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SYMPLECTIC EMBEDDINGS FROM CONCAVE TORIC
DOMAINS INTO CONVEX ONES

Dan Cristofaro-Gardiner

Abstract

Embedded contact homology gives a sequence of obstructions
to four-dimensional symplectic embeddings, called ECH capaci-
ties. In “Symplectic embeddings into four-dimensional concave
toric domains”, the author, Choi, Frenkel, Hutchings and Ramos
computed the ECH capacities of all “concave toric domains”, and
showed that these give sharp obstructions in several interesting
cases. We show that these obstructions are sharp for all sym-
plectic embeddings of concave toric domains into “convex” ones.
In an appendix with Choi, we prove a new formula for the ECH
capacities of convex toric domains, which shows that they are de-
termined by the ECH capacities of a corresponding collection of
balls.

1. Introduction

1.1. The main theorem. It is an interesting problem to determine
when one symplectic manifold embeds into another. In dimension 4,
Hutchings’ “ECH capacities” [14] give one tool for studying this ques-
tion. ECH capacities are a certain sequence of nonnegative (possibly
infinite) real numbers

0 “ c0pX,ωq ď . . . ď ckpX,ωq ď 8,

associated to any symplectic four-manifold pX,ωq. The key property
they satisfy is the Monotonicity Axiom: if there exists a symplectic
embedding

pM1, ω1q Ñ pM2, ω2q,
then we must have

(1.1) ckpM1q ď ckpM2q,
for all k. ECH capacities therefore give an obstruction to symplectically
embedding one symplectic 4-manifold into another.

In [3], the author, Choi, Frenkel, Hutchings, and Ramos used ECH
capacities to study symplectic embeddings of “toric domains”. A toric
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Figure 1.1. A concave toric domain and a convex one.

domain XΩ is the preimage of a region Ω Ă R
2 in the first quadrant

under the map

μ : C2 Ñ R
2, pz1, z2q Ñ pπ|z1|2, π|z2|2q.

Toric domains generalize ellipsoids

Epa, bq “
"

pz1, z2q|π|z1|2
a

` π|z2|2
b

ď 1

*
,

where Ω is a right triangle with legs on the axes, balls Bpcq :“ Epc, cq,
and polydisks

P pa, bq “
"

pz1, z2q|π|z1|2
a

ă 1,
π|z2|2

b
ď 1

*
,

where Ω is a rectangle whose bottom and left sides are on the axes. The
paper [3] computed the ECH capacities of all “concave” toric domains,
and showed that these give sharp obstructions in several interesting
cases, for example, for all ball packings into certain unions of an ellipsoid
and a cylinder. The aim of the present article is to identify a large and
natural class of embedding problems involving toric domains for which
ECH capacities give a sharp obstruction. It turns out that in these
cases, ECH capacities can be computed purely combinatorially, and so
give considerable insight into the corresponding embedding problem.

To state our main theorem, first recall the “concave toric domains”
from [3]. These were defined as toric domains XΩ, where Ω is a region
in the first quadrant underneath the graph of a convex function f :
r0, as Ñ r0, bs, such that a and b are positive real numbers, fp0q “ b,
and fpaq “ 0. We call such an Ω a concave subset of the first quadrant
of R2.

We now define a related concept, see Figure 1.1.
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Definition 1.1. A convex toric domain is a toric domain XΩ, where
Ω is a closed region in the first quadrant bounded by the axes and a
convex curve from pa, 0q to p0, bq, for a and b positive real numbers.

Similarly to above, we call such an Ω a convex subset of the first
quadrant. Note that our definition of convex toric domain differs slightly
from the definition in [15].

If X is a symplectic four-manifold, let ckpX,ωq denote the kth ECH
capacity of X, reviewed in §5.1. We can now state the main theorem of
this paper:

Theorem 1.2. Let XΩ1 be a concave toric domain and let XΩ2 be a
convex toric domain. Then there exists a symplectic embedding

intpXΩ1q Ñ intpXΩ2q
if and only if

ckpintpXΩ1qq ď ckpintpXΩ2qq
for all nonnegative integers k.

We also remark that when an embedding of a concave toric domain
into a convex one exists, it is unique up to isotopy, see Proposition 1.5.
This is definitely not true for many other toric domains, see, for example,
[11].

Note that an ellipsoid is both concave and convex, while a polydisc
is convex. Thus, Theorem 1.2 generalizes well-known results of McDuff
[21] (where XΩ1 and XΩ2 are both ellipsoids) and Frenkel–Müller [10]
(where XΩ1 is an ellipsoid and XΩ2 is a polydisc). As mentioned above,
a purely combinatorial formula for the ECH capacities of concave toric
domains was given in [3]. In the appendix, we give a formula for the
ECH capacities of convex domains that generalizes the formula from [15,
Thm. 1.11], see Corollary A.12. These formulas involve counting lattice
points in polygons, and the combinatorics involved can be interesting
[9, 26, 4].

Here is an example of how one can use Theorem 1.2:

Example 1.3. Let XΩ1 be an ellipsoid and let XΩ2 be the convex
toric domain associated to a closed symplectic toric four-manifold X.
This means that Ω2 is a Delzant polygon for X (note that any Delzant
polygon is affine equivalent to a polygon Ω2 which is convex in the
sense of Definition 1.1). Then X contains the convex toric domain
XΩ2 , so Theorem 1.2 can be used to construct embeddings of ellipsoids
into X. In fact, it is shown in [7] that an ellipsoid embeds into X if
and only if it embeds into XΩ2 . Thus, Theorem 1.2 can be used to
understand exactly when an ellipsoid embeds into a closed symplectic
toric four-manifold. This is studied in [7], and the stabilized version of
this embedding problem (as in [5, 6]) could be interesting to study as
well.
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More examples are given in §4.4.

Remark 1.4. One could try to extend Theorem 1.2 to other classes
of toric domains. However, it is important to note that ECH capacities
definitely do not always give sharp obstructions to symplectic embed-
dings, even for toric domains. A notable example of this is given by
Hind and Lisi in [12, Thm. 1.1], where it is shown that a polydisc
P p1, 2q can be symplectically embedded into a ball Bpaq if and only if
a ě 3; ECH capacities only give the obstruction a ě 2. Interestingly,
recent work of Hutchings [15] shows that embedded contact homology
can still be used to derive strong obstructions to symplectic embeddings,
even when the obstructions coming from ECH capacities are weak. For
example, in [15] Hutchings defines new obstructions to embedding one
convex toric domain into another that can be used to recover the result
of Hind and Lisi from above. It is an interesting open question to deter-
mine how sharp these new obstructions are, for example, for symplectic
embeddings of one four-dimensional polydisc into another.

1.2. Idea of the proof and relationship with previous work.
As mentioned above, McDuff showed that ECH capacities give a sharp
obstruction to symplectically embedding one four-dimensional ellipsoid
into another. Here we use a similar method.

Central to both methods is the symplectic ball-packing problem; for
target a ball, this is the question of whether or not there exists a sym-
plectic embedding ž

i

Bpaiq Ñ Bpλq,

for positive real numbers λ, a1, . . . , an. McDuff showed in [20] that the
question of whether or not one rational ellipsoid can be symplectically
embedded into another is equivalent to the question of whether or not
a certain symplectic ball packing of a ball exists. In [23], it was then
shown that since ECH capacities are known to give a sharp obstruction
to all four-dimensional symplectic ball packing problems of a ball, they
give sharp obstructions to ellipsoid embeddings as well. Here we first
show that the question of embedding a “rational” concave toric domain
into a rational convex one is equivalent to a certain symplectic ball
packing problem, see Theorem 2.1 for the precise statement, and we
then use this to show that ECH capacities give a sharp obstruction to
embedding a concave domain into a convex one.

1.3. Connectivity of the space of embeddings. McDuff also showed
in [20] that the space of embeddings of one ellipsoid into another is con-
nected. To prove Theorem 1.2 and Theorem 2.1, it will be helpful to
show that this also holds for embeddings of a concave domain into a
convex one:
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Proposition 1.5. Let XΩ1 be a concave toric domain, let XΩ2 be a
convex toric domain, and let g0 and g1 be two symplectic embeddings:

XΩ1 Ñ intpXΩ2q.
Then there exists an isotopy

tΨtu0ďtď1 : intpXΩ2q Ñ intpXΩ2q,
such that Ψ0 “ id and Ψ1pg1q “ g0.

The following corollary will be particularly useful:

Corollary 1.6. Let XΩ1 be a concave domain and let XΩ2 be convex.
Then there is a symplectic embedding

intpXΩ1q Ñ intpXΩ2q
if and only if there is a symplectic embedding

XλΩ1 Ñ intpXΩ2q
for all λ ă 1.

1.4. ECH capacities of convex domains and ECH capacities of
balls. As explained in §1.2, the fact that ECH capacities are sharp for
these embedding problems essentially follows from the fact that they are
sharp for symplectic ball packings of a ball. In fact, the ECH capacities
of both of these domains are closely related to the ECH capacities of
balls. In [3], it was shown that the ECH capacities of any concave toric
domain are determined by the ECH capacities of a certain collection
of balls, see [3, Thm. 1.4] for the precise statement. In an appendix
with Choi, we show that this is also true for convex toric domains, see
Theorem A.1.
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from a slightly different point of view, and found relationships with ball-
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about this.

2. Weight sequences

In [20], McDuff introduced a set of real numbers determined by a
4-dimensional symplectic ellipsoid, called a weight sequence. We begin
by explaining how to extend this construction to concave and convex
toric domains.

2.1. The concave case. Weight sequences in the concave case were
defined by Choi, the author, Frenkel, Hutchings, and Ramos in [3]. We
begin by reviewing this definition.

First, recall that two subsets of R2 are affine equivalent if one can
be obtained from the other by multiplying by an element of SL2pZq
and applying a translation. Now let Ω be a concave subset of the first
quadrant of R2. The weight sequence of Ω is an unordered set of (pos-
sibly repeated) nonnegative real numbers wpΩq defined inductively as
follows. If Ω is a triangle with vertices p0, 0q, p0, aq and pa, 0q, then the
weight sequence of Ω is paq. Otherwise, let a ą 0 be the largest real
number such that Ω contains the triangle with vertices p0, 0q, p0, aq and
pa, 0q. Call this triangle Ω1. Then the line x ` y “ a intersects the
upper boundary of Ω in a line segment from px1, a´ x1q to px2, a´ x2q,
where x1 ď x2. Let Ω1

2 be the closure of the part of Ω to the left of x1
and above this line, and let Ω1

3 be the closure of the part of Ω to the
right of x2 and above this line, see Figure 2.1. Then, as explained in [3,
§1.3], Ω1

2 is affine equivalent to a canonical concave subset of the first
quadrant, which we denote by Ω2. Similarly, Ω1

3 is affine equivalent to a
canonical concave subset which will be denoted by Ω3. We now define
wpΩq “ wpΩ1qYwpΩ2qYwpΩ3q, where Y denotes the (unordered) union
with repetitions. In the inductive definition, note that wpΩq is defined
to be H if Ω “ H.

If XΩ is a concave toric domain, then we define the weight sequence
of XΩ to be wpΩq.
2.2. The convex case. We now define a similar weight expansion for
any convex toric domain. The definition of the weight sequence for
convex toric domains is similar to the definition of the weight sequence
for concave toric domains. If Ω is a triangle with vertices p0, 0q, p0, bq
and pb, 0q then the weight sequence of Ω is pbq. Otherwise, let b ą 0 be
the smallest real number such that Ω is contained in the triangle with
vertices p0, 0q, p0, bq and pb, 0q. Call this triangle Ω1. The line x ` y “ b
intersects the upper boundary of Ω in a line segment from px1, b ´ x1q
to px2, b ´ x2q, with x1 ď x2. Let Ω1

2 denote the closure of the portion
of Ω1zΩ that is to the left of x1 and below the line x ` y “ b, and let
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Figure 2.1. The inductive decomposition of convex and
concave toric domains.

Ω1
2 denote the closure of the portion of Ω1zΩ that is below b ´ x2 and

below the line x ` y “ b, see Figure 2.1.
The key point is now that Ω1

2 and Ω1
3 are both affine equivalent to

concave subsets, which we denote by Ω2 and Ω3, respectively. The
equivalence for Ω1

2 is given by translating down so that the top left
corner of Ω1

2 is at the origin, and then multiplying by the matrix M “` ´1 ´1
1 0

˘
, while the equivalence for Ω1

3 is given by translating so that the
bottom right corner is at the origin, and then multiplying by the matrix
M 1 “ `

0 1´1 ´1

˘
. We then define

wpΩq “ pb;wpΩ2q Y wpΩ3qq.
Thus, the weight sequence for a convex set consists of a number, and
then an unordered set of numbers. We call the first number in this
sequence the head, and we call the other numbers the negative weight
sequence. If XΩ is a convex toric domain, then we define the weight
sequence of XΩ to be wpΩq.
2.3. Ball packings. To simplify the notation, for a convex Ω, let

pBpΩq “
ž
i

Bpbiq,

where the bi are the negative weight expansion for Ω. Similarly, for a
concave Ω, let

BpΩq “
ž
i

Bpaiq,

where the ai are the weight expansion for Ω. Finally, call a concave or
convex domain rational if it has upper boundary that is piecewise linear
with rational slopes. This guarantees that the weight sequence for this
domain is finite.

Here is the key result that we want to prove, in order to prove The-
orem 1.2:
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Theorem 2.1. Let XΩ1 be a rational concave toric domain, let XΩ2

be a rational convex toric domain, and let b be the head of the weight
expansion for Ω2. Then there exists a symplectic embedding

intpXΩ1q Ñ intpXΩ2q
if and only if there exists a symplectic embedding

intpBpΩ1qq \ intp pBpΩ2qq Ñ intpBpbqq.
Note that the “only if” direction of Theorem 2.1 follows from the

“Traynor trick” [33], see, e.g., [3, Lem. 1.8] for the version we need,
and the definition of the weight expansion.

3. Embeddings of toric domains and embeddings of spheres

We now begin the proof of Theorem 2.1. We already showed the
“only if” direction, so we now show the converse. In this section, we
give the first part of the proof, which involves showing that to embed
a concave toric domain into a convex one, it is equivalent to embed a
certain chain of spheres into a blowup of CP 2.

3.1. Preliminaries. We start by recalling those details of the sym-
plectic blowup construction that are relevant to us. Let L denote the
homology class of the line in CP 2, and let ω0 denote the Fubini–Study
form, normalized so that xω0, Ly “ 1. Now suppose there is a symplec-
tic embedding

šm
i“1Bpaiq Ñ pCP 2, ω0q. We can remove the interiors

of the Bpaiq and collapse their boundaries under the Reeb flow to get a
symplectic manifold, called the blowup of the ball packing, which is dif-
feomorphic to CP 2#mCP 2, with a canonical symplectic form ω1. The
image of BBpaiq in this manifold is called the ith exceptional divisor. If
Ei denotes the homology class of the ith exceptional divisor, then the
cohomology class of ω1 is given by

PDrω1s “ L ´
mÿ
i“1

aiEi.

Another class which will be relevant for our purposes is the canonical
class K defined by

PDpKq :“ ´ 3L `
mÿ
i“1

Ei.

The class K is c1pT ˚Xq, as defined by any almost complex structure
compatible with ω1.

3.2. Blowing up a concave domain. Now let Ω be any rational con-
cave toric domain, and include XΩ into some large ball intpBpRqq, which
we can include into a pCP 2, ωq. We now mimic the definition of the
weight sequence to define a sequence of symplectic blowups of pCP 2, ωq
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that will produce one of the relevant chains of spheres, see Figure 3.1
for an illustration.

Let a be the largest real number such that Ω contains the triangle
with vertices p0, 0q, p0, aq and pa, 0q, let δ ą 0 be a sufficiently small real
number, and consider the triangle Δpa`δq with vertices p0, 0q, p0, a`δq
and pa ` δ, 0q. Thus, in Figure 3.1, Δpa ` δq is the triangle with legs
on both of the axes. Then there is a symplectic embedding Bpa` δq Ñ
BpRq. Blow up along Bpa ` δq.

Now the upper boundary of Δpa`δq intersects the complement of Ω in
the plane along a line segment between px1, a`δ´x1q and px2, a`δ´x2q
with x1 ă x2. Let Γ1 be the closure of the subset of Ω which is to the
left of x1 and above the line x ` y “ a ` δ, and let Γ2 be the closure of
the subset of Ω which is to the right of x2 and above this line. Then, as
in the definition of the weight sequence, Γ1 and Γ2 are affine equivalent
to concave subsets.

In the present context, this implies that we can iterate the procedure
from the previous paragraph to perform a symplectic blowup for each
element of the weight sequence for Ω. Each blowup produces a sym-
plectic sphere. The result of this sequence of blowups is a symplectic
manifold pCP 2#mCP 2, ω1q with a configuration of symplectic spheres
CΩ,δΩ , with one sphere for each element of the weight sequence. Here,
δΩ denotes a sequence of small real numbers corresponding to the δ for
each blow up.

Later, we will to speak of blowing up XΩ with respect to an embedding
g : XΩ Ñ M . This means performing the sequence of blowups from
above in M , via the embedding g, and we will denote the resulting
chain of spheres by CgpΩq,δΩ .

3.3. Blowing up a convex domain. We now define a similar se-
quence of blowups if Ω is a rational convex domain. Specifically, let b
be the head of the weight sequence for Ω, and choose a small δ ą 0.
The line x`y “ b´δ intersects Ω in a line segment from px1, b´δ´x1q
to px2, b ´ δ ´ x2q, where x1 ă x2. Let Δpb ´ δq be the triangle with
vertices p0, 0q, pb ´ δ, 0q and p0, b ´ δq. Let Γ1 be the closure of the
region of the complement of Ω in Δpb ´ δq that is to the left of x1,
and let Γ2 be the closure of the region of the complement that is below
b ´ δ ´ x2.

We showed in the definition of the weight sequence that Γ1 and Γ2 are
affine equivalent to concave toric domains. We can, therefore, apply the
procedure from §3.2 to associate a symplectic blow up of pCP 2, pb´δqω0q
to each term in the negative weight sequence for Ω. This gives a sym-
plectic manifold pCP 2#nCP 2, ω2q with a configuration of symplectic

spheres which we denote by pCΩ,δΩ . As in the previous section, δΩ de-
notes a choice of small real numbers corresponding to the δ in this blow
up construction.
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Figure 3.1. Blowing up a rational concave domain XΩ.
In this case, the upper boundary of Ω consists of two line
segments; to blow up Ω, we perform four blowups, which
are illustrated by the four thickened lines. The first blow
up removes the right triangle with legs on both axes, and
upper boundary a thickened line. The next two blow ups
correspond to the two regions that touch one of the axes;
the order in which we do these two blowups is irrelevant.
We then do one last blow up, corresponding to the trian-
gle with all edges thickened lines. The canonical weight
sequence decomposition of the domain is also shown, in
which we have partitioned Ω into four regions each of
which are affine equivalent to right triangles. The lines
demarcating these regions are thin.

3.4. Inner and outer approximations. Our blowup procedure is
closely related to the inner and outer approximations from [20]. To
elaborate, consider first the blow up procedure for rational concave Ω.
Our blowup procedure shows that we can define another concave toric
domain, called an outer approximation to Ω, such that the sequence of
blowups removes the interior of the outer approximation and collapses
the boundary of the outer approximation to the configuration of spheres
CΩ,δ. Denote the outer approximation to Ω by Ωout

δ . For example, in the
situation illustrated in Figure 3.1, the outer approximation is the max-
imum concave set bounded by the axes and segments of the thickened
lines.

Similarly, if Ω is convex, then our blowup procedure shows that we can
define another convex toric domain, called an inner approximation to Ω,
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denoted Ωin
δ , such that the sequence of blowups removes the complement

of the inner approximation in Bpb ´ δq and collapses the boundary of

the inner approximation to the configuration of spheres pCΩ,δΩ .

3.5. Embedding equivalences. The previous subsections defined

chains of spheres CΩ1,δΩ1
\ pCΩ2,δΩ2

. Define a symplectic embedding of
this chain into a symplectic manifold X to be a map of the disjoint
union into X such that the image of the spheres intersect transversally,
the map restricts to each individual sphere as a symplectic embedding,
and the intersection matrix of the chain in X agrees with the intersec-

tion matrix of the chain CΩ1,δΩ1
\ pCΩ2,δΩ2

. (Note that our intersection

matrix includes the self-intersections of each sphere.)

Proposition 3.1. Let Ω1 be a rational concave toric domain, and
let Ω2 be a rational convex toric domain. Let m be the length of the
weight expansion for Ω1, and let n be the length of the negative weight
expansion for Ω2. If there is a symplectic form ω on CP 2#pm`nqCP 2

such that there is a symplectic embedding

CΩ1,δΩ1
\ pCΩ2,δΩ2

Ñ pCP 2#pm ` nqCP 2, ωq,
then there is a symplectic embedding

XΩ1 Ñ intpXΩ2q.
To prove the proposition, we will need to use the following result:

Theorem 3.2. (Gromov–McDuff [25, Thm. 9.4.2])
Let pM,ωq be a connected symplectic 4-manifold with no symplec-

tically embedded 2-spheres of self-intersection ´1. Assume that there
exists a symplectomorphism

Ψ : R4zV Ñ MzK,

where K Ă M is compact, and V Ă R
4 is compact and star-shaped with

respect to the origin. Then for every open neighborhood U of K, pM,ωq
is symplectomorphic to pR4, ωstdq by a symplectomorphism that agrees
with Ψ´1 on MzU .

We can now give:

Proof of Proposition 3.1. By assumption, there is a symplectic em-
bedding

CΩ1,δΩ1
\ pCΩ2,δΩ2

Ñ pCP 2#pm ` nqCP 2, ωq.
We can make a small perturbation to this embedding so that all in-
tersections are symplectically orthogonal, see, for example, [20, Lem.
2.2].

Now consider the embedding

CΩ1,δΩ1
Ñ pCP 2#pm ` nqCP 2, ωq.
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A version of the symplectic neighborhood theorem [31, Prop. 3.5] now
implies that a neighborhood of these spheres can be identified with a
neighborhood of the chain of spheres in the manifold pCP 2#mCP 2, ω1q
that was constructed in §3.2 by blowing up the outer approximation.
We can, therefore, remove the CΩ1,δΩ1

and glue in a copy of XΩout
1,δ1

to

get a new symplectic manifold Z̃ which admits a symplectic embedding

of XΩ1 whose image avoids a small neighborhood of pCΩ2,δΩ2
. By again

applying the symplectic neighborhood theorem [31, Prop. 3.5], this
neighborhood can be identified with a neighborhood of the chain of
spheres constructed in §3.3 by blowing up the inner approximation.

Let Z denote the complement of pCΩ2,δΩ2
in Z̃. As above, we can glue in

a copy of R4zXintpΩin
2,δΩ2

q to Z. This gives a symplectic manifold pM,ωq.
Since H2pMq “ 0, M cannot contain any symplectically embedded ´1
spheres. For r ă 1 close to 1, we can choose a symplectomorphism
Ψ : MzK Ñ R

4zXr¨Ωin
2,δΩ2

for some compact K Ă M . The set Xr¨Ωin
2,δΩ2

is star-shaped with respect to the origin, since if v P Xr¨Ωin
2,δΩ2

then so

is tv for all 0 ď t ď 1 as r ¨ Ωin
2,δΩ2

is itself star-shaped with respect

to the origin. Now regard Z as a neighborhood of K in M , and apply
Theorem 3.2 to M with U “ Z. This produces a symplectomorphism
between pM,ωq and pR4, ωstdq that maps Z to XintpΩin

2,δΩ2
q. q.e.d.

4. Applying inflation

In this section, we prove Theorem 2.1.
Let Ω1 be concave and Ω2 convex. We already proved the “only

if” direction of the theorem, so we just have to produce an embedding
intpXΩ1q Ñ intpXΩ2q, assuming that a certain ball packing exists. By
Proposition 3.1, it suffices to find a symplectic embedding

CΩ1,δΩ1
\ pCΩ2,δΩ2

Ñ pCP 2#pm ` nqCP 2, ωq,
where ω is any symplectic form. If we choose r sufficiently small, then
we can construct a symplectic embedding

Cr¨Ω1,δΩ1
\ pCΩ2,δΩ2

Ñ pCP 2#pm ` nqCP 2, ωq,
for some ω, by the procedure in §3.2 and §3.3. We now want to change
the areas of the spheres in Cr¨Ω1,δΩ1

, keeping them symplectic. We

accomplish this by using the “inflation” method, from (for example)
[20, 24, 1].

4.1. Review of inflation. We begin by reviewing the inflation method.
We first need to recall the aspects of Taubes’ “Seiberg–Witten = Gro-

mov” theorem that we will need. Let pX,ωq be a closed symplectic 4-
manifold, and let b`

2 pXq denote the dimension of the maximal subspace
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H`
2 pX,Rq of H2pX,Rq on which the intersection form is positive defi-

nite. If A P H2pX;Zq and b`
2 pXq ě 1, then Taubes’ Gromov invariant

GrpAq is defined by counting certain mostly embedded J-holomorphic
curves in class A, for generic ω-compatible almost complex structure
J , see, for example, [16, §2] for details. A symplectic form ω defines a
spinc structure sω, and the “Seiberg–Witten = Gromov” theorem [32]
states that there is an equivalence

(4.1) GrpAq “ SW pAq,
where SW pAq denotes the Seiberg–Witten invariant of the spinc struc-
ture sω ` PDpAq, see [18]. When b`

2 pXq “ 1, which is the situation in
the present work, the Seiberg–Witten invariant also depends on a choice
of “chamber”, which we can identify with a choice of orientation of the
line H`

2 pX;Rq; in this case, in (4.1) we choose the chamber determined
by the cohomology class of the symplectic form.

Now recall that a symplectic divisor is a union of symplectically em-
bedded surfaces which intersect transversally and symplectically orthog-
onally, while an exceptional class E P H2pXq is a class E represented by
a symplectically embedded ´1 sphere. Here is the main result from the
theory of inflation that we use:

Proposition 4.1. [24, Lem. 1.2.11] Let pX,ωq be a symplectic man-
ifold, A P H2pXq, and S a symplectic divisor. Assume:

(i) A ¨ A ą 0,
(ii) A ¨ E ě 0 for all exceptional classes E,
(iii) A ¨ Si ě 0 for every component Si of S,
(iv) X has nonzero Gromov invariant in class A.

Then for any s ě 0, the class

rωs ` sPDpAq
has a symplectic representative that is nondegenerate on S.

The idea of the proof of Proposition 4.1 is that since the manifold
X has nontrivial Gromov invariant in class A, we can find a symplectic
submanifold T in class A. We use condition (ii) to guarantee that T is
connected, and then (i) to guarantee that T has positive self intersec-
tion. We then deform ω locally around T in the normal direction by
adding a certain closed 2-form that is 0 along T , see also Remark 4.2
below. The condition (iii) is needed to guarantee that these deforma-
tions of ω remain symplectic along S. A significant complication occurs
when S has at least one component that cannot be made J-holomorphic
and transverse for any J because of index considerations, because one
cannot simultaneously guarantee that S is J-holomorphic while J is also
suitably generic for defining Taubes’ Gromov invariant; however, these
difficulties can be overcome. For more details, see [24].
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Remark 4.2. The simpler case where A ¨ A “ 0, S is empty, and A
has an embedded connected symplectic representative T is illustrative.
Since A ¨ A “ 0, the normal bundle of C is trivial, and a neighborhood
of C can be identified symplectically with the symplectic product

(4.2) pC ˆ D2, ω|C ˆ ωstdq,
where D2 is a small disc. To find a deformation through symplectic
forms as in Proposition 4.1, we locally add p0, gprqωstdq to ω in the
neighborhood given by (4.2), where gprq is a nonnegative bump function.

In general, we can identify a neighborhood of T with a neighborhood
of the zero section in a complex Hermitian line bundle π : E Ñ C of
degree A ¨ A, so that the symplectic form is given by

π˚pω|Cq ` dpπr2βq,
where r is the radial distance function, and β is a certain connection
1-form on the unit circle bundle. We can now add

´dpgprqβq
to the symplectic form, where gprq is an appropriately chosen bump
function, see, e.g., [22, Lem. 1.1] for the details. The requirement
A¨A ě 0 is required to ensure that the form remains symplectic for large
s; in Proposition 4.1, we demand, in addition, that A ¨ A ą 0 to avoid
potential complications coming from multiply covered torii in Taubes’
Gromov invariant, although this assumption could be weakened.

To apply Proposition 4.1, we need conditions guaranteeing that cer-
tain classes have nonzero Gromov invariant. By (4.1), it is equivalent to
find spinc structures with nonvanishing Seiberg–Witten invariant. The
Seiberg–Witten invariants of blow ups of CP 2 were studied by Kro-
nheimer and Mrowka in [17]. Their results, combined with (4.1) and
known properties of the Seiberg–Witten invariant give the following, see
Remark 4.4 below:

Proposition 4.3. Let pM,ωq be a symplectic blow up of CP 2, and
let A P H2pM ;Zq. Assume that

(4.3) A2 ´ K ¨ A ě 0, rωs ¨ pPDpKq ´ Aq ă 0.

Then GrpAq ‰ 0.

Remark 4.4. A sketch of the proof of Proposition 4.3 is valuable in
order to understand why the conditions (4.3) appear. The equation

(4.4) rωs ¨ pPDpKq ´ Aq ă 0

guarantees that the manifold M has vanishing Gromov invariant in the
class PDpKq ´A, since (4.4) implies that any curve in class PDpKq ´A
would have to have negative area. Now the Seiberg–Witten invariants
satisfy a basic symmetry, called charge conjugation. In the case where
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b`
2 ě 2, charge conjugation states that the Seiberg–Witten invariants of
a spinc structure and its dual structure are the same up to sign, which
one expects from examining the unperturbed equations and applying
complex conjugation. In the situation of Proposition 4.3, where b`

2 “
1, a similar fact holds except that there is an additional complication
coming from the choice of chamber; the upshot for our purposes is that
when we combine the charge conjugation relation in the case b`

2 “ 1
with (4.1), we find that

(4.5) GrpAq ´ GrpPDpK ´ Aqq “ wpAq mod 2,

where wpAq is the wall-crossing number which is defined as the difference
between the two chambers of the Seiberg–Witten invariants of the spinc

structure corresponding to A, counted modulo1 2. This wall-crossing
number was computed in the cases we need by Kronheimer–Mrowka: as
explained in [29, Thm. 9.9], the condition

A2 ´ K ¨ A ě 0

implies that

(4.6) wpAq “ 1.

Since GrpPDpKq ´ Aq “ 0 as explained above, combining (4.5) with
(4.6) implies that GrpAq ‰ 0.

We will also need a “family” version of Proposition 4.1. To state
the variant that we use, recall that two symplectic forms are called
deformation equivalent relative to a symplectic divisor S if there is a
family of symplectic forms between them that restrict to nondegenerate
forms on S; they are called isotopic relative to S if one can choose
this family to have constant cohomology class. We call such a family a
connecting isotopy.

Theorem 4.5. [24, Thm. 1.2.12] Let pM,ωq be a symplectic blow up
of CP 2 and let ω1 be any symplectic form in the same cohomology class
as ω. Assume that ω and ω1 are deformation equivalent relative to S.
Then ω and ω1 are isotopic relative to S. Moreover, if ω “ ω1 near S
then we can choose the connecting isotopy to be constant near S.

The assumption in Theorem 4.5 that pM,ωq is a blowup of CP 2 is
sufficient for our purposes, but can be weakened; probably all that is
needed is that b`

2 pXq “ 1 so that X has enough nonvanishing Seiberg–
Witten invariants, see [24, Rmk. 1.2.14].

1There is a version of (4.5) that holds without reducing modulo 2 but we do not
need this.
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4.2. Connectivity. Having reviewed the inflation method, we can now
give the proof of Proposition 1.5, which states that the space of embed-
dings from a concave domain into a convex one is connected. We also
prove Corollary 1.6.

Proof of Proposition 1.5. The proof closely follows the proof of [20,
Cor. 1.6].

First, assume that Ω1 and Ω2 are rational, and let g0 and g1 be
symplectic embeddings of XΩ1 into intpXΩ2q. By applying Alexander’s
trick, see, e.g., the proof of [30, Prop. A.1], we can assume that g0 and
g1 agree with the inclusion of XrΩ1 into intpXΩ2q for sufficiently small r.

We will produce an isotopy between g0 and g1 by using Theorem 4.5.
Namely, as explained in §3.2, we can blow up XΩ1 with respect to g0
to get a symplectic manifold pX0, ω0q with a symplectic divisor S “
Cg0pΩ1q,δΩ1

\ pCΩ2,δΩ2
. We can produce a family of symplectic forms on

X0 starting at ω0 by first blowing up t¨XΩ1 with respect to g0 as t ranges
from 1 to r, and then blowing up t ¨ XΩ1 with respect to g1 as t ranges
from r to 1, while identifying the underlying smooth manifolds of these
blow ups with X0 as in Step 2 of [22, §3]. This implies, in particular,
that the symplectic form ω1 on X0, given by blowing up along g1, is
deformation equivalent to the symplectic form ω “ ω0. We can assume,
in addition, that ω “ ω1 near S.

Now apply Theorem 4.5. This gives an isotopy of symplectic forms
on X0 that is constant near S. By Moser’s trick, this gives an isotopy
Ψ̂t of the symplectic manifold X0, which we can blow down to get an
isotopy Ψt of Ω2 taking g0 to g1.

Step 2. We now deduce the general case from the rational one.
We can extend the embeddings g0 and g1 to an open neighborhood

of Ω1, and so we can find a rational concave set Ω1
1 satisfying

Ω1 Ă Ω1
1,

such that g0 and g1 give symplectic embeddings

XΩ1
1

Ñ intpXΩ2q.
We can then pick a rational convex set Ω1

2 with

Ω1
2 Ă Ω2,

so that the images of XΩ1
1
under g0 and g1 lie in intpXΩ1

2
q. By the previ-

ous step, we can find an isotopy of intpXΩ1
2
q taking g0 to g1. Moreover,

since the isotopy of symplectic forms in the previous step was constant
near S, we can extend this isotopy to intpXΩ2q. q.e.d.

Proof of Corollary 1.6. Since for λ ă 1, XλΩ1 Ă XΩ1 , an embedding

intpXΩ1q Ñ intpXΩ2q
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induces an embedding

intpXλΩ1q Ñ intpXΩ2q
by composition.

In the other direction, given symplectic embeddings

XλΩ1 Ñ intpXΩ2q,
for all λ ă 1, we can choose a sequence of embeddings

gn : Xp1´1{nqΩ1
Ñ intpXΩ2q.

By applying Proposition 1.5, we can further assume that this sequence
of maps is nested. We can, therefore, construct the desired symplectic
embedding by taking the direct limit. q.e.d.

4.3. Inflating the spheres. We can now complete the proof of Theo-
rem 2.1 by using the inflation procedure.

Proof of Theorem 2.1. Let Ω1 be concave and Ω2 convex. We already
showed the “only if” direction of the theorem, so we just have to prove
the converse.

Step 1. By assumption, there is a symplectic embedding

(4.7) intpBpΩ1qq \ intpB̂pΩ2qq Ñ intpBpbqq.
Let the ai be the weights for Ω1 and the bi the negative weights for Ω2,
as defined in §2.

Because of the existence of the embedding (4.7), we can find a sym-
plectic embedding

(4.8) p
ž
i

Bpa1
iqq \ p

ž
j

Bpb1
jqq Ñ intpBpbqq,

where the a1
i and the b1

i are strictly smaller than the corresponding ai
and bi, but otherwise as close as we wish. For any λ ą 1, we can, in
addition, choose the a1

i, b
1
i so that pb; b1

1, . . . , b
1
nq is the weight sequence

for a rational convex toric domain Ω1
2 with the property that

(4.9) Ω1
2 Ă λ ¨ Ω2,

while the a1
i are the weights for a rational concave toric domain Ω1

1 with

(4.10)
1

λ
¨ Ω1 Ă intpΩ1

1q.
We can also assume that b, the a1

i and the b1
i are all rational.

We will show that because of the existence of an embedding (4.8),
there is an embedding

(4.11) intpXΩ1
1
q Ñ XΩ1

2
.

Step 2. Let r be small enough that r ¨ Ω1
1 Ă intpΩ1

2q. Since r ¨ Ω1
1 is

a concave toric domain, and Ω1
2 is a convex toric domain, we can apply
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the iterated blowup procedure from §3.2 and §3.3 to conclude that there
is a symplectic embedding

S “ Cr¨Ω1
1,δr¨Ω1

1

\ pCΩ1
2,δΩ1

2

Ñ pCP 2#pm ` nqCP 2, ω1q.
Let L denote the homology class of the line in this blowup, let

E1, . . . , Em be the exceptional classes associated to the blow ups for

r ¨ Ω1
1, and let pE1, . . . , pEn be the exceptional classes associated to the

blow ups for Ω1
2. Let � “ PDpLq, let ei “ PDpEiq, and let pej “ PDp pEjq.

By §3.1 we know that the cohomology class of ω1 is given by

rω1s “ b� ´
mÿ
i“1

pr ¨ a1
iqei ´

nÿ
j“1

b1
j êj ´ errpδq,

where errpδq denotes the error term coming from the δi parameters in
the iterated blowup construction, and limits to 0 as the δi do.

To show that a symplectic embedding (4.11) exists, we will show that
there is a symplectic embedding

CΩ1
1,δΩ1

1

\ CΩ1
2,δΩ1

2

Ñ pCP 2#pm ` nqCP 2, ωq,
for some symplectic form ω, so that we can appeal to Proposition 3.1.
The intersection matrix for the configuration CΩ1

1,δΩ1
1

\CΩ1
2,δΩ1

2

is the same

as the intersection matrix for S. Our strategy is then to find a symplectic
form ω2, different from ω1, that restricts to S as a nondegenerate form
with the property that the spheres in S have the same areas as the
spheres in CΩ1

1,δΩ1
1

\ CΩ1
2,δΩ1

2

.

Step 3. Consider the rational homology class

A :“ bL ´
mÿ
i“1

a1
iEi ´

nÿ
j“1

b1
jÊj ,

and choose a positive integer k such that kA is integral. We want to ap-
ply Proposition 4.1 to kA on the manifold M “ pCP 2#pm`nqCP 2, ω1q,
for sufficiently large integer k. To do this, we have to check that the
four conditions in the assumptions of Proposition 4.1 are satisfied.

The conditions in (4.3) are satisfied for sufficiently large k, so by
Proposition 4.3 we can assume that the manifoldM has nonzero Gromov
invariant in class kA. The condition k2pA ¨ Aq ą 0 holds because of the
existence of the embedding (4.8), since symplectic embeddings have to
preserve volume.

To see that the second condition in Proposition 4.3 holds, let E be an
exceptional class. Then by a result of Li–Li [19], E is an exceptional

class for any symplectic form on CP 2#pm ` nqCP 2. In particular, the
symplectic form ω that comes from blowing up along the ball packing
(4.8) has positive pairing with E , which implies that k ¨ A does as well.
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Finally, we can see that kA intersects any sphere in S nonnegatively

as follows. First, let Si be an element of pCΩ1
2,δΩ1

2

. Then the homology

class rSis of Si is in the span of L, Ê1, . . . , Ên, so

A ¨ rSis “ pbL ´
nÿ

j“1

b1
jÊjq ¨ rSis.

Since rω1s ¨ Si ą 0, we have

(4.12) pbL ´
nÿ

j“1

b1
jÊjq ¨ rSis ´ errpδq ¨ rSis ą 0.

We can choose the δi in the blow up construction as small as we would
like, and the relation (4.12) remains true. Hence, since errpδq goes to 0
as the δi do, we have A ¨ rSis ě 0 by continuity.

The case where Si is an element of CΩ1
1,δΩ1

1

is analogous. In this case,

rSis is in the span of E1, . . . , Em. Hence,

A ¨ rSis “ p´
mÿ
i“1

a1
iEiq ¨ rSis.

Now chooseR such that Ω1
1 Ă R¨intpΩ1

2q, and blow up to get a symplectic

form on CP 2#pm ` nqCP 2. This form pairs positively with rSis, so we
can repeat the argument from the previous paragraph to conclude that
A ¨ rSis ě 0 in this case as well.

Step 4. By the previous step, we are now justified in applying Propo-
sition 4.1. For any s ě 0, this gives a symplectic form ω1,s in cohomology
class

rω1,ss “ rω1s ` sk ¨ PDrAs,
that is nondegenerate along S. Now consider the symplectic form

1
1`skω1,s. We have

1

1 ` sk
rω1,ss “ b� ´

nÿ
j“1

b1
j êj ´

mÿ
i“1

a1
i

ˆ
r ` sk

1 ` sk

˙
ei ´ 1

1 ` sk
errpδq.

By choosing k sufficiently large, this gives an embedding

Cr¨Ω1
1,δ̃r¨Ω1

1

\ CΩ1
2,δΩ1

2

Ñ pCP 2#pm ` nqCP 2, ωq,

for r ă 1 arbitrarily close to 1, and appropriate choice of δ̃r¨Ω1
1
. Hence,

by Proposition 3.1, there is a symplectic embedding

Xr¨Ω1
1

Ñ XΩ1
2
,

hence, by Corollary 1.6 a symplectic embedding

(4.13) intpXΩ1
1
q Ñ XΩ1

2
.
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Step 5. By combining (4.9), (4.10), and (4.13), we, therefore, have
an embedding

1

λ2
XΩ1 Ñ XΩ2 ,

for any λ ą 1. Hence, by Corollary 1.6, there exists an embedding

intpXΩ1q Ñ XΩ2 ,

which must necessarily have image in the interior of XΩ2 . This com-
pletes the proof of the theorem. q.e.d.

Remark 4.6. It is a very interesting problem to try to understand
embeddings of other kinds of toric domains. For example, one can ask
under what conditions on pa, b, cq there exists a symplectic embedding

(4.14) P pa, bq Ñ B4pcq.
It does not seem possible to answer this question using only the methods
in this paper. For studying embeddings as in (4.14) in a systematic way
using something like the method we develop here, a first step would be
to find an analogue of Proposition 3.1 for embeddings with domain a
polydisc, such that there exists a natural symplectic embedding of the
resulting chain of spheres up to differences in symplectic areas. The
method in §3.2 cannot be used to do this.

It would be valuable to explore whether any scheme at all like what
is done in this paper could be used to study (4.14), or to study similar
problems. Certainly new ideas would be needed for this. It is important
to warn though that there are definitely differences between embeddings
of concave toric domains into convex ones, and embedding problems like
(4.14). For one thing, as has been already pointed out, ECH capacities
do not always give a sharp obstruction to (4.14). Also, by Proposi-
tion 1.5, symplectic embeddings of concave toric domains into convex
ones are unique up to isotopy when they exist, which is known not to be
true for certain problems like (4.14). There are natural symplectic pack-
ings of polydiscs by balls, and one could hope for some generalizations
of the weight sequence and Theorem 1.2 along these lines. However,
this looks problematic as well. For example, the polydisc P p1, 2q has a
natural decomposition into four disjoint B4p1q, but it is not true that an
embedding of \4

i“1B
4p1q implies the existence of an embedding P p1, 2q

since the former domain embeds into B4p2q but as stated in the intro-
duction the domain P p1, 2q does not.

4.4. Examples. We now present several illustrative examples.

Example 4.7. Weight sequences are not unique. Let Ω be the rectan-
gle with vertices p0, 0q, p1, 0q, p0, 1q and p1, 1q, and let Ω1 be the triangle
with vertices p0, 0q, p2, 0q and p0, 1q. Then XΩ is a polydisk and X 1

Ω is an
ellipsoid. Both Ω and Ω1 are convex (we could also regard Ω1 as concave,
although for this example we do not want to), and the weight sequence
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for both is given by p2, 1, 1q; in particular, both have the same weight
sequence. This shows that weight sequences are not unique. Also, by
Theorem 2.1, a concave domain embeds into XΩ if and only if it em-
beds into XΩ1 . This generalizes a result of Frenkel and Mueller [10,
Cor. 1.5], which proves this when the domain is an ellipsoid (our proof
is also different from theirs).

Example 4.8. Constraints on weight sequences? Let pa0, . . . , anq be
any finite sequence of nonincreasing real numbers. We now explain why
we can always construct a concave toric domain with weight sequence
pa0, . . . , anq. This concave domain will have the property that at each
step in the inductive definition of the weight sequence, the domain Ω1

2

from §2 is empty (we will call such a domain short). By induction,
we can assume that we can construct a short rational concave domain
Ω0 with weight sequence pa1, . . . , anq. Now, consider the triangle Δpa0q
with vertices p0, 0q, pa0, 0q and p0, a0q. Multiply Ω0 by the matrix

`
1 ´1
0 1

˘
and then translate the result by pa0, 0q. Let Ω be formed by taking the
union of this region with Δpa0q. Then by construction Ω is a short
concave domain with weight sequence pa0, . . . , anq. Thus, any possible
ball packing problem of a ball can arise by applying Theorem 2.1. This
is to be compared with the case of embedding an ellipsoid into a ball.
For example, it is shown in [26, Lem. 1.2.6] that if a “ p{q is rational,
then the weights pa1, . . . , amq of Ep1, aq are required to satisfy

mÿ
i“1

a2i “ a,
mÿ
i“1

ai “ a ` 1 ´ 1

q
.

Example 4.9. Billiards. Another simple example of a symplectic
four-manifold is the Lagrangian bidisk

PL :“ tpp1, q1, p2, q2q P R
4 | p21 ` p22 ď 1, q21 ` q22 ď 1u.

The domain PL is the state space for a circular billiard table, and is
of interest in dynamics. After the first version of this paper appeared,
Ramos [28] showed that the interior of PL is, in fact, symplectomorphic
to the interior of a concave toric domain. Thus, Theorem 1.2 can be
used to produce embeddings of intpPLq into many targets. Ramos used
Theorem 1.2 to produce optimal embeddings of intpPLq into balls and
ellipsoids, for example, he showed that there is a symplectic embedding

PL Ñ B4p3?
3q,

and no embedding into a smaller ball exists, answering a question of
Ostrover.

Ramos’ argument involves producing a toric action on subsets of PL

and examining the moment image. As mentioned in Example 1.3, con-
vex toric domains naturally arise from toric actions on closed symplectic
manifolds, and it would be interesting to look for situations as in the
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case of PL where concave toric domains naturally arise from toric actions
on noncompact sets.

Example 4.10. Flexibility. For convex toric domains XΩ, determin-
ing the set of a such that there exists a symplectic embedding

(4.15) intpEp1, aqq Ñ
c

a

volpXΩq ¨ intpXΩq

is often subtle. Here, by volpXΩq we mean twice the area of Ω; the
equation (4.15) then implies that the ellipsoid fills all of the volume of
the target, so we call such an embedding a full filling. For example, let
T be the trapezoid with vertices p0, 0q, p0, 1q, p1, 1q and p2, 0q; this is the
moment polytope for the first Hirzebruch surface. The weight sequence
of XT is p2; 1q. By combining Theorem 2.1 with the algorithm from [2,
§2.3], there exists a symplectic embedding

E
`
1, 3 ¨ p49{30q2˘ Ñ 49{30 ¨ intpXT q,

in particular, for a “ 3 ¨ p49{30q2 « 8.0033 a full filling of intpXT q as in
(4.15) exists.

However, for 8 ď a ă 3 ¨ p49{30q2, no such full filling exists. We can
see this as follows. First, as we explain in the appendix, we can compute
the ECH capacities of XT using Theorem A.1. We can also compute the
ECH capacities of Epa, bq by the formula we review in §5.1, see (5.1).
In particular, we have

c175pXT q “ 30, c175pEp1, 8qq “ 49,

so by the Monotonicity Axiom for ECH capacities (1.1) and the Scaling
Axiom (5.3), if for a “ 8 there exists a symplectic embedding

intpEp1, aqq Ñ λ ¨ intpXT q,
then we must have λ ě 49{30. In particular, if a ě 8, then the same
constraint on λ must hold, so for 8 ď a ă 3 ¨ p49{30q2 we cannot have a
full filling, as claimed.

Example 4.11. A sample calculation. We now work through a more
extended example in detail, see Figure 4.1.

Let Ω1 be the domain whose upper boundary has vertices

p0, 10{3q, p2{3, 4{3q, p4{3, 2{3q, p7{3, 0q,
and let Ω2 be the domain whose upper boundary has vertices

p0, 1q, p1, 2q, p5, 0q.
Then the weight expansion of Ω1 is p2, 2{3, 2{3, 1{3, 1{3q and the weight
expansion of Ω2 is p5, 3, 2, 1q, see Figure 4.1.
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Figure 4.1. The target for Example 4.11. We have
drawn the canonical decomposition given by the weight
sequence (remember that the weight sequence for Ω2

gives a decomposition of the complement of Ω2 in a ball).
The upper boundary of the inner approximation of Ω2 is
also shown.

By Theorem 2.1, to see if intpXΩ1q embeds into intpXΩ2q, it is equiv-
alent to see if there is a ball packing

intpBp2{3q \ Bp2{3q \ Bp2q \ Bp1{3q
\ Bp1{3q \ Bp3q \ Bp2q \ Bp1qq Ñ Bp5q.(4.16)

One can check, e.g., by applying the algorithm from [2, §2.3], that, in
fact, such a ball packing exists. Hence, there is a symplectic embedding
intpXΩ1q Ñ intpXΩ2q. In fact, this embedding is optimal (e.g., by [2,
§2.3] again applied to (4.16)), in the sense that no larger scaling of
intpXΩ1q embeds into intpXΩ2q.

To illustrate the concepts from the previous sections, note that there
are five spheres in the chain of spheres corresponding to the blow up
of r ¨ Ω1. Each sphere corresponds to a blow up, and if we label these
spheres in the order that they appear as edges of the outer approxi-
mation (with the first sphere the left most edge), and label the blow
ups they correspond to accordingly, then the spheres, from left to right,
have homology classes E1, E2 ´E1, E3 ´E2 ´E4 ´E5, E4 and E5 ´E4.

There are four spheres in the chain of spheres corresponding to the
blow up of Ω2 (including the sphere corresponding to the line at infinity).
If we label these spheres and the blowups with the same ordering con-

vention as above, then they have homology classes pE1, pE2 ´ pE1 ´ pE3, pE3,

and L ´ pE2 ´ pE3.
The cohomology class of the symplectic form on the blow up is given

in this notation by
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rω1s “ 5L ´ p2{3qre1 ´ p2{3qre2 ´ 2re3

´ p1{3qre4 ´ p1{3qre5
´ pe1 ´ 3pe2 ´ 2pe3
´

5ÿ
i“1

erripδ1qei ´
3ÿ

j“1

errjpδ2qpej .(4.17)

5. ECH capacities give sharp obstructions to embeddings of
concave domains into convex ones

In this section, we prove Theorem 1.2. We will first review the defi-
nition of ECH capacities in the cases that we need. We will also review
some formal properties that will be used in the proof.

5.1. Embedded contact homology. Let Y be a closed oriented three-
manifold. A contact form on Y is a one-form λ satisfying

λ ^ dλ ą 0.

A contact form determines a canonical vector field R by the equations

λpRq “ 1, dλpR, ¨q “ 0.

The vector field R is called the Reeb vector field, and the closed orbits
of R, called Reeb orbits, are of considerable interest. A contact form λ
is called nondegenerate if all Reeb orbits for λ are cut out transversally,
see [16, §1.3] for the precise definition.

Let pY, λq be a closed three-manifold with nondegenerate contact
form. The embedded contact homology of the pair pY, λq, denoted
ECH˚pY, λq, is the homology of a chain complex ECC˚pY, λq. The
chain complex ECC˚pY, λq is freely generated over Z{2Z by finite orbit
sets

α “ tpγi,miqu,
where the γi are distinct embedded Reeb orbits and the mi are positive
integers, with the constraint thatmi “ 1 whenever γi is hyperbolic. (We
could also define the chain complex over Z, but for the applications in
this paper we do not need this.) The chain complex differential d counts
“ECH index 1” J-holomorphic curves in RˆY , for a generic compatible
almost complex structure J . The ECH index induces a grading ˚ on
ECC such that the differential decreases the grading by 1. Taubes has
shown that there is a canonical isomorphism

ECH˚pY, λq – zHM
´˚pY q,

where zHM denotes the Seiberg–Witten Floer cohomology defined by
Kronheimer–Mrowka in [17]. In particular, the homology ECHpY, λq
depends neither on the choice of almost complex structure J , nor on λ,
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and so we sometimes denote it ECHpY q. For more details about the
above, see [16].

Reeb orbits γ have an action Apγq “ ş
γ λ which we can extend to a

filtration on ECH. Specifically, if α “ tpγi,miqu is an orbit set, define
the action of α

Apαq “
ÿ
i

mi

ż
γ
λ,

and let ECCLpY, λq denote the subspace generated by orbit sets α
with Apαq ă L. The differential restricts to ECCL, so the homol-
ogy ECHLpY, λq is well-defined and there is an inclusion induced map
ECHLpY, λq Ñ ECHpY q. If σ is a nonzero class in ECH, we can define
the action required to represent it by

cσpλq :“ inftL | σ P Im
`
ECHLpY, λq Ñ ECHpY q˘ u.

The number cσpλq is called the spectral invariant associated to σ. When
λ is degenerate, we can still define cσpλq by taking the limit of cσpλnq
as λn Ñ λ in C0, see [14].

5.2. ECH capacities. We would like to use ECH to define symplectic
capacities. This is most natural when pX,ωq is a symplectic 4-manifold
with boundary, such that ω “ dλ and λ|BX is a contact form. When
BX is oriented positively with respect to ω2, we call such an pX,ωq a
Liouville domain. For example, any concave or convex toric domain is
a Liouville domain.

In our case, where X is a concave or convex toric domain, BX “ S3.
The embedded contact homology of S3 has a canonical Z grading in this
case, and ECH˚pS3q is given by

ECH2kpS3q2k “ Z{2Z, k ě 0, ECH˚pS3q “ 0, otherwise,

as explained in [16]. In particular, for each nonnegative integer k, there
are canonical nonzero classes σk in grading 2k. If ω is concave or convex,
we now define the kth ECH capacity

ckpX,ωq :“ cσk
pλq,

where λ is the restriction of the standard one-form λstd “ 1
2

ř
ipxidyi ´

yidxiq on R
4 to BX. One can modify this definition to define ECH

capacities for any Liouville domain, and, in fact, ECH capacities can be
defined for any symplectic 4-manifold, see [14].

Example 5.1. The ECH capacities of the ellipsoid were computed
in [14]. The kth ECH capacity of the ellipsoid Epa, bq is the pk ` 1qst
smallest element in the matrix

(5.1) pma ` nbqpm,nqPZě0ˆZě0
.

For example, the ECH capacities of the ball Ep1, 1q start with

0, 1, 1, 2, 2, 2, 3, 3, 3, 3, . . . .
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We will give a formula for the ECH capacities of convex domains in
terms of ECH capacities of balls in Theorem A.1.

As mentioned in the introduction, the ECH capacities satisfy the
key Monotonicity Property (1.1). To state another property that they
satisfy, recall the sequence summation operation from [14], defined for
sequences S and T indexed starting at k “ 0 by

pS#T qk “ supi`j“kpSi ` Tjq.
Here, the notation Ai denotes the ith term of the sequence A. We
can now state the Disjoint Union axiom [14] for the sequence of ECH
capacities cECH , which says that for Liouville domains X1, X2,

(5.2) cECHpXΩ1

ž
XΩ2q “ cECHpXΩ1q#cECHpXΩ2q.

Another useful axiom is the Scaling Axiom, also proved in [14], which
says that

(5.3) ckpX, r ¨ ωq “ r ¨ ckpX,ωq,
for any positive real number r.

5.3. Sharpness for the ball packing problem implies sharpness
for ECH capacities. We now explain the proof of Theorem 1.2. The
key point is that it was shown in [14] that ECH capacities are known
to give sharp obstructions to symplectic ball packing problems.

Proof of Theorem 1.2. Let Ω1 be concave and Ω2 convex. We need to
show that intpXΩ1q embeds into intpXΩ2q if and only if ckpintpXΩ1qq ď
ckpintpXΩ2qq for all k. The fact that a symplectic embedding

intpXΩ1q Ñ intpXΩ2q
implies that

(5.4) ckpintpXΩ1qq ď ckpintpXΩ2qq,
for all k follows from the Monotonicity property (1.1).

Step 1. We first prove the converse assuming that Ω1 and Ω2 are
rational.

By the Monotonicity Axiom (1.1), the Disjoint Union property (5.2),
and the proof of the “only if” direction of Theorem 2.1, we know that

pcECHpintpXΩ2qq#cECHpintp pBpΩ2qqqqk ď ckpBpbqq,
for all k. We also know that for any k,

ckpintpBpΩ1qqq ď ckpintpXΩ1qq.
Since sequence sum against a fixed sequence respects inequalities, we
can combine (5.4) with the above inequalities to find that

(5.5) ckpintpBpΩ1qq \ intp pBpΩ2qqq ď ckpBpbqq,
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for all k. It is known that ECH capacities give sharp obstructions to all
(open) ball packings of a ball, see, e.g., [14]. Hence, (5.5) implies that
there exists a symplectic embedding

intpBpΩ1qq \ intp pBpΩ2qq Ñ Bpbq.
Hence, by Theorem 2.1, there exists a symplectic embedding

intpXΩ1q Ñ intpXΩ2q,
hence, the theorem in the rational case.

Step 2. We now deduce Theorem 1.2 in general by using the result
from the previous step.

Given Ω1 concave and Ω2 convex, for each λ ą 1 we can find a rational
concave set Ω1

1 and a rational convex set Ω1
2 such that

1

λ
Ω1 Ă intpΩ1

1q Ă Ω1,

and
Ω2 Ă intpΩ1

2q Ă λΩ2.

By combining the above inclusions with (1.1) and (5.4), it follows from
the previous step that there is a symplectic embedding

intpXΩ1
1
q Ñ intpXΩ1

2
q.

Hence, by again applying the above inclusions, there is a symplectic
embedding

1

λ2
¨ XΩ1 Ñ XΩ2 .

By letting λ tend to 1 and applying Corollary 1.6, we, therefore, get a
symplectic embedding

intpXΩ1q Ñ XΩ2 ,

which must necessarily have image in the interior of XΩ2 . q.e.d.

Appendix A. The geometric meaning of ECH capacities of
convex domains (by Keon Choi and Daniel

Cristofaro-Gardiner)

A.1. The main theorem. We assume below that the reader is familiar
with the definitions and notation from the body of this paper. There,
the second author showed that ECH capacities give a sharp obstruction
to embedding any concave toric domain into a convex one. The basic
idea of the proof was to show that a concave domain embeds into a
convex one if and only if it is possible to symplectically embed a certain
collection of balls into another ball. This suggests that there should be
a close relationship between the ECH capacities of concave or convex
toric domains, and the ECH capacities of balls.

In [3], the authors and Frenkel, Hutchings and Ramos showed that
ECH capacities of any concave toric domain are given by the ECH
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capacities of the disjoint union of the balls determined by the weight
sequence of the domain, see Theorem A.5 for the precise statement.
The purpose of this appendix is to prove a similar formula for convex
domains.

To state our formula, we recall the sequence subtraction operation
that is implicit in [14] and was first explicitly defined in [13]. This is
given for nondecreasing sequences S and T , indexed starting at 0 and
with T ď S, by

(A.1) pS ´ T qk :“ inf lě0 Sk`l ´ Tl.

(Here, the notation T ď S means that Ti ď Si for every index i.) The
operation # and ´ are related by the inequalities

(A.2) pS ´ T q#T ď S ď pS#T q ´ T.

For our purposes, the sequence subtraction operation is significant
because of the following:

Theorem A.1. Let XΩ be a convex toric domain, let b be the head
of the weight expansion for Ω, and let bi be the ith term in the negative
weight expansion for Ω. Then

(A.3) cECHpXΩq “ cECHpBpbqq ´ cECHp
ž
i

Bpbiqq.

Note that it follows from the Monotonicity and Scaling axioms that
ckpXΩq “ ckpintpXΩqq for any convex toric domain XΩ. Note also that
even when Ω is not rational, the above formula still makes sense, see
[3, Rmk. 1.6]. For the formula for the ECH capacities of a ball, see
Example 5.1.

Remark A.2. If T ď S, and

limiÑ8 Si ´ Ti “ `8,

write T ă S. If T ă S, then we are justified in replacing the infimum
in (A.1) with a minimum. When X1 and X2 are Liouville domains
with all ECH capacities finite, and T “ cECHpX1q and S “ cECHpX2q
are sequences of ECH capacities, we have T ă S whenever volpX1q ă
volpX2q. This follows from [8, Thm. 1.1].

We can regard Theorem A.1 as expressing a fundamental limitation
of the strength of ECH capacities of convex domains. For example, we
have:

Corollary A.3. Let Ω be convex and let X be any Liouville domain
with all ECH capacities finite. Let b be the head of the weight expansion
for Ω, and let bi be the ith term in the negative weight expansion for Ω.
If we have

(A.4) ckpX \ p
ž
i

Bpbiqqq ď ckpBpbqq,
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for all k, then we must have

(A.5) ckpXq ď ckpXΩq,
for all k.

Proof. By combining the Disjoint Union axiom (5.2) and (A.4), we
have

cECHpXq#cECHp
ž
i

Bpbiqq ď cECHpBpbqq.

Now subtract cECHpš
iBpbiqq from both sides of this equation and ap-

ply (A.2) to get

cECHpXq ď cECHpBpbqq ´ cECHp
ž
i

Bpbiqq.

Now apply Theorem A.1 to get (A.5). q.e.d.

Remark A.4. The analogue of Theorem A.1 was proved in the con-
cave case in [3]. There, the authors show:

Theorem A.5. [3, Thm. 1.4]
Let Ω be concave, and let ai be the ith weight of Ω. Then

(A.6) ckpXΩq “ ckp
ž
i

Bpaiqq.

Equation (A.6) will be used in the proof of Theorem A.1.

A.2. Lattice points and Ω-lengths. The ECH capacities of concave
and convex domains are related to certain lattice point counts. We now
introduce the terms we need to make this precise.

We first define the upper boundaries of the regions we need to con-
sider.

Definition A.6. Let Λ : r0, cs Ñ R
2 for some c ě 0 be a polygonal

path in the plane, with vertices at lattice points. Assume that the
tangent Λ1 is nonzero on r0, cszt0 “ c0 ă ¨ ¨ ¨ ă cn “ cu, where the Λpciq
are the vertices of Λ. In addition, for any nonzero vector v P R

2, let θpvq
be the number θ P r0, 2πq so that v is a positive multiple of psin θ, cos θq.

‚ An edge of Λ is the displacement vector between consecutive ver-
tices of Λ.

‚ Λ is a lattice path if its vertices are lattice points and Λp0q “
p0, ypΛqq and Λpcq “ pxpΛq, 0q for nonnegative integers xpΛq and
ypΛq.

‚ Λ is concave if θpΛ1q is nonincreasing and takes values in pπ{2, πq.
‚ Λ is convex if θpΛ1q is nondecreasing and takes values in p0, 3π{2q.
The paths Λ have an Ω-length, defined by the domain Ω, which will

also be important.
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Definition A.7. Let XΩ be a convex toric domain and Λ a convex
lattice path. If ν is any vector in R

2, let pΩ,ν be a point on the boundary
of Ω such that Ω lies entirely in the “right half-plane” of the line through
pΩ,ν in the direction ν. More precisely, for any p P Ω, we have

(A.7) pp ´ pΩ,νq ˆ ν ě 0,

where ˆ denotes the cross product. Define

(A.8) �Ωpνq “ ν ˆ pΩ,v,

and if Λ is a convex lattice path, define

(A.9) �ΩpΛq “
ÿ

νPEdgespΛq
�Ωpνq.

If XΩ is a concave toric domain and Λ is a concave lattice path, �ΩpΛq
is defined by (A.8) and (A.9), where pΩ,ν is a point on the boundary of
Ωc :“ r0,8q2zΩ so that Ωc lies entirely on the “left half-plane” of the
line through pΩ,ν in the direction ν.

We will also want to count lattice points in regions bounded by Λ.
We now make this precise.

Definition A.8. If Λ is a convex lattice path, let pLΩpΛq denote the
count of lattice points in the region enclosed by Λ and the axes, including
all the lattice points on the boundary. If Λ is a concave lattice path,

let qLpΛq denote the number of lattice points in the region enclosed by
Λ and the axes, not including lattice points on Λ itself.

Example A.9. Using this terminology, we can state an alternative
formula for the ECH capacities of concave toric domains. Namely, we
have:

Theorem A.10. [3, Thm. 1.21] Let Ω be concave. Then

(A.10) ckpXΩq “ maxt�ΩpΛq| qLpΛq “ ku,
where the maximum runs over all concave lattice paths.

We will also use this fact in the proof.

Remark A.11. When Ω is convex, �Ω is, in fact, a (non-symmetric)
norm: it satisfies the scaling axiom �Ωpc ¨ vq “ c ¨ �Ωpvq whenever c ě 0,
and it satisfies the triangle inequality

(A.11) �Ωpv ` wq ď �Ωpvq ` �Ωpwq.
To see why (A.11) holds, for a fixed v P R

2 consider the function

x Ñ v ¨ x
on R

2. This is maximized over Ω on BΩ, at points x at which v is normal
to Ω and pointing outward. (When BΩ is not smooth, we consider any
vector ν such that (A.7) holds a tangent vector, and we consider any
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vector normal to a tangent vector a normal vector.) It follows that
x Ñ ν ˆ x is maximized at the point pΩ,ν from Definition A.6. We,
therefore, have

�Ωpv ` wq “ pv ` wq ˆ pΩ,v`w ď v ˆ pΩ,v ` w ˆ pΩ,w,

hence, (A.11).

A.3. ECH capacities of convex domains. We can now give the
proof of the main theorem of this appendix.

Proof of Theorem A.1. Recall from §2 that the first step of the weight
expansion for XΩ determines regions Ω1,Ω2 and Ω3 such that XΩ1 is a
Bpbq and XΩ2 and XΩ3 are concave toric domains. For a given k ě 0,
we claim a series of inequalities

ckpXΩq ď min
k1´l“k

tck1pXΩ1q ´ clp
ž
i

Bpbiqqu

“ min
k1´k2´k3“k

tck1pXΩ1q ´ ck2pXΩ2q ´ ck3pXΩ3qu
ď mint�ΩpΛq | pLpΛq ě k ` 1u(A.12)

ď ckpXΩq,
which proves the theorem. (We are justified in writing a minimum rather
than an infimum throughout, by Remark A.2.) Here and throughout
the proof, k1, k2, k3 and l denote nonnegative integers. We now explain
the proofs of the above inequalities.

Step 1. By the definition of the weight expansion, there is a symplec-
tic embedding

XΩ \ p
ž
i

intpBpbiqqq Ñ Bpbq.

It then follows from the Monotonicity axiom (1.1) and the Disjoint
Union property (5.2) that for any k1 and l

ck1pXΩq ` clp
ž
i

Bpbiqq ď ck1`lpBpbqq.

This proves the first inequality of (A.12).
Step 2. Since the weights of Ω2 and Ω3 collectively correspond to the

negative weights of Ω, we have

max
k2`k3“l

tck2pXΩ2q ` ck3pXΩ3qu “ maxř
li“l

ÿ
clipBpbiqq “ clp

ž
i

Bpbiqq

by (A.6). This proves the equality on the second line of (A.12).
Step 3. To prove the third inequality of (A.12), given any convex

lattice path Λ with pLpΛq ´ 1 “ k0 ě k, we show how to choose k1, k2
and k3 with k1 ´ k2 ´ k3 “ k so that

(A.13) �ΩpΛq ě ck1pXΩ1q ´ ck2pXΩ2q ´ ck3pXΩ3q.
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Write Λ as a concatenation Λ̃2Λ̃1Λ̃3 of paths so that θpΛ̃1
2q, θpΛ̃1

1q and

θpΛ̃1
3q take values in p0, 3π{4q, t3π{4u and p3π{4, 3π{2q, respectively. As

in the definition of the weight expansion, Λ̃2 and Λ̃3 are affine equivalent
to concave lattice paths Λ2 and Λ3, respectively. Also, let Λ1 denote the

linear path from p0, aq to pa, 0q extending Λ̃1. We take k2 “ qLpΛ2q, k3 “qLpΛ3q and k1 “ k`k2 `k3. Observe that pLpΛ1q´1 “ k0 `k2 `k3 ě k1.
By (5.1) and the fact that the ECH capacities of any symplectic

manifold are nondecreasing, we then have

�Ω1pΛ1q “ ck0`k2`k3pBpbqq ě ck1pBpbqq.
By (A.10),

�Ω2pΛ2q ď ck2pXΩ2q,
and

�Ω3pΛ3q ď ck3pXΩ3q.
Moreover, by the argument in Step 4 of [3, §2.1],

�ΩpΛq “ �Ω1pΛ1q ´ �Ω2pΛ2q ´ �Ω3pΛ3q.
We substitute the previously obtained bounds into the above to obtain
(A.13).

Step 4. Consider a dilation Ω̃ of Ω by a factor λ ă 1 about an interior
point of Ω. Then, XΩ̃ is a disk bundle over T 2, and by [14, Thm. 1.11],

there is a closed convex path Λ̃ with corners on lattice points so thatpLpΛ̃q “ k ` 1 and �Ω̃pΛ̃q “ ckpΩ̃q. Here, pLpΛ̃q denotes the number of

lattice points in the region enclosed by Λ̃, including the ones on the
boundary, and �Ω̃pΛ̃q is defined by (A.9) as in the case of a convex
domain.

Consider the part Λ of the path Λ̃ consisting only of edges with 0 ă
θpνq ă 3π{2. Then Λ is a convex lattice path (after translation if

necessary) with pLpΛq ě k ` 1 and �Ω̃pΛ̃q “ λ�ΩpΛq. Hence, by the
Monotonicity axiom,

�ΩpΛq “ ckpΩ̃q{λ ď ckpΩq{λ.
Taking the limit as λ Ñ 1 proves the last inequality. q.e.d.

We close with the following analogue of the formula from [14, Thm.
1.11].

Corollary A.12. Let Ω be a convex toric domain. Then

ckpXΩq “ mint�ΩpΛq| pLpΛq “ k ` 1u,
where the minimum is over convex lattice paths Λ.

Proof. As part of the proof of Theorem A.1, we saw that this formula

holds when the minimum is taken over Λ with pLpΛq ě k ` 1. Thus,
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to prove the theorem, it suffices to show that given any lattice path Λ,
there is another lattice path Λ1 with

(A.14) pLpΛ1q “ pLpΛq ´ 1, �ΩpΛ1q ď �ΩpΛq.
We can define such a path by using an analogue of the “corner rounding”
operation from [15]: specifically, given Λ we define Λ1 by choosing any
vertex other than the origin, removing the lattice point corresponding
to that edge, and taking the convex hull of the remaining lattice points.
This satisfies the first equation in (A.14) by definition, and it satisfies
the second equality by the triangle inequality (A.11). q.e.d.
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