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Received 31 January 2011; Accepted 20 September 2011

Copyright c⃝ 2011, Journal Afrika Statistika. All rights reserved

Abstract. In this paper we consider a competing risks model including covariates in which
the observations are subject to random right censoring. Without any assumption of inde-
pendence of the competing risks, and based on a nonparametric kernel-type estimator of the
incident regression function, an estimator of the conditional regression function is proposed.
We show that at a given covariate value and under suitable conditions the nonparametric
estimator of the regression function is asymptotically normal. A simulation study is provided
showing that our estimators have good behaviour for moderate sample sizes.

Résumé. Nous considérons dans ce papier un modèle de risques compétitifs dans lequel
les observations sont soumises à une censure aléatoire à droite en présence de covari-
ables. Sans aucune hypothèse d’indépendance sur les risques compétitifs, un estimateur non
paramétrique de la fonction de répartition conditionnelle incidente est proposé. Cet estima-
teur est obtenu via celui d’un estimateur non paramétrique de type noyau de la fonction
de régression incidente. Nous démontrons que pour une valeure fixée de la covariable, et
sous certaines conditions, l’estimateur non paramétrique de la fonction de régression inci-
dente est asymptotiquement normal. Des simulations illustrent le bon comportement de nos
estimateurs pour des tailles modérées d’échantillons.
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1. Introduction

Competing risks arise in medical, reliability or finance follow up involving multiple causes
of failure but only the smallest failure time and its cause are observed. In competing risks
mechanism, several failure times are right censored by observed failure time in informative
manner and each failure time can be right censored by an event in non informative manner.
For example, in order to determine the incidence of death due to breast cancer among breast
cancer patients, every patient will be followed from a baseline time (e.g. date of diagnosis
or of surgery) until the date of death due to breast cancer or study closing date. A patient
who dies of breast cancer during the study period would be considered to have an ’event’ at
his date of death. A patient who is alive at the end of the study is considered as ’censored’.
However, a patient can undergo a different event from the event of interest (e.g. death due to
causes unrelated to the breast cancer disease). Such events are said competing risks events.
As another practical example, consider women who start using an intrauterine device (IUD)
(see Kalbfleisch and Prentice, [16]). They are subject to several risks, including accidental
pregnancy, expulsion of the device, removal for medical reasons and removal for personal
reasons. Kalbfleisch and Prentice discussed the areas of interest as a model of competing risks
of IUD discontinuation. The events of competing risks are not independent a priori, hence
they cannot be dealt with the statistical inference of standard censoring models (Kaplan
and Meier, [17]). Before carrying on, we need to introduce the following notations.

Let T1, . . . , Tm be failure times, due to any cause j ∈ J = {1, . . . ,m}. The indicator of
failure cause will be denoted by η. Let X = min(T1, . . . , Tm) be the observed failure time
with X = Tj if and only if η = j. Assume that X is in turn, at risk of independent right-
censoring by a non-negative random variable C. Set Y = min(X,C), δ = I(X ≤ C), where
I(A) is the indicator function of any set A, δ = 0 if X is right-censored by C and δ = 1
otherwise. Moreover, assume that each individual or entity is characterized by a Rd-valued
covariate Z, independent of C and that the random vector (T1, . . . , Tm, Z, C) is absolutely
continuous with respect to the Lebesgue measure. For statistical applications, the observable
random variables will be (Y, ξ, Z) where ξ = δη.

Denote by FX (resp. G) the distribution function of the random variable X (resp. C),
SX = 1−FX the survival function of X, λX (resp. ΛX) its hazard (resp. cumulative hazard)
function:

λX(t) = lim
∆↘0

P[t ≤ X < t+∆|X > t]

∆
=
fX(t)

SX(t)

and

ΛX(t) =

∫ t

0

λX(s)ds,

where fX is the density function of X. Note that without specific assumptions, the joint
or marginal distribution functions of the underlying failure times together with the previ-
ous hazard functions are not identifiable (Tsiatis, [22]). Nevertheless, if each individual is
characterized by a ’sufficiently informative’ set of covariates, these distribution functions are
identifiable under some regularity conditions (Heckman and Honor, [15]). The problem of
identifiability discussed in literature incite to concentrate no more on the distributions but
on cause specific functions which are expressed in terms of observable functions of failure
times:
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– the cumulative incidence function

Fj(t) = P[X ≤ t, η = j],

– the cause-specific hazard rate function of type j

λj(t) = lim
∆↘0

P[t ≤ X < t+∆t, η = j|X > t]

∆
=

fj(t)

SX(t)
,

where fj is the subdensity function corresponding to Fj ,
– the jth cause-specific cumulative hazard function

Λj(t) =

∫ t

0

λj(s)ds.

The incident functions are related by the following equations:

Fj(t) =

∫ t

0

fj(s)ds =

∫ t

0

SX(s)λj(s)ds =

∫ t

0

SX(s)dΛj(s).

Further, we shall deal with conditional versions given Z = z of the previous functions which
will be denoted by SX(·|z), λX(·|z), ΛX(·|z), Fj(·|z), fj(·|z) and Λj(·|z), and by independence
of Z and C, G(·|z) = G.

The parametric or nonparametric estimation of the previous underlying latent variables
distributions has been considered in the literature. For example, Kwan and Singh [20] con-
sidered nonparametric estimates of the distribution function for every latent risk, assuming
they are mutually independent. Fermanian [9], extending Heckman and Honor [15], consid-
ered a model involving nonparametric estimation of all unknown sub-distributions which
together yield an estimator of the joint conditional distribution of the competing failure
times. Geffray [10] considered the latent risks with independent censorship and established
strong approximation results with statistical applications.

Most models make parametric assumptions on the joint distribution function of the fail-
ure times or assume their independence in order to avoid the non identifiability problem.
When no such assumptions are made, the quantities usually estimated are the cause specific
functions instead of the overall or latent distribution functions.

In this paper, we consider the problem of estimating the competing risks regression functions

rj(z) = E[ψ(X)I(η = j)|Z = z], j = 1, . . . ,m, (1)

based on n independent and identically distributed observations of (Y, ξ, Z), where ψ belongs
to a class of measurable functions on R+ such that E[|ψp(X)|] < +∞, for p = 1, 2, without
any parametric or independence assumption on competing lifetimes. For example, when
ψ(x) = x, ψ(x) = xp, or ψ(x) = ψs(x) = I(x ≤ s), rj(z) is the incident regression function,
the p-th conditional moment, or the conditional distribution function of X∗

j = XI(η = j)
given Z = z: rj(z) = E[X∗

j |Z = z], rj(z) = E[X∗
j
p|Z = z], or rj(z) = Fj(s|z) = E[I(X∗

j ≤
s)I(η = j)|Z = z] respectively.

The problem of estimating regression functions has been considered in the literature by
several authors in non-censored as well as censored frameworks. In non-censored case, we
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may cite Nadaraya [19], Watson [25], Collomb [5], Beran [2], Greblicki et al. [13], Bosq and
Lecoutre [3], Haerdle et al. [14], Carbonez et al. [4], Einmahl and Mason [8] Derzko and
Deheuvels [7]. In censored models we can cite Dabrowska [6], Kohler and Math [18], Gneyou
[12] and references therein.

Our paper is organized as follows. In Section 2, we give explicit kernel-type estimates of
the competing risks regression functions conditional on Z = z. In Section 3 we state that
for a given z, our estimator of rj(z) is consistent and fulfils a central limit theorem. In
Section 4 some simulation results are given while some proofs are relegated to the appendix.
Concluding remarks are given in Section 5.

2. Estimating regression functions

Let us define the following conditional distributions

H(t|z) = P[Y ≤ t|Z = z]

Hj(t|z) = P[Y ≤ t, ξ = j|Z = z], j = 1, · · · ,m

Note that
H̄(·|z) = 1−H(·|z) = ḠSX(·|z),

where Ḡ is the survival function of C. We have

Λj(t|z) =
∫ t

0

λj(s|z)ds =
∫ t

0

dFj(s|z)
SX(s−|z)

=

∫ t

0

dHj(s|z)
H̄(s−|z)

.

Note also that the competing risk regression functions rj(z) given in (1) can be written,
provided the integral exists, in the form

rj(z) =

∫ τz

0

ψ(t)fj(x|z)dt

=

∫ τz

0

ψ(t)SX(t|z)dΛj(t|z)

=

∫ τz

0

ψ(t)SX(t|z)
H̄(t|z)

dHj(t|z)

=

∫ τz

0

ψ(t)

Ḡ(t)
dHj(t|z), (2)

where for technical reasons the interval of study is reduced to [0, τz] that will be speci-
fied later. Henceforth, the existence of the regression rj(z) holds since we assumed that
E[|ψ(X)|] < +∞ in the previous section. A natural way to estimate rj(z) is to replace Ḡ
and Hj(·|z) in (2) by their appropriate estimators. The survival function Ḡ is naturally
estimated by the following product-limit estimators

Ḡn(t) =
∏
s≤t

(1−∆Λn(s)),
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where ∆Λn(t) = Λn(t)− Λn(t−) and

Λn(t) =

∫ t

0

dN(s)

Y (s)
,

where N(s) =
∑n

i=1 I(Yi ≤ s; ξi = 0) and Y (s) =
∑n

i=1 I(Yi ≥ s). Let K be a kernel
function on Rd, (hn)n≥0 be a sequence of positive real numbers tending to 0 as n tends to
infinity (bandwidth) and setKhn(x) = h−d

n K(h−1
n x). The conditional sub-distribution func-

tions Hj(·|z) are estimated non-parametrically using kernel-type estimators with Nadaraya-
Watson weights by

Hjn(t|z) =
1

nfn(z)

n∑
i=1

I(Yi ≤ t, ξi = j)Khn(z − Zi)

where

fn(z) =
1

n

n∑
i=1

Khn(z − Zi)

is the usual kernel density estimator of the marginal density function f of Z. The final
estimator r̂j(z) we propose is therefore

r̂jn(z) =

∫ τz

0

ψ(t)

Ḡn(t)
dHjn(t|z)

=
1

nfn(z)

n∑
i=1

ψ(Yi)I(Yi ≤ τz)I(ξi = j)Khn(z − Zi)

Ḡn(Yi)
. (3)

In the next section we prove that under suitable conditions r̂jn(z) is consistent and as
n→ +∞√
nhdn(r̂jn(z)−rj(z)) converges in distribution to a centred normal distribution with variance

consistently estimated by

σ̂2
jn(z) =

∥K∥2L2(Rd)

fn(z)

(
r̂2jn(z) + 2r̂jn(z)

∫ τz

0

ψ(t)

Ḡ2
n(t)

Hjn(t|z)dKjn(t|z)

+

∫ τz

0

∫ τz

0

ψ(s)ψ(t)

Ḡ2
n(s)Ḡ

2
n(t)

Hjn(s ∧ t|z)dKjn(s|z)dKjn(t|z)
)
, (4)

where Kjn(·|z) = fn(z)Hjn(·|z).

Note that in practice τz is often taken equal to infinity, so that the indicator functions
I(Yi ≤ τz) can be deleted in formula (3). The choice of the bandwidth hn is discussed in
the simulation study. We note however that deleting the bias of r̂jn(z) at the rate

√
nhdn is

not compatible with the usual bandwidth rate that allows to minimize the asymptotic mean
square error of r̂jn(z). Since we need to estimate carefully the density f we give priority
to a bandwidth’s choice that minimizes the asymptotic mean square error of fn in our
simulation study. In the remainder of the paper, D[0, T ] denotes the Skorohod space of all
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right-continuous functions on [0, T ] with left limits, endowed with the metric induced by the
supremum norm and ℓ∞[0, T ] denotes the space of all bounded functions from the interval
[0, T ] to R equipped with the supremum norm. The sequence Xn converges weakly to X is
written as Xn  X.

3. Asymptotics

Let us consider the following assumptions.

(A). The upper bound τz of the interval of study satisfies H̄(τz|z) > 0, G(τz) > 0 and
FX(τz) < 1.

(B). The density function f is continuous at z and f(z) > 0.
(C). The application s 7→ Hj(t|s) is continuous at z, uniformly in t ∈ [0, τz].
(D). K = φ ◦ p, p being a polynomial and φ a positive bounded real function of bounded

variation. The kernel function K has support in [−1, 1]d and satisfies:

(i)

∫
Rd

K(s)ds = 1, (ii)

∫
Rd

sK(s)ds = 0.

(E). The bandwidth hn satisfies hn = cn−α with α ∈
(
(5d)−1, d−1

)
and c is a constant.

(F). Functions f and s 7→ Hj(t|s) (for all t ∈ [0, τz]) are twice continuously differentiable at z,
and the second derivative of s 7→ Hj(t|s)f(s) is continuous at z, uniformly in t ∈ [0, τz].

The above assumptions are standard. Assumption A allows to obtain the uniform consistency
and the weak convergence in D[0, τz] of the Kaplan-Meier estimator of G . Assumptions B
and C are necessary to obtain consistency of kernel-type estimators since these estimators
have an asymptotic bias that disappears if the target function is regular enough. The same
problem holds when establishing a central limit theorem, but since the rate is (nhdn)

1/2 the
conditions to make the asymptotic bias disappear are the stronger ones given in Assumptions
F. The assumptions made on the kernel function K and the bandwidth are quite standard.
However these assumptions on K and hn could be less restrictive but it would involve more
technicalities in our proofs. The bandwidth rates in Assumption E are simplified in order to
satisfy:

(i)hn → 0, (ii)nhdn → +∞, (iii)nh5dn → 0 as n→ +∞
(i) and (ii) allows to obtain the consistency whereas (iii) is necessary to make the asymptotic
bias disappear in the central limit theorem. In Gin and Guillou [11], Conditions (2.11) and
(K1), are given finest conditions (satisfied under Assumptions D and E) under which rates
of strong uniform consistency results are obtained. Recall that

rj(z) = ϕ(f(z), Ḡ,Kj(·|z)) ≡
1

f(z)

∫ τz

0

ψ(t)

Ḡ(t)
dKj(t|z),

where we set Kj(t|z) = Hj(t|z)f(z). Setting Kjn(t|z) = Hjn(t|z)fn(z) we have

r̂jn(z) = ϕ(fn(z), Ḡn,Kjn(·|z)).

Therefore the asymptotic behaviour of (nhdn)
1/2 (r̂jn(z)− rj(z)) can be expected by estab-

lishing the asymptotic behaviour of (nhdn)
1/2
(
fn(z)− f(z), Ḡn − Ḡ,Kjn −Kj

)
and using

the functional delta-method with ϕ.
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Lemma 1. Under Assumptions A–E, we have as n→ +∞

(i). fn(z) → f(z) a.s.
(ii). sup

t∈[0,τz ]

|Ḡn(t)− Ḡ(t)| → 0 a.s.

(iii). sup
t∈[0,τz ]

|Kjn(t|z)−Kj(t|z)| → 0 a.s.

Lemma 2. Under Assumptions A–F, we have as n→ +∞

√
nhdn

 fn(z)− f(z)
Ḡn − Ḡ

Kjn(·|z)−Kj(·|z)

 
 Nz

0
Gz

 , in R× (ℓ∞[0, τz])
2
,

where Nz is a centred gaussian random variable and Gz a tight centred gaussian process.
Moreover we have

E[N 2
z ] = f(z)∥K∥2L(Rd),

E[NzGz(t)] = Hj(t|z)f(z)∥K∥2L2(Rd), for all t ∈ [0, τz],

E[Gz(s)Gz(t)] = Hj(s ∧ t|z)f(z)∥K∥2L2(Rd), for all (s, t) ∈ [0, τz]
2.

The proof of this lemma mainly uses Theorem 19.28 in van der Vaart [24], it is given in
the appendix. The next lemma, whose proof is also relegated to the appendix, gives the
Hadamard derivative of ϕ at (f(z), Ḡ,Hj(·|z)).

Lemma 3. The function ϕ is Hadamard-differentiable at (f(z), Ḡ,Kj(·|z)) with derivative

ϕ′(f(z),Ḡ,Kj(·|z))(h1, h2(·), h3(·)) = − h1
f(z)

ϕ(f(z), Ḡ,Kj(·|z))

+
1

f(z)

([
h2ψ

Ḡ

]τz
0

−
∫ τz

0

h−2 (t)d

(
ψ(t)

Ḡ(t)

)
−
∫ τz

0

ψ(t)

Ḡ2(t)
h3(t)dKj(t|z)

)
,

where for any function ℓ, [ℓ]τz0 = ℓ(τz)− ℓ(0) and ℓ−(t) = lims↗t ℓ(s).

Theorem 1. Under conditions A–E, we have r̂jn(z) → rj(z) almost surely as n→ +∞.

Proof. By Lemma 3 the function ϕ is continuous in R × ℓ∞[0, τz] × ℓ∞[0, τz] at point
(f(z), Ḡ,Kj(·|z)). Moreover, by Lemma 1 (fn(z), Ḡn,Kjn(·|z)) converges almost surely to
(f(z), Ḡ,Kj(·|z)) in R × ℓ∞[0, τz] × ℓ∞[0, τz] as n tends to infinity. Hence by the continu-
ous mapping theorem (see e.g. van der Vaart, [24], Theorem 18.11) ϕ(fn(z), Ḡn,Kjn(·|z))
converges almost surely to ϕ(f(z), Ḡ,Kj(·|z)) in R as n→ +∞. �

Theorem 2. Under conditions A–F, we have as n tends to infinity

(nhdn)
1/2(r̂jn(z) → rj(z)) N

(
0, σ2

j (z)
)
,
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where

σ2
j (z) =

∥K∥2L2(Rd)

f(z)

(
r2j (z) + 2rj(z)

∫ τz

0

ψ(t)

Ḡ2(t)
Hj(t|z)dKj(t|z)

+

∫ τz

0

∫ τz

0

ψ(s)ψ(t)

Ḡ2(s)Ḡ2(t)
Hj(s ∧ t|z)dKj(s|z)dKj(t|z)

)
.

Moreover σ̂2
jn(z) defined by (4) converges almost surely to σ2

j (z).

Proof. Lemmas 2 and 3 allow a straightforward application of the δ-method (Theorem 20.8
in van der Vaart, [24]). We obtain

(nhdn)
1/2(r̂jn(z) → rj(z)) Tz = ϕ′(f(z),Ḡ,Kj(·|z))(Nz, 0,Gz)

= − 1

f(z)

(
rj(z)Nz +

∫ τz

0

ψ(t)Gz(t)

Ḡ2(t)
dKj(t|z)

)
.

Tz is gaussian as a linear form on a gaussian process and it is easy to check that E[Tz] = 0
since both Nz and Gz are centred. It is also easy to calculate the variance σ2

j (z) of Tz since

σ2
j (z) =

1

f2(z)
E

[(
rj(z)Nz +

∫ τz

0

ψ(t)Gz(t)

Ḡ2(t)
dKj(t|z)

)2
]

=
1

f2(z)

(
r2j (z)E

[
N 2

z

]
+ 2rj(z)

∫ τz

0

ψ(t)

Ḡ2(t)
E[NzGz(t)]dKj(t|z)

+

∫ τz

0

∫ τz

0

ψ(s)ψ(t)

Ḡ2(s)Ḡ2(t)
E[Gz(s)Gz(t)]dKj(s|z)dKj(t|z)

)
.

The final formula of σ2
j (z) is obtained by replacing the expectations in the right hand side

of the above equality by values provided in Lemma 2. Proving the strong consistency of
σ̂jn is again an application of the continuous mapping theorem, since σ̂jn can be written
as a continuous function of (fn(z), Ḡn,Kjn) which by Lemma 1 converges almost surely to
(f(z), Ḡ,Kj)) in R× ℓ∞[0, τz]× ℓ∞[0, τz]. �

4. Simulation study

We consider that (T1, T2), conditional on Z = z, has an exponential bivariate distribution
defined by the joint survival function

S(t1, t2|z) = exp(−ez(λ1t1 + λ2t2 + θt1t2)),

for t1, t2 ≥ 0 and 0 ≤ θ < λ1λ2. It is easy to check that both T1 and T2 are marginally
exponentially distributed with respective parameters ezλ1 and ezλ2. The joint density f12
of (T1, T2), conditional on Z = z, is therefore defined by

f12(t1, t2|z) = ez (ez(λ1 + θt2)(λ2 + θt1)− θ) exp(−ez(λ1t1 + λ2t2 + θt1t2)),

for t1, t2 ≥ 0. We show that conditional on (T1, Z) = (t1, z) the distribution function of T2
is given by

F2|1(t2|t1, z) = 1− (1 + θt/λ1) exp(−(λ2 + θt2t1)t2),
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for t2 ≥ 0. Simulated data are obtained by the inversion method: first Z is simulated
following a standard normal distribution, then we simulate T1 conditional on z and finally
we simulate T2 conditional on (T1, Z) (by inverting numerically F2|1(·|t1, z)). The censoring
variable C is exponentially distributed with rate λC . The sample size is denoted by n and
other parameters are set to

λ1 = 0.1, λ2 = 0.15, λC = 0.35, and θ = 0.01.

With such parameters, the expected number of failure of type 1 and 2 are approximately
equal to 42% and 38% respectively whereas the censoring rate is about 20%. K is the
Epanechnikov kernel and the bandwidth is chosen to be equal to

hn = σ̂Z

(
4

3n

)1/5

where σ̂Z is the standard error of the Zi’s.

We show that the sub-density functions f1 and f2, conditional on Z = z, are defined by:

fi(t|z) = ez(λi + θt) exp(−ez(λ1 + λ2 + θt)t),

for t ≥ 0 and i = 1, 2. Then we have for j = 1, 2

rj(z) =

∫
R+

ψ(t)fj(t|z)dt ≡ E[ψ(X)I(η = j)].

The above quantities are calculated numerically and compared with r̂jn(z) for various inte-
grable functions ψ and for various values of z. In Fig. 1 for ψ(t) = t, we compare for several
values of n, z 7→ r1(z) = E(T1I(η = 1)|z) (z ∈ [0, 2]) with its estimate z 7→ r̂1n(z). We can
check that the expected consistency property is satisfied. It is also interesting to see in Tab.
1 that our estimators are consistent and that both the bias and the standard deviations of
our estimators tend to 0 as the sample size increases.

z 0 1 2

E1[T1|z] 1.399 0.556 0.212

n = 200 1.420 (0.526) 0.575 (0.224) 0.219 (0.194)
n = 500 1.439 (0.363) 0.573 (0.161) 0.223 (0.131)
n = 1000 1.380 (0.270) 0.568 (0.121) 0.221 (0.101)

Table 1. Estimation of E(T1I(η = 1)|z) for z ∈ {0, 1, 2}: mean and standard deviation
(within parenthesis) of N = 1000 estimates for various sample sizes n.

As we said in the introduction, taking a family of functions {ψs; s ≥ 0} such that ψs(x) =
I(x ≤ s) we have E[ψs(X)I(η = j)|z] = Fj(s|z). Then, it follows by (3) that

1

fn(z)

∑
{i;Yi≤s}

I(ξi = j)Khn(z − Zi)

Ḡn(Yi)
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Fig. 1. Comparison of the conditional expectation z 7→ E(T1I(η = 1)|z) (dashed line) and
its estimates (solid line) for various values of n.

is a consistent estimator of Fj(s|z). In Fig. 2–4 are given the estimates of F1(·|z) for z ∈
{0, 1, 2} and n ∈ {200, 500, 1000, 5000}. We can check that the the estimator behaves well for
large sample size. For small or moderate sample size estimates can be more or less precise
when t is large especially when z is such that they are very few observations satisfying
Zi ∈ [z − hn, z + hn]; for z = 2 and n = 1000 there is (in mean) about 30 observations
accounted to estimate F1(·|2). This explains the poor performances of our estimators in
regions where the density f of Z has small values.

5. Concluding remarks

The estimation method we proposed is easy to implement and behaves quite well for mod-
erate sample size. In some applications the censoring mechanism may depend on some co-
variates. If the later is true we need to replace Ḡ by Ḡ(·|z) with an appropriate kernel type
estimator, but in this case (nhdn)

1/2(Ḡn(·|z) − Ḡ(·|z)) is no longer asymptotically negligi-
ble and its asymptotic behaviour plays a part in the asymptotic behaviour of r̂jn(z). This
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Fig. 2. Comparison of t 7→ F1(t|0) (dashed) and its estimates (solid) for various values of n.

case will be considered in further work together with convergence rate for uniform (in z)
consistency results.
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Appendix A: Proofs of technical results

Lemma 4. Let ℓ : Rd → R be a function continuous at z. Then, under Conditions D and
E we have ∫

Rd

Khn(z − s)ℓ(s)ds→ ℓ(z), as n→ +∞.

Proof. Remark that∣∣∣∣∫
Rd

Khn(z − s)ℓ(s)ds− ℓ(z)

∣∣∣∣ =

∣∣∣∣∫
Rd

K(s) (ℓ(z + hns)− ℓ(z)) ds

∣∣∣∣
≤ sup

∥s∥∞≤1

|ℓ(z + hns)− ℓ(z)| sup
s∈Rd

|K(s)|
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Fig. 3. Comparison of t 7→ F1(t|1) (dashed) and its estimates (solid) for various values of n.

→ 0, as n→ +∞

since ℓ is continuous at z, hn → 0 and K is bounded with support included in [−1, 1]d. �

Lemma 5. Let ℓ : Rd → R be a function twice continuously differentiable at z. Then, under
Conditions D and E we have∣∣∣∣∫

Rd

Khn(z − s)ℓ(s)ds− ℓ(z)

∣∣∣∣ = O(h2dn ), as n→ +∞.

Proof. Remark that under assumptions D (ii) and F, since ∥un(z)− z∥ → 0 as n→ ∞,
we have for n large enough∣∣∣∣∫

Rd

Khn(z − s)ℓ(s)ds− ℓ(z)

∣∣∣∣ = ∣∣∣∣∫
Rd

K(s) (ℓ(z + hns)− ℓ(z)) ds

∣∣∣∣
≤
∣∣∣∣∫

Rd

K(s)

(
hdn

∂ℓ

∂st
(z)s+

h2dn
2
st

∂2ℓ

∂s∂st
(un(z))s

)
ds

∣∣∣∣ ,
≤ h2dn C0

∫
Rd

∥s∥2K(s)ds,

where C0 is a constant. The result follows from the last inequality. �
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Fig. 4. Comparison of t 7→ F1(t|2) (dashed) and its estimates (solid) for various values of n.

Proof of Lemma 1

Proof of (i). Under assumptions B, D and E and applying Lemma 4 with ℓ = f , we have
for n large enough E[fn(z)] = f(z) + o(1). Moreover, by assumptions D and E, Conditions
(2.11) and (K1) of Gin and Guillou (2002) are fulfilled. Applying their Theorem 2.3 we obtain
the strong convergence of fn(z) − E[fn(z)] to 0 as n → +∞. It follows that fn(z) − f(z)
converges almost surely to 0 as n→ +∞.

Proof of (ii). By assumption A we have G(τz) > 0 and FX(τz) < 1. Moreover C and X
are independent and their cumulative distribution functions do not have jumps in common.
Hence this is a consequence of Corollary 1.3 of Stute and Wang (1993).

Proof of (iii). For fixed z ∈ Rd, let fn,t be defined by

fn,t(y, x, s) = I(y ≤ t, x = j)Khn (z − s) , j ∈ {1, · · · ,m}, s ∈ Rd

and
Fn = {fn,t; t ∈ [0, τz]}.

Let us consider the following brackets [fn,ti−1 , fn,t−i
] with

fn,t−(y, x, z) = I(y < t, x = j)Khn (z − s) , j ∈ {1, · · · ,m}, s ∈ Rd

and Hj(t
−
i |z)−Hj(ti−1|z) < ε. We show (see the proof of Lemma 2) that for n large enough

we have
E
[
fn,ti(Y, ξ, Z)− fn,t−i−1

(Y, ξ, Z)
]
≤ 2εf(z),
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then

N[ ]

(
2εf(z),Fn, L

1(P)
)
≤ 2

ε
.

Consequently, following the lines of the proof of Theorem 2.4.1 in van der Vaart and Wellner
(1996) we show that Fn is P–Glivenko-Cantelli. Finally, we have

Kjn(t|z)−Kj(t|z) =
1

n

n∑
i=1

(fn,t(Yi, ξi, Zi)− E [fn,t(Yi, ξi, Zi)])

+E [fn,t(Y, ξ, Z)]−Kj(t|z),
with

|E [fn,t(Y, ξ, Z)]−Kj(t|z)|

≤
∫
Rd

|Hj(t|s)f(s)−Hj(t|z)f(z)|Khn(z − s)ds

≤ sup
t∈[0,τz ]

sup
∥u∥∞≤hn

|Hj(t|z + u)f(z + u)−Hj(t|z)f(z)|
∫
Rd

K(u)du

≤ sup
t∈[0,τz ]

sup
∥u∥∞≤hn

|Hj(t|z + u)f(z + u)−Hj(t|z)f(z)| = o(1),

by assumptions B–E. Hence we obtain

sup
t∈[0,τz ]

|E [fn,t(Y, ξ, Z)]−Kj(t|z)| → 0 as n→ +∞.

This together with the fact that Fn is P–Glivenko-Cantelli lead to the wanted result. �

Proof of Lemma 2

Since the first component does not depend on t and the weak limit of the second component
is degenerated, we obtain the weak convergence of the whole vector by proving that each
component of the vector converges weakly.

Convergence of the first component. Applying the Lindeberg-Feller theorem (see e.g.
van der Vaart, 1998) to

√
nhdn(fn(z)− E[fn(z)]) we derive the weak limit Nz. To prove the

result we need in addition to show that√
nhdn(E[fn(z)] − f(z)) → 0 as n → +∞, which is obtained by applying Lemma 5 with

ℓ = f under assumptions B–F. Finally we obtain the variance of Nz by calculating, using
Lemma 4, the limit of nhdnVar(fn(z)).

Convergence of the second component. Under Assumption A, conditions on G and
independence conditions on (T1, . . . , Tm, Z, C) we have (see Andersen et al., 1993)

√
n
(
Ḡn − Ḡ

)
 B, in D[0, τz], as n→ +∞

where B is a centred gaussian process on [0, τz]. By the continuous mapping theorem we
have for n large enough supt∈[0,τz ]

∣∣√n (Ḡn(t)− Ḡ(t)
)∣∣ = OP (1), and then

sup
t∈[0,τz ]

∣∣∣∣√nhdn (Ḡn(t)− Ḡ(t)
)∣∣∣∣ = OP (h

d/2
n ) = oP (1),
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since by Assumption E we have hn ↘ 0. It follows that
√
nhdn

(
Ḡn − Ḡ

)
 0 as n→ +∞.

Convergence of the third component. For fixed z ∈ Rd, let fn,t be defined by

fn,t(y, x, s) =
1

h
d/2
n

I(y ≤ t, x = j)K

(
z − s

hn

)
, j ∈ {1, · · · ,m}, s ∈ Rd

and
Fn = {fn,t; t ∈ [0, τz]}.

Since K is positive we have

sup
t∈[0,τz ]

|fn,t| ≤ Fn =
1

h
d/2
n

K

(
z − s

hn

)
.

Moreover since by Assumption E hn → 0 as n → +∞ and since by Assumption B f is
continuous at z, applying Lemma 4 with kernel K2/∥K∥2L2(Rd) we have

E[F 2
n ] =

∫
Rd

1

hdn
K2

(
z − s

hn

)
f(s)ds

=

∫
Rd

1

hdn
K2 (s) f(z + hns)ds

= ∥K∥2L2(Rd)f(z) + o(1), n→ +∞.

Now, since K is bounded and by Assumption E nhdn → +∞, we have for ε > 0

E[F 2
nI(Fn >

√
nε] =

∫
Rd

1

hdn
K2

(
z − s

hn

)
f(s)I

(
K

(
z − s

hn

)
>
√
nhdnε

)
ds

→ 0, as n→ +∞.

Let us consider the pseudo-distance ρj defined by

ρj(s, t) = |Hj(s|z)−Hj(t|z)|.

For 0 ≤ s ≤ t ≤ τz and ρj(s, t) ≤ ρn, we have by Assumption F and the fact that hn → 0
under E

E
[
(fn,t(Y, ξ, Z)− fn,s(Y, ξ, Z))

2
]

=

∫
Rd

1

hdn
E [I(Y ∈ (s, t]; ξ = j)]K2

(
z − u

hn

)
f(u)du

=

∫
Rd

(Hj(t|u)−Hj(s|u))
1

hdn
K2

(
z − u

hn

)
f(u)du

≤

(
2 sup
∥u∥∞≤1

sup
t∈[0,τz ]

|Hj(t|z + hnu)−Hj(t|z)|+ ρj(s, t)

)
∫
Rd

K2(u)f(z + hnu)du

≤ (o(1) + ρn)O(1) → 0, as n→ +∞
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if ρn → 0. Now let us show that the integral entropy J[ ](δn,Fn, L
2(P)) → 0 as δn → 0. Let

us consider the following brackets

[fn,ti−1 , fn,t−i
]

with

fn,t−(y, x, z) = I(y < t, x = j)
1

h
d/2
n

K

(
z − s

hn

)
,

and Hj(t
−
i |z)−Hj(ti−1|z) < ε. After some calculations similar to the above ones we obtain

E
[(
fn,t−i

(Y, ξ, Z)− fn,ti−1(Y, ξ, Z)
)2]

≤ 2εf(z)∥K∥2L2(Rd),

for n large enough. Then it is straightforward that for n large enough

N[ ](2εf(z)∥K∥2L2(Rd),Fn, L
2(P)) ≤ 2

ε
,

which leads to

N[ ](ε,Fn, L
2(P)) ≤

4f(z)∥K∥2L2(Rd)

ε
.

Finally, because of the above upper bound for N[ ](ε,Fn, L
2(P)), we have

J[ ](δn,Fn, L
2(P)) =

∫ δn

0

√
logN[ ](ε,Fn, L2(P))dε→ 0,

as n → +∞. All assumptions of Theorem 19.28 (van der Vaart, 1998) being satisfied we
obtain that the empirical process

Gjn(t) =
1√
n

(
n∑

i=1

fn,t(Yi, ξi, Zi)− Efn,t(Yi, ξi, Zi)

)

satisfies

Gjn  Gj as n→ +∞

where Gj is a tight centred gaussian process on [0, τz] with correlation function defined for
s, t ∈ [0, τz] by

E [Gj(t)Gj(s)] = lim
n→∞

E[fn,tfn,s]− E[fn,t]E[fn,s].

By using repeatedly Lemmas 4 and 5 we have as n→ +∞

E[fn,sfn,t] =
∫
Rd

Hj(s ∧ t|u)
1

hdn
K2

(
z − u

hn

)
f(u)du→ Hj(s ∧ t|z)f(z)∥K∥2L2(Rd).

It is easy to check that E[fn,t(Y, ξ, Z)] = O(h
d/2
n ) → 0 as n→ +∞. We have

E[Gj(s)Gj(t)] = Hj(s ∧ t|z)f(z)∥K∥2L2(Rd).
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It remains to study the bias term. Following the lines of Lemma 5 proof we have for n large
enough√

nhdn |E [I(Y ≤ t; ξ = j)Khn(z − Z)]−Hj(t|z)f(z)|

=
√
nhdn

∣∣∣∣∫
Rd

Hj(t|s)f(s)Khn(z − s)ds−
∫
Rd

Hj(t|z)f(z)Khn(s)ds

∣∣∣∣
≤
√
nhdn

∣∣∣∣∫
Rd

K(u)

(
hdn

∂

∂st
Hj(t|s)f(s)|u=zu +

h2dn
2
ut

∂2

∂s∂st
Hj(t|s)f(s)|un(z)u

)
du

∣∣∣∣
≤
√
nh5dn C0

∫
Rd

∥u∥2K(u)du = o(1),

where ∥un(z) − z∥ → 0 as n → ∞, and where C0 does not depend on t since the second
derivative of s 7→ Hj(t|s)f(s) is continuous at z uniformly in t ∈ [0, τz] by Assumption F.
Thus the bias is asymptotically negligible since nh5dn → 0as n→ +∞ by Assumption E.

Correlation between the first and third components. By Lemma 4 we have for n
large enough E[fn(z)] = f(z) + o(1) and E[Kjn(t|z)] = Kj(t|z) + o(1), then we can write

nhdnE {(fn(z)− E[fn(z)]) (Kjn(t|z)− E[Kjn(t|z)])}

= E
[
I(Y ≤ t, ξ = j)K

2

hn
(z − Z)

]
− hdnE[fn(z)]E[Kjn(t|z)]

=

∫
Rd

Hj(t|s)f(s)
1

hdn
K2

(
z − s

hn

)
ds− hdn {f(z) + o(1)} {Kj(t|z) + o(1)}

= Kj(t|z)∥K∥2L2(Rd) + o(1) +O(hdn),

where the last equality holds applying Lemma 4 with kernel K2/∥K∥2L2(Rd) instead of K.

�

Proof of Lemma 3

Recall that ϕ : (0,+∞)×D[0, τz]×BVc[0, τz] → R with

ϕ(x, u, v) =
1

x

∫ τz

0

ψ(s)

u(s)
dv(s),

where BVc[0, τz] is the set of real-valued functions defined on [0, τz] with variation bounded
by c. Let us consider as t ↓ 0, h1t → h1 in R, and h2t → h2, h3t → h3 in D[0, τz] with
xt = x+ th1t, ut = u+ th2t and vt = v+ th3t such that vt ∈ BVc[0, τz]. We need to calculate
the limit for t ↓ 0 of

1

t
(ϕ(xt, ut, vt)− ϕ(x, u, v)) = −h1t

xt
ϕ(x, u, v)

+
1

xt

1

t

[∫ τz

0

ψ(s)

ut(s)
dvt(s)−

∫ τz

0

ψ(s)

u(s)
dv(s)

]
.
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It is obvious that the first term in the right hand side of the above equality tends to
−h1ϕ(x, u, v)/x whereas the limit of the second term is obtained following the lines of the
proof of Theorem 20.10 in van der Vaart (1998) and is equal to

1

x

([
h2(s)ψ(s)

u(s)

]τz
0

−
∫ τz

0

h−2 (s)d

(
ψ(s)

u(s)

)
−
∫ τz

0

ψ(s)h3(s)

u2(s)
dv(s)

)
.

Replacing (x, u, v) by (f(z), Ḡ,Kj(·|z)) in the above limits gives the Hadamard derivative.
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