ Σe

for −Z and then we can define the escaping vector field on Σe associated
to Z by Ze = −(−Z)s. In what follows we use the notation ZΣ for
both cases. In our pictures we represent the dynamics of ZΣ by double
arrows.

q + Y (q)

ZΣ(q)

Σs

q +X(q)

Figure 1. Filippov’s convention.

A point q ∈ Σ is called a tangential singularity (or also tangency
point) and it is characterized by (X.f(q))(Y.f(q)) = 0 (q is a tangent
contact point between the trajectories of X and/or Y with Σ).

For a given W ∈ χ, we say that a positive integer r is the contact order
of the trajectory ΓW of W with Σ at p if W k.f(p) = 0, ∀ k = 0, . . . , r−1
and W r.f(p) 6= 0. For W = X (resp. Y ) we say that p ∈ Σ is an
invisible tangency if the contact order r of ΓX (resp. ΓY ) passing through
p is even and Xr.f(p) < 0 (resp. Y r.f(p) > 0). On the other hand,
for W = X (resp. Y ) we say that p ∈ Σ is a visible tangency if the contact
order r of ΓX (resp. ΓY ) passing through p is even and Xr.f(p) > 0
(resp. Y r.f(p) < 0).

A tangential singularity p ∈ Σt is singular if p is a invisible tangency
for both X and Y . On the other hand, a tangential singularity p ∈ Σt

is regular if it is not singular. Except for the orientation, Figures 2
and 3 illustrate all possible cases for regular and singular tangencies,
respectively.
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

p p p

p p p

p p p

Figure 2. Cases where occur regular tangential singu-
larities. The dashed lines represent the curves where
X.f(p) = 0 or Y.f(p) = 0.

p pp

Figure 3. The particular cases where occur singular
tangential singularities.

Remark 2. Let p be in Σ and ΓX (resp. ΓY ) be the trajectory of X
(resp. Y ) passing through p. Consider Vp = V −p ∪ {p} ∪ V +

p , where

V −p = {x ∈ Σ; x < p} and V +
p = {x ∈ Σ; x > p}. Let m be the sum of

the contact order of the trajectories ΓX of X and ΓY of Y with Σ at p.
It is possible to give a characterization of the behavior of Z ∈ Ω in the
neighborhood Vp of p in terms of m. In fact, if m is odd, then V −p ⊂ Σc

and V +
p ⊂ Σs ∪ Σe (or vice versa, depending on the orientation). See

Figure 2, items (a), (b), (f), and (g). On the other hand, if m is even, we
have three cases: (i) Vp \{p} is contained in Σc; (ii) Vp \{p} is contained
either in Σs or Σe; (iii) V −p ⊂ Σs and V +

p ⊂ Σe or vice versa. This cases
are represented in Figures 2 (items (c), (d), (e), (h), and (i)) and 3.
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If W is a vector field, then we denote its flow by φW (t, p). Thus,
d

dt
φW (t, p) = W (φW (t, p)),

φW (t0, p) = p,

where t ∈ I = I(p,W ) ⊂ R, the interval where the W -trajectory passing
through p ∈ V is defined.

Definition 2. The local trajectory (orbit) φZ(t, p) of a NSVF given
by (1) is defined as follows:

• For p ∈ Σ+\Σ or p ∈ Σ−\Σ the trajectory is given by φZ(t, p) =
φX(t, p) or φZ(t, p) = φY (t, p) respectively, where t ∈ I.

• For p ∈ Σc such that X.f(p) > 0, Y.f(p) > 0 and taking time
t = t0 at p, the trajectory is defined as φZ(t, p) = φY (t, p) for
t ∈ I ∩ {t ≤ t0} and φZ(t, p) = φX(t, p) for t ∈ I ∩ {t ≥ t0}. For
the case X.f(p) < 0 and Y.f(p) < 0 the definition is the same
reversing time.

• For p ∈ Σe and taking time t = t0 at p, the trajectory is defined
as φZ(t, p) = φZΣ(t, p) for t ∈ I ∩ {t ≤ t0} and φZ(t, p) is either
φX(t, p) or φY (t, p) or φZΣ(t, p) for t ∈ I ∩ {t ≥ t0}. For the
case p ∈ Σs the definition is the same reversing time.

• For p a regular tangency point and taking time t = t0 at p, the
trajectory is defined as φZ(t, p) = φ1(t, p) for t ∈ I ∩ {t ≤ t0}
and φZ(t, p) = φ2(t, p) for t ∈ I ∩ {t ≥ t0}, where each φ1, φ2 is
either φX or φY or φZΣ .

• For p a singular tangency point φZ(t, p) = p for all t ∈ R.

Remark 3. Note that for p ∈ Σe ∪ Σs and p a regular tangency, the
trajectory ΓZ passing through p can be chosen of many distinct ways.

Definition 3. A global trajectory (orbit) ΓZ(t, p0) of Z ∈ Ω passing
through p0 is a union

ΓZ(t, p0) =
⋃
i∈Z
{σi(t, pi); ti ≤ t ≤ ti+1}

of preserving-orientation local trajectories σi(t, pi) satisfying σi(ti, pi) =
pi and σi(ti+1, pi) = pi+1.

Definition 4. A maximal trajectory ΓZ(t, p0) is a global trajectory that
cannot be extended to any other global trajectories by joining local ones,

that is, if Γ̃Z is a global trajectory containing ΓZ then Γ̃Z = ΓZ . In this
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case, we call I = (τ−(p0), τ+(p0)) the maximal interval of the solu-
tion ΓZ , where

τ±(p0) = lim
i→±∞

ti.

A maximal trajectory is a positive (resp. negative) maximal trajectory if
i ∈ N (resp. −i ∈ N).

One should note that the maximal interval of solution may not cover
the interval (−∞,+∞), that is, τ±(p0) could be finite values.

Definition 5. Given ΓZ(t, p0) a maximal trajectory, the set ω(ΓZ(t, p0))=
{q ∈ V ; ∃ (tn) satisfying ΓZ(tn, p0)→ q with tn→ τ+(p0) when n→∞}
(resp. α(ΓZ(t, p0)) = {q ∈ V ; ∃ (tn) satisfying ΓZ(tn, p0)→ q with tn→
τ−(p0) when n→∞}) is called ω-limit (resp. α-limit) set of ΓZ(t, p0).
The ω-limit (resp. α-limit) set of a point p is the union of the ω-limit
(resp. α-limit) sets of all maximal trajectories passing through p.

Definition 6. Two PSVFs Z = (X,Y ), Z̃ = (X̃, Ỹ ) ∈ Ω defined in

open sets U , Ũ and with switching manifold Σ are Σ-equivalent if there

exists an orientation preserving homeomorphism h : U → Ũ that sends

U ∩Σ to Ũ ∩Σ, the orbits of X restricted to U ∩Σ+ to the orbits of X̃

restricted to Ũ ∩ Σ+, and the orbits of Y restricted to U ∩ Σ− to the

orbits of Ỹ restricted to Ũ ∩ Σ−.

Remark 4. • An important notice is that the sewed focus given in
Figure 3 can be reached in a finite time, i.e., τ±(p0) is finite in
the previous definitions. However, also there exist sewed focus
that are reached for infinite time. Moreover, both these focus are
Σ-equivalent. So, the limit set of both coincides. These kind of
trajectories are called Zeno state in the literature.

• Also, neither a pseudo-graph nor a pseudo-cycle can be reached in
a finite time. In fact, let Γ = Γ(t, p) a pseudo-cycle (resp., pseudo-
graph) containing a regular point p, with t ∈ IΓ. Suppose that
p = Γ(0, p). So, there exists a time t > 0 such that the arc of
trajectory γ connecting p to p = Γ(t, p) belongs to Γ. Given a
neighborhood Vγ of γ, every trajectory converging to Γ spends a
time t̃ ∈ (t− ε, t+ ε) in Vγ , with ε a small positive number. Since
every trajectory converging to Γ must return to Vγ infinitely many
times, we get the result.

Example 1. Consider Figure 4. We observe that the maximal orbit
passing through q ∈ Σ is not necessarily unique. In fact, according
to the third bullet of Definition 2, the positive local trajectory by the
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point q ∈ Σ can provide three distinct paths, namely, Γ1, Γ2, and Γ3.
In particular, it is clear that the Existence and Uniqueness Theorem
is not true in the scenario of NSVFs. Moreover, the ω-limit set of Γi,
i = 1, 2, 3 is, respectively, a focus, a pseudo-equilibrium and a limit
cycle and, consequently, the ω-limit set of q being the union of these
objects is not a connected set. This fact is not predicted in the classical
theory. Note that the α-limit set of q is a connected set composed by
the pseudo-equilibrium p.

p q

Γ1

Γ2

Γ3

Γ

Figure 4. An orbit by a point is not necessarily unique.

Definition 7. Consider Z = (X,Y ) ∈ Ω. A closed maximal orbit ∆
of Z is a:

(i) pseudo-cycle if ∆ ∩ Σ 6= ∅ and it does not contain neither equilib-
rium nor pseudo-equilibrium (see Figure 5);

(ii) pseudo-graph if ∆ ∩ Σ 6= ∅ and it is a union of equilibria, pseudo
equilibria and orbit-arcs of Z joining these points (see Figure 6).

Γ Σ = Γ Γ

Figure 5. Possible kinds of pseudo-cycles.
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Figure 6. Examples of pseudo-graphs.

Definition 8. A set A ⊂ R2 is Z-invariant if for each p ∈ A and all
maximal trajectory ΓZ(t, p) passing through p it holds ΓZ(t, p) ⊂ A.

Definition 9. A set M ⊂ R2 is minimal for Z ∈ Ω if

(i) M 6= ∅;
(ii) M is compact;

(iii) M is Z-invariant;

(iv) M does not contain proper subset satisfying (i), (ii), and (iii).

Remark 5. Observe that the pseudo-cycle Γ on the center of Figure 5 is
the α-limit set of all maximal trajectories on a neighborhood of it, how-
ever Γ is not Z-invariant according to Definition 8. This phenomenon
point out a distinct and amazing aspect not predicted for the classi-
cal theory about smooth vector fields where the α and ω-limit sets are
invariant sets.

3. Considerations on the Poincaré–Bendixson Theorem
for NSVFs

This section is dedicated to the Poincaré–Bendixson Theorem and
presents some considerations concerning the version of this important
theorem in the NSVFs scenario, as well as its proof. In fact, we remark
that Theorem 1 takes into account that the NSVF has no sliding motion
on a neighborhood of the compact set K. Later on in this paper, we will
see that some new and unpredictable phenomena in the classical theory
of smooth vector fields could happen by considering sliding motion on
the compact set K. Nevertheless, it happens because it is not possible to
guarantee the uniqueness of trajectories in sliding points. That means
that we can not generalize the Poincaré–Bendixson Theorem presented
in Subsection 1.2 without assuming extra hypothesis.

As we have just commented, Theorem 1 holds if the compact set K
does not contain (or connect to) sliding points, since otherwise it should
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lead to the existence of nonstandard phenomena. However, in the set K
it is allowed to have trajectories which are tangent to the switching man-
ifold, which sometimes leads to non-uniqueness of trajectories in such
points; thus such theorem does not consider only trajectories crossing
transversally the switching manifold but also reaching it tangentially. In
fact, by considering only transversal arrivals, one can see that the trajec-
tories may not return to such manifold, which means that they are not
confined on a compact or accumulate in some object predicted by the
classical version of the referred theorem, which are situations of minor
interest in this paper.

The proof of Theorem 1 takes into account the classical Poincaré–
Bendixson Theorem and the concept of Poincaré return map for NSVFs.

Proof of Theorem 1: Consider p ∈ K ⊂ V and VK the Z-invariant
neighborhood of K stated in Theorem 1. If there exists a time t0 > 0
such that the maximal trajectory ΓZ(t, p) by p does not collide with Σ
for t > t0 then we can apply the classical Poincaré–Bendixson Theorem
in order to conclude that one of the three first cases (i), (ii), or (iii) hap-
pens. Otherwise, there exists a sequence (ti)i∈N ⊂ R of positive times,
ti → τ+(p0), such that pi = ΓZ(ti, p) ∈ Σ.

The hypothesis that Z does not have sliding motion on VK implies
X.f(pi) · Y.f(pi) ≥ 0, which separates the points pi = ΓZ(ti, p) in the
following sets:

Sp = {pi; pi is a singular tangency or an equilibrium of X or Y },

Tp = {pi; there is no ambiguity on the choice of the local trajectory

though pi and pi 6∈ Sp},

Np = {pi; pi 6∈ Sp ∪ Tp}.
Observe that, Sp has at most one element p1 and, by hypothesis, Np is

a finite set. If Sp 6= ∅, then p = ΓZ(t, p) = p1 = ω{p}. Otherwise, we
separate the proof in two cases: Tp is finite and Tp is not finite. Assume
that Tp is a finite set. We denote by np and tp the number of elements
of the sets Np and Tp respectively. According to Definition 2, a maximal
trajectory of Z by pl ∈ Np can follow at most two distinct paths. Let
us denote by Γm an arc of ΓZ(t, p) connecting two consecutive points pi
and pi+1, i ∈ N. In this case there exist at most 2np + tp arcs Γm
of ΓZ(t, p). So, there exists a (sub)set Υ ⊂ {1, 2, . . . , 2np + tp} such
that Γ = ∪j∈ΥΓj is a closed orbit intersecting Σ (i.e., a pseudo-cycle)
contained in ΓZ(t, p) and with the property that ΓZ(t, p) visits each
arc Γj of Γ an infinite number of times. In what follows we prove that
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ω(ΓZ(t, p)) = Γ. In fact, as ΓZ(t, p) must visit each arc Γj of Γ an
infinite number of times then Γ ⊂ ω(ΓZ(t, p)).

On the other hand, if x0 ∈ ω(ΓZ(t, p)) then there exists a sequence
(sk) ⊂ R, sk → τ+(p0), such that ΓZ(sk, p) = xk → x0. Moreover, since
ΓZ(t, p) also is composed by a finite number of arcs Γm, sk → τ+(p0)
and ΓZ(t, p) has no equilibria (otherwise it does not visit Σ infinitely
many times), there exists a subsequence (xkj ) of (xk) that visits some
arcs Γm infinitely many times. Since Γ is a compact set, we get x0 ∈ Γ.

Now assume that Tp is not a finite set. In this case, there exists a
point q ∈ Σ and a subsequence (tij ) = (sj) of (ti) such that

(2) lim
j→∞

ΓZ(sj , p) = q

since Γ+
Z (t, p) ⊂ K, a compact set. Observe that q ∈ ω(ΓZ(t, p))∩Σ 6= ∅.

As Z does not have sliding motion on VK , we get either {q} = Sq or
q ∈ Tq or q ∈ Nq.

If {q} = Sq is a singular tangency then both X and Y have an invisible
tangency point at q. As a consequence there exists a sequence (sk) ⊂ R,
sk → τ+(p0), such that ΓZ(sk, p) ∈ Σ and ΓZ(sk, p) = xk → q, and
then there is a small neighborhood Vq of q such that all trajectory of Z
that starts at a point of Vq converges to q. See Figure 7. Therefore,
ω(ΓZ(t, p)) = {q}.

x0x4x3x2x1

Figure 7. Case where there exists a singular tangency
in ω(ΓZ(t, p)) ∩ Σ.

In the sequel we separate the analysis in two cases: either ΓZ(t, q)
contains equilibria or contains no equilibria. Consider the case when
ΓZ(t, q) contains no equilibria.
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If q ∈ Nq then q is a visible tangency for both X and Y . So,
there are two possible choices for the positive local trajectory of Z
passing through q and at least one of them is such that it is con-
tained in ω(ΓZ(t, p)). By continuity, the maximal trajectory ΓZ(t, q)
that passes through q, contained in ω(ΓZ(t, p)), must come back to a
neighborhood Vq of q in Σ. Moreover, by the Jordan Curve Theorem,
ΓZ(t, q) ∩ Vq = {q}, otherwise there exists a flow box not containing q
for which ΓZ(t, q) and, consequently, ΓZ(t, p), do not depart it. This is a
contradiction with the fact that the orbit ΓZ(t, p) must visit any neigh-
borhood of q infinite many times. Therefore, ΓZ(t, q) is closed (i.e., is a
pseudo-cycle) and ω(ΓZ(t, p)) = ΓZ(t, q). If q ∈ Tq, then it is clear that
the local trajectory passing through q is unique and again, by a similar
argument, we can conclude that ω(ΓZ(t, p)) = ΓZ(t, q) is a pseudo-cycle.

The remaining case is when ΓZ(t, q) has equilibria either of X or Y .
In this case for each regular point q̃ ∈ ω(ΓZ(t, p)) consider the local
orbit ΓZ(t, q̃) which is contained in ω(ΓZ(t, p)). The set ω(ΓZ(t, q̃)) can
not be a periodic orbit or a graph contained in Σ+ or in Σ−, because the
orbit ΓZ(t, p) must visit any neighborhood of q infinite many times. So,
the unique option is that ω(ΓZ(t, q̃)) = {zi} where zi is an equilibrium
of X or of Y since otherwise, by the same arguments of the previous
paragraph ω(ΓZ(t, q)) should be a closed orbit without equilibria which
is a contradiction. Similarly, the α-limit set α(ΓZ(t, q̃)) = {zj} where
zj is an equilibrium of X or of Y . Thus, with an appropriate ordering
of the equilibria zk, k = 1, 2 . . . ,m, (which may not be distinct) and
regular orbits Γk ⊂ ω(ΓZ(t, p)), k = 1, 2 . . . ,m, we have

α(Γk) = zk and ω(Γk) = zk+1

for k = 1, . . . ,m, where zm+1 = z1. It follows that the maximal tra-
jectory ΓZ(t, p) either spirals down to or out toward ω(ΓZ(t, p)) as
t→ τ+(p0). It means that in this case ω(ΓZ(t, p)) is a pseudo-graph com-
posed by the equilibria zk and the arcs Γk connecting them, k = 1, . . . ,m.

This concludes the proof of Theorem 1.

Now we perform the proof of Corollary 1 (see Subsection 1.2). In
Example 2 below we illustrate its consequences.

Proof of Corollary 1: In fact, since by Definition 5 the ω-limit set of a
point is the union of the ω-limit set of all maximal trajectories passing
through it, the conclusion is obvious.
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Example 2. Consider Figure 8. Here we observe a NSVF without
sliding motion on Σ where the conclusions of Theorem 1 and Corollary 1
can be observed. Since the uniqueness of trajectories by p is not achieved
(neither for positive nor for negative times) both the α and the ω-limit
sets are disconnected sets. The α-limit set of p is composed by the
focus α1 and the singular tangency point α2. The ω-limit set of p is
composed by the saddle ω1 and the periodic orbit Γ1.

α1

ω1

p α2

Γ1

Figure 8. Both the α-limit set {α1, α2} and the ω-limit
set {ω1,Γ1} of the point p are disconnected. Sliding
motion on Σ is not allowed.

When we allow sliding motion on K, each subset N ⊂ Σe ∪ Σs is
necessarily not invariant, because on this region there is no uniqueness
of solution. Actually, if we take a point q ∈ N , there will exist infinitely
many solutions passing through q when the time goes to future or past
(see, for instance, Example 1 and Remark 5). For this reason, some
interesting phenomena may occur where classical properties of both limit
and minimal sets do not work. In particular it may be not possible to
establish a version of the Poincaré–Bendixson Theorem as stated in the
classical theory for this scenario.

4. Minimal sets with non-empty interior

Finding limit sets of trajectories of vector fields is an important task
inside the qualitative theory of dynamical systems. In the literature
there are several recent papers (see for instance [4, 5, 8, 10]) where the
authors explicitly exhibit the phase portraits of some NSVFs with their
unfoldings. However, all the limit sets exhibited have trivial minimal
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sets (i.e., the minimal sets are equilibria, pseudo equilibria, cycles, or
pseudo-cycles). At this section we present a non-trivial minimal set in
the NSVFs scenario which has non-empty interior and does not look like
neither a cycle nor an equilibrium.

We stress that the minimal set presented in this section works also as
an example where we do not fulfill one of the hypotheses of the Poincaré–
Bendixson Theorem for NSVFs. Indeed, in such example the compact
set (which we will prove to be minimal) contain a segment of sliding
points. Therefore, Theorem 1 can not be extended without assuming
extra hypothesis.

Example 3. Consider Z = (X,Y ) ∈ Ω, where X(x, y) = (1,−2x),
Y (x, y) = (−2, 2x − 4x3), and Σ = f−1(0) = {(x, y) ∈ R2; y = 0}. The
parametric equation for the integral curves of X and Y with initial con-
ditions (x(0), y(0)) = (0, k+) and (x(0), y(0)) = (0, k−), respectively, are
known and its algebraic expressions are given by y = −x2 + k+ and
y = x4/2− x2/2 + k−, respectively. It is easy to see that p = (0, 0) is an
invisible tangency point of X and a visible one of Y . It is also easy to
note that the points p± = (±

√
2/2, 0) are both invisible tangency points

of Y . Note that between p− and p there exists an escaping region and
between p and p+ a sliding one. Further, every point between (−1, 0)
and p− or between p+ and (1, 0) belongs to a sewing region. Consider
now the particular trajectories of X and Y for the cases when k+ = 1
and k− = 0, respectively. These particular curves delimit a bounded
region of plane that we call Λ and it is the main object of this section.
Figure 9 summarizes these facts.

p+p− p
Σe ΣsΣc Σc

Σ−1 1

Figure 9. Special integral curves and tangency points.
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The previous example is also exhibited in [2] where we prove the
existence of chaotic PSVFs in the plane.

Proposition 1. Consider Z = (X,Y ) ∈ Ω, where X(x, y) = (1,−2x),
Y (x, y) = (−2, 2x − 4x3), and Σ = f−1(0) = {(x, y) ∈ R2; y = 0}. The
set

(3) Λ = {(x, y) ∈ R2; −1 ≤ x ≤ 1 and x4/2− x2/2 ≤ y ≤ 1− x2}

is a minimal set for Z.

Proof: It is easy to see that Λ is compact and has non-empty interior.
Moreover, by Definition 2, on ∂Λ \ {p} we have uniqueness of trajectory
(here ∂B means the boundary of the set B). Note that a maximal
trajectory of any point in Λ meets p for some time t∗. Since p is a
visible tangency point for Y and p ∈ ∂Σe ∩ ∂Σs, according to the fourth
bullet of Definition 2 any trajectory passing through p remain in Λ.
Consequently Λ is Z-invariant. Moreover, given p1, p2 ∈ Λ the positive
maximal trajectory by p1 reaches the sliding region between p and p+ and
slides to p. The negative maximal trajectory by p2 reaches the escaping
region between p and p− and slides to p. So, there exists a maximal
trajectory connecting p1 and p2. Now, let Λ′ ⊂ Λ be a Z-invariant
set. Given q1 ∈ Λ′ and q2 ∈ Λ since there exists a maximal trajectory
connecting them we conclude that q2 ∈ Λ′. Therefore, Λ′ = Λ and Λ is
a minimal set.

Of course, the existence of such a set Λ is due to the non-uniqueness
of trajectories in sliding points and at the first moment it has no other
implications but only prints an idea of non-determinism of the trajecto-
ries on Σe and Σs. However, we highlight that, once the orbits delimit
a compact set containing a sliding/escaping region, it leads us to a very
rich dynamics which includes not only strange limit sets but also non-
trivial recurrence and positive measure minimal sets, which have been
not verified in the planar theory of dynamical systems. In some sense,
the set Λ says also that Denjoy–Schwartz Theorem (see [6, 9]) can not be
extended without assuming extra hypotheses on the smoothness of the
vector fields under study, therefore such objects should be distinguished
in the study of NSVFs.

Other exotic examples can be easily obtained. In Figure 10 we show
another phase portrait of a NSVF presenting a non-trivial minimal set
with non-empty interior.
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Figure 10. Non-trivial minimal set presenting non-
empty interior.

Next result highlights one of the features of the set Λ.

Proposition 2. Let Λ be given by (3). If q ∈ Λ then there exists a
trajectory passing trough q that is not dense in Λ.

Proof: Observe Figure 9. By Definition 2, there exists a maximal tra-
jectory Γ0 of Z with coincides to the closed curve ∂Λ, the boundary
ofΛ. Moreover, as shown at the proof of Proposition 1, given an arbi-
trary point q ∈ Λ, each maximal orbit passing through q also reaches
p = (0, 0) in finite time. Let Γ1 be an arc of trajectory of Z joining q
and p. So, Γ = Γ0 ∪ Γ1 is a non-dense trajectory of Z in Λ passing
through q ∈ Λ.

Remark 6. Observe that, according to Definition 8, a maximal trajec-
tory ΓZ(t, p) could not be Z-invariant provided that the uniqueness of
solutions does not hold. This is actually the main reason that a minimal
set for Z (see Definition 9) may possess a trajectory that is not dense.

Acknowledgements. The first author is partially supported by a
FAPESP-BRAZIL grant 2013/24541-0 and grant number 88881.068462/
2014-01 from CAPES/Brazil (program PROCAD). The second author
was partially supported by grant #2014/02134-7 from São Paulo Re-
search Foundation (FAPESP), grants numbers 88881.030454/2013-01
(program CSF-PVE) and 1576689 (program PNPD) from CAPES/Brazil
and grants 478230/2013-3 and 443302/2014-6 from CNPq/Brazil. The
third author is supported by grant #2013/25828-1 and grant #2014/
18508-3, São Paulo Research Foundation (FAPESP).

References

[1] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Ko-
walczyk, “Piecewise-smooth Dynamical Systems. Theory and Ap-



130 C. A. Buzzi, T. Carvalho, R. D. Euzébio
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581–589.

[10] Yu. A. Kuznetsov, S. Rinaldi, and A. Gragnani, One-pa-
rameter bifurcations in planar Filippov systems, Internat. J. Bifur.
Chaos Appl. Sci. Engrg. 13(8) (2003), 2157–2188. DOI: 10.1142/

S0218127403007874.
[11] A. S. Matveev and A. V. Savkin, “Qualitative Theory of Hy-

brid Dynamical Systems”, Control Enegineering, Birkhäuser Basel,
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