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WEIGHTED SQUARE FUNCTION INEQUALITIES

Adam Osȩkowski

Abstract: For an integrable function f on [0, 1)d, let S(f) andMf denote the corre-

sponding dyadic square function and the dyadic maximal function of f , respectively.
The paper contains the proofs of the following statements.

(i) If w is a dyadic A1 weight on [0, 1)d, then

||S(f)||L1(w) ≤
√
5[w]

1/2
A1
||Mf ||L1(w).

The exponent 1/2 is shown to be the best possible.

(ii) For any p > 1, there are no constants cp, αp depending only on p such that

for all dyadic Ap weights w on [0, 1)d,

||S(f)||L1(w) ≤ cp[w]
αp

Ap
||Mf ||L1(w).
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1. Introduction

As evidenced in numerous works (see e.g. Carlen and Krée [4], Del-
lacherie and Meyer [7], Pisier and Xu [21], Stein [22, 23]), square func-
tion inequalities have played an important role in many areas of mathe-
matics. In particular, it is often of interest to obtain optimal, or at least
good bounds for the constants involved in such estimates. The purpose
of this paper is to study tight weighted versions of Davis’ inequality,
which compares the L1 norms of a dyadic square function and a dyadic
maximal function, with a constant independent of the dimension.

Let us start with introducing the necessary background and notation.
Throughout the paper, we will work with the unit cube [0, 1)d, equipped
with its dyadic subcubes, i.e., sets of the form

[
a1
2n ,

a1+1
2n

)
×
[
a2
2n ,

a2+1
2n

)
×

· · · ×
[
ad
2n ,

ad+1
2n

)
, where n is some nonnegative integer and a1, a2, . . . , ad
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are some elements of {0, 1, . . . , 2n−1}. For n ≥ 0, let Qn denote the col-
lection of all dyadic cubes of measure 2−nd contained in [0, 1)d. Suppose
that f : [0, 1)d → R is a fixed integrable function. Given a dyadic cube Q,
we will denote by 〈f〉Q the average of f over Q, i.e., 〈f〉Q = 1

|Q|
∫
Q
f. For

any n ≥ 0, we define fn to be the conditional expectation of f with re-
spect to Qn, i.e., a function on [0, 1)d, which is constant on each element
of Qn and such that 〈f〉Q = 〈fn〉Q for any Q ∈ Qn; in other words,

fn =
∑
Q∈Qn

〈f〉QχQ.

In a probabilistic language, this amounts to saying that (fn)n≥0 is the
martingale associated with f , adapted to the dyadic filtration. We define
the corresponding difference sequence (dfn)n≥0 by putting df0 = f0 and
dfn = fn − fn−1, n = 1, 2, . . . Next, we introduce the dyadic square
function S(f) and the dyadic maximal function Mf by the formulae

S(f) =

( ∞∑
k=0

|dfk|2
)1/2

and Mf = sup
k≥0
|fk|.

We will also use the notation

Sn(f) := S(fn) =

(
n∑
k=0

|dfk|2
)1/2

and Mnf := M(fn) = max
0≤k≤n

|fk|

for n = 0, 1, 2, . . .
The problem of comparing various sizes of f , S(f), and Mf is clas-

sical and goes back to the works of Khintchine [11], Littlewood [14],
Paley [19], Marcinkiewicz [15], and Marcinkiewicz and Zygmund [16].
Our motivation comes from the moment estimates

(1.1) ||S(f)||Lp ≤ Cp||f ||Lp , 1 < p <∞,

where the constants Cp depend only on p (and not on the dimension).
This inequality was established by Burkholder in [2], actually in a slightly
more general setting of martingales. In the boundary case p = 1, the
inequality does not hold with any finite constant. However, as Davis
showed in [6], we have the substitute

(1.2) ||S(f)||L1 ≤ C1||Mf ||L1 ,

with some universal C1 < ∞. Burkholder [3] proved that C1 =
√

3 is
optimal.

In this paper we will be interested in a weighted version of (1.2).
Suppose that w is a weight, i.e., a positive, integrable function on [0, 1)d.
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Given 1 < p <∞, we say that w is a dyadic Ap weight if it satisfies the
dyadic analogue of Muckenhoupt’s condition:

[w]Ap := sup

(
1

|Q|

∫
Q

w(x) dx

)(
1

|Q|

∫
Q

w(x)−1/(p−1) dx

)p−1
<∞,

where the supremum is taken over all dyadic cubes contained in [0, 1)d.
Sometimes, to stress that we consider weights on [0, 1)d, one uses the
notation Ap([0, 1)d). Furthermore, w is a dyadic A∞ weight, if

[w]A∞ := sup

(
1

|Q|

∫
Q

w(x) dx

)
exp

(
− 1

|Q|

∫
Q

logw(x) dx

)
<∞,

where the supremum is taken over the same set as above. Finally, w is
a dyadic A1 weight if there is a constant C depending only on w such
that for any dyadic cube Q ⊆ [0, 1)d,

1

|Q|

∫
Q

w(x) dx ≤ C essinf
Q

w.

The smallest C with this property is denoted by [w]A1
; observe that

[w]A1
≥ 1. It follows directly from Hölder’s inequality that Ap classes

grow as p increases. Furthermore, it is well-known that A∞=∪1≤p<∞Ap.
We come back to weighted square function inequalities, and we will

be interested in obtaining tight bounds for the constants involved. Buck-
ley [1] showed the L2 inequality

(1.3) ||S(f)||L2(w) ≤ C[w]
3/2
A2
||f ||L2(w),

with C being a universal constant. This is probably the first result in
the literature, which singled out the dependence of the constant on the
Ap characteristics of the weight. This gave rise to the question about
the optimal (i.e., the smallest possible) exponent at [w]A2 in (1.3). This
problem remained open for a few years and was finally answered by
Hukovič, Treil, and Volberg [10]: the exponent 1 is the best. See also
the paper [20] by Petermichl and Pott, and [26] by Wittwer. This result
was significantly extended by Cruz-Uribe, Martell, and Pérez [5] to the
case of general Ap weights. Here is the precise statement.

Theorem 1.1. Let 1 < p < ∞. Then there is a constant C = Cp,d
depending only on the parameters indicated such that for any Ap weight w
and any integrable function f ,

(1.4) ||S(f)||Lp(w) ≤ Cp,d[w]
max{1/2,1/(p−1)}
Ap

||f ||Lp(w).

The exponent max{1/2, 1/(p− 1)} is the best possible, i.e., it cannot be
replaced in general by a smaller number.
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Consult also the works of Gundy and Wheeden [9], Dragičević et
al. [8] and Lerner [12, 13] for related results. See also the book by
Wilson [25] for an overview of weighted square function inequalities.

We turn our attention to the description of the results of this paper.
In the first theorem, we provide the substitute of (1.4) in the case p = 1.
Actually, we will work in a more general, vector setting. Let H be a
separable Hilbert space with scalar product 〈·, ·〉 and a norm | · |, and
let f : [0, 1)d → H be an integrable function. Then the above definitions
of S(f) and Mf make perfect sense and hence we can ask about the
comparison of weighted L1 norms of S(f) and Mf . Here is the answer.

Theorem 1.2. If w is an A1 weight, then

(1.5) ||S(f)||L1(w) ≤
√

5[w]
1/2
A1
||Mf ||L1(w)

for any integrable f : [0, 1)d → H. The exponent 1/2 cannot be replaced
by a smaller number.

The above result can be regarded as a uniform maximal estimate for
the square function: here by uniformity we mean that the multiplicative
constant does not depend on the dimension. Actually, this constant is
not far from optimal: if w ≡ 1, then the best choice is

√
3, as we have

noted above (cf. [3]).
In the next theorem, we study the Ap version of Theorem 1.2.

Theorem 1.3. Let p > 1 and let K be an arbitrary positive constant.
Then there is a positive integer d, an integrable function f : [0, 1)d → R,
and an Ap weight w on [0, 1)d satisfying [w]Ap

≤ 2, such that

(1.6) ||S(f)||L1(w) > K||Mf ||L1(w).

So, there is no uniform square function bound for Ap weights, even
if f is assumed to be real-valued. What if we allow the dependence of
the constant on d? Then the corresponding bound holds even for the
A∞ class. Here is the classical result, proved by Gundy and Wheeden [9]
in the one-dimensional case (however, the reasoning presented there ex-
tends easily to general d).

Theorem 1.4. Let w be an A∞ weight on [0, 1)d. Then there is a
constant C = C(d, [w]A∞) depending on the parameters indicated such
that

(1.7) ||S(f)||L1(w) ≤ C||Mf ||L1(w)

for any integrable function f on [0, 1)d.
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A few words about the proof and the organization of the paper are in
order. The next section is devoted to the proof of Theorem 1.2. We es-
tablish the inequality (1.5) with the use of the so-called Bellman function
method, a powerful technique used widely in analysis and probability
(cf. [17], [18], and the paper [10] already cited above). The sharpness
of the exponent 1/2 is shown with the use of appropriate examples. Sec-
tion 3 is devoted to Theorem 1.3, which is again proved with the use of
Bellman function method.

2. Proof of Theorem 1.2

We have decided to split this section into four separate parts.

2.1. On the method of proof. Let us describe the technique, which
will be used to establish the inequality (1.5). First, it is instructive to
recall the reasoning of Burkholder [3], which allowed him to obtain (1.2)

with C1 =
√

3. Burkholder introduced the special function U : H ×
[0,∞)× (0,∞)→ R, given by

U(x, y, z) =
y2 − |x|2 − 2(|x| ∨ z)2

|x| ∨ z

(here and below, a ∨ b = max{a, b}) and proved that it enjoys the fol-
lowing three properties. First, for any x ∈ H \ {0},

(2.1) U(x, |x|, |x|) ≤ 0.

Second, for any (x, y, z) ∈ H× [0,∞)× (0,∞), we have the majorization

U(x, y, z) ≥ 2
√

3(y −
√

3(|x| ∨ z)).

The final property is the following: if (x, y, z) ∈ H × [0,∞) × (0,∞),
Q ⊂ [0, 1)d is a dyadic cube and h : Q → R is any simple function of
average 0, then

1

|Q|

∫
Q

U(x+ h(s),
√
y2 + h2(s), z) ds ≤ U(x, y, z).

Having checked these conditions, inequality (1.2) follows quickly.
Namely, it is not difficult to show that the third property above is actu-
ally equivalent to showing that for any function f the sequence(∫

[0,1)d
U(fn, Sn(f),Mfn) ds

)
n≥0
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is nonincreasing. Combining this with the above majorization yields

2
√

3

(∫
[0,1)d

(Sn(f)−
√

3Mfn) ds

)
≤
∫
[0,1)d

U(fn, Sn(f),Mfn) ds

≤
∫
[0,1)d

U(f0, S0(f),Mf0) ds.

But the latter integrand is nonpositive, due to (2.1), since |f0| = S0(f) =
Mf0 (we may assume from the very beginning that f0 6= 0, by a simple

continuity argument). Thus ||Sn(f)||L1 ≤
√

3||Mfn||L1 and letting n→
∞ completes the proof.

Our argument below will follow the same pattern and will exploit
majorization and concavity-type properties of an appropriate special
function. However, due to the appearance of an A1 weight in the es-
timate, we will be forced to introduce additional two variables. Let us
explain this in a more detailed manner. Following [24], each dyadic
A1 weight w on [0, 1)d, satisfying [w]A1

≤ c, gives rise to two functional
sequences (wn)n≥0 and (vn)n≥0, which capture its behavior. Namely,
(wn)n≥0 is the associated martingale (sequence of conditional expecta-
tions of w) and for any n ≥ 0, the function vn : [0, 1)d → [0,∞) is given
as follows: if Q ∈ Qn, then vn is identically essinfQ w on Q.

These objects enjoy the following properties. Suppose that n ≥ 0 and
let Q be an element of Qn. Then, by the very definition, wn and vn are
constant on Q; furthermore, we have

1

|Q|

∫
Q

wn+1(x) dx = wn|Q, vn+1 ≥ vn, and vn ≤ wn ≤ cvn,

where the latter bound follows from the A1 condition.
As we have announced in the introductory section, our principal goal

is the study of the estimate

||S(f)||L1(w) ≤ C[w]αA1
||Mf ||L1(w),

where C is some numerical constant and the parameter α is as small as
possible. Suppose that w is an A1 weight on [0, 1)d, with [w]A1 ≤ c. In
the light of Burkholder’s proof presented above, it is natural to search
for a special function B of five variables, defined on the domain

Dc(B) = {(x, y, z, w, v) ∈ H × [0,∞)4 : x 6= 0, z > 0, v ≤ w ≤ cv},

which enjoys the following three properties. First, if x ∈ H \ {0} and
0 < v ≤ w ≤ cv, then

(2.2) B(x, |x|, |x|, w, v) ≤ 0.
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Second, there is β > 0 such that for any (x, y, z, w, v) ∈ Dc(B) we have
the majorization

(2.3) B(x, y, z, w, v) ≥ β(|y|w − Ccα(|x| ∨ z)w).

Finally, if f is an arbitrary function on [0, 1)d and w is an A1 weight
with [w]A1

≤ c, then the sequence(∫
[0,1)d

B(fn, Sn(f),Mfn, wn, vn) ds

)
n≥0

is nonincreasing. How to find an appropriate B? Clearly, we expect that
if we plug w = v ≡ 1 (which corresponds to the unweighted setting), then
B(·, ·, ·, w, v) should be equal, or at least “close” to Burkholder’s func-
tion U discussed above. Combining this observation with (2.3) suggests
considering the function

B(x, y, z, w, v) =
y2w − γ1c2α|x|2w − γ2c2α(|x| ∨ z)2w

|x| ∨ z
,

where γ1, γ2 are some positive constants. However, then the third re-
quirement is not satisfied, as one easily verifies; furthermore, the vari-
able v does not appear in the formula which indicates that B might
not control the full A1 property of the weight. A little thought and
experimentation leads to the choice

B(x, y, z, w, v) =
y2w − γ1c2α|x|2v − γ2c2α(|x| ∨ z)2v

|x| ∨ z
,

which works with α = 1/2 and γ1 = 1, γ2 = 4. See below for details.

2.2. A special function and some auxiliary facts. For a fixed c ≥
1, let B = Bc : Dc(B)→ R be given by the formula

B(x, y, z, w, v) =
y2w − c|x|2v − 4c(|x| ∨ z)2v

|x| ∨ z
.

As we have already discussed above, we will require appropriate ma-
jorizations.

Lemma 2.1. (i) If x ∈ H\{0} and 0 < v ≤ w ≤ cv, then (2.2) holds.
(ii) For any (x, y, z, w, v) ∈ Dc(B) we have

(2.4) B(x, y, z, w, v) ≥ 2
√

5c(yw −
√

5c(|x| ∨ z)w).

Proof: The first property is trivial, since y2w − c|x|2v ≤ 0. In the proof
of (2.4) we may assume that |x| ∨ z = 1, since B(λx, λy, λz, w, v) =
λB(x, y, z, w, v) for any λ > 0. It suffices to note that

y2w − c|x|2v − 4cv ≥ y2w − 5cw ≥ 2
√

5c(yw −
√

5cw),

which is the desired estimate.
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2.3. Proof of (1.5). Set c = [w]A1
and let B = Bc be the function

introduced in the previous subsection. Without loss of generality, we
may assume that f0 6= 0.

The first step is to show that for each n ≥ 0,

(2.5)

∫
[0,1)d

B(fn+1, Sn+1(f),Mfn+1, wn+1, vn+1) dx

≤
∫
[0,1)d

B(fn, Sn(f),Mfn, wn, vn) dx,

the monotonicity we discussed above. To do this, fix an element Q of Qn.
We will often use that fn, Sn(f), Mfn, wn, and vn are constant on Q.
We have Mfn ≤Mfn+1 and wn+1 ≤ cvn+1, so∫

Q

S2
n+1(f)wn+1

Mfn+1
dx ≤

∫
Q

S2
n(f)wn+1

Mfn
dx+ c

∫
Q

|dfn+1|2vn+1

Mfn+1
dx

=

∫
Q

S2
n(f)wn
Mfn

dx+ c

∫
Q

|dfn+1|2vn+1

Mfn+1
dx,

(2.6)

where in the second passage we have used the fact that wn and wn+1

have the same average over Q. Next, write

(2.7)

∫
Q

−c|fn+1|2vn+1 − 4c(Mfn+1)2vn+1

Mfn+1
dx

= −c
∫
Q

|dfn+1|2vn+1+(|fn|2+2〈fn, dfn+1〉+4(Mfn+1)2)vn+1

Mfn+1
dx.

Recall that vn+1 ≥ vn; furthermore, we have

2〈fn, dfn+1〉 ≥ −2|fn| |dfn+1| = −2|fn| |fn+1 − fn| ≥ −4(Mfn+1)2.

Consequently, the expression on the right in (2.7) can be bounded from
above by

−c
∫
Q

(
|dfn+1|2vn+1

Mfn+1
+

(|fn|2 + 2〈fn, dfn+1〉+ 4(Mfn+1)2)vn
Mfn+1

)
dx.

Combining this with (2.6), we obtain

(2.8)

∫
Q

B(fn+1, Sn+1(f),Mfn+1, wn+1, vn+1) dx

≤
∫
Q

(
S2
n(f)wn
Mfn

− c(|fn|2 + 2〈fn, dfn+1〉+ 4(Mfn+1)2)vn
Mfn+1

)
dx.
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Now we will prove that

(|fn|2 + 2〈fn, dfn+1〉+ 4(Mfn+1)2)vn
Mfn+1

≥ (|fn|2 + 2〈fn, dfn+1〉+ 4(Mfn)2)vn
Mfn

,

which is equivalent to

l(|fn|2 + 2〈fn, dfn+1〉 − 4MfnMfn+1)(Mfn+1 −Mfn)vn ≤ 0.

This is true: we have Mfn+1 ≥Mfn, vn ≥ 0 and

|fn|2 + 2〈fn, dfn+1〉 = 〈fn, fn+1〉+ 〈fn, dfn+1〉

≤MfnMfn+1 + 2MfnMfn+1 < 4MfnMfn+1.

Hence, coming back to (2.8), we see that we have established the bound∫
Q

B(fn+1, Sn+1(f),Mfn+1, wn+1, vn+1) dx

≤
∫
Q

B(fn, Sn(f),Mfn, wn, vn) dx− 2c

∫
Q

〈fn, dfn+1〉vn
Mfn

dx

=

∫
Q

B(fn, Sn(f),Mfn, wn, vn) dx,

where in the last line we have exploited the equality
∫
Q
dfn+1 dx = 0

and the fact that fn, vn, and Mfn are constant on Q. Summing over all
Q ∈ Qn, we get the desired monotonicity property (2.5).

The next step is to exploit (2.2) and then (2.4), to get

0 ≥
∫
[0,1]d

B(f0, S0(f),Mf0, w0, v0) dx

≥
∫
[0,1]d

B(fn, Sn(f),Mfn, wn, vn) dx

≥ 2
√

5c

∫
[0,1]d

(
Sn(f)wn −

√
5cMfnwn

)
dx.

Consequently, we have proved that∫
[0,1]d

Sn(f)wn dx ≤
√

5c

∫
[0,1]d

Mfnwn dx
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and hence ∫
[0,1]d

Sn(f)w dx ≤
√

5c

∫
[0,1]d

Mfnw dx,

since wn is the conditional expectation of w with respect to Qn. It
remains to let n→∞ and apply Lebesgue’s monotone convergence the-
orem.

2.4. Sharpness of the exponent. Let N be a fixed nonnegative in-
teger and let Qn = [0, 2−n)d for n = 0, 1, 2, . . . Choose c ≥ 1 and define
w : [0, 1)d → [0,∞) by

w(x) =

{
(1+(2d − 1)(1− c−1))nc−1 if x∈Qn \Qn+1, 0 ≤ n ≤ N − 1,

l(1+(2d − 1)(1− c−1))N if x∈QN .

Note that w is an A1-weight and [w]A1
= c. To check this, pick an

arbitrary dyadic cube Q. If Q is contained in QN or the two cubes are
disjoint, then w is constant on Q, so essinfQ w = |Q|−1

∫
Q
w and the

desired inequality is satisfied. It remains to consider the case when Q
contains QN (and Q 6= QN ). Then we have Q = Qk for some k =
0, 1, 2, . . . , N − 1 and

essinf
Q

w = (1 + (2d − 1)(1− c−1))kc−1 = c−1 · 1

|Q|

∫
Q

w,

so the requirement is met. Hence w ∈ A1 and, as a by-product, we see
that

∫
[0,1)d

w =
∫
Q0 w = 1.

Next, consider a sequence (dfn)Nn=0 of functions, given by df0 = χ[0,1)d

and

dfn = (−1)n
(

2χ[0,2−n+1)d\[2−n,2−n+1)d − (2d+1 − 2)χ[2−n,2−n+1)d

)
,

for n = 1, 2, . . . , N . Note that dfn is measurable with respect to the σ-
algebra generated by Qn. Furthermore, if n ≥ 1, then for each Q ∈ Qn−1
we have

∫
Q
dfn dx = 0. Consequently, if we define f = df0 + df1 + df2 +

· · ·+dfN , then for each n = 0, 1, 2, . . . , N we have fn = df0+df1+· · ·+dfn.
To gain some intuition about the behavior of f and Mf , pick x ∈

[0, 1)d. If x belongs to the cube [2−n, 2−n+1)d for some n = 1, 2, . . . , N ,
then we easily check that fk(x) = (−1)k for 0 ≤ k ≤ n− 1 and fk(x) =
(−1)n−1(2d+1−1) for k ≥ n, and hence Mf(x) = 2d+1−1. For remaining
x ∈ [0, 1)d, it is not difficult to see that the sequence f0, f1, f2, . . . , fn is
an alternating sequence of signs, which stabilizes after some number of



Square Function Inequalities 85

steps (and hence Mf(x) = 1). Consequently, we may write∫
[0,1)d

Mf(x)w(x) dx=

∫
[0,1)d

w(x) dx+

N∑
n=1

(2d+1−2)

∫
[2−n,2−n+1)d

w(x) dx

=1+

N∑
n=1

(2d+1−2)2−nd(1+(2d−1)(1−c−1))n−1c−1

=1 + 2(1− (1− (1− 2−d)c−1)N ).

To analyze the square function, note that for x ∈ [0, 2−N )d we have
df0(x) = 1 and |dfn(x)| = 2, 1 ≤ n ≤ N . This implies Sf(x) =
SNf(x) = (1 + 4N)1/2 and hence∫

[0,1)d
S(f)(x)w(x) dx ≥

∫
[0,2−N )d

S(f)(x)w(x) dx

= (1 + 4N)1/2(1− (1− 2−d)c−1)N .

Now take α < β < 1/2 and put N = bc2βc. Then limc→∞(1 − (1 −
2−d)c−1)N = 1 and hence, by the above calculations,∫

[0,1)d
S(f)(x)w(x) dx

[w]αA1

∫
[0,1)d

Mf(x)w(x) dx
= O(cβ−α), as c→∞.

Letting c→∞, we see that no exponent α < 1/2 suffices in (1.5).

3. Lack of estimates for Ap weights, p > 1

Now we take a look at the uniform weighted bounds between
||S(f)||L1(w) and ||Mf ||L1(w) when w is assumed to be an Ap weight,
p > 1. Suppose, contrary to the assertion of Theorem 1.3, that there is
1 < p < ∞ and a constant K depending only on p, such that for any
dimension d, any function f on [0, 1)d and any Ap weight w on [0, 1)d

with [w]Ap
≤ 2, we have

(3.1) ||S(f)||L1(w) ≤ K||Mf ||L1(w).

Fix an arbitrary integer N . The appropriate examples have quite com-
plicated, fractal-type structure. To avoid the technicalities which arise
in their study, we will follow a different approach. In a sense, it can be
regarded as a dual to the approach presented in the previous section.
Namely, we will show that the validity of (3.1) implies the existence of
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a certain abstract function, possessing appropriate concavity and enjoy-
ing a certain majorization. Then, by exploiting these properties in an
appropriate order, we will obtain a contradiction.

We start with an auxiliary geometrical fact.

Lemma 3.1. Let p, N , and d be as above.

(i) Let w, v be two positive numbers satisfying wvp−1 ≥ 1. Then
there are points P , Q lying on the curve xyp−1 = 1 such that
P +Q = (2w, 2v).

(ii) Suppose that w=1 and v=21/(p−1). Then there are two points R, T
such that R = (Rx, Ry) lies on the curve xyp−1 = 2, T = (Tx, Ty)
lies on the curve xyp−1 = 1, Rx ≤ Tx, and

(3.2) (1− (1− 2−d)N )R+ (1− 2−d)NT = (w, v).

Furthermore,

(3.3) (1− (1− 2−d)N )2dRx < 1

provided d is sufficiently large.

Proof: (i) The argument is very simple. Pick any point P = (Px, Py) on
the curve xyp−1 = 1 and let Q be defined by the condition (P +Q)/2 =
(w,v). Then Q is a continuous function of P . Furthermore, if Py is
huge, then Qy is negative, so Q lies below the curve xyp−1 = 1. On the
other hand, when Py = v, then Px = P 1−p

y = v1−p ≤ w; this implies
Qx ≥ w and Qy = v, so Q lies on or above the curve. Thus, by Darboux
property, there must be a point P for which the desired configuration is
satisfied.

(ii) The existence of the points R, T is proved similarly (one analyzes
the move of a point R along the curve xyp−1 = 2). To show (3.3), we
exploit (3.2). We have

1 = (1− (1− 2−d)N )Rx + (1− 2−d)NTx

and since Rx < 1 < Tx,

21/(p−1) = (1− (1− 2−d)N )

(
2

Rx

)1/(p−1)

+ (1− 2−d)NT−1/(p−1)x

< (1− (1− 2−d)N )

(
2

Rx

)1/(p−1)

+ (1− 2−d)N ,

which implies

Rx <

(
1− (1− 2−d)N

1− (1− 2−d)N/21/(p−1)

)p−1
.
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Thus, if d → ∞, then Rx → 0; on the other hand, we have (1 − (1 −
2−d)N )2d ≤ N for each d. This proves the assertion.

Let w, v, R, and T be as in (ii). In what follows, we will also exploit
the points T0, T1, . . . , TN given by T0 = (w,v) and the recursive equation

(3.4) Tk = (1− 2−d)Tk+1 + 2−dR.

By straightforward induction, we see that (w,v) = (1− 2−d)kTk + (1−
(1− 2−d)k)R for each k and hence in particular TN = T .

Now, let D be a set which consists of all points (w,v) such that
w,v > 0, 1 ≤ wvp−1 ≤ 2. Let Q be a dyadic cube contained in [0, 1)d.
For any x ∈ R, y ≥ 0, z ≥ 0, and any (w,v) ∈ D, consider the abstract
expression

U(x,y, z,w,v) = sup

{
1

|Q|

∫
Q

[
(y2 − x2 + S2(f)(x))1/2

−K(Mf(x) ∨ z)
]
w(x) dx

}
.

Here K is the number appearing in (3.1) and the supremum is taken
over all integrable functions f : Q → R with average 〈f〉Q = x and all

weights w ∈ Ap(Q) satisfying [w]Ap ≤ 2, 〈w〉Q = w, 〈w−1/(p−1)〉Q = v.
Before we proceed, we need to make two comments. First, we need

to show that for each w, v as above, at least one weight satisfying
appropriate conditions exists: this will guarantee that U is well-defined.
To prove this existence, split the cube Q into two halves and put w = Px
on one half and w = Qx on the second half, where Px, Qx are the first
coordinates of the points found in part (i) of the previous lemma. Then
we immediately get 〈w〉Q = w, 〈w−1/(p−1)〉Q = v and all we need is
the Ap condition. For any dyadic cube Q′ properly contained in Q, the
weight w is constant on Q′, so

〈w〉Q′〈w−1/(p−1)〉p−1Q′ = 1 ≤ 2.

It remains to note that on the full cube Q we have

〈w〉Q〈w−1/(p−1)〉p−1Q = wvp−1 ≤ 2.

Hence [w]Ap
≤ 2 and the definition of U makes sense.

The second important observation is that the function U does not
depend on Q. Indeed, for any two dyadic cubes Q1 and Q2, an affine
mapping of one cube onto another puts the classes Ap(Q1) and Ap(Q2) in
one-to-one correspondence, and such a change of the variable preserves
the averages.



88 A. Osȩkowski

We will prove that the function U enjoys the following properties.

Theorem 3.2. (i) If y1 ≤ y2, then

(3.5) U(x,y1, z,w, v) ≤ U(x,y2, z,w, v).

(ii) We have

(3.6) U(x,y, z,w, v) = U(x,y, |x| ∨ z,w, v).

(iii) We have

(3.7) U(x, |x|, |x|,w, v) ≤ 0.

(iv) We have

(3.8) U(x,y, z,w, v) ≥ yw−K(|x| ∨ z)w.

(v) For any λ 6= 0 and any µ > 0 we have

(3.9) U(λx, |λ|y, |λ|z, µw, µ−1/(p−1)v) = |λ|µU(x,y, z,w, v).

Proof: The condition (i) follows directly from the definition of U . To
get (ii), simply note that Mf ≥ |〈f〉Q| and hence Mf ∨ z = Mf ∨
|x| ∨ z if f has average x. The condition (iii) follows at once from our
assumption (3.1). The fourth property is also easy: it suffices to compute
the expression in the definition of U for the constant function f ≡ x. To
prove the homogeneity property (3.9), pick arbitrary functions f , w as
in the definition of U(x,y, z,w,v). Then λf has the average λx, and
µw is an Ap weight with characteristics bounded by 2 and such that

〈µw〉Q = µw, 〈(µw)−1/(p−1)〉Q = µ−1/(p−1)v. Consequently,

U(λx, |λ|y, |λ|z, µw, µ−1/(p−1)v)

≥ 1

|Q|

∫
Q

((|λ|y)2 − (λx)2 + S2(λf)(x))1/2

−KM(λf)(x) ∨ (|λ|z))µw(x) dx

= |λ|µ 1

|Q|

∫
Q

[
(y2 − x2 + S2(f)(x))1/2 −K(Mf(x) ∨ z)

]
w(x) dx.

Hence, taking the supremum over all f and w, we get

(3.10) U(λx, |λ|y, |λ|z, µw, µ−1/(p−1)v) ≥ |λ|µU(x,y, z,w,v).

To get the reverse bound, plug in (3.10) the point (λx, |λ|y, |λ|z, µw,
µ−1/(p−1)v) in the place of (x,y, z,w,v) and the numbers λ−1, µ−1 in
the place of λ and µ.
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The main property of the function U is studied in the next statement.
It can be regarded as a kind of concavity-type condition.

Theorem 3.3. Let α = k ·2−d for some k = 1, 2, . . . , 2d−1. Pick x ∈ R,
y ≥ 0, z ≥ |x|, d± ∈ R, and (w, v), (w±, v±) ∈ D. If

αd+ + (1− α)d− = 0 and α(w+, v+) + (1− α)(w−, v−) = (w, v),

then

U(x,y, z,w, v) ≥ αU(x + d+,
√
y2 + d2

+, z,w+, v+)

+ (1− α)U(x + d−,
√
y2 + d2

−, z,w−, v−).

Proof: Pick any functions f+, w+ and f−, w− as in the definitions of

U(x+d+,
√
y2
+ + d2

+, z,w+,v+) and U(x+d−,
√
y2
− + d2

−, z,w−,v−),

respectively. As we have observed above, the definition of U does not
depend on Q, so we may assume that these functions are given on a
certain fixed dyadic cube Q ⊂ [0, 1)d of measure 2−d. Split [0, 1)d = Q+∪
Q−, where Q+ is a disjoint union of k dyadic subcubes of measure 2−d

each and Q− is a disjoint union of 2d−k dyadic subcubes of measure 2−d

each; then |Q+| = α and |Q−| = 1−α. Copy f+ onto each subcube of Q+

and f− onto each subcube of Q−, and denote the obtained function by f .
More precisely, if Q′ ⊆ Q+ is a cube of measure 2−d and T is an affine
mapping which sends Q′ onto Q, we let f(x) = f+(Tx) on Q′; similarly,
if Q′ ⊆ Q−, then let f(x) = f−(Tx), where T is as previously. Then f
has the average

〈f〉[0,1)d =

∫
Q+

f +

∫
Q−

f = α(x + d+) + (1− α)(x + d−) = x.

Furthermore, pick a dyadic cube Q′ ⊆ Q+ with |Q′| = 2−d and let
T : Q′ → Q be as above. Let us look at the relation between S(f)|Q′ ,
M(f)|Q′ , and the corresponding objects for f+. Observe that if x ∈ Q′,
then f0(x) = x and fn(x) = f+n−1(Tx). Consequently, df0(x) = x,

df1(x) = d+, and dfn(x) = df+n−1(Tx). This implies

(3.11) S2(f)(x) = x2 + d2
+ + S2(f+)(Tx)− (x + d+)2.

Furthermore, since |f0(x)| = |x| ≤ z, we obtain

(3.12) Mf(x) ∨ z = sup
n≥1
|fn(x)| ∨ z = Mf+(Tx) ∨ z.

When Q′ ⊆ Q−, we have obvious analogues of (3.11) and (3.12): one
only needs to change f+, d+ to f− and d−, respectively.
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Let us apply similar “splicing” procedure to glue w+ and w− into
one weight w on Q. Arguing as above, one checks that 〈w〉Q = αw+ +

(1 − α)w− = w and 〈w−1/(p−1)〉Q = αv+ + (1 − α)v− = v. Note that

w is an Ap weight with [w]Ap
≤ 2. Indeed, if Q̃ is a dyadic cube strictly

contained in [0, 1)d, then the product 〈w〉Q̃〈w−1/(p−1)〉
p−1
Q̃

is equal to the

corresponding product for w+ or w− (depending on whether Q̃ ⊆ Q+

or Q̃ ⊆ Q−), so it is smaller than 2; on the other hand, as we have just
verified,

〈w〉[0,1)d〈w−1/(p−1)〉
p−1
[0,1)d

= wvp−1 ≤ 2.

Now let us check how the above relations between f±, f , w±, and w
affect the special function U . We have

U(x,y, z,w,v)

≥
∫
[0,1)d

[
(y2 − x2 + S2(f)(x))1/2 −K(Mf(x) ∨ z)

]
w(x) dx

=
α

|Q+|

∫
Q+

[
(y2 − x2 + S2(f)(x))1/2 −K(Mf(x) ∨ z)

]
w(x) dx

+
1− α
|Q−|

∫
Q−

[
(y2−x2 + S2(f)(x))1/2 −K(Mf(x) ∨ z)

]
w(x) dx.

Let us look at the first summand on the right hand side. Pick Q′ ⊂ Q+

of measure 2−d. By (3.11) and (3.12), we have

1

|Q′|

∫
Q′

[
(y2 − x2 + S2(f)(x))1/2 −K(Mf(x) ∨ z)

]
w(x) dx

=
1

|Q|

∫
Q

[
(y2+d2

+−(x+d+)2+S2(f+)(x))1/2−K(Mf+(x)∨z)
]
w+(x) dx

and hence

α

|Q+|

∫
Q+

[
(y2 − x2 + S2(f)(x))1/2 −K(Mf(x) ∨ z)

]
w(x) dx

=
α

|Q|

∫
Q

[
(y2+d2

+−(x+d+)2+S2(f+)(x))1/2−K(Mf+(x)∨z)
]
w+(x) dx.

We handle the integral over Q− exactly in the same manner. It suffices
to take the supremum over all f±, w± as above to get the claim.



Square Function Inequalities 91

We are ready for the proof of Theorem 1.3. We will sometimes use the
following notation: if x ∈ R, y, z ≥ 0, and P = (w,v) ∈ D, we will write
U(x,y, z;P ) := U(x,y, z,w,v). We start from the observation that, by
Theorem 3.2(i) and (iii),

(3.13) 0 ≥ U(1, 1, 1, 1, 21/(p−1)) ≥ U(1, 0, 1, 1, 21/(p−1)).

Next, we use Theorem 3.3: by (3.4), we obtain that for each k,

U(1, (2k)1/2, 1;Tk) ≥ 2−dU(2d, (2k + (2d − 1)2)1/2, 1;R)

+ (1− 2−d)U(0, (2k + 1)1/2, 1;Tk+1).

By part (ii) of Theorem 3.2, this expression is equal to

2−dU(2d, (2k + (2d − 1)2)1/2, 2d;R)

+ (1− 2−d)U(0, (2k + 1)1/2, 1;Tk+1),

which by parts (i) and (v), is not smaller than

2−dU(2d, 0, 2d;R) + (1− 2−d)U(0, (2k + 1)1/2, 1;Tk+1)

≥ RxU(1, 0, 1, 1, 21/(p−1)) + (1− 2−d)U(0, (2k + 1)1/2, 1;Tk+1).

Furthermore, by Theorem 3.3 and Theorem 3.2(v) again,

U(0, (2k + 1)1/2, 1;Tk+1) ≥ 1

2
U(−1, (2k + 2)1/2, 1;Tk+1)

+
1

2
U(1, (2k + 2)1/2, 1;Tk+1)

= U(1, (2k + 2)1/2, 1;Tk+1).

Hence, by induction, we obtain

U(1, 0, 1, 1, 21/(p−1)) = U(1, 0, 1;T0)

≥ (1− 2−d)NU(1, (2N)1/2, 1;TN )

+

N−1∑
k=0

(1− 2−d)kRxU(1, 0, 1, 1, 21/(p−1))

= (1− 2−d)NTxU(1, (2N)1/2, 1, 1, 1)

+ (1− (1− 2−d)N )2dRxU(1, 0, 1, 1, 21/(p−1)).
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Now we assume that d is large; if we apply (3.3) and (3.13), we obtain

U(1, (2N)1/2, 1, 1, 1) ≤ 1−(1−(1−2−d)N )2dRx
(1− 2−d)NTx

U(1, 0, 1, 1, 21/(p−1))≤0.

This, by (3.8), implies
√

2N −K ≤ 0. This is a contradiction, since N
was arbitrary. The claim is proved.
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