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MIN–MAX HYPERSURFACE IN MANIFOLD OF
POSITIVE RICCI CURVATURE

Xin Zhou

Abstract

In this paper, we study the shape of the min–max minimal
hypersurface produced by Almgren–Pitts–Schoen–Simon [AF62,
AF65, P81, SS81] in a Riemannian manifold (Mn+1, g) of posi-
tive Ricci curvature for all dimensions. The min–max hypersurface
has a singular set of Hausdorff codimension 7. We characterize the
Morse index, area and multiplicity of this singular min–max hy-
persurface. In particular, we show that the min–max hypersurface
is either orientable and has Morse index one, or is a double cover
of a non-orientable stable minimal hypersurface.

As an essential technical tool, we prove a stronger version of
the discretization theorem. The discretization theorem, first de-
veloped by Marques–Neves in their proof of the Willmore conjec-
ture [MN12], is a bridge to connect sweepouts appearing natu-
rally in geometry to sweepouts used in the min–max theory. Our
result removes a critical assumption of [MN12], called the no
mass concentration condition, and hence confirms a conjecture by
Marques–Neves in [MN12].

1. Introduction

Given an (n + 1)-dimensional closed Riemannian manifold Mn+1,
minimal hypersurfaces are critical points of the area functional. When
M has certain topology, a natural way to produce minimal hypersurface
is to minimize area among its homology class. This idea leads to the
famous existence and regularity theory for area minimizing hypersur-
faces by De Giorgi, Federer, Fleming, Almgren and Simons, etc. (cf.
[FH, Gi, Si83]). In general cases, when every hypersurface is homo-
logically trivial, e.g., if the Ricci curvature of the ambient manifold is
positive, the minimization method fails. This motivates F. Almgren
[AF62, AF65], followed up by J. Pitts [P81], to develop a Morse the-
oretical method for the area functional in the space of hypersurfaces,
namely the min–max theory. The heuristic idea of developing a Morse
theory is to associate a nontrivial 1-cycle in the space of hypersurfaces
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with a critical point of the area functional, i.e., a minimal hypersurface.
In particular, denote Zn(M) by the space of all closed hypersurfaces
with a natural topology in geometric measure theory, called the flat
topology. Now consider a one-parameter family Φ : [0, 1] → Zn(M).
Let [Φ] be the set of all maps Ψ : [0, 1] → Zn(M) which are homotopic
to Φ in Zn(M). The min–max value can be associated with [Φ] as

(1.1) L([Φ]) = inf
{

max
x∈[0,1]

Area(Ψ(x)) : Ψ ∈ [Φ]
}
.

Almgren [AF62] showed that there is a nontrivial Φ with L([Φ]) > 0 in
any closed manifold M ; together with Pitts [AF65, P81], they showed
that when 2 ≤ n ≤ 5, there is a disjoint collection of closed, smooth,
embedded, minimal hypersurfaces {Σi}li=1 with integer multiplicity ki ∈
N such that

∑l
i=1 kiArea(Σi) = L([Φ]). Schoen and Simon [SS81]

extended the regularity results to n ≥ 6. Note that for n ≥ 7, the
min–max hypersurface Σi has a singular set of codimension 7. Later
on, there are other variations of the Almgren–Pitts min–max theory, cf.
[Sm82, CD03, DT09].

However, besides the existence and regularity, much is unknown about
these min–max hypersurfaces. For instance, a natural question is how
large can the area and multiplicity be? Moreover, in this Morse the-
oretical approach, one key open problem, raised by Almgren [AF65]
and emphasized by F. Marques [M14, §4.1] and A. Neves [N14, §8],
is to bound the Morse index of the min–max minimal hypersurface by
the number of parameters. It is conjectured that generically the Morse
index is equal to the number of parameters, and the multiplicity is one.
The importance of this problem lies in several aspects. First, finding
minimal hypersurfaces with bounded (or prescribed) Morse index is a
central motivation for Almgren [AF65] to develop the min–max theory.
Also the bound of Morse index plays an important role in application
to geometric problems. In his famous open problems section [Y, Prob-
lems 29 and 30], S. T. Yau stressed the importance of the estimates of
Morse index in several conjectures. In the recent celebrated proof of the
Willmore conjecture by Marques and Neves [MN12], a key part is to
prove that the Morse index of certain min–max minimal surface in the
standard three-sphere is bounded by 5. The major challenge of bound-
ing the Morse index comes from the fact that the min–max hypersurface
is constructed as a very weak limit (i.e., varifold limit), therefore, clas-
sical methods in nonlinear analysis (cf. [St00]) do not extend to this
situation. Here one difficulty of understanding the weak limit is due to
the existence of multiplicity (see [I95] for similar issue in studying the
singularity of mean curvature flow).

The current progress of understanding the min–max hypersurfaces
mainly focused on the case of one-parameter families. Marques and
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Neves [MN11] have confirmed the Morse index conjecture in three di-
mension when the Ricci curvature of the ambient manifold is positive,
where they proved the existence of minimal Heegaard surface of Morse
index 1 in certain 3-manifolds. This was extended to manifold Mn+1

with positive Ricci curvature in dimensions 2 ≤ n ≤ 6, when the min–
max hypersurfaces are smooth, by the author [Z12]. In [Z12], we also
gave a general characterization of the multiplicity, area and Morse index
of the min–max hypersurface. In particular, the min–max hypesurface
is either orientable of Morse index 1, or is a double cover of a non-
orientable least area minimal hypersurface. Recently, the methods in
[MN11, Z12] were used by Mazet and Rosenberg [MR15] to study the
minimal hypersurfaces of least area in an arbitrary closed Riemannian
manifold Mn+1 with 2 ≤ n ≤ 6. They gave several characterizations of
the least area minimal hypersurfaces similar to [Z12]. The work in this
paper will generalize the characterization of the min–max hypersurface
to all dimensions, even allowing singularities. Several new ingredients
are developed to deal with the presence of singularities.

Let (Mn+1, g) be an (n+1)-dimensional, connected, closed, orientable
Riemannian manifold. We consider singular hypersurfaces which share
the same regularity properties as the min–max hypersurfaces. To be
precise, we set up some terminology. By a singular hypersurface with
a singular set of Hausdorff co-dimension no less than k (k ∈ N, k < n),
we mean a closed subset Σ of M with finite n-dimensional Hausdorff
measure Hn(Σ) < ∞, where the regular part of Σ is defined as:

reg(Σ) = {x ∈ Σ : Σ is a smooth, embedded, hypersurface near x};

and the singular part of Σ is sing(Σ) = Σ\reg(Σ) (see [SS81, I96]), with
the (n−k+ε)-dimensional Hausdorff measure Hn−k+ε

(
sing(Σ)

)
= 0 for

all ε > 0. Clearly the regular part reg(Σ) is an open subset of Σ. Later
on, we will denote Σ = reg(Σ) and also call Σ a singular hypersurface.
Given such a singular hypersurface Σ, it represents an integral varifold,
denoted by [Σ] (cf. [Si83, §15]). We say Σ is minimal if [Σ] is stationary
(cf. [Si83, 16.4]). In fact, this is equivalent to the fact that the mean
curvature of reg(Σ) is zero and the density of [Σ] is finite everywhere (cf.
[I96, (3)(4)]). To simplify the presentation, in the following we simply
assume that the tangent cones (cf. [Si83, §42]) of [Σ] have multiplicity
one everywhere (which is satisfied by min–max hypersurfaces by Lemma
6.3). We use Ind(Σ) to denote the Morse index of Σ (see §2.4). Denote

S = {Σn : Σ is a connected, closed, minimal, hypersurface with a

singular set sing(Σ) of Hausdorff co-dimension no less than 7}.

(1.2)
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Let

(1.3) AM = inf
Σ∈S

{ Hn(Σ), if Σ is orientable
2Hn(Σ), if Σ is non-orientable

}
.

If the Ricci curvature ofM is positive, then the min–max hypersurface
has only one connected component (Theorem 2.10), and we denote it
by Σ. Our main result is as follows:

Theorem 1.1. Assume that the Ricci curvature of M is positive;
then the min–max hypersurface Σ

(i) either is orientable of multiplicity one, which has Morse index
Ind(Σ) = 1, and Hn(Σ) = AM ;

(ii) or is non-orientable with multiplicity two, which is stable, i.e.,
Ind(Σ) = 0, and 2Hn(Σ) = AM .

Remark 1.2. The fact that Hn(Σ) = AM or 2Hn(Σ) = AM says that
the min–max hypersurface has least area among all singular minimal hy-
persurfaces (if counting non-orientable minimal hypersurface with mul-
tiplicity two).

The main idea contains two parts. First, given a minimal hyper-
surface Σ, we will embed Σ into a one parameter family {Σt}t∈[−1,1]

with Σ0 = Σ, such that the area of Σ achieves a strict maximum, i.e.,
Area(Σt) < Area(Σ) if t �= 0. Second, we will show that all of such one
parameter families obtained in this way (from a minimal hypersurface)
belong to the same homotopy class. Then from the definition of the
min–max value (1.1), the family {Σt} corresponding to the min–max
hypersurface Σ must be optimal, i.e., maxtArea(Σt) ≤ maxtArea(Σ′

t),
where {Σ′

t} is generated by any other minimal hypersurface Σ′ in the
first step. The characterization of Morse index, multiplicity and area
of Σ will then follow from this optimality condition. Specifically, in the
first part, we will choose the one parameter family as the level sets of
the distance function to Σ. Note that the minimal hypersurface Σ has
a singular set of Hausdorff codimension 7. To deal with the presence of
singularities, we will use an idea explored by Gromov [Gr] in his study of
isoperimetric inequalities. To show the homotopic equivalence of these
one parameter families, we need to use an isomorphism constructed by
Almgren in [AF62], under which the homotopy groups of the space of
hypersurfaces in M are mapped isometrically to the homology groups
of M .

One main difficulty is caused by the fact that two different topology
are used on the space of hypersurfaces Zn(M). The geometric method
in the first part produces families of hypersurfaces which are continuous
under the flat topology. However, the Almgren–Pitts min–max theory
works under another topology, called the mass norm topology, which is
much stronger than the flat topology. A bridge is desired to connect
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the two topology. In fact, this is a very common problem in the study
of min–max theory (cf. [MN12, Z12, MN13, Mo14]). Pitts already
developed some tools in his book [P81]. Marques–Neves, in their proof
of the Willmore conjecture [MN12], first gave a complete theory to con-
nect families continuous under flat topology to families satisfying the re-
quirement of the Almgren–Pitts setting (see also [Z12,MN13,Mo14]).
Marques–Neves need a critical technical assumption for the starting
family, called no mass concentration condition, which means that there
is no point mass in the measure-theoretical closure of the family. How-
ever, in our situation the one parameter family does not necessarily
satisfy the no mass concentration condition due to the presence of sin-
gular set. In fact, in the same paper [MN12, §13.2], Marques–Neves
conjectured that this assumption might not be necessary. Here we ver-
ify this conjecture under a very general condition. As this improvement
will be useful in other situation, we present it here (in a simplified form).

Theorem 1.3. (See Theorem 5.1 for a detailed version) Given a con-
tinuous (under the flat topology) one parameter family of hypersurfaces
Φ : [0, 1] → Zn(M), such that for each x ∈ [0, 1], Φ(x) is represented
by the boundary of some set Ωx ⊂ M of finite perimeter, and such that
maxxArea

(
Φ(x)

)
< ∞, then there exists a (1,M)-homotopy sequence

{φi} (one parameter family in the sense of Almgren–Pitts, cf. §4.1),
satisfying

max
x

Area
(
Φ(x)

)
= lim sup

i→∞
max
x

Area(φi(x)).

Remark 1.4. The key step is to develop a new discretization pro-
cedure to connect the given family to a new family which satisfy the
no mass concentration condition (see Lemma 5.8 and the discussions
there). Under the same condition that the hypersurfaces are repre-
sented by boundary of sets of finite perimeter, the above result is also
true for multi-parameter families.

The paper is organized as follows. In Section 2, we give several pre-
liminary results concerning the topology, second variation and Morse
index for singular hypersurfaces in a manifold of positive Ricci curva-
ture. In Section 3, we show that the level sets of distance function to a
singular minimal hypersurface is a good one parameter family. In Sec-
tion 4, we introduce the Almgren–Pitts theory. In Section 5, we prove
Theorem 1.3. Finally, we prove Theorem 1.1 in Section 6.

Acknowledgment. I would like to thank Bill Minicozzi to bring [Gr]
into my attention. I also wish to thank Richard Schoen for many helpful
discussions, and thank Toby Colding and S. T. Yau for their interests.
Finally, I am indebted to the referee for helpful comments to clarify
several presentations.
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2. Preliminary results

In this section, we give several preliminary results about minimal
hypersurfaces with a singular set of Hausdorff dimension less to or equal
than n− 7.

2.1. Notions of geometric measure theory. For notions in geomet-
ric measure theory, we refer to [Si83] and [P81, §2.1].

Fix a connected, closed, oriented Riemannian manifold (Mn+1, g) of
dimension n + 1. Assume that (Mn+1, g) is embedded in some R

N for
N large. We denote by

• Ik(M) the space of k-dimensional integral currents in R
N with

support in M ;
• Zk(A,B) the space of integral currents T ∈ Ik(M), with spt(T ) ⊂
A1 and spt(∂T ) ⊂ B2 , where A,B are compact subset of M , and
B ⊂ A;

• Zk(M) the space of integral currents T ∈ Ik(M) with ∂T = 0;
• Vk(M) the closure, in the weak topology, of the space of k-dimen-
sional rectifiable varifolds in R

N with support in M ;
• F and M, respectively, the flat norm [Si83, §31] and mass norm
[Si83, 26.4] on Ik(M);

• C(M) the space of sets Ω ⊂ M with finite perimeter [Si83, §14][Gi,
§1.6].

Given T ∈ Ik(M), |T | and ‖T‖ denote, respectively, the integral vari-
fold and Radon measure in M associated with T . Ik(M) and Zk(M)
are in general assumed to have the flat norm topology. Ik(M,M) and
Zk(M,M) are the same space endowed with the mass norm topology.
Given T ∈ Zk(M), BF

s (T ) and BM
s (T ) denote, respectively, balls in

Zk(M) centered at T , of radius s, under the flat norm F and the mass
norm M. Given a closed, orientable hypersurface Σ in M with a singu-
lar set of Hausdorff dimension no larger than (n−7), or a set Ω ∈ C(M)
with finite perimeter, we use [[Σ]], [[Ω]] to denote the corresponding in-
tegral currents with the natural orientation, and [Σ], [Ω] to denote the
corresponding integer-multiplicity varifolds.

2.2. Nearest point projection to Σ. Here we recall the fact that the
nearest point projection of any point in M to Σ (away from the singular
set of Σ) is a regular point of Σ when Σ is minimal. Similar result for
isoperimetric hypersurfaces appeared in [Gr].

Lemma 2.1. Let Σ ∈ S be a singular minimal hypersurface in M .
Take a point p ∈ M\Σ, and a minimizing geodesic γ connecting p to Σ
in M , i.e., γ(0) = p, γ(1) = q ∈ Σ, and length(γ) = dist(p,Σ). Then q
is a regular point of Σ.

1spt(T ) denotes the support of T [Si83, 26.11].
2∂T ∈ In−1(M) denotes the boundary of T [Si83, 26.3].
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Proof. Take the geodesic sphere of M center at γ(12) with radius
1
2dist(p,Σ). The sphere is a smooth hypersurface near q, and Σ lies in

one side of the sphere. So the tangent cone of Σ (viewed as a rectifiable
varifold with multiplicity 1 by assumption) at q is contained in a half-
space of Rn+1 (separated by the tangent plane of the sphere). As Σ is
stationary, by [Si83, 36.5, 36.6], the tangent cone of Σ at q is equal to
the tangent plane of the sphere (with multiplicity 1), and hence Σ is
smooth at q by the Allard Regularity Theorem (cf. [Al72][Si83, 24.2]).

q.e.d.

2.3. Connectedness. For stationary hypersurface with a small singu-
lar set, the connectedness of the closure is the same as the connectedness
of the regular part. In fact, this follows from the strong maximum prin-
ciple for stationary singular hypersurfaces.

Theorem 2.2. [I96, Theorem A]

1) If V1 and V2 are stationary integer rectifiable n-varifolds in an
open subset Ω ⊂ Mn+1, satisfying

Hn−2(spt(V1) ∩ spt(V2) ∩ Ω) = 0,

then spt(V1) ∩ spt(V2) ∩ Ω = ∅.
2) Assume that Σ is a stationary hypersurface in Ω with a singular

set of Hausdorff dimension less than n− 2. If Σ∩Ω is connected,
then reg(Σ) ∩ Ω is connected.

Remark 2.3. By part 2, the closure of a singular hypersurface in our
setting is connected if and only if the regular part is.

Definition 2.4. A singular minimal hypersurface Σ (with
dim

(
sing(Σ)

) ≤ n− 7) is connected if its regular part is connected.

2.4. Orientation, second variation and Morse index.

Definition 2.5. A singular hypersurface Σ is orientable (or non-
orientable) if the regular part is orientable (or non-orientable).

A singular hypersurface Σ is said to be two-sided if the normal bundle
ν(Σ) of the regular part Σ inside M is trivial.

Lemma 2.6. Let Mn+1 be an (n+1)-dimensional, connected, closed,
orientable manifold, and Σ ⊂ M a connected, singular hypersurface with
dim

(
sing(Σ)

) ≤ n−2, and with compact closure Σ. Then Σ is orientable
if and only if Σ is two-sided.

Proof. The tangent bundle of M , when restricted to Σ, has a splitting
into the tangent bundle TΣ and normal bundle ν(Σ) of Σ, i.e., TM |Σ =
TΣ ⊕ ν(Σ). By [H, Lemma 4.1], TΣ is orientable if and only if ν(Σ)
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is orientable. By [H, Theorem 4.3]3 , ν(Σ) is orientable if and only if
ν(Σ) is trivial. q.e.d.

When Σ is two-sided, there exists a unit normal vector field ν. The
Jacobi operator is

(2.1) LΣφ = 
Σφ+
(
Ric(ν, ν) + |A|2)φ,

where φ ∈ C1
c (Σ), 
Σ is the Laplacian operator of the induced metric

on Σ, and A is the second fundamental form of Σ along ν. Given an
open subset Ω of Σ with smooth boundary ∂Ω, we say that λ ∈ R is
a Dirichlet eigenvalue of LΣ on Ω if there exists a non-zero function
φ ∈ C∞

0 (Ω) vanishing on ∂Ω, i.e., φ|∂Ω ≡ 0, such that LΣφ = −λφ.
The (Dirichlet) Morse index of Ω, denoted by IndD(Ω), is the number
of negative Dirichlet eigenvalues of LΣ on Ω counted with multiplicity.

When Σ is non-orientable, we need to pass to the orientable double
cover Σ̃ of Σ. Then there exists a unit normal vector field ν̃ along Σ̃,
satisfying ν̃ ◦ τ = −ν̃, where τ : Σ̃ → Σ̃ is the orientation-reversing
involution, such that Σ = Σ̃/{id, τ}. The Jacobi operator LΣ̃ is well-

defined using ν̃. Given an open subset Ω ⊂ Σ, and its lift-up Ω̃ to Σ̃,
we can define the Dirichlet eigenvalue and (Dirichlet) Morse index by

restricting the Jacobi operator LΣ̃ to functions φ̃ ∈ C1
0 (Ω̃) which are

anti-symmetric under τ , i.e., φ̃ ◦ τ = −φ̃. (In this case, φ̃ν̃ descends to
a vector field on Σ.) We refer to [Ro] for more discussions on Morse
index in the non-orientable case.

Definition 2.7. The Morse index of Σ is defined as,

Ind(Σ) = sup{IndD(Ω) : Ω is any open subset of Σ

with smooth boundary}.
Σ is called stable if IndΣ ≥ 0, or equivalently, Σ is stable in the classical
sense on any compactly supported open subsets.

2.5. Positive Ricci curvature. We need two properties for singular
minimal hypersurfaces in manifolds of positive Ricci curvature. The
first one says that there is no stable, two-sided, singular hypersurface
with a small singular set. This generalizes an easy classical result for
smooth hypersurfaces [CM11, Chap 1.8]. When Σ is two-sided, the
fact that Σ is stable is equivalent to the following stability inequality:

(2.2)

∫
Σ

(
Ricg(ν, ν) + |AΣ|2

)
ϕ2dHn ≤

∫
Σ
|∇ϕ|2dHn,

for any ϕ ∈ C∞
c (Σ).

Lemma 2.8. [S10] Assume that (Mn+1, g) has positive Ricci cur-
vature, i.e., Ricg > 0, and Σ is a singular minimal hypersurface, with
Hn−2(sing(Σ)) = 0. If Σ is two-sided, then Σ is not stable.

3It is not hard to see that Σ is paracompact, so [H, Theorem 4.3] is applicable.
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Proof. Suppose that Σ is stable. Since Hn−2(sing(Σ)) = 0, for any
ε > 0, we can take a countable covering ∪iBri(pi) of sing(Σ) using
geodesics balls {Bri(pi)}i∈N of M , such that∑

i∈N
rn−2
i < ε.

For each i, we can choose a smooth cutoff function fi, such that fi = 1
outside B2ri(pi), fi = 0 inside Bri(pi), and |∇fi| ≤ 2

ri
inside the annulus

B2ri(pi)\Bri(pi). Let fε be the minimum of all fi’s (which is Lipschitz),
and plug it into the stability inequality (2.2),∫

Σ

(
Ric(ν, ν)+|AΣ|2

)
f2
ε dHn ≤

∫
Σ
|∇fε|2dHn

≤ 4
∑
i∈N

∫
Σ∩B2ri

(pi)

1

r2i
dHn ≤ 4

∑
i∈N

1

r2i
· Crni ≤ 4Cε.

Here we used the monotonicity formula [Si83, 17.6] to get the volume
bound Hn(Σ∩B2ri(pi)) ≤ Crni in the third “≤”. Now let ε tend to zero,
we get a contradiction to the fact that Ric(ν, ν) > 0. q.e.d.

Remark 2.9. If we only require Ricg ≥ 0, the above proof will show
that the stable hypersurface must be smooth and totally geodesic, and
the restriction of Ricg to Σ is zero.

The second property says that any two such singular minimal hyper-
surfaces in manifold with positive Ricci curvature must intersect, which
generalizes the classical Frankel’s theorem [Fr66] for smooth minimal
hypersurfaces.

Theorem 2.10. (Generalized Frankel Theorem) Assume that
(Mn+1, g) has positive Ricci curvature. Given any two connected, sin-
gular, minimal hypersurfaces Σ and Σ′ with singular sets of Hausdorff
co-dimension no less than 2, then Σ and Σ′ must intersect on a set of
Hausdorff dimension no less than n− 2. Therefore, Σ ∩ Σ′ �= ∅.

Proof. First if Σ∩Σ′ = ∅, then we can find two points p ∈ Σ, p′ ∈ Σ′,
such that d(p, p′) = dist(Σ,Σ′). By the argument as in Lemma 2.1,
both p, p′ are regular points of Σ,Σ′. Then as in [Fr66, §2], we can
get a contradiction by looking at the second variational formula of the
length functional along the minimizing geodesic connecting p to p′ when
(M, g) has positive Ricci curvature.

Then Σ ∩ Σ′ �= ∅, so Theorem 2.2 implies that Σ ∩ Σ′ must have
Hausdorff dimension no less than n− 2. q.e.d.

2.6. Orientation and singular hypersurfaces. Now we list a few
properties related to the orientation of singular hypersurfaces. Similar
properties for smooth hypersurfaces were discussed in [Z12, §3].
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Proposition 2.11. Given a connected, minimal, singular hypersur-
face Σn with a singular set of Hausdorff dimension less than n − 2,
then

1) Σ is orientable if and only if Σ represents an integral n-cycle.
2) If Σ separates M , i.e., M\Σ contains two connected components,

then Σ is orientable.
3) When M has positive Ricci curvature, if Σ is orientable, then Σ

separates M.

Proof. Part 1. Σ is a rectifiable set, and when Σ is orientable, it can
represent an integer-multiplicity rectifiable current [Σ] as follows:

[Σ](ω) =

∫
Σ
〈ξ(x), ω(x)〉dHn =

∫
Σ
ω,

where ξ(x) is the orientation form of Σ, and ω is any smooth n-form
on M . Now we will show that [Σ] is a cycle, i.e., ∂[Σ] = 0. Given any
smooth (n − 1)-form ω on M , take the sequence of cutoff functions fε,
ε → 0, as in the proof of Lemma 2.8,

∂[Σ](ω) = [Σ](dω) =

∫
Σ
dω = lim

ε→0

∫
Σ
fεdω

= lim
ε→0

∫
Σ
d(fεω)− dfε ∧ ω.

The first term is zero by the Stokes Theorem, and the second term can
be estimated as:

|
∫
Σ
dfε∧ω| ≤

∫
Σ
|dfε∧ω|dHn≤C

∑
i∈N

∫
Σ∩Bri (pi)

1

ri
dHn≤C

∑
i∈N

rn−1
i → 0.

Now assume that Σ represents an integral cycle, and we will show
that Σ is orientable. In fact, assume that [Σ] = 〈Σ, ξ(x), θ(x) = 1〉 is
an integral cycle, where ξ(x) is locally an orientation form. Given any
open subset U ⊂ M\sing(Σ), then ∂

(
[Σ]�U

)
= 0 in U by definition. By

the same argument in [Z12, Proposition 6, Claim 4], [Σ]�U represents
an integral n-cycle in Σ ∩ U , hence by the Constancy Theorem [Si83,
26.27], [Σ]�U = [Σ ∩ U ]. Let U exhaust the whole regular part Σ,
then [Σ]�(M\sing(Σ)) = [Σ]; hence the orientation of [Σ] gives a global
orientation of Σ.

Part 2. The case for smooth Σ is given in [H, §4 Theorem 4.5]. Now
we modify the proof to our case. Take a connected component U of
M\Σ, the (topological) boundary ∂U of U is then a closed subset of Σ.
By using local coordinate charts of (M,Σ) around any smooth point of
Σ, it is easy to see that ∂U ∩ Σ is an open subset of Σ. Hence as a
subset of Σ, ∂U ∩ Σ is both open and closed, so ∂U ∩ Σ = Σ since Σ
is connected, and then ∂U = Σ. Using the same argument as in [H,
Theorem 4.2], the orientation of U induces an orientation for the normal
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bundle N of the regular part of ∂U , i.e., Σ. Note the splitting of the
tangent bundle TM restricted on Σ: TM |Σ = TΣ

⊕
N ; hence TΣ is

orientable by [H, Lemma 4.1].

Part 3. By Part 1, Σ represents an integral cycle [Σ], hence it rep-
resents an integral homology class

[
[Σ]

]
in Hn(M,Z) [FH, 4.4.1]. If Σ

does not separate M , i.e., M\Σ is connected, we claim that
[
[Σ]

]
is non-

trivial in Hn(M,Z). In fact, if
[
[Σ]

]
= 0, then there exists an integral

(n + 1)-current C ∈ In+1(M,Z), such that ∂C = [Σ]. Given any con-
nected open subset U ⊂ M\Σ, then ∂(C�U) = 0 in U by definition. The
Constancy Theorem [Si83, 26.27] implies that C�U = m[U ], for some
m ∈ Z, where [U ] denotes the integral (n+1)-current represented by U .
As M\Σ is connected (Σ does not separate M), we can take U = M\Σ,
and hence C�(M\Σ) = m[M\Σ]. As Σ has zero (n + 1)-dimensional
Hausdorff measure, then C = m[M ], hence ∂C = m∂[M ] = 0, which is
a contradiction to the fact that ∂C = [Σ].

Now we can take the mass minimizer T0 ∈
[
[Σ]

]
inside the homology

class [FH, 4.4.4][Si83, 34.3]. The codimension one regularity theory
([Si83, Theorem 37.7]) says that T0 is represented by a minimal hyper-
surface Σ0 (possibly with multiplicity) with a singular set of Hausdorff
dimension no larger than n− 7, i.e., T0 = m[Σ0], where m ∈ Z, m �= 0.
Since m[Σ0] represents a nontrivial integral homology class, Σ0 is ori-
entable by Part 1. Hence Σ0 is two-sided by Lemma 2.6. By the nature
of mass minimizing property of T , Σ0 must be locally volume minimiz-
ing, and hence Σ0 is stable, contradicting the positive Ricci curvature
condition via Lemma 2.8. q.e.d.

3. Min–max family

In this section, by using the volume comparison result in [HK], we
show that every singular minimal hypersurface in a manifold with pos-
itive Ricci curvature lies in a nice “mountain-pass” type family. In
particular, the family sweeps out the whole manifold, and the area of
the minimal hypersurface (when it is orientable), or the area of its dou-
ble cover (when the hypersurface is non-orientable) achieves a strict
maximum among the family. Actually, in manifold with positive Ricci
curvature, the level sets of distance function towards the singular mini-
mal hypersurface will play the role.

3.1. A volume comparison result in [HK]. Let (Mn+1, g) be a
closed, oriented manifold. Given a singular minimal hypersurface Σ ∈ S,
denote ν(Σ) by the normal bundle of the regular part Σ in M . Let
expν : ν(Σ) → M be the normal exponential map. Given ξ ∈ ν(Σ), the
focal distance in the direction of ξ means the first time t > 0 such that
the derivative of the normal exponential map at tξ, i.e., dexpν(tξ), be-
comes degenerate. Denote Ω by the sets of all vectors ξ in ν(Σ), which is
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no longer than the diameter of M or the focal distance in the direction
of ξ.

Lemma 3.1. expν : Ω → M\sing(Σ) is surjective.

Proof. Any point x ∈ M\Σ can be connected to Σ by a minimizing
geodesic. Also by Lemma 2.1, the nearest point of x in Σ is a regular
point of Σ; then the minimizing geodesic meets Σ orthogonally, and
hence expν is surjective to M\sing(Σ). Moreover, if ξ is the tangent
vector of the minimizing geodesic (parametrized on [0, 1]) connecting
x to Σ, then the length of ξ is no more than the focal distance in the
direction of ξ. q.e.d.

Now we will introduce a Riemannian metric on ν(Σ) (see also [HK,
§3]), such that ν(Σ) is locally isomorphic to the product of Σ with the
fiber. Let π : ν(Σ) → Σ be the projection map. Denote D by the Rie-
mannian connection of M , and D⊥ the normal connection of ν(Σ). The
tangent bundle of ν(Σ) can be split as a sum of “vertical” and “horizon-
tal” sub-bundles Tν(Σ) = V +H as follows. Given ξ ∈ ν(Σ), the vertical
tangent space Vξ contains tangent vectors of ν(Σ) which are tangent to
the fibers and hence killed by π∗, so Vξ is canonically isometric to the
fiber space νπ(ξ)(Σ). The horizontal tangent space Hξ contains tan-

gent vectors of ν(Σ) which are tangent to D⊥-parallel curves—viewed
as vector fields along their base curves (projected to Σ by π), so Hξ is
canonically isometric to Tπ(ξ)Σ under π∗. The metric on ν(Σ) can be
defined as:

‖v‖2 = ‖π∗v‖2 + ‖vver‖2, v ∈ Tξν(Σ),

where vver denotes the vertical component of v. It is easily seen that
under this metric, ν(Σ) is locally isometric to the product of Σ with the
fibers.

We need the following estimate of the volume form along normal
geodesics by [HK, §3]. Fix p ∈ Σ and a normal vector ξ ∈ νp(Σ). Given
an orthonormal basis e1, · · · , en of TpΣ, they can be lifted up to Tν(Σ)
as horizontal vector fields u1(s), · · · , un(s) along the normal vectors sξ.
By our construction above, u1(s), · · · , un(s) form an orthonormal ba-
sis of Tsξν(Σ), as π∗(ui(s)) = ei. The distortion of the n-dimensional
volume element under the normal exponential map expν : Tν(Σ) → M
is given by ‖dexpνu1(s) ∧ · · · ∧ dexpνun(s)‖. Assume that the Ricci
curvature of (M, g) satisfies Ricg ≥ nΛ for some Λ > 0. Consider an

(n+ 1)-dimensional manifold M̃ of constant curvature Λ, and a totally

geodesic hypersurface Σ̃. Fix an arbitrary point p̃ ∈ Σ̃, with a unit
normal ν(p̃). Choose an orthonormal basis ẽ1, · · · , ẽn of Tp̃(Σ̃), and a
frame ũ1(s), · · · , ũn(s) along sν(p̃) constructed as above. We have the
following comparison estimates:
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Lemma 3.2. [HK, §3.2.1, Case (d)]. Let s0 be no larger than the
first focal distance of Σ in the direction of ξ, then for 0 ≤ s ≤ s0,

‖dexpνu1(s) ∧ · · · ∧ dexpνun(s)‖ ≤ ‖dexpν ũ1(s) ∧ · · · ∧ dexpν ũn(s)‖.
It is easy to calculate that the n-dimensional volume distortion of

the constant curvature manifold M̃ is given by ‖dexpν ũ1(s) ∧ · · · ∧
dexpν ũn(s)‖ = cosn(

√
Λs)‖dexpν ũ1(0)∧· · ·∧dexpν ũn(0)‖ = cosn(

√
Λs).

Corollary 3.3. Under the above setting,

‖dexpνu1(s) ∧ · · · ∧ dexpνun(s)‖ ≤ cosn(
√
Λs).

3.2. Orientable case. Let Σ ∈ S be orientable, then Σ is two-sided.
Denote ν by the unit normal vector field along Σ. When Ricg > 0, Σ

separates M by Proposition 2.11, i.e., M\Σ = M1∪M2. Now the signed
distance function dΣ± is well-defined by

(3.1) dΣ±(x) =

{ dist(x,Σ), if x ∈ M1,
−dist(x,Σ), if x ∈ M2,
0, if x ∈ Σ.

Consider the levels sets of the signed distance function: Σt = {x ∈ M :
dΣ±(x) = t} for −d(M) ≤ t ≤ d(M). Denote

(3.2) S+ = {Σn ∈ S : Σn is orientable}.
We collect several properties of the distance family as follows:

Proposition 3.4. Assume that Ricg > 0. For any Σ ∈ S+, the
distance family {Σt}t∈[−d(M),d(M)] satisfy that:

(a) Σ0 = Σ;
(b) Hn(Σt) ≤ Hn(Σ), with equality only if t = 0;
(c) For any open set U ⊂ M\sing(Σ) with compact closure U ,

{Σt�U}t∈[−ε,ε] forms a smooth foliation of a neighborhood of Σ
in U , i.e.,

Σt�U = {expν
(
tν(x)

)
: x ∈ Σ ∩ U}, t ∈ [−ε, ε].

Proof. (a) is trivial by construction.
To prove (b), consider the height-t section St(Σ) = {ξ ∈ ν(Σ) : ξ =

tν} of ν(Σ) for −d(M) ≤ t ≤ d(M).

Lemma 3.5. Under the canonical metric of ν(Σ), St(Σ) is isometric
to Σ.

Proof. First, it is easy to see that the projection map π : ν(Σ) → Σ
restricts to be a one to one map π : St(Σ) → Σ. Also the tangent plane
TξSt(Σ) of St(Σ) at ξ = tν consists all horizontal vectors of Tξν(Σ).
Then π∗ : TξSt(Σ) → Tπ(ξ)Σ gives the isometry by the construction of
the metric on ν(Σ). q.e.d.
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Recall that expν : Ω ⊂ ν(Σ) → M\sing(Σ) is surjective, so the
pre-image exp−1

ν (Σt) is totally contained in St(Σ) ∩ Ω, and hence by
Corollary 3.3,

Hn(Σt) ≤
∫
St(Σ)∩Ω

‖(dexpν)∗dvolSt(Σ)‖

=

∫
St(Σ)∩Ω

‖dexpνu1(s) ∧ · · · ∧ dexpνun(s)‖

≤
∫
Σ
cosn(

√
Λt)dHn ≤ cosn(

√
Λt)Hn(Σ).

(3.3)

To prove (c), we first realize that ν(Σ) is globally isometric to Σ×R

when Σ is orientable, so that ν(Σ) has a global smooth foliation struc-
ture. When restricted to the zero section, the normal exponential map
expν : ν(Σ) → M is the identity map, and has non-degenerate tangent
map. As the closure U is a compact subset of M\sing(Σ), we can use
the Inverse Function Theorem to infer that expν is a diffeomorphism in
a small neighborhood of exp−1

ν (Σ ∩ U). Hence (c) follows. q.e.d.

3.3. Non-orientable case. Given Σ ∈ S non-orientable, Σ does not
separate M by Proposition 2.11. Denote dΣ(x) = dist(x,Σ) by the
distance function (without sign). Consider the level sets of dΣ: Σt =
{x ∈ M : dΣ(x) = t} for 0 ≤ t ≤ d(M). Denote

(3.4) S− = {Σn ∈ S : Σn is non-orientable}.
We have:

Proposition 3.6. Assume that Ricg > 0. For any Σ ∈ S−, the
distance family {Σt}0≤0≤d(M) satisfy that:

(a) Σ0 = Σ;
(b) Hn(Σt) < 2Hn(Σ), for all 0 ≤ t ≤ d(M);
(c) When t → 0, Hn(Σt) → 2Hn(Σ), and Σt converge smoothly to a

double cover of Σ in any open set U ⊂ M\sing(Σ) with compact
closure U .

Proof. (a) is by construction.

For (b), let the height-t section of ν(Σ) be S̃t(Σ) = {ξ ∈ ν(Σ) :
|ξ| = t} for 0 ≤ t ≤ d(M). Similar as the proof of Lemma 3.5, the

projection map π : S̃t(Σ) → Σ is locally isometric. Also as the fiber

of ν(Σ) is one dimensional, π is a 2-to-1 map. Hence π : S̃t(Σ) → Σ
is an isometric double cover. The pre-image of the exponential map
exp−1

ν (Σt) is then contained in S̃t ∩Ω, with Ω as above. By the volume
comparison estimates in (3.3),

Hn(Σt) ≤
∫
S̃t(Σ)∩Ω

‖(dexpν)∗dvolS̃t(Σ)‖ ≤ 2

∫
Σ
cosn(

√
Λt)dHn

≤ 2 cosn(
√
Λt)Hn(Σ).

(3.5)
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For (c), to prove that Hn(Σt) → 2Hn(Σ), as t → 0, by (3.5), we
only need to prove that limt→0Hn(Σt) ≥ 2Hn(Σ), and this follows from
the smooth convergence Σt → 2Σ on any open set U ⊂⊂ M\sing(Σ).
By similar argument as Proposition 3.4(c), when restricted to a small
neighborhood of exp−1

ν (Σ ∩ U), expν : ν(Σ) → M is a diffeomorphism.
Therefore, the convergence Σt → 2Σ on U follows from the fact that
S̃t(Σ) converge smoothly to a double cover of the zero section, as t → 0.

q.e.d.

4. Almgren–Pitts min–max theory

In this section, we will introduce the min–max theory developed by
Almgren and Pitts [AF62, AF65, P81]. We will mainly follow [Z12,
§4] [P81, 4.1] and [MN12, §7 and §8]. We refer to §2.1 for the no-
tions of Geometric Measure Theory. At the end of this section, we will
recall the characterization of the orientation structure of the min–max
hypersurfaces proved by the author in [Z12].

4.1. Homotopy sequences.

Definition 4.1. (Cell complex.)

1) For m ∈ N, Im = [0, 1]m, Im0 = ∂Im = In\(0, 1)m;
2) For j ∈ N, I(1, j) is the cell complex of I, whose 1-cells are all

intervals of form [ i
3j
, i+1

3j
], and 0-cells are all points [ i

3j
]; I(m, j) =

I(1, j)⊗ · · · ⊗ I(1, j) (m times) is a cell complex on Im;
3) For p ∈ N, p ≤ m, α = α1 ⊗ · · · ⊗ αm is a p-cell if for each i, αi is

a cell of I(1, j), and
∑m

i=1 dim(αi) = p. 0-cell is called a vertex;
4) I(m, j)p denotes the set of all p-cells in I(m, j), and I0(m, j)p

denotes the set of p-cells of I(m, j) supported on Im0 ;
5) Given a p-cell α ∈ I(m, j)p, and k ∈ N, α(k) denotes the p-

dimensional sub-complex of I(m, j + k) formed by all cells con-
tained in α. For q ∈ N, q ≤ p, α(k)q and α0(k)q denote, respec-
tively, the set of all q-cells of I(m, j + k) contained in α, or in the
boundary of α;

6) T (m, j) = I(m − 1, j) ⊗ {[1]}, B(m, j) = I(m − 1, j) ⊗ {[0]} and
S(m, j) = I0(m − 1, j) ⊗ I(1, j) denote the top, bottom and side
sub-complexes of I(m, j), respectively;

7) The boundary homeomorphism ∂ : I(m, j) → I(m, j) is given by

∂(α1 ⊗ · · · ⊗ αm) =

m∑
i=1

(−1)σ(i)α1 ⊗ · · · ⊗ ∂αi ⊗ · · · ⊗ αm,

where σ(i) =
∑

l<i dim(αl), ∂[a, b] = [b] − [a] if [a, b] ∈ I(1, j)1,
and ∂[a] = 0 if [a] ∈ I(1, j)0;

8) The distance function d : I(m, j)0 × I(m, j)0 → N is defined as
d(x, y) = 3j

∑m
i=1 |xi − yi|;
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9) The map n(i, j) : I(m, i)0 → I(m, j)0 is defined as: n(i, j)(x) ∈
I(m, j)0 is the unique element of I(m, j)0, such that
d
(
x,n(i, j)(x)

)
= inf

{
d(x, y) : y ∈ I(m, j)0

}
.

As we are mainly interested in applying the Almgren–Pitts theory to
the 1-parameter families, in the following of this section, our notions
will be restricted to the case m = 1.

Consider a map to the space of integral cycles: φ : I(1, j)0 → Zn(M
n+1).

The fineness of φ is defined as:

(4.1) f(φ) = sup
{M

(
φ(x)− φ(y)

)
d(x, y)

: x, y ∈ I(1, j)0, x �= y
}
.

φ : I(1, j)0 → (Zn(M
n+1), {0}) denotes a map such that φ

(
I(1, j)0

) ⊂
Zn(M

n+1) and φ|I0(1,j)0 = 0, i.e., φ([0]) = φ([1]) = 0.

Definition 4.2. Given δ > 0 and φi : I(1, ki)0 → (Zn(M
n+1), {0}),

i = 1, 2, we say φ1 is 1-homotopic to φ2 in
(Zn(M

n+1), {0}) with fine-
ness δ, if ∃ k3 ∈ N, k3 ≥ max{k1, k2}, and

ψ : I(1, k3)0 × I(1, k3)0 → Zn(M
n+1),

such that

• f(ψ) ≤ δ;
• ψ([i− 1], x) = φi

(
n(k3, ki)(x)

)
, i = 1, 2;

• ψ
(
I(1, k3)0 × I0(1, k3)0

)
= 0.

Definition 4.3. A (1,M)-homotopy sequence of mappings into(Zn(M
n+1), {0}) is a sequence of mappings {φi}i∈N,

φi : I(1, ki)0 →
(Zn(M

n+1), {0}),
such that φi is 1-homotopic to φi+1 in

(Zn(M
n+1), {0}) with fineness

δi, and

• limi→∞ δi = 0;
• supi

{
M(φi(x)) : x ∈ I(1, ki)0

}
< +∞.

Definition 4.4. Given two (1,M)-homotopy sequences of mappings
S1 = {φ1

i }i∈N and S2 = {φ2
i }i∈N into

(Zn(M
n+1), {0}), S1 is homotopic

with S2 if ∃ {δi}i∈N, such that

• φ1
i is 1-homotopic to φ2

i in
(Zn(M

n+1), {0}) with fineness δi;
• limi→∞ δi = 0.

The relation “is homotopic with” is an equivalent relation on the
space of (1,M)-homotopy sequences of mapping into

(Zn(M
n+1), {0})

(see [P81, §4.1.2]). An equivalent class is a (1,M) homotopy class
of mappings into

(Zn(M
n+1), {0}). Denote the set of all equivalent

classes by π#
1

(Zn(M
n+1,M), {0}). Similarly we can define the (1,F)-

homotopy class (using another fineness associated with the F-norm in
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place of theM-norm in (4.1)), and denote the set of all equivalent classes

by π#
1

(Zn(M
n+1,F), {0}).

4.2. Almgren’s isomorphism. Almgren [AF62] showed that the ho-
motopy groups of Zn(M) (under M and F topology) are all isomorphic
to the top homology group of M by constructing an isomorphism as
follows.

By [AF62, Corollary 1.14], there exists a small number νM > 0 (de-
pending only on M), such that for any two n-cycles T1, T2 ∈ Zn(M

n+1),
if F(T2 − T1) ≤ νM , then there exists an (n + 1)-dimensional integral
current Q ∈ In+1(M), with ∂Q = T2 − T1, and M(Q) = F(T2 − T1). Q
is called the isoperimetric choice for T2 − T1.

Given φ : I(1, k)0 → Zn(M
n+1), with f(φ) ≤ δ ≤ νM , then for any

1-cell α ∈ I(1, k)1, with α = [t1α, t
2
α], F

(
φ(t1α) − φ(t2α)

) ≤ M
(
φ(t1α) −

φ(t2α)
) ≤ f(φ) ≤ νM . So there exists an isoperimetric choice Qα ∈

In+1(M
n+1), with

M(Qα) = F(
φ(t1α)− φ(t2α)

)
, and ∂Qα = φ(t2α)− φ(t1α).

Now the sum of the isoperimetric choices for all 1-cells is an (n + 1)-
dimensional integral current, i.e.,

∑
α∈I(1,k)1 Qα ∈ In+1(M

n+1). We call

the map:

(4.2) FA : φ →
∑

α∈I(1,k)1
Qα

Almgren’s isomorphism (the name comes from Theorem 4.5).
Given a (1,M)-homotopy sequence of mappings S = {φi}i∈N into(Zn(M

n+1), {0}), take i large enough, and φi : I(1, ki)0 →
(Zn(M

n+1),

{0}), such that f(φi) ≤ δi ≤ νM . Then

FA(φi) =
∑

α∈I(1,ki)1
Qα

is an (n + 1)-dimensional integral cycle as φi([0]) = φi([1]) = 0, and
represents an (n+ 1)-dimensional integral homology class[ ∑

α∈I(1,ki)1
Qα

] ∈ Hn+1(M
n+1).

Moreover, Almgren [AF62, §3.2] showed that this homology class de-
pends only on the homotopy class of {φi}. Hence it reduces to a map

FA : π#
1

(Zn(M
n+1,M), {0}) → Hn+1(M

n+1),

defined in [AF62, §3.2] as:

(4.3) FA : [{φi}i∈N] →
[ ∑
α∈I(1,ki)1

Qα

]
.

Almgren also proved that this mapping is an isomorphism.
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Theorem 4.5. ([AF62, Theorem 13.4] and [P81, Theorem 4.6]) The
followings are all isomorphic under FA:

Hn+1(M
n+1), π#

1

(Zn(M
n+1,M), {0}), π#

1

(Zn(M
n+1,F), {0}).

We also call this map Almgren’s isomorphism.

4.3. Existence of min–max hypersurface.

Definition 4.6. (Min–max definition) Given Π ∈ π#
1

(Zn(M
n+1,M),

{0}), define:
L : Π → R

+,

as a function given by:

L(S) = L({φi}i∈N)
= lim sup

i→∞
max

{
M

(
φi(x)

)
: x lies in the domain of φi

}
.

The width of Π is defined as

(4.4) L(Π) = inf{L(S) : S ∈ Π}.
S ∈ Π is call a critical sequence, if L(S) = L(Π). Let K : Π →
{compact subsets of Vn(M

n+1)} be defined by

K(S) = {V : V = lim
j→∞

|φij (xj)| : xj lies in the domain of φij}.
A critical set of S is C(S) = K(S) ∩ {V : M(V ) = L(S)}.

The celebrated min–max theorem of Almgren–Pitts (Theorem 4.3,
4.10, 7.12, Corollary 4.7 in [P81]) and Schoen–Simon (for n ≥ 6 [SS81,
Theorem 4]) is as follows:

Theorem 4.7. Given a nontrivial Π ∈ π#
1

(Zn(M
n+1,M), {0}), then

L(Π) > 0, and there exists a stationary integral varifold V , whose
support is a disjoint collection of connected, closed, singular, minimal
hypersurfaces {Σi}li=1, with singular sets of Hausdorff dimension no
larger than n − 7, (which may have multiplicity, say mi), such that

V =
∑l

i=1mi[Σi], and

l∑
i=1

miHn(Σi) = L(Π).

In particular, V lies in the critical set C(S) of some critical sequence
S ∈ Π.

4.4. Orientation and multiplicity. As V lies in the critical set C(S),
V is a varifold limit of a sequence of integral cycles {φij (xj)}j∈N. It has
been conjectured that V should inherit some orientation structures from
{φij (xj)}j∈N. In fact, we verified this conjecture and gave a character-
ization of the orientation structure of V in low dimensions (where the
support of V is the smooth) in [Z12, Proposition 6.1]. Some straight-
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forward modifications of the proof will give similar characterization for
singular min–max hypersurfaces (in all dimensions) as follows.

Proposition 4.8. Let V be the stationary varifold in Theorem 4.7,

with V =
∑l

i=1mi[Σi]. If Σi is non-orientable, then the multiplicity mi

must be an even number.

Remark 4.9. When a connected component Σi is orientable, it rep-
resents an integral cycle by Proposition 2.11. While a connected com-
ponent Σi is non-orientable, an even multiple of it also represents an
integral cycle—a zero cycle. This result will play a key role in the
characterization of the multiplicity in Theorem 1.1. (This result was
also used in [Z12, MR15] to characterize the multiplicity of min–max
hypersurfaces).

5. Discretization and construction of sweepouts

The purpose of this section is to adapt the families of currents con-
structed by geometric method (in §3) to the Almgren–Pitts setting (in
§4). Usually families constructed by geometric method are continuous
under the flat norm topology, but the Almgren–Pitts theory applies only
to discrete family continuous under the mass norm topology. Therefore,
we need to discretize our families and to make them continuous under
the mass norm topology. Similar issue was also an essential technical
difficulty in the celebrated proof of the Willmore conjecture [MN12],
and also in a previous paper by the author [Z12] which deals with the
same problem in low dimensions. A key technical condition in these
discretization type theorems in [MN12, MN13, Z12] is the no local
mass concentration assumption. Roughly speaking, it means that the
weak measure-theoretical closure of the family of currents does not con-
tain any point mass. However, the families used here do not necessarily
satisfy this technical assumption, so we will build up a stronger ver-
sion of the discretization theorem without assuming the no mass con-
centration condition. Actually, this issue was originally considered by
Pitts [P81, §3.5, §3.7] in another setting. Our strategy is motivated
by Pitts’s method, and is simpler than Pitts’s discretization procedure.
In this paper, we only deal with families of currents which are bound-
aries of sets of finite perimeter. This is already enough for the purpose
of many geometric applications, as all the known interesting geometric
families (cf. [MN12, MN13, Z12]) belong to this class. In fact, it
is conjectured by Marque and Neves [MN12, §13.2] that the no mass
concentration assumption is not necessary, and our result confirms this
conjecture in the co-dimension one case. For the purpose of simplicity,
we only present the discretization theorem for one-parameter families.
The case for multi-parameter families is still true by similar arguments
as in [MN12, Theorem 13.1] using our technical results Proposition 5.3
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and Proposition 5.10 in place of [MN12, Proposition 13.3, 13.5], and
will be addressed elsewhere.

Another key ingredient which utilizes the big machinery by Almgren–
Pitts is an identification type result. We will show that all the dis-
cretized families corresponding to those families constructed in §3 be-
long to the same homotopy class in the sense of Almgren–Pitts. This
type of result was proved in [Z12] under the no mass concentration as-
sumption, and we will extend this identification type result to the case
without no mass concentration assumption. We prove this by showing
that the image of the discretized families under the Almgren’s isomor-
phism represent the top homology class of M . Then these families must
be homotopic to each other by Theorem 4.5.

The main result can be summarized as the following theorem. Recall
that C(M) is consisted by all subsets of M of finite perimeter.

Theorem 5.1. Given a continuous mapping

Φ : [0, 1] → (Zn(M
n+1,F), {0}),

satisfying

(a) Φ(x) = ∂[[Ωx]], Ωx ∈ C(M), for all x ∈ [0, 1];
(b) supx∈[0,1]M(Φ(x)) < ∞;

then there exists a (1,M)-homotopy sequence

φi : I(1, ki)0 →
(Zn(M

n+1,M), {0}),
and a sequence of homotopy maps

ψi : I(1, ki)0 × I(1, ki)0 → Zn(M
n+1,M),

with ki < ki+1, and {δi}i∈N with δi > 0, δi → 0, and {li}i∈N, li ∈ N with
li → ∞, such that ψi([0], ·) = φi, ψi([1], ·) = φi+1|I(1,ki)0, and

(i)

M
(
φi(x)

) ≤ sup
{
M

(
Φ(y)

)
: x, y ∈ α, for some 1-cell α ∈ I(1, li)

}
+δi,

and hence

(5.1) L({φi}i∈N) ≤ sup
x∈[0,1]

M
(
Φ(x)

)
;

(ii) f(ψi) < δi;
(iii) sup

{F(
φi(x)− Φ(x)

)
: x ∈ I(1, ki)0

}
< δi;

(iv) If Ω0 = ∅, Ω1 = M , then

FA({φi}) = [[M ]],

where FA is the Almgren’s isomorphism, and [[M ]] is the funda-
mental class of M .
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Remark 5.2. The proof of properties (i)(ii)(iii) is based on the proof
of [MN12, Theorem 13.1] and [P81, §3.5, 3.7]. The idea to deal with
the existence of mass concentration is motivated by [P81, §3.5, 3.7]. We
actually simplify the discretization procedure in [P81, §3.5] for currents
which can be represented by boundary of sets of finite perimeter using
some new observations (cf. Lemma 5.8). The proof of property (iv) is
based on the ideas in [Z12, Theorem 5.8].

Upon first perusal of this section, the reader might skip the following
technical proof and move to §6.
5.1. Technical preliminaries. The following two technical results are
parallel to [MN12, Propositions 13.3, 13.5], while without assuming the
no mass concentration condition.

The first result is parallel to [MN12, 13.3], and it says that given
T ∈ Zn(M

n+1), and l,m ∈ N , there exists k ∈ N, k > l, such that any
φ which maps I0(m, l)0 into a small neighborhood of T (with respect to

the flat topology) can be extended to a map φ̃ which maps I(m, k)0 into
a slightly larger neighborhood of T (with respect to the flat topology),

such that the fineness and maximal mass of φ̃ are not much bigger than
those of φ. Compared to [MN12, 13.3], we do not require the no mass
concentration condition, but we need to assume that the image of φ are
represented by boundary of sets of finite perimeter. Also, the extension
φ̃ will be mapped to a slightly large neighborhood. The idea to deal
with the mass concentration traces back to [P81, 3.5]. We will first
deform φ to certain local cones around the mass concentration points
(cf. Lemma 5.8), and then apply similar extension process as [MN12,
13.3].

Fix an integer n0 ∈ N.

Proposition 5.3. Given δ, L > 0, l,m ∈ N, m ≤ n0 + 1, and

T ∈ Zn(M) ∩ {S : M(S) ≤ 2L},with T = ∂[[ΩT ]],

ΩT ∈ C(M), then there exist 0 < ε = ε(l,m, T, δ, L) < δ, and k =
k(l,m, T, δ, L) ∈ N, k > l, and a function ρ = ρ(l,m,T,δ,L) : R

1
+ → R

1
+,

with ρ(s) → 0, as s → 0, such that: for any 0 < s < ε, and

(5.2) φ : I0(m, l)0 → BF
s (T ) ∩ {S : M(S) ≤ 2L}, with φ(x) = ∂[[Ωx]],

Ωx ∈ C(M), x ∈ I0(m, l)0, there exists

φ̃ : I(m, k)0 → BF
ρ(s)(T ), with φ̃(y) = ∂[[Ωy]],

Ωy ∈ C(M), y ∈ I(m, k)0, and satisfying

(i) f(φ̃) ≤ δ if m = 1, and f(φ̃) ≤ m(f(φ) + δ) if m > 1;

(ii) φ̃ = φ ◦ n(k, l) on I0(m, k)0;
(iii)

sup
x∈I(m,k)0

M
(
φ̃(x)

) ≤ sup
x∈I0(m,l)0

M
(
φ(x)

)
+

δ

n0 + 1
;
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(iv) If m = 1, δ < νM ,4 φ([0]) = ∂[[Ω0]], φ([1]) = ∂[[Ω1]], then

FA(φ̃) = [[Ω1 − Ω0]],

where FA is the Almgren’s isomorphism (4.2).

Remark 5.4. (i) controls the fineness of the extension φ̃; (ii) says
that on the boundary vertices I0(m, k)0 of the cell complex I(m, k), the

extension φ̃ directly inherits from φ; (iii) controls the increase of the

mass; (iv) calculates the image of φ̃ under the Almgren’s isomorphism
when m = 1.

Proof. We use the contradiction argument. If the statement is not
true, by Section 7.1, there exists k0 ∈ N large enough, ρ0 > 0, and a
sequence of εk < 1/k, and

φk : I0(m, l)0 → BF
εk
(T ) ∩ {S : M(S) ≤ 2L},

φk(x) = ∂[[Ωk
x]], Ω

k
x ∈ C(M), such that there is no extension φ̃k of φk

from I(m, k0) to BF
ρ0(T ), i.e., φ̃k : I(m, k0)0 → BF

ρ0(T ), satisfying all the
above properties (i)(ii)(iii)(iv).

The next lemma is an analog to [MN12, Lemma 13.4] without assum-
ing the no mass concentration condition, and uses some new ideas moti-
vated from [P81, §3.5]. Proposition 5.3 will be proved using Lemma 5.5.

Lemma 5.5. With φk, εk as above, there exist N = N(l,m, T, δ, L) ∈
N, N > l, and a subsequence {φj}, and a sequence of positive numbers
ρj → 0, as j → ∞, such that we can construct

ψj : I(1, N)0 × I0(m, l)0 → BF
ρj (T ),

satisfying

(0) ψj(y, x) = ∂[[Ωj
y,x]], Ω

j
y,x ∈ C(M), (y, x) ∈ I(1, N)0 × I0(m, l)0;

(i) f(ψj) ≤ δ if m = 1, and f(ψj) ≤ f(φj) + δ if m > 1;
(ii) ψj([0], ·) = φj, ψj([1], ·) = T ;
(iii)

sup{M(
ψj(y, x)

)
,(y, x) ∈ I(1, N)0 × I0(m, l)0}
≤ sup

x∈I0(m,l)0

M
(
φj(x)

)
+

δ

n0 + 1
;

(iv) If m = 1, δ < νM , φj([0]) = ∂[[Ωj,0]], φj([1]) = ∂[[Ωj,1]], then

FA(ψj |I(1,N)0×{[0]}) = [[ΩT−Ωj,0]], FA(ψj |I(1,N)0×{[1]}) = [[ΩT−Ωj,1]],
5

where FA is the Almgren’s isomorphism (4.2).

4νM is defined in Section 4.2.
5Here we identify I(1, N)0 × {[0]} and (I(1, N))0 × {[1]} with I(1, N)0.
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Proof. As a subset in Vn(M) with uniformly bounded mass is weakly
compact, we can find a subsequence {φj} of {φk}, and a map

V : I0(m, l)0 → Vn(M),

such that limj→∞ |φj(x)| = V (x) as varifolds, ‖V (x)‖(M) ≤ 2L, for all
x ∈ I0(m, l)0. Also as εj → 0, limj→∞ φj(x) = T as currents.

Now we need to separate our discussion into two cases:

Case 1: ‖V (x)‖(p) ≤ δ/5, for all p ∈ M , x ∈ I0(m, l)0;
Case 2: The set Scon

6 = {q ∈ M : ‖V (x)‖(q) > δ/5 for some x ∈
I0(m, l)0} �= ∅.

Lemma 5.6. In Case 1, there exist N1 = N1(l,m, T, δ, L) ∈ N, and

ψj : I(1, N1)0 × I0(m, l)0 → BF
εj (T ),

satisfying properties (0)(i)(ii)(iii)(iv) in Lemma 5.5.

Remark 5.7. The proof is a straightforward adaption of [P81, 3.7]
[MN12, Lemma 13.4][Z12, Theorem 5.8], so we omit some identical
details. See Figure 1 for illustration of notions.

Proof. By the lower semi-continuity of weak convergence
limj→∞ φj(x) → T ,

‖T‖(Br(p)
) ≤ ‖V (x)‖(Br(p)

)
, ∀p ∈ M, r > 0.

As ‖V (x)‖({p}) ≤ δ/5 for all x ∈ I0(m, l)0, p ∈ M , we can find a finite
collection of pairwise disjoint open balls {Bri(pi) : 1 ≤ i ≤ v}, pi ∈ M ,
ri > 0, v ∈ N, such that for all x ∈ I0(m, l)0,

Fact 1. 1) ‖T‖(Bri(pi)
) ≤ ‖V (x)‖(Bri(pi)

)
< δ/3;

2) ‖T‖(M\ ∪v
i=1 Bri(pi)

) ≤ ‖V (x)‖(M\ ∪v
i=1 Bri(pi)

)
< δ/3;

3) ‖T‖(∂Bri(pi)
)
= ‖V (x)‖(∂Bri(pi)

)
= 0;

4) v depends only on l,m, T, δ, L by compactness of varifolds with
bounded mass.

By [AF62, Corollary 1.14], for j � 1, x ∈ I0(m, l)0, there exists
isoperimetric choices Qj(x) ∈ In+1(M

n+1), such that

(5.3) ∂Qj(x) = φj(x)− T, M
(
Qj(x)

)
= F(

φj(x)− T
) ≤ εj < 1/j.

For each i = 1, · · · , v, let di(x) = dist(pi, x) be the distance function
to pi on (M, g). Using the Slicing Theorem [Si83, 28.5], for each i =

1, · · · , v, we can find a sequence of positive numbers {rji }, such that

rji ↘ ri, such that for all x ∈ I0(m, l)0, the slices 〈Qj(x), di, r
j
i 〉 ∈ In(M),

and

(5.4) 〈Qj(x), di, r
j
i 〉 = ∂

(
Qj(x)�Brji

(pi)
)− (

φj(x)− T
)
�B

rji
(pi).

6The notion Scon means “set of mass concentration points”.
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φj(x)

T

Brji
(pji )

Qj(x)

Figure 1. This figure illustrates the geometric objects
using in Lemma 5.6.

Also as limj→∞M
(
Qj(x)

)
= 0, by [Si83, 28.5(1)], we can choose {rji }

so that for j large enough,

(5.5)
∑

x∈I0(m,l)0

v∑
i=1

M
(〈Qj(x), di, r

j
i 〉
) ≤ δ

2(n0 + 1)
.

Using Fact 1 and the lower semi-continuity of mass functional, for j
large enough,

(5.6) ‖φj(x)‖
(
B

rji
(pi)

)
< δ/3, ‖T‖(B

rji
(pi)

)
< δ/3;

(5.7) ‖φj(x)‖
(
M\∪v

i=1Brji
(pi)

)
< δ/3, ‖T‖(M\∪v

i=1Brji
(pi)

)
< δ/3;

(5.8)
(‖T‖ − ‖φj

i (x)‖
)(
B

rji
(pi)

) ≤ δ

2(n0 + 1)v
,

for all i = 1, · · · , v, and x ∈ I0(m, l)0.
Let v+1 = 3N1 , N1 ∈ N, then N1 depends only on l,m, T, δ, L. Define

ψj : I(1, N1)0 × I0(m, l)0 → Zn(M
n+1) by,

ψj([
i

3N1
], x) =φj(x)−

i∑
a=1

∂
(
Qj(x)�Brja

(pa)
)
, for 0 ≤ i ≤ 3N1 − 1,

ψj([1], x) = T.

(5.9)

Similar arguments as in the proof of [MN12, Lemma 13.4] using
(5.4)(5.5)(5.6)(5.7)(5.8) in place of [MN12, (67)(68)(69)(70)(71)] show
that ψj([

i
3N1

], x) ∈ BF
εj (T ) for all 1 ≤ i ≤ 3N1 , x ∈ I0(m, l)0, and that

{ψj} satisfy properties (i)(ii)(iii) in Lemma 5.5.
Now let us check property (0) in Lemma 5.5. We assume that T �= 0

(the case T = 0 is easier). Denote φj(x) = ∂[[Ωj(x)]], Ωj(x) ∈ C(M),
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then by Lemma 7.3, for j large enough, the isoperimetric choices Qj(x)
in (5.3) satisfy that:

Qj(x) = [[Ωj(x)− ΩT ]], for all x ∈ I0(m, l)0.

Hence by (5.9), for 0 ≤ i ≤ 3N1 − 1,

ψj([
i

3N1
], x) = ∂[[Ωj(x)]]−

i∑
a=1

∂
(
[[Ωj(x)− ΩT ]]�Brja

(pa)
)

= ∂
{
[[Ωj(x)�

(
M\ ∪i

a=1 Brja
(pa)

)
]]

+ [[ΩT �
( ∪i

a=1 Brja
(pa)

)
]]
}
.

This proves Lemma 5.5(0) as Ωj(x)�
(
M\ ∪i

a=1 B
rja
(pa)

)
+ ΩT �

( ∪i
a=1

B
rja
(pa)

) ∈ C(M).

Finally, let us check property (iv) in Lemma 5.5. Assume that m = 1,
and εj < νM . Let us calculate FA(ψj |I(1,N1)0×{[0]}) and
FA(ψj |I(1,N1)0×{[1]}). First we do FA(ψj |I(1,N1)0×{[0]}). By the defini-
tion of Almgren’s isomorphism (4.2),

FA(ψj |I(1,N1)0×{[0]}) =
v+1∑
i=1

Qj,i(0),

where Qj,i(0) is the isoperimetric choice of ψj([
i

3N1
], [0])−ψj([

i−1
3N1

], [0]),

i = 1, · · · , v, andQj,v+1(0) is the isoperimetric choice of T−ψj([
v

3N1
], [0]).

By (5.9),

ψj([
i

3N1
], [0])− ψj([

i− 1

3N1
], [0]) = −∂

(
Qj(x)�Brji

(pi)
)
,

and hence by Lemma 7.2, Qj,i(0) = −Qj(x)�Brji
(pi) = [[ΩT −

Ωj(0)]]�Brji
(pi). Similarly,

T − ψj([
v

3N1
], [0]) = −∂

(
Qj(x)�[M\ ∪v

i=1 Brji
(pi)]

)
,

and hence by Lemma 7.2, Qj,v+1(0) = −Qj(x)�[M\ ∪v
i=1 B

rji
(pi)] =

[[ΩT − Ωj(0)]]�[M\ ∪v
i=1 Brji

(pi)]. Summing them together,

FA(ψj |I(1,N1)0×{[0]}) =
v∑

i=1

[[ΩT − Ωj(0)]]�Brji
(pi)

+ [[ΩT − Ωj(0)]]�[M\ ∪v
i=1 Brji

(pi)]

= [[ΩT − Ωj(0)]].

Similar arguments show that FA(ψj |I(1,N1)0×{[1]}) = [[ΩT −Ωj(1)]], and
hence property (iv) (in Lemma 5.5) is proved. q.e.d.
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Lemma 5.8. In Case 2, there exist N2 = N2(l,m, δ, L) ∈ N, and a
subsequence (still denoted by) {φj}, and a sequence of positive numbers
ρj → 0, as j → ∞, and

ψj : I(1, N2)0 × I0(m, l)0 → BF
ρj (T ),

satisfying:

(0) ψj(y, x) = ∂[[Ωj
y,x]], Ω

j
y,x ∈ C(M), (y, x) ∈ I(1, N2)0× I0(m, l)0;

(i) f(ψj) ≤ δ if m = 1, and f(ψj) ≤ f(φj) + δ if m > 1;
(ii) ψj([0], ·) = φj,

lim
j→∞

|ψj([1], x)| = V (x)�Gn

(
M\Scon

)
7 as varifolds for all x ∈ I0(m, l)0;

(iii)

sup{M(
ψj(y, x)

)
,(y, x) ∈ I(1, N2)0 × I0(m, l)0}
≤ sup

x∈I0(m,l)0

M
(
φj(x)

)
+

δ

n0 + 1
;

(iv) If m = 1, δ < νM , φj([0]) = ∂[[Ωj,0]], φj([1]) = ∂[[Ωj,1]], ψj([1]⊗
[0]) = ∂[[Ω′

j,0]], ψj([1]⊗ [1]) = ∂[[Ω′
j,1]],

8 then

FA(ψj |I(1,N2)0×{[0]})= [[Ω′
j,0−Ωj,0]], FA(ψj |I(1,N2)0×{[1]})= [Ω′

j,1−Ωj,1]],
9

where FA is the Almgren’s isomorphism (4.2).

Remark 5.9. This lemma is the key part towards Theorem 5.1. As
the proof is very subtle, we sketch the main ideas here. Let us focus
on a simpler case when Scon contains only one point q (Part I in the
proof), and the general case (Part II) follows from straightforward in-
duction. For j large, we will find points pj → q and radii rj → 0,
such that the mass of the slicing M

[
∂
(
φj(x)�B(pj , rj)

)] → 0 (Fact
2). To get rid of the mass concentration, we will connect φj(x) to local
cones 0X∂

(
φj(x)�B(pj , rj)

)
inside B(pj , rj) in finitely many steps simul-

taneously for all x ∈ I0(m, l)0. To keep the fineness small during this
procedure, we will find finitely many concentric annuli inside B(pj , rj)
(Fact 3), and do the deformation step by step on each annulus (Step 1
to 3). The number of annuli can be chosen to depend only on l,m, δ, L
(Fact 3.4). All the properties (0)(i)(ii)(iii)(iv) are checked in Step 4
and 5.

As we are working on a manifold, so all the cone construction should
be passed to the tangent plane using exponential map. We summarize
the related formula for local exponential maps in §7.2.

7Gn(U), U ⊂ M denotes the n-Grassmannian bundle over U [Si83, §38].
8We introduce new notions Ω′j,0,Ω

′
j,1 to simplify presentation, and according to

(0), Ω′j,0 = Ωj
[1],[0] and Ω′j,1 = Ωj

[1],[1].
9Here we identify I(1, N2)0 × {[0]} and (I(1, N2))0 × {[1]} with I(1, N2)0.
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Proof. For all basics facts about the local exponential map, we refer
to §7.2.

C(m, l) denotes the number of vertices in I0(m, l)0.
Denote α = δ/5, then the set Scon has at most C(m, l)2Lα points.

Given q ∈ Scon, then ‖V (x)‖(q) > α, for some x ∈ I0(m, l)0. Choose
a neighborhood Z = Zq of q satisfying the requirement of §7.2, with
respect to some fixed ε ≤ n/2. We can make sure that the sets {Zq :
q ∈ Scon} are pairwise disjoint by possibly shrinking Zq.

Part I: First assume that Scon has a single point, i.e., Scon = {q}, and
write Z = Zq. We will discuss the general cases using induction method
later.

We need the following facts:

(A) By basic measure theory,

lim
r→0

‖V (x)‖(B(q, r)\{q}) = 0, ∀x ∈ I0(m, l)0.

(B) Given a set of integral currents {T (x) ∈ Zn(M
n+1) : x ∈ I0(m, l)0},

by [P81, 3.6], the set

{p ∈ Z : ‖T (x)‖(∂B(p, t)
)
= 0, ∀t > 0, B(p, t) ⊂ Z}

has a full measure in Z;
(C) Fix p ∈ Z, and s > 0, with B(p, 2s) ⊂ Z. Then by the slicing

theorem [Si83, 28.5] and §7.2(d), ∂(T (x)�B(p, t)) ∈ Zn−1(M) for
(L1 almost all) t ∈ [s/2, 2s], and

2‖T (x)‖(A(p, s/2, 2s)) ≥ Lip(rp)‖T (x)‖
(
A(p, s/2, 2s)

)
≥

∫ 2s

s/2
M

[
∂(T (x)�B(p, t))

]
dt.

Hence by the Pigeonhole Principle, there exists r ∈ [s/2, 2s], such
that for all x ∈ I0(m, l)0,
– ∂

(
T (x)�B(p, r)

)
= 〈T (x), rp, r〉 ∈ Zn−1(M

n+1);10

–

2C(m, l)‖T (x)‖(A(p, s/2, 2s)) ≥ 3

2
sM

[
∂(T (x)�B(p, r))

]
≥ 3

4
rM

[
∂(T (x)�B(p, r))

]
.

Now denote Tj(x) = φj(x), x ∈ I0(m, l)0,

Claim 1. We can find (possibly up to a further subsequence of {φj}),
• a sequence of points pj ∈ Z, pj → q as j → ∞;
• sequences of numbers sj , rj ∈ R, with 0 < sj/2 < rj < 2sj,
limj→∞ sj = 0;

satisfying

10〈T, rp, r〉 denotes the slicing of T by the function rp (see §7.2) at r [Si83, 28.4].
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(i) B(q, sj/8) ⊂ B(pj , sj/4) ⊂ B(pj , 2sj) ⊂ B(q, 4sj);
(ii) ‖Tj(x)‖

(
∂B(pj , t)

)
= 0, for all x ∈ I0(m, l)0, 0 < t < 2sj;

(iii) limj→∞maxx∈I0(m,l)0 ‖Tj(x)‖
[
A(pj , sj/2, 2sj)

]
= 0;

(iv) ∂
(
Tj(x)�B(pj , rj)

)
= 〈Tj(x), rpj , rj〉 ∈ Zn−1(M);

(v) rjM
[
∂
(
Tj(x)�B(pj , rj)

)] ≤ 8/3C(m, l)‖Tj(x)‖
(
A(pj , sj/2,

2sj)
)
;

(vi) limj→∞ |Tj(x)|�Gn

(
Bc(pj , rj)

)
= V (x)�Gn(M\{q}) as vari-

folds.11

Now let us check the claim. By fact (A), we can find sj > 0, sj → 0,
as j → ∞, such that

lim
j→∞

max
x∈I0(m,l)0

‖V (x)‖(B(q, 4sj)\{q}
)
= 0.

As |Tj(x)| = |φj(x)| converge to V (x) as varifolds, we can possibly take
a subsequence of {φj}, still denoted by {φj}, such that

lim
j→∞

max
x∈I0(m,l)0

‖Tj(x)‖
(
A(q, sj/8, 4sj)

)
= 0, and

lim
j→∞

|Tj(x)|�Gn(B
c(q, sj/8)) = V (x)�Gn(M\{q}),

as varifolds, for all x ∈ I0(m, l)0.

(In fact, for any j one can find j′ ≥ j, such that ‖Tj′(x)‖
(
A(q, sj/8,

4sj)
) ≤ 2‖V (x)‖(B(q, 4sj)\{q}

)
and ‖Tj′(x)‖B(q, sj/8) ≤ ‖V (x)‖B(q,

sj/8) +
1
j , and {φj′(x) = Tj′(x)} satisfies the requirement.)

By fact (B), we can find a sequence pj ∈ Z, pj → q, such that
B(q, sj/8) ⊂ B(pj , sj/4) ⊂ B(pj , 2sj) ⊂ B(q, 4sj), and ‖Tj(x)‖

(
∂B(pj ,

s)
)
= 0, for all x ∈ I0(m, l)0 and s > 0 with B(pj , s) ⊂ Z. Hence

(i)(ii) are true. (iii) is true as A(pj , sj/2, 2sj) ⊂ A(q, sj/8, 4sj). Now
for each j, by fact (C), we can find rj ∈ [sj/2, 2sj ], such that (iv)(v) are
true. (vi) is true as Bc(pj , rj) ⊂ Bc(q, sj/8) and B(pj , rj)\B(q, sj/8) ⊂
A(q, sj/8, 4sj).

Then we have the following facts:

Fact 2. Given δ1 > 0 (to be determined later), δ1 < δ, by Claim
1(iii)(v), there exists J large enough, such that if j ≥ J ,

(5.10)
2rj
n

M
[
∂
(
Tj(x)�B(pj , rj)

)] ≤ δ1/5;

(5.11) vol
(
B(pj , rj)

) ≤ δ1/5;

(5.12) vol
(
∂B(pj , r)

) ≤ δ1/5, for all r ≤ rj .

11Bc(p, r) denotes the complement of B(p, r) in M .
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Now we are going to connect Tj(x)�B(pj , rj) to the cones

E#

[
δ0XE

−1
# ∂

(
Tj(x)�B(pj , rj)

)]
using discrete sequences with controlled

fineness simultaneously for all x ∈ I0(m, l)0.
We separate the whole procedure into several steps. For notions

E, μ(λ), h(r), we refer to §7.2.

Step 0: Now fix j ≥ J , and forget the subscript “j” now. So T (x)
and B(p, r) satisfy (5.10)(5.11)(5.12). Recall that T (x) = ∂[[Ω(x)]],
Ω(x) ∈ C(M). For simplicity, we will identify Ω(x) with [[Ω(x)]] in
the following of the proof. By the Pigeonhole Principle and the Slicing
Theorem [Si83, 28.5], we have that

Fact 3. we can find finitely many numbers ri > 012 , i = 1, · · · , ν,
for some ν ∈ N, with r > r1 > r2 > · · · > rν > 0, such that for all
x ∈ I0(m, l)0, 1 ≤ i ≤ ν − 1,

1) ‖T (x)‖A(p, ri+1, ri) ≤ δ/5, ‖T (x)‖B(p, rν) ≤ δ/5;
2) ∂

(
T (x)�B(p, ri)

) ∈ Zn−1(M
n+1);

3) 〈Ω(x), rp, ri〉 = ∂
(
Ω(x)�B(p, ri)

)− T (x)�B(p, ri) ∈ In(M
n+1);

4) ν can be any integer no less than C(m, l)(δ/6)−1 ×
maxx∈I0(m,l)0 M(T (x)�Z), and hence depends only on m, l, δ, L.

Step 1: (See Figure 2) For each x ∈ I0(m, l)0, let

S1(x) = E#

{
δ0X

[
E−1

# ∂(T (x)�B(p, r))− μ(
r1
r
)#E

−1
# ∂(T (x)�B(p, r))

]}
;

then by (5.10) and §7.2(k), spt(S1(x)) ⊂ A(p, r1, r), and

M(S1(x)) ≤ 2rn−1(1− (
r1
r
)n)M

(
∂(T (x)�B(p, r))

)
≤ 2rn−1M

(
∂(T (x)�B(p, r))

) ≤ δ1/5.
(5.13)

For each x ∈ I0(m, l)0, define

(5.14) R1(x) =

{
S1(x), in A(p, r1, r),
(E ◦ h(r1) ◦ E−1)#T (x)�B(p, r), in B(p, r1),
T (x), outside B(p, r).

Claim 2. For each x ∈ I0(m, l)0, R1(x) = ∂Ω1(x) for some Ω1(x) ∈
C(M).

Proof. For each x ∈ I0(m, l)0, by the definition of slices [Si83, 28.4],
the slices 〈Ω(x), rp, ri〉 is represented by the set Ω(x)∩ ∂B(p, ri), which
has finite perimeter as ∂〈Ω(x), rp, ri〉 = −∂

(
T (x)�B(p, ri)

)
. Denote

12Note that ri’s are different from the rj ’s in Claim 1, and we will forget the
subscript “j” of rj until Step 5.
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�

T

S1

rr1

S1

(E ◦ h(r1) ◦ E−1)#�B(p, r) (E ◦ h(r1) ◦ E−1)#T (x)�B(p, r)

Figure 2. This figure illustrates Step 1 in the dis-
cretization process with point mass. We omit the vari-
able x ∈ I(m, l)0.

Oi(x) = Ω(x) ∩ ∂B(p, ri) = 〈Ω(x), rp, ri〉, O(x) = Ω(x) ∩ ∂B(p, r) =
〈Ω(x), rp, r〉. Define a subset of M as13

(5.15) Ω1(x) =
{

E
{
0X

[
E−1O(x)− r1

r E
−1O(x)

]}
, in A(p, r1, r),

Ω(x), in B0(p, r1) and outside B(p, r).

Clearly Ω1(x) is a set of finite perimeter, i.e., Ω(x) ∈ C(M), as each
part supported in B(p, r1), B

c(p, r), A(p, r1, r) is. We will show that
R1(x) = ∂Ω1(x). By [Si83, 28.5(2)],

∂Ω1(x) = ∂
[
Ω(x)�Bc(p, r)

]
+ ∂E

{
0X

[
E−1O(x)− r1

r
E−1O(x)

]}
+ ∂

[
Ω(x)�B0(p, r1)

]
= T (x)�Bc(p, r)− 〈Ω(x), rp, r〉+O(x)

− (E ◦ μ(r1
r
) ◦ E−1)#O(x)

− E#

{
δ0X

[
E−1

# ∂O(x)− μ(
r1
r
)#E

−1
# ∂O(x)

]}
+ T (x)�B(p, r1) + 〈Ω(x), rp, r1〉

= T (x)�Bc(p, r) + T (x)�B(p, r1)

− (E ◦ μ(r1
r
) ◦ E−1)#O(x) +O1(x)

+ E#

{
δ0X

[
E−1

# ∂(T (x)�B(p, r))

− μ(
r1
r
)#E

−1
# ∂(T (x)�B(p, r))

]}.
130XS denotes the cone in R

n+1 over S ⊂ R
n+1.
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So together with Claim 1(ii),

R1(x)− ∂Ω1(x) = (E ◦ h(r1) ◦ E−1)#
[
T (x)�A(p, r1, r)

]
+ (E ◦ μ(r1

r
) ◦ E−1)#O(x)−O1(x)

= (E ◦ h(r1) ◦ E−1)#
(
T (x)�A(p, r1, r)

+O(x)−O1(x)
)

= (E ◦ h(r1) ◦ E−1)#∂
(
Ω(x)�A(p, r1, r)

)
= ∂(E ◦ h(r1) ◦ E−1)#

(
Ω(x)�A(p, r1, r)

)
= 0,

where we used the fact that h(r1) = μ( r1r ) on ∂B(p, r) in the second
“=”, and the fact that any integral (n+1)-current on an n-dimensional
manifold ∂B(p, r1) is zero in the last “=”. Hence we finish the proof of
the claim. q.e.d.

As R1(x) = ∂Ω1(x), using (5.12) it is easily seen that

(5.16) M
(
R1(x)�∂B(p, r1)

) ≤ vol
(
∂B(p, r1)

) ≤ δ1/5.

The set {R1(x) : x ∈ I0(m, l)0} satisfies the following properties.
First using Claim 1(ii), Fact 3.1, (5.13)(5.16), we have the continuity
estimate,

M
(
R1(x)− T (x)

) ≤ M
(
T (x)�A(p, r1, r)

)
+M

(
R1(x)�∂B(p, r1)

)
+M

(
S1(x)

)
≤ δ/5 + 2δ1/5.

(5.17)

Using Claim 1(ii), (5.13)(5.16), we have the mass estimate,

M
(
R1(x)

) ≤ M
(
T (x)�Bc(p, r)

)
+M

(
S1(x)

)
+M

(
R1(x)�∂B(p, r1)

)
+M

(
T (x)�B(p, r1)

)
≤ M

(
T (x)

)
+ 2δ1/5.

(5.18)

If m > 1, given x, y ∈ I0(m, l)0, such that d(x, y) = 1, then

R1(x)−R1(y) =
(
S1(x)− S1(y)

)
+

(
R1(x)−R1(y)

)
�∂B(p, r1)

+
(
T (x)− T (y)

)
�B(p, r1) ∪Bc(p, r);

hence using (5.13)(5.16), we have the fineness estimate,

M
(
R1(x)−R1(y)

) ≤ M
(
R1(x)�∂B(p, r1)

)
+M

(
R1(y)�∂B(p, r1)

)
+M

(
S1(x)

)
+M

(
S1(y)

)
+M

(
T (x)− T (y)

)
≤ 4δ1/5 + f(φ),

(5.19)

where f(φ) is the fineness (4.1) of φ.
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Step 2: Now for 2 ≤ i ≤ ν, x ∈ I0(m, l)0, we can similarly define

Si(x) = E#

{
δ0X

[
E−1

# ∂(T (x)�B(p, r))− μ(
ri
r
)#E

−1
# ∂(T (x)�B(p, r))

]}
;

then by (5.10) and §7.2(k), spt(Si(x)) ⊂ A(p, ri, r), and

M(Si(x)) ≤ 2rn−1(1− (
ri
r
)n)M(∂(T (x)�B(p, r)))

≤ 2rn−1M(∂(T (x)�B(p, r))) ≤ δ1/5.
(5.20)

Similarly define

(5.21) Ri(x) =

{
Si(x), in A(p, ri, r),
(E ◦ h(ri) ◦ E−1)#T (x)�B(p, r), in B(p, ri),
T (x), outside B(p, r).

The same argument as in Claim 2 with r1 changed to ri shows that
Ri(x) = ∂Ωi(x), Ωi(x) ∈ C(M) for all 2 ≤ i ≤ ν, x ∈ I0(m, l)0, with

(5.22) Ωi(x) =
{

E
{
0X

[
E−1O(x)− ri

r E
−1O(x)

]}
, in A(p, ri, r),

Ω(x), in B0(p, ri) and outside B(p, r).

and hence by (5.12),

(5.23) M
(
Ri(x)�∂B(p, ri)

) ≤ vol
(
∂B(p, ri)

) ≤ δ1/5.

Using (5.20)(5.23) in place of (5.13)(5.16) and similar estimates as in
Step 1, the currents {Ri(x) : 2 ≤ i ≤ ν, x ∈ I0(m, l)0} satisfy the
following properties:

M
(
Ri(x)−Ri−1(x)

) ≤ M
(
T (x)�A(p, ri, ri−1)

)
+M

(
Ri(x)�∂B(p, ri)

)
+M

(
Ri−1(x)�∂B(p, ri−1)

)
+M

(
Si(x)−Si−1(x)

)
≤ δ/5 + 3δ1/5.

(5.24)

M
(
Ri(x)

) ≤ M
(
T (x)�Bc(p, r)

)
+M

(
Si(x)

)
+M

(
Ri(x)�∂B(p, ri)

)
+M

(
T (x)�B(p, ri)

)
≤ M

(
T (x)

)
+ 2δ1/5.

(5.25)

If m > 1, given x, y ∈ I0(m, l)0, such that d(x, y) = 1, then

M
(
Ri(x)−Ri(y)

) ≤ M
(
Ri(x)�∂B(p, ri)

)
+M

(
Ri(y)�∂B(p, ri)

)
+M

(
Si(x)

)
+M

(
Si(y)

)
+M

(
T (x)− T (y)

)
≤ 4δ1/5 + f(φ).

(5.26)

Step 3: Define the cones

Sν+1(x) = E#

{
δ0XE

−1
# ∂(T (x)�B(p, r))

}
;
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then by (5.10) and §7.2(k), spt(Sν+1(x)) ⊂ B(p, r), and

(5.27) M(Sν+1(x)) ≤ 2rn−1M(∂(T (x)�B(p, r))) ≤ δ1/5.

Define

(5.28) Rν+1(x) =
{

Sν+1(x), in B(p, r),
T (x), outside B(p, r).

Similar argument as in Claim 2 with r1 changed to 0 shows that
Rν+1(x) = ∂Ων+1(x), Ων+1(x) ∈ C(M) for all x ∈ I0(m, l)0, with

(5.29) Ων+1(x) =
{

E
{
0X

[
E−1O(x)

]}
, in B(p, r),

Ω(x), outside B(p, r).

Using Claim 1(ii), Fact 3.1, (5.23)(5.27), we have that

M
(
Rν+1(x)−Rν(x)

) ≤ M
(
T (x)�B(p, rν)

)
+M

(
Rν(x)�∂B(p, rν)

)
+M

(
Sν+1(x)− Sν(x)

)
≤ δ/5 + 2δ1/5.

(5.30)

M
(
Rν+1(x)

) ≤ M
(
T (x)�Bc(p, r)

)
+M

(
Sν+1(x)

)
≤ M

(
T (x)

)
+ δ1/5.

(5.31)

If m > 1, given x, y ∈ I0(m, l)0, such that d(x, y) = 1, then

M
(
Rν+1(x)−Rν+1(y)

) ≤ M
(
Si(x)

)
+M

(
Si(y)

)
+M

(
T (x)− T (y)

)
≤ 2δ1/5 + f(φ).

(5.32)

Step 4: Take ν + 1 = 3Ñ for Ñ ∈ N, then Ñ depends only on l,m, δ, L
by Fact 3.4. We can define a map

ψ : I(1, Ñ)0 × I0(m, l)0 → Zn(M
n+1),

by ψ(0, x) = T (x) = φ(x), ψ([ i

3Ñ
], x) = Ri(x) for 1 ≤ i ≤ ν + 1.

Now we check that ψ satisfy Lemma 5.8(0)(i)(iii)(iv). By combining
(5.17)(5.18)(5.19)(5.24)(5.25)(5.26)(5.30)(5.31)(5.32) and our construc-
tion, we have

(0) ψ([ i

3Ñ
], x) = ∂[[Ωi(x)]], Ωi(x) ∈ C(M);

(i) f(ψ) ≤ δ/5+3δ1/5 ifm = 1, and f(ψ) ≤ max{δ/5+3δ1/5, f(φ)+
4δ1/5} if m > 1;

(iii) max{M(ψ([ i

3Ñ
], x))} ≤ max{M(φ(x))}+ 2δ1/5.

If m = 1, δ < νM , let us calculate FA(ψ|I(1,Ñ)0×{[0]}) and

FA(ψ|I(1,Ñ)0×{[1]}). First focus on FA(ψ|I(1,Ñ)0×{[0]}). We will use no-

tions as above. By the definition of Almgren’s isomorphism (4.2),

FA(ψ|I(1,Ñ)0×{[0]}) =
ν+1∑
i=1

Qi(0),
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where Q1(0) is the isoperimetric choice for R1(0) − T (0), and Qi(0) is
the isoperimetric choice of Ri(0) − Ri−1(0), 2 ≤ i ≤ ν + 1, with Ri(0)
given by (5.14)(5.21)(5.28). Recall that T (0) = ∂Ω(0), Ri(0) = ∂Ωi(0),
with Ω(0),Ωi(0) ∈ C(M), and that Ωi(0)−Ωi−1(0) are all supported in
B(p, r) by the construction (5.15)(5.22)(5.29), so M

(
Ωi(0)−Ωi−1(0)

) ≤
vol(B(p, r)) ≤ 1/2vol(M), as r is very small. By Lemma 7.2, Q1(0) =
Ω1(0)− Ω(0), Qi(0) = Ωi(0)− Ωi−1(0) for 2 ≤ i ≤ ν + 1, hence

FA(ψ|I(1,Ñ)0×{[0]}) = Ω1(0)− Ω(0) +

ν+1∑
i=2

(Ωi(0)− Ωi−1(0))

= Ων+1(0)− Ω(0).

Similarly we can prove that FA(ψ|I(1,Ñ)0×{[1]}) = Ων+1(1) − Ω(1). By

changing the notions, we showed that

(iv) Ifm = 1, δ < νM , φ([0]) = ∂[[Ω0]], φ([1]) = ∂[[Ω1]], ψ([1]⊗[0]) =
∂[[Ω′

0]], ψ([1]⊗ [1]) = ∂[[Ω′
1]], then

FA(ψ|I(1,Ñ)0×{[0]}) = [[Ω′
0 − Ω0]], FA(ψ|I(1,Ñ)0×{[1]}) = [[Ω′

1 − Ω1]].

Step 5: We now pick up the subscript “j”. For each φj , j ≥ J , we

can construct ψj : I(1, Ñ)0 × I0(m, l)0 → Zn(M
n+1) as above. Denote

φj(x) = ∂[[Ωj(x)]], and ψj(y, x) = Rj,i(x) = ∂[[Ωj,i(x)]] for y = [ i

3Ñ
],

with Ωj(x),Ωj,i(x) ∈ C(M). By the construction (5.15)(5.22)(5.29),
Ωj,i(x) − Ωj(x) are all supported in B(pj , rj). Recall that rj → 0 by
Claim 1, so

F(
ψj(y, x), φj(x)

) ≤ M
(
Ωj,i(x)− Ωj(x)

) ≤ vol
(
B(pj , rj)

) → 0,

uniformly for all (y, x) ∈ I(1, Ñ)0 × I0(m, l)0 as j → ∞.
Define

ρj = εj +max{F(
ψj(y, x), φj(x)

)
: (y, x) ∈ I(1, Ñ)0 × I0(m, l)0},

where εj is given in Lemma 5.5; then ρj → 0, as j → ∞, and
F(ψj(y, x), T ) ≤ F(ψj(y, x), φj(x)) + F(φj(x), T ) ≤ ρj , so

ψj : I(1, Ñ)0 × I0(m, l)0 → BF
ρj (T ).

Finally, we claim that

(ii)

(5.33) lim
j→∞

|ψj([1], x)| = V (x)�Gn

(
M\{q}), as varifolds.

In fact, by (5.28), ψj([1], x) = φj(x) outside B(pj , rj), and inside
B(pj , rj), by (5.27) and Claim 1(iii)(v),

M
(
ψj([1], x)�B(pj , rj)

) ≤ 2rjn
−1M

(
∂(Tj(x)�B(pj , rj))

) → 0,

as j → ∞.

Therefore, (5.33) is a directly corollary of Claim 1(vi).
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All the above properties show that {ψj} satisfy Lemma 5.8 when
Scon = {q}.

Part II: If Scon contains more than one point, we can construct ψj

successively on the pairwise disjoint neighborhoods {Zq : q ∈ Scon} as
above, as the construction is purely local. The only things to be taken
care of are the increase of mass and fineness.

Write Scon = {qa}κa=1, Za = Zqa , κ ∈ N. As mentioned above,

κ ≤ C(m, l)2Lα depends only on m, l, δ, L. We start by following the
above process inside Z1 to extend φj (possibly up to a subsequence)

to ψ1
j : I(1, Ñ)0 × I0(m, l)0 → BF

ρ1j
(T ), where {ρ1j} is a sequence of

positive numbers converging to zero. Denote φ1
j (·) = ψ1

j ([1], ·). Then

{ψ1
j } satisfy (by Step 4 and Step 5 in Part 1): for all x ∈ I0(m, l)0

• ψ1
j ([

i

3Ñ
]) = ∂[[Ω1

j,i(x)]], Ω
1
j,i(x) ∈ C(M);

• f(ψ1
j ) ≤ δ/5 + 3δ1/5 if m = 1, and f(ψ1

j ) ≤ max{δ/5 + 3δ1/5,

f(φj) + 4δ1/5} if m > 1;
• ψ1

j ([0], x) = φj(x), limj→∞ |ψ1
j ([1], x)| = V (x)�Gn(M\{q1}) as

varifolds;
• max{M(

ψ1
j ([

i

3Ñ
], x)

)} ≤ max{M(
φj(x)

)}+ 2δ1/5;

• If m = 1, and denote φj([0]) = ∂[[Ωj,0]], φj([1]) = ∂[[Ωj,1]],
φ1
j ([0]) = ∂[[Ω1

j,0]], φ
1
j ([1]) = ∂[[Ω1

j,1]]; then

FA(ψ
1
j |I(1,Ñ)0×{[0]})= [[Ω1

j,0−Ωj,0]], FA(ψ
1
j |I(1,Ñ)0×{[1]})= [[Ω1

j,1−Ωj,1]].

Also {φ1
j} satisfy: for all x ∈ I0(m, l)0,

• φ1
j (x) = φj(x) outside Z1, by (5.28);

• φ1
j (x) = ∂[[Ω1

j (x)]], Ω
1
j (x) ∈ C(M);

• limj→∞ |φ1
j (x)| = V (x)�Gn(M\{q1}), as varifolds;

• M
(
φ1
j (x)

) ≤ M
(
φj(x)

)
+ δ1/5, by (5.31);

• If m > 1, f(φ1
j ) ≤ f(φj) + 2δ1/5, by (5.32).

As φ1
j (x) = φj(x) outside Z1, for all x ∈ I0(m, l)0, we can repeat the

construction in Part I inductively on Z2, · · · , Zκ, to get (possibly up to

subsequences) {ψa
j } and {φa

j}, 2 ≤ a ≤ κ, such that ψa
j : I(1, Ñ)0 ×

I0(m, l)0 → BF
ρaj
(T ), φa

j : I0(m, l)0 → BF
ρaj
(T ), with {ρaj} a sequence of

positive numbers converging to zero as j → ∞ for each 2 ≤ a ≤ κ,
and φa

j (x) = ψa
j ([1], x), and the following statements are true. For each

2 ≤ a ≤ κ, {ψa
j } satisfy that: for all x ∈ I0(m, l)0,

1) ψa
j ([

i

3Ñ
]) = ∂[[Ωa

j,i(x)]], Ω
a
j,i(x) ∈ C(M);

2) f(ψa
j ) ≤ δ/5+3δ1/5 if m = 1, and if m > 1, f(ψa

j ) ≤ max{δ/5+
3δ1/5, f(φ

a−1
j ) + 4δ1/5}, so by property 5 of φa

j (see below),

f(ψa
j ) ≤ max{δ/5 + 3δ1/5, f(φj) + 2(a+ 1)δ1/5};
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3) ψa
j ([0], x) = φa−1

j (x), limj→∞ |ψa
j ([1], x)| = V (x)�Gn(M\{q1,

· · · , qa}) as varifolds;
4) max{M(

ψa
j ([

i

3Ñ
], x)

)} ≤ max{M(
φa−1
j (x)

)} + 2δ1/5, hence by

property 4 of φa
j (see below),

max{M(
ψa
j ([

i

3Ñ
], x)

)} ≤ max{M(
φj(x)

)}+ (a+ 1)δ1/5;

5) Ifm = 1, and denote φa−1
j ([0]) = ∂[[Ωa−1

j,0 ]], φa−1
j ([1]) = ∂[[Ωa−1

j,1 ]],

φa
j ([0]) = ∂[[Ωa

j,0]], φ
a
j ([1]) = ∂[[Ωa

j,1]]; then

FA(ψ
a
j |I(1,Ñ)0×{[0]}) = [[Ωa

j,0 − Ωa−1
j,0 ]],

FA(ψ
a
j |I(1,Ñ)0×{[1]}) = [[Ωa

j,1 − Ωa−1
j,1 ]].

{φa
j} satisfy: for all x ∈ I0(m, l)0,

1) φa
j (x) = φj(x) outside Z1 ∪ · · · ∪ Za, by (5.28);

2) φa
j (x) = ∂[[Ωa

j (x)]], Ω
a
j (x) ∈ C(M);

3) limj→∞ |φa
j (x)| = V (x)�Gn(M\{q1, · · · , qa}), as varifolds;

4) M
(
φa
j (x)

) ≤ M
(
φa−1
j (x)

)
+ δ1/5 by (5.31), so

M
(
φa
j (x)

) ≤ M
(
φj(x)

)
+ aδ1/5;

5) If m > 1, f(φa
j ) ≤ f(φa−1

j ) + 2δ1/5 by (5.32), so

f(φa
j ) ≤ f(φj) + 2aδ1/5.

Finally, let κ(ν + 1) = 3N2 , for some N2 ∈ N, with ν given in Fact 3;

then N2 depends only on m, l, δ, L. Recall that ν + 1 = 3Ñ (see Step 4
in Part I); then we can define ψj : I(1, N2)0 × I0(m, l)0 → BF

ρκj
(T ) as:

(5.34)

ψj([
i

3N2
], x)=ψa

j ([
i− (a− 1)(ν + 1)

3Ñ
], x), if (a−1)(ν+1)≤ i≤ a(ν+1).

Choose δ1 < δ, such that

2(κ+ 1)δ1/5 ≤ δ, (κ+ 1)δ1/5 ≤ δ

n0 + 1
,

and let ρj = ρκj ; then ψj satisfy (0)(i)(ii)(iii) in Lemma 5.8. To check

Lemma 5.8(iv), if m = 1, by the definition of Almgren’s isomorphism
(4.2),

FA(ψj |I(1,N2)0×{[0]}) =
κ∑

a=1

FA(ψ
a
j |I(1,Ñ)0×{[0]})

=
κ∑

a=1

[[Ωa
j,0 − Ωa−1

j,0 ]] = [[Ωκ
j,0 − Ωj,0]].



MIN–MAX HYPERSURFACE 327

Similarly, FA(ψj |I(1,N2)0×{[1]}) = [[Ωκ
j,1 − Ωj,1]]. So Lemma 5.8(iv) is

true by noticing that ψj([1], [0]) = ∂[[Ωκ
j,0]] and ψj([1], [1]) = ∂[[Ωκ

j,1]].
The proof of Lemma 5.8 is now finished. q.e.d.

Now let us go back to the proof of Lemma 5.5. If Scon = ∅, then ψj

can be constructed by Lemma 5.6 with ρj = εj , N = N1. If Scon �=
∅, let δ′ = δ/2, and construct (possibly up to a subsequence) ψ2

j :

I(1, N2)0 × I0(m, l)0 → BF
ρj (T ) by Lemma 5.8 for the set of numbers

l,m, δ′, L. Then denote φ′
j(·) = ψ2

j ([1], ·) : I0(m, l)0 → BF
ρj (T ). By

Lemma 5.8(ii), {φ′
j} satisfy the requirement of Lemma 5.6 for the set of

numbers l,m, δ′, L+ δ′
n0+1 . Now we can apply Lemma 5.6 to {φ′

j}, and
construct (possibly up to a subsequence) ψ1

j : I(1, N1)0 × I0(m, l)0 →
BF
ρj (T ).

Assume 3N = 3N1+3N2 , N ∈ N; thenN depends only on (l,m, T, δ, L),
as N2 depends only on (l,m, δ/2, L) and N1 depends only on (l,m,
T, δ/2, L+ δ

2(n0+1)). Define ψj : I(1, N)0 × I0(m, l)0 → BF
ρj (T ) by

ψj([
i

3N
], x) = ψ2

j ([
i

3N2
], x), if 0 ≤ i ≤ 3N2 ;

ψj([
i

3N
], x) = ψ1

j ([
i− 3N2

3N1
], x), if 3N2 ≤ i ≤ 3N .

Then {ψj} satisfy Lemma 5.5(0)(ii)(iv) by combining Lemma 5.6(0)(ii)
(iv) with Lemma 5.8 (0)(ii)(iv). For Lemma 5.5(i), if m = 1,

f(ψj) ≤ max{f(ψ1
j ), f(ψ

2
j )} ≤ δ/2;

if m > 1, then by Lemma 5.6(i) and Lemma 5.8(i),

f(ψj) ≤ max{f(ψ1
j ), f(ψ

2
j )} ≤ f(ψ2

j ) + δ/2 ≤ f(φj) + δ.

For Lemma 5.5(iii), by Lemma 5.6(iii) and Lemma 5.8(iii),

max
{
M(ψj(·, ·))

} ≤ max
{
max{M(ψ1

j (·, ·))},max{M(ψ2
j (·, ·))}

}
≤ max{M(ψ2

j (·, ·))}+
δ

2(n0 + 1)

≤ max{M(φj(·))}+ δ

n0 + 1
.

So we finished checking that {ψj} satisfy Lemma 5.5(0)(i)(ii)(iii)(iv).
q.e.d.

Now let us go back to the proof of Proposition 5.3. This part is similar
to the final part of [MN12, 13.3]. We will use notions in Lemma 5.5.

We are going to construct the extensions φ̃j of φj from I(m, k0)0 to
BF
ρj (T ) for every j large enough, therefore, get a contradiction.

First let us discuss the case when m > 1. Let

φ̂j : I0(m,N)0 × I(1, N)0 → BF
ρj (T ),



328 X. ZHOU

be defined by φ̂j(x, y) = ψj(y,n(N, l)(x)), where ψj are constructed in
Lemma 5.5. Recall that S(m+ 1, N)0 = I0(m,N)0 × I(1, N)0. We can

extend φ̂j to

S(m+ 1, N)0 ∪ T (m+ 1, N)0,

by assigning it to T on T (m+ 1, N)0.
Now recall the map r(N) : I(m,N+q)0 → S(m+1, N)0∪T (m+1, N)0

defined in [MN12, Appendix C], which satisfies: q depends on m but
not onN ; if x, y ∈ I(m,N+q)0, d(x, y) = 1, then d

(
r(N)(x), r(N)(y)

) ≤
m; if x ∈ I0(m,N + q)0, then r(N)(x) ∈ [0]× I0(m,N)0 and r(N)(x) =
n(N + q,N)(x).

With out loss of generality, we can assume k0 > N + q; then the
extension φ̃j : I(m, k0)0 → BF

ρj (T ) is defined by

φ̃j = φ̂j ◦ rm(N) ◦ n(k0, N + q),

for which Proposition 5.3(i)(ii)(iii) are easily seen true by Lemma 5.5(i)
(ii)(iii).

Finally when m = 1, define φ̂j : I(1, N + 1)0 → BF
ρj (T ) by:

φ̂j([
i

3N+1
]) = ψj([

i

3N
], [0]), if 0 ≤ i ≤ 3N ;

φ̂j([
i

3N+1
]) = T, if 3N + 1 ≤ i ≤ 2 · 3N ;

φ̂j([
i

3N+1
]) = ψj([

3N+1 − i

3N
], [1]), if 2 · 3N + 1 ≤ i ≤ 3N+1,

for which Proposition 5.3(i)(ii)(iii) are automatically true by Lemma
5.5(i)(ii)(iii). To check Proposition 5.3(iv), by the definition of Alm-
gren’s isomorphism (4.2) and Lemma 5.5(iv),

FA(φ̂j) = FA

(
ψj |I(1,N)0×{[0]}

)− FA

(
ψj |I(1,N)0×{[1]}

)
= [[ΩT − Ωj,0]]− [[ΩT − Ωj,1]] = [[Ωj,1 − Ωj,0]].

For k0 > N + 1, the extension φ̃j : I(1, k0)0 → BF
ρj (T ) is given by

φ̂j ◦ n(k0, N + 1). q.e.d.

The next result removes the dependence of ε and k on the parameters
l,m in Proposition 5.3, which is analogous to [MN12, 13.5]. The idea
is to apply Proposition 5.3 inductively along the p-skeletons of I(m, l),
1 ≤ p ≤ m. In the induction process, compared to [MN12, 13.5] where
they need to pay attention to the increase of the parameter “m(φ, r)”,14

we need to take care of the increase of the size of the neighborhoods
around T .

Fix n0 ∈ N. b(n0) is a constant depending only on n0.

14This parameter measures the local mass density. See [MN12, 4.2].
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Proposition 5.10. Given δ, L > 0, and

T ∈ Zn(M) ∩ {S : M(S) ≤ 2L− δ},with T = ∂[[ΩT ]],

ΩT ∈ C(M), then there exist 0 < ε = ε(T, δ, L) < δ, and k = k(T, δ, L) ∈
N, and a function ρ = ρ(T,δ,L) : R1

+ → R
1
+, with ρ(s) → 0, as s → 0,

such that: given l,m ∈ N, m ≤ n0 + 1, 0 < s < ε, and
(5.35)

φ : I0(m, l)0 → BF
s (T ) ∩ {S : M(S) ≤ 2L− δ}, with φ(x) = ∂[[Ωx]],

Ωx ∈ C(M), x ∈ I0(m, l)0, there exists

φ̃ : I(m, l + k)0 → BF
ρ(s)(T ), with φ̃(y) = ∂[[Ωy]],

Ωy ∈ C(M), y ∈ I(m, l + k)0, and satisfying

(i) f(φ̃) ≤ δ if m = 1, and f(φ̃) ≤ b(n0)(f(φ) + δ) if m > 1;

(ii) φ̃ = φ ◦ n(l + k, l) on I0(m, l + k)0;
(iii)

sup
x∈I(m,l+k)0

M
(
φ̃(x)

) ≤ sup
x∈I0(m,l)0

M
(
φ(x)

)
+ δ;

(iv) If m = 1, δ < νM , φ([0]) = ∂[[Ω0]], φ([1]) = ∂[[Ω1]], then

FA(φ̃) = [[Ω1 − Ω0]],

where FA is the Almgren’s isomorphism (4.2).

Proof. The case m = 1 follows directly from Proposition 5.3. In fact,
take ε = ε(0, 1, T, δ, L), k = k(0, 1, T, δ, L) and ρ(s) = ρ(0,1,T,δ,L)(s) by

Proposition 5.3, and denote the extension by φ̃1 : I(1, k)0 → BF
ρ(s)(T ).

Then φ̃ : I(1, l + k)0 → BF
ρ(s)(T ) is given by φ̃ = φ̃1 ◦ n(l + k, k). The

fact that φ̃ satisfies properties (i)(ii)(iii)(iv) follows from the fact that

φ̃1 satisfies Proposition 5.3(i)(ii)(iii)(iv).
Now let us assume that m > 1. Using notations in Proposition 5.3,

we can inductively define integers,

k0 = 0, k1 = k(0, 1, T, δ, L), · · · , ki = k(ki−1, i, T, δ, L), · · · ,
km = k(km−1,m, T, δ, L);

and positive numbers,

ε1 = ε(0, 1, T, δ, L), · · · , εi = ε(ki−1, i, T, δ, L), · · · ,
εm = ε(km−1,m, T, δ, L);

and functions from R
1
+ to R

1
+,

ρ1 = ρ(0,1,T,δ,L), · · · , ρi = ρ(ki−1,i,T,δ,L) ◦ ρi−1, · · · ,
ρm = ρ(km−1,m,T,δ,L) ◦ ρm−1.
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As lims→0 ρ(ki−1,i,T,δ,L)(s) = 0, for 1 ≤ i ≤ m, we know that
lims→0 ρi(s) = 0, for all 1 ≤ i ≤ m. Hence we can choose ε > 0,
such that ε ≤ min{ε1, · · · , εm}, and

ε̃i := max
0≤s≤ε

ρi(s) ≤ εi+1, for all 1 ≤ i ≤ m− 1.

Let k = km, and ρ = ρm; then ε, k, ρ depend only on T, δ, L. In the
following, we will show that ε, k, ρ satisfy the requirement.

Fix a map φ : I0(m, l)0 → BF
s (T ) ∩ {S : M(S) ≤ 2L − δ}, with

φ(x) = ∂[[Ωx]], Ωx ∈ C(M), for all x ∈ I0(m, l)0. Assume that s ≤ ε.
Given p ≤ m, let Vp be the set of vertices of I(m, l + kp) that belong
to the p-skeleton of I(m, l), i.e., Vp = ∪α∈I(m,l)pα(kp)0. Clearly Vm =

I(m, l + k)0. Say a map φp : Vp → BF
ρp(s)

(T ) ∩ {S : M(S) ≤ 2L} is a

p-extension of φ, if:

1) φp(y) = ∂[[Ωy]], Ωy ∈ C(M), for all y ∈ Vp;
2) φp = φ ◦ n(l + kp, l) on Vp ∩ I0(m, l + kp)0;
3) If p = 1, then f(φp) ≤ f(φ) + δ; if p > 1, there exists a (p− 1)-
extension φp−1 of φ, such that

f(φp) ≤ p
(
f(φp−1) + δ

)
;

4) supy∈Vp
M

(
φp(y)

) ≤ supx∈I0(m,l)0 M
(
φ(x)

)
+ pδ

n0+1 .

We start with the construction of 1-extension φ1 of φ. First construct
a trivial extension of φ to I(m, l)0, i.e., φ0 : I(m, l)0 → BF

s (T ) ∩ {S :
M(S) ≤ 2L− δ} by

φ0(x) = φ(x), x ∈ I0(m, l)0;

φ0(x) = T, x /∈ I0(m, l)0.

Then we can construct φ̃0 : V1 → BF
ρ1(s)

(T ) as follows: given α ∈
I(m, l)1, φ̃0|α(k1)0 is gotten by extending φ0|α0 on α0 to α(k1)0 using
Proposition 5.3 for l = 0,m = 1, T, δ, L as s ≤ ε ≤ ε1. Finally, we can
define φ1 : V1 → BF

ρ1(s)
(T ) by

φ1 = φ0 ◦ n(l + k1, l), on α(k1)0, if α is a 1-cell of I0(m, l);

φ1 = φ̃0, on α(k1)0, if α is not a 1-cell of I0(m, l).

It is easy to check that φ1 is a 1-extension of φ.
To get p-extension inductively, we need the following lemma:

Lemma 5.11. Given a p-extension φp of φ, p ≤ m− 1, there exists
a (p+ 1)-extension φp+1 of φ.

Proof. By assumption φp maps Vp into BF
ρp(s)

(T )∩{S : M(S) ≤ 2L},
so the image of φp also lie in BF

εp+1
(T )∩{S : M(S) ≤ 2L} as ρp(s) ≤ ε̃p ≤

εp+1. Using the fact that φp(x) = ∂[[Ωx]], Ωx ∈ C(M) for all x ∈ Vp, we
can apply Proposition 5.3 for each (p+ 1)-cell α ∈ I(m, l)p+1 to extend
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φp|α0(kp)0 to φ̃p,α : α(kp+1)0 → BF
ρp+1(s)

(T ) for l = kp,m = p+ 1, T, δ, L.

Given any two adjacent (p + 1)-cells α, ᾱ ∈ I(m, l)p+1, by Proposition

5.3(ii), φ̃p,α = φ̃p,ᾱ = φp ◦n(kp+1, kp) on α(kp+1)0 ∩ ᾱ(kp+1)0, so we can
construct a map

φ̃p : Vp+1 → BF
ρp+1(s)

(T ),

by letting φ̃p = φ̃p,α on each α(kp+1), α ∈ I(m, l)p+1. By Proposi-
tion 5.3(i)(iii) and the inductive hypothesis 4,

f(φ̃p) ≤ (p+ 1)
(
f(φp) + δ

)
;

sup
x∈Vp+1

M
(
φ̃p(x)

) ≤ sup
x∈Vp

M
(
φp(x)

)
+

δ

n0 + 1

≤ sup
x∈I0(m,l)0

M
(
φ(x)

)
+

(p+ 1)δ

n0 + 1
.

Finally, we define φp+1 : Vp+1 → BF
ρp+1(s)

(T ) by

φp+1 = φp ◦ n(l + kp+1, l + kp), on α(kp+1)0,

if α is a (p+ 1)-cell of I0(m, l);

φp+1 = φ̃p, on α(kp+1)0, if α is not a (p+ 1)-cell of I0(m, l).

Now we check that φp+1 satisfies all the requirements for a (p + 1)-
extension of φ. First, by construction φp+1(x) = ∂[[Ωx]], Ωx ∈ C(M),
for all x ∈ Vp+1; second, given a (p+ 1)-cell α in I0(m, l), by inductive
hypothesis 2, φp+1 = φp ◦ n(l + kp+1, l + kp) = φ ◦ n(l + kp, l) ◦ n(l +
kp+1, l+ kp) = φ ◦n(l+ kp+1, l) on α(kp+1)0; lastly, as φp+1 is gotten by

replacing φ̃p by φp ◦n(l+ kp+1, l+ kp) on Vp+1 ∩ I0(m, l+ kp+1)0, hence

f(φp+1) ≤ f(φ̃p) ≤ (p + 1)
(
f(φp) + δ

)
, and supx∈Vp+1

M
(
φp+1(x)

) ≤
supx∈Vp+1

M
(
φ̃p(x)

) ≤ supx∈I0(m,l)0 M
(
φ(x)

)
+ (p+1)δ

n0+1 . q.e.d.

We can then inductively construct an m-extension φm : I(m, l +

km)0 → BF
ρm(s)(T ). Let φ̃ = φm; then it is easy to see that φ̃, ε, k =

km, ρ = ρm satisfy all the requirements of Proposition 5.10. q.e.d.

5.2. Proof of Theorem 5.1. The idea is briefly as follows. Denote

L(Φ) = max
x∈[0,1]

M
(
Φ(x)

)
.

Given a δ > 0, we can cover the set Zn(M
n+1)∩{S : M(S) ≤ 2L(Φ)}∩

{S : S = ∂[[Ω]] : Ω ∈ C(M)} by finitely many balls {BF
εi (Ti)}Ni=1, such

that Proposition 5.10 can be applied on each ball for n0 = 1, Ti, δ, L =
L(Φ).15 Take j large enough, such that for each 1-cell α ∈ I(1, j)1, the
image Φ(α) lie in some BF

εi (Ti); then we can apply Proposition 5.10 to
each Φ|α0 , and construct a discrete map φδ which has fineness controlled

15Note that n0 = 1 is the dimension of parameter space.
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by δ, and total mass bounded by L(Φ) + δ. Finally, taking a sequence
δi → 0, i → ∞, we can construct the desired (1,M)-homotopy sequence
{φi}i∈N by letting φi = φδi . Detailed argument is given as below.

Proof of Theorem 5.1. In this part, we will repeatedly use notations
and conclusions in Proposition 5.10 for n0 = 1.16

Step I: Fix δ > 0, such that L = L(Φ) < 2L − 2δ. By the weak
compactness of the set Zn(M

n+1)∩{S : M(S) ≤ 2L}∩{S : S = ∂[[Ω]] :
Ω ∈ C(M)} (see [Si83, §37.2][Gi, §1.20]), we can find a finite covering
by balls

{BF
εi (Ti) : i = 1, · · · , N}

, such that Ti = ∂[[Ωi]], Ωi ∈ C(M),
M(Ti) ≤ 2L, and

(5.36) 3εi + sup
0≤s≤3εi

ρi(s) < ε(Ti, δ, L),

where ε(Ti, δ, L), ki = k(Ti, δ, L) and ρi(s) = ρ(Ti,δ,L)(s) are given by
Proposition 5.10. Assume that ε1 ≤ ε2 ≤ · · · ≤ εN ≤ δ, and denote
k = max{ki : 1 ≤ i ≤ N}.

By the continuity of Φ under the flat topology, we can take j ∈ N

large enough, such that for any α ∈ I(1, j)1,

(5.37) sup
x,y∈α

F(
Φ(x)− Φ(y)

)
< ε1 < δ.

Define c : I(1, j)0 → {1, · · · , N} by c(x) = sup{i : Φ(x) ∈ BF
εi (Ti)}.

Then define
c : I(1, j)1 → {1, · · · , N},

by c(α) = sup{c(x) : x ∈ α0}.
Claim 3. Φ(α) ⊂ BF

2εc(α)
(Tc(α)).

Proof. By definition, there exists x ∈ α0, such that c(α) = c(x), then
Φ(x) ∈ BF

εc(α)
(Tc(α)). By (5.37), for any y ∈ α, Φ(y) ∈ BF

ε1

(
Φ(x)

) ⊂
BF
2εc(α)

(Tc(α)), as ε1 ≤ εc(α). q.e.d.

Let φ0 : I(1, j)0 → Zn(M) be the restriction of Φ to I(1, j)0, then
φ0(α0) ⊂ BF

2εc(α)
(Tc(α)) for all α ∈ I(1, j)1. By (5.36) and Theorem

5.1(a), we can apply Proposition 5.10 to each φ0|α0 , α ∈ I(1, j)1, and
get

φ̃0,α : α(kc(α))0 → BF
ρc(α)(2εc(α))

(Tc(α)).

Define φδ : I(1, j + k)0 → Zn(M) by

φδ = φ̃0,α ◦ n(j + k, j + kc(α)), on α(k)0.

Now we collect a few properties of φδ.

1) φδ = Φ on I(1, j)0;
2) φδ(x) = ∂[[Ωx]], Ωx ∈ C(M), for all x ∈ I(1, j + k)0;

16Again, n0 = 1 is the dimension of parameter space.
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3) f(φδ) ≤ δ;
4) For any α ∈ I(1, j)1,

sup
x∈α(k)0

M
(
φδ(x)

) ≤ sup
x∈α0

M
(
Φ(x)

)
+ δ < 2L− δ;

5) sup
{F(

φδ(x)− Φ(x)
)
: x ∈ I(1, j + k)0

} ≤ δ;
6) If δ < νM , then FA(φδ) = [[Ω1 − Ω0]], where Φ(0) = ∂[[Ω0]],
Φ(1) = ∂[[Ω1]].

1 is by construction. 2,3,4,6 directly come from Proposition 5.10. 5 comes
from (5.36), and the fact that φδ(α(k)0) ⊂ BF

ρc(α)(2εc(α))
(Tc(α)), Φ(α) ⊂

BF
2εc(α)

(Tc(α)).

Step II: We say φ̄ : I(1, k̄)0 → Zn(M) is a (δ, k̄)-extension of Φ, k̄ ≥
j + k, if

1) φ̄ = Φ on I(1, j)0;
2) φ̄(x) = ∂[[Ωx]], Ωx ∈ C(M), for all x ∈ I(1, k̄)0;
3) f(φ̄) ≤ δ;
4) For any α ∈ I(1, j)1,

sup
x∈α(k̄−j)0

M
(
φ̄(x)

) ≤ sup
x∈α

M
(
Φ(x)

)
+ δ < 2L− δ;

5) sup
{F(

φδ(x)− Φ(x)
)
: x ∈ I(1, k̄)0

} ≤ ε1.

The following lemma says that a (δ, k̄)-extension φ̄ is 1-homotopic to
φδ with fineness δ:

Lemma 5.12. Given a (δ, k̄)-extension φ̄ of Φ, with k̄ ≥ j + k, then
there exists

ψ : I(1, k̂)0 × I(1, k̂)0 → Zn(M),

with k̂ = k̄ + k, such that

(a) ψ(y, x) = ∂[[Ωy,x]], Ωy,x ∈ C(M), for any (y, x) ∈ I(1, k̂)0 ×
I(1, k̂)0;

(b) ψ([0], ·) = φδ ◦ n(k̂, j + k), and ψ([1], ·) = φ̄ ◦ n(k̂, k̄);
(c) f(ψ) ≤ c0δ, for a fixed constant c0;
(d) M

(
ψ(y, x)

) ≤ sup
{
M

(
Φ(x′)

)
, x, x′ lie in some common 1-cell

α ∈ I(1, j)1
}
+ 2δ, for any (y, x) ∈ I(1, k̂)0 × I(1, k̂)0.

Proof. Given α ∈ I(1, j)1, using property 5 for (δ, k̄)-extension and
the fact that Φ(α) ⊂ BF

2εc(α)
(Tc(α)), we have φ̄

(
α ∩ I(1, k̄)0

) ⊂
BF
3εc(α)

(Tc(α)).

We will first construct ψ on [0, 1
3j
](k̂ − j)0 × I(1, k̂)0,

17 such that ψ
satisfies:

ψ([0], ·) = φδ ◦ n(k̂, j + k); ψ([
1

3j
], ·) = φ̄ ◦ n(k̂, k̄),

17Notice that [0, 1
3j
](k̂ − j)0 = [0, 1

3j
] ∩ I(1, k̂)0.
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and Lemma 5.12(a)(c)(d), where in (d) (y, x) ∈ [0, 1
3j
](k̂− j)0× I(1, k̂)0.

Then we can extend ψ to
(
[ 1
3j
, 1]∩I(1, k̂)0

)×I(1, k̂)0 trivially by letting

ψ(y, x) = φ̄ ◦ n(k̂, k̄)(x) for (y, x) ∈ (
[ 1
3j
, 1] ∩ I(1, k̂)0

)× I(1, k̂)0.

Let W1 be the set of vertices of [0, 1
3j
](k̄− j)0× I(1, k̄)0 which belong

to the 1-skeleton of [0, 1
3j
] × I(1, j) (think [0, 1

3j
] ∼= I(1, 0)), and define

ψ0 : W1 → Zn(M) by:

ψ0([0], ·) = φδ ◦ n(k̄, j + k); ψ0([
1

3j
], ·) = φ̄;

ψ0(·, x) ≡ Φ(x), for all x ∈ I(1, j)0.

Then ψ0 satisfies:

1) f(ψ0) ≤ max{f(φδ), f(φ̄)} ≤ δ, as φδ|I(1,j)0 = φ̄|I(1,j)0 = Φ;

2) Given any 2-cell β in [0, 1
3j
] × I(1, j), with β = [0, 1

3j
] ⊗ α,

for some α∈ I(1, j)1, then ψ0 maps β0(k̄ − j)0
18 into

BF
ρc(α)(2εc(α))+3εc(α)

(Tc(α)), so ψ0

(
β0(k̄ − j)0

) ⊂ BF
ε(Tc(α),δ,L)

(Tc(α))

by (5.36);
−−This is because Φ(α) ⊂ BF

2εc(α)
(Tc(α)), φδ

(
α(k)0

) ⊂
BF
ρc(α)(2εc(α))

(Tc(α)), and φ̄
(
α(k̄ − j)0

) ⊂ BF
3εc(α)

(Tc(α)).
19

3) ψ0(y, x) = ∂[[Ωy,x]], Ωy,x ∈ C(M), for all (y, x) ∈ W1;
−−This comes from property 2 of φδ and φ̄.

4) sup(y,x)∈W1
M

(
ψ0(y, x)

) ≤ max
{
supI(1,j+k)0 M(φδ),

supI(1,k̄)0 M(φ̄)
} ≤ 2L− δ;

−−The last “≤” comes from property 4 of φδ and φ̄.

Therefore, we can apply Proposition 5.10 for each 2-cell β = [0, 1
3j
]⊗α

in [0, 1
3j
]× I(1, j) to extend ψ0|β0(k̄−j)0

to

ψ̃0,β : β(k̄ − j + kc(α))0 → Zn(M),

which satisfies:

(a) f(ψ̃0,β) ≤ b(1)
(
f(ψ0) + δ

) ≤ 2b(1)δ;

(b) ψ̃0,β([0], ·) = ψ0([0], ·) ◦ n(k̄ − j + kc(α), k̄ − j) = φδ ◦ n(k̄ − j +

kc(α), k) on α(k̄ − j + kc(α))0, and ψ̃0,β([
1
3j
], ·) = ψ0([

1
3j
], ·) ◦ n(k̄ −

j + kc(α), k̄ − j) = φ̄ ◦ n(k̄ − j + kc(α), k̄ − j) on α(k̄ − j + kc(α))0;
(c)

sup
β(k̄−j+kc(α))0

M(ψ̃0,β) ≤ sup
β0(k̄−j)0

M(ψ0) + δ

≤ max
{

sup
I(1,j+k)0

M(φδ), sup
I(1,k̄)0

M(φ̄)
}
+ δ

≤ sup
x∈α

M
(
Φ(x)

)
+ 2δ.

18Here β0(k̄ − j)0 = β0 ∩ I(1, k̄)0 × I(1, k̄)0.
19Here α(k̄ − j)0 = α ∩ I(1, k̄)0.
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Also given any two adjacent 2-cells β = [0, 1
3j
] ⊗ α and β̄ = [0, 1

3j
] ⊗ ᾱ

in [0, 1
3j
] × I(1, j), by Proposition 5.10(ii), we know that ψ̃0,β ◦ n(k̂ −

j, k̄ − j + kc(α)) = ψ̃0,β̄ ◦ n(k̂ − j, k̄ − j + kc(ᾱ)) = ψ0 ◦ n(k̂ − j, k̄ − j) on

β(k̂ − j)0 ∩ β̄(k̂ − j)0, so we can put all {ψ̃0,β} together and construct
the desired map

ψ : [0,
1

3j
](k̂ − j)0 × I(1, k̂)0 → Zn(M),

by letting ψ = ψ̃0,β ◦ n(k̂ − j, k̄ − j + kc(α)) on β(k̂ − j)0 for each 2-

cell β = [0, 1
3j
] ⊗ α. It is straightforward to check that ψ satisfies the

requirement. q.e.d.

Now let us go back to finish the proof of Theorem 5.1. Take a sequence
of positive numbers {δi}, δi → 0, as i → ∞; then by Step I, we can
construct a sequence of mappings {φi}, with φi = φδi/c0 : I(1, ji+ki)0 →
Zn(M).20 After extracting a subsequence, we can assume that φi+1 is
a (δi, ji+1 + ki+1)-extension of Φ. Then we can apply Lemma 5.12 to
φi and φi+1, so as to construct ψi satisfying Theorem 5.1(ii). The fact
that φi satisfy Theorem 5.1(i)(iii)(iv) come from properties 4,5,6 of φδ

in Part I. q.e.d.

6. Proof of the main theorem

The main idea for proving Theorem 1.1 is to apply the Almgren–Pitts
min–max theory to the good families constructed in §3, so that we can
obtain an optimal minimal hypersurface satisfying the requirement. The
idea is similar to the proof of [Z12, Theorem 1.1], while we need a more
delicate comparison argument when checking the min–max hypersurface
has index one (cf. Claim 4).

Given Σ ∈ S (1.2), we can define a mapping into
(Zn(M

n+1), {0})
(6.1) ΦΣ : [0, 1] → (Zn(M

n+1), {0}),
as follows:

(i) When Σ ∈ S+ (3.2), let ΦΣ(x) = ∂[[Ωx]], where Ωx = {p ∈ M :
dΣ±(p) ≤ (2x − 1)d(M)}. Here dΣ± is the signed distance function
(3.1), and d(M) is the diameter of M .

(ii) When Σ ∈ S− (3.4), let ΦΣ(x) = ∂[[Ωx]], where Ωx = {p ∈ M :
dΣ(p) ≤ xd(M)}. Here dΣ is the distance function to Σ.

By Proposition 3.4 and Proposition 3.6, ΦΣ satisfies:

Proposition 6.1. ΦΣ : [0, 1] → (Zn(M
n+1), {0}) is continuous un-

der the flat topology, and

(a) ΦΣ(x) = ∂[[Ωx]], Ωx ∈ C(M) for all x ∈ [0, 1], and Ω0 = ∅,
Ω1 = M ;

20c0 is given in Lemma 5.12(c).
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(b) supx∈[0,1]M
(
ΦΣ(x)

)
= Hn(Σ), if Σ ∈ S+;

(c) supx∈[0,1]M
(
ΦΣ(x)

)
= 2Hn(Σ), if Σ ∈ S−.

Remark 6.2. Notice that ΦΣ satisfies the requirement to apply The-
orem 5.1.

We need one more elementary fact about min–max hypersurface,
which is well-known to experts. A proof is included for completeness.

Lemma 6.3. Let {Σi}li=1 be the singular minimal hypersurfaces given
in Theorem 4.7, then the associated integral varifolds [Σi] have tangent
cones with multiplicity one everywhere. Therefore, Σi ∈ S.

Proof. Given any point p ∈ Σi, then Σi is stable (cf. [P81, 2.3][I96,
(5)(6)]) in any small annuli neighborhood of p by [P81, 3.3]. A standard
cutoff argument implies that Σi is stable near p, and [I96, Theorem B]
implies that every tangent cone of [Σi] has multiplicity one. q.e.d.

Proof of Theorem 1.1. Given Σ ∈ S and ΦΣ (6.1), we can apply The-
orem 5.1 to ΦΣ and get a (1,M)-homotopy sequence SΣ = {φΣ

i }i∈N into(Zn(M
n+1,M), {0}). By (5.1) and Proposition 6.1,

(6.2) L({φΣ
i }i∈N) ≤

{ Hn(Σ), if Σ ∈ S+;
2Hn(Σ), if Σ ∈ S−.

Also by Theorem 5.1(iv), SΣ ∈ F−1
A

(
[[M ]]

) ∈ π#
1

(Zn(M
n+1,M), {0}).

Denote F−1
A

(
[[M ]]

)
by ΠM . By Theorem 4.7, L(ΠM ) > 0. Using (6.2),

we have that
L(ΠM ) ≤ AM ,

where AM is defined in (1.3).
The Min–max Theorem 4.7 applied to ΠM gives a stationary varifold

V =
∑l

i=1mi[Σi], with mi ∈ N and {Σi} a disjoint collection of minimal

hypersurfaces in S, such that L(ΠM ) = ‖V ‖(M) =
∑l

i=1miHn(Σi).
Notice that there is only one connected component, denoted by ΣA, by
Theorem 2.10 as M has positive Ricci curvature, i.e., V = m[ΣA] for
some m ∈ N, m �= 0. Therefore,

(6.3) mHn(ΣA) = L(ΠM ) ≤ AM ≤
{ Hn(ΣA), if ΣA ∈ S+;

2Hn(ΣA), if ΣA ∈ S−,

where the last “≤” follows from the definition (1.3) of AM . Thus we
have the following two cases:

Case 1: If ΣA ∈ S+, orientable, then m ≤ 1, so m = 1, and Hn(ΣA) =
AM ;

Case 2: If ΣA ∈ S−, non-orientable, then m ≤ 2, so m = 1 or m = 2.

In Case 1 when ΣA ∈ S+, to prove Theorem 1.1(i), we only need to
show

Claim 4. In this case, ΣA has Morse index one.
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Assume that the claim is false, i.e., the index of ΣA is no less than 2.
By Definition 2.7, there exists an open set Ω ⊂ ΣA with smooth bound-
ary, such that Ind(Ω) ≥ 2. Then we can find two nonzero L2-orthonor-
mal eigenfunctions {v1, v2} ⊂ C∞

0 (Ω) of the Jacobi operator LΣA
with

negative eigenvalues. A linear combination will give a v3 ∈ C∞
0 (Ω), such

that

(6.4)

∫
Ω
v3 · LΣA

1dμ =

∫
Ω
1 · LΣA

v3 = 0, v3 �= 0.

We can assume that Ω = U ∩ ΣA for some open set U ⊂ M\sing(ΣA).

Let X̃ = v3ν with ν the unit normal of ΣA, and extend it to a tubu-
lar neighborhood of ΣA, such that X̃ has compact support in Ū . Let
{F̃s}s∈[−ε,ε] be the flow of X̃, and denote Σt,s = F̃s(Σt), where {Σt} is
the family associated to ΣA as in Proposition 3.4. Notice that Σt,s = Σt

outside U , and {Σt,s�U}(s,t)∈[−ε,ε]×[−ε,ε] is a smooth family for small ε by

Proposition 3.4(c). Denote f̃(t, s) = Hn(Σt,s ∩ U). Then ∇f̃(0, 0) = 0

(by minimality of ΣA),
∂2

∂t∂s f̃(0, 0) = − ∫
Ω v3LΣA

1dμ = 0 (by (6.4)),
∂2

∂t2
f̃(0, 0) = − ∫

Ω 1 · LΣA
1dμ < 0 (by Ricg > 0), and ∂2

∂s2
f̃(0, 0) =

− ∫
Ω v3LΣA

v3dμ < 0 (as v3 is a linear combination of eigenfunctions of
LΣ0 with negative eigenvalues).

Now consider Hn(Σt,s) = Hn(Σt,s ∩ U) + Hn(Σt,s\U) = f̃(t, s) +

Hn(Σt\U). For (t, s) ∈ [−ε, ε] × [−ε, ε], s �= 0, with ε small enough, by
Taylor expansion,

Hn(Σt,s) = f̃(t, 0) +
∂

∂s
f̃(t, 0)s+

∂2

∂s2
f̃(t, 0)s2 + o(s2) +Hn(Σt\U)

= f̃(t, 0) +
{ ∂

∂s
f̃(0, 0) +

∂2

∂t∂s
f̃(0, 0)t+ o(t)

}
s+

∂2

∂s2
f̃(t, 0)s2

+ o(s2) +Hn(Σt\U)

= f̃(t, 0) +
∂2

∂s2
f̃(t, 0)s2 + o(ts+ s2) +Hn(Σt\U)

< f̃(t, 0) +Hn(Σt\U)

= Hn(Σt) ≤ Hn(ΣA),

where the fourth “<” follows from the fact that ∂2

∂s2
f̃(t, 0) < 0 for t

small enough (as ∂2

∂s2
f̃(0, 0) < 0). For |t| ≥ ε, as Hn(Σt) < Hn(ΣA), we

can find δ > 0, δ ≤ ε small enough, such that Hn(Σt,δ) < Hn(ΣA). In
summary,

max{Hn(Σt,δ) : −d(M) ≤ t ≤ d(M)} < Hn(ΣA).

As {Σt,δ} are deformed from {Σt} by the ambient isotopy F̃δ : M → M ,
we can associate it with a mapping Φδ : [0, 1] →

(Zn(M
n+1,F), {0}) as

in (6.1)(i), such that
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• maxx∈[0,1]M
(
Φδ(x)

)
= maxtHn(Σt,δ) < Hn(ΣA) = L(ΠM );

• Φδ(x) = ∂[[Ω̃x]], Ω̃x = F̃δ(Ωx) ∈ C(M), for all x ∈ [0, 1].

Applying Theorem 5.1 to Φδ gives a (1,M)-homotopy sequence Sδ =
{φδ

i }i∈N, such that Sδ ∈ ΠM , and

L(Sδ) ≤ max
x∈[0,1]

M
(
Φδ(x)

)
< L(ΠM ),

which is a contradiction to the definition of L(ΠM ) (4.4). So we finish
the prove of Claim 4 and hence Theorem 1.1(i).

In Case 2 when ΣA ∈ S−. By Proposition 4.8, m must be an even
number. Hence m = 2, and 2Hn(ΣA) = AM . To prove Theorem 1.1(ii),
we only need to show

Claim 5. In this case, ΣA is stable, i.e., Ind(ΣA) = 0.

The proof is similar to Claim 4. If the claim is false, then there exists
an open set Ω ⊂ ΣA with smooth boundary, such that IndD(Ω) ≥ 1.

Denote Σ̃A by the orientable double cover of ΣA, and Ω̃ the lift-up of
Ω; then there exists an anti-symmetric eigenfunction φ̃ ∈ C∞

0 (Ω̃) of the

Jacobi operator LΣ̃A
of Σ̃A with negative eigenvalue (cf. §2.4). The

anti-symmetric condition directly implies that:

(6.5)

∫
Ω̃
φ̃ · LΣ̃A

1dμ =

∫
Ω̃
1 · LΣ̃A

φ̃dμ = 0.

Let ν̃ be the unit normal of Σ̃A, and π : Σ̃A → ΣA the covering map.
The anti-symmetric condition of φ̃ implies that φ̃ν̃ is symmetric on Σ̃A

(cf. §2.4). Hence denote X̃ = π∗(φ̃ν̃) by the push-forward of φ̃ν̃ to

ΣA under π. Similarly as above, extend X̃ to a neighborhood of ΣA,
and denote {F̃s}s∈[−ε,ε] by the flow associated to X̃. Let {Σt} be the
family associated to ΣA by Proposition 3.6, where we assume that Σ0

is a double cover of ΣA; then {Σt}t∈[0,ε] is a smooth family away from

sing(ΣA) for small ε by Proposition 3.6(c). Let Σt,s = F̃s(Σt); then Σt,s

are deformations of Σt away from sing(ΣA) by ambient isotopies. By
similar argument as in Claim 4 using (6.5) instead of (6.4), we can find
δ > 0 small enough, such that

max{Hn(Σt,δ) : 0 ≤ t ≤ d(M)} < 2Hn(ΣA).

Then we can get a contradiction by discretizing the family {Σt,δ} in the
same way. Now we finish the proof. q.e.d.

7. Appendix

7.1. Reverse statement of Proposition 5.3. Now we list the de-
tailed argument to get the reverse statement of Proposition 5.3 used in
the proof. In fact, Proposition 5.3 has another equivalent formulation
as follows:
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Proposition 7.1. Given δ, L, l,m, T as in Proposition 5.3, there ex-
ists k = k(l,m, T, δ, L) ∈ N, such that for any ρ > 0, there exists an
ε = ε(ρ, l,m, T, δ, L) > 0, such that for any 0 < s < ε, and φ as in (5.2),
there exists

φ̃ : I(m, k)0 → BF
ρ (T ), with φ̃(y) = ∂[[Ωy]],

Ωy ∈ C(M), y ∈ I(m, l)0, and satisfying (i)(ii)(iii)(iv) in Proposi-
tion 5.3.

Now we show that this formulation implies Proposition 5.3. In fact,
under the assumption in the above proposition, we can fix an ρ0 = 1 > 0,
and take ε = ε(ρ0, l,m, T, δ, L). Given 0 < s < ε, and φ as in (5.2), we
can define

ρφ,s = inf{ρ : ∃ ρ > 0, and φ̃ : I(m, k)0 → BF
ρ (T ),

with φ̃(y) = ∂[[Ωy]],Ωy ∈ C(M), satisfying

(i)(ii)(iii)(iv) in Proposition 5.3}.
(7.1)

ρφ,s is well-defined since ρ0 belongs to the above set, and 0 ≤ ρφ,s ≤ ρ0.
Now define the function ρ : [0, ε) → R

1
+,

ρ(s) = 2 sup{ρφ,s : φ is any map as in (5.2)}.
ρ(s) is well-defined, as ρ(s) ≤ 2ρ0. Also from the definition, the function
ρ depends only on l,m, T, δ, L.

Claim 6. ρ(s) → 0, as s → 0.

Proof. For any σ > 0 small enough, by Proposition 7.1 we can find
εσ = ε(σ, l,m, T, δ, L) > 0, so that if 0 < s < εσ, then every φ as in (5.2)

can be extended to φ̃ : I(m, k)0 → BF
σ (T ) satisfying the requirement as

in (7.1); hence ρφ,s ≤ σ, and ρ(s) ≤ 2σ by definition. q.e.d.

By taking k, ε, ρ(s) as above, Proposition 7.1 implies Proposition 5.3.
The reverse is trivial.

To get the reverse statement of Proposition 5.3, we can use the reverse
statement of Proposition 7.1.

7.2. Some basic facts of exponential map. Here we collect a few
basic facts about exponential maps summarized in [P81, §3.4] that we
need to use for the discretization procedure in Lemma 5.8. We will use
the following notions:

• rp(·) denotes the distance function ofMn+1 to p ∈ M , and B(p, r)
denotes the closed ball centered at p of radius r in M ;
• Given λ ≥ 0, μ(λ) : Rn+1 → R

n+1 denotes the scaling map by:
μ(λ) : x → λx;
• Given a map f : (W, g1) → (Z, g2), Lip(f) denotes the Lipschitz
constant with respect the metrics g1, g2.
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Given p ∈ M , let expp : TpM ∼= R
n+1 → M be the exponential map.

First, let us list several basic facts in [P81, §3.4(4)]. Given q ∈ M , and
0 < ε < 1, there exists a neighborhood Z ⊂ M of q, such that, if p ∈ Z,
W = exp−1

p (Z) ⊂ TpM ∼= R
n+1, and E = expp|W , then the following

properties hold:

(a) E is a C2 diffeomorphism onto Z;
(b) Z is strictly geodesic convex;
(c) (LipE)n(LipE−1)n ≤ 2;
(d) Lip(rp|Z) ≤ 2;
(e) If x ∈ Z and 0 ≤ λ ≤ 1, then E ◦ μ(λ) ◦ E−1(x) ∈ Z;
(f) if x ∈ Z, 0 ≤ λ ≤ 1, and v ∈ ΛnTxM (n-th wedge product of

TxM [Si83, §25]), then

‖D(
E ◦ μ(λ) ◦ E−1

)
∗v‖ ≤ λn

(
1 + ε(1− λ)

)‖v‖.
Also λn

(
1 + ε(1− λ)

) ≤ 1 for all 0 ≤ λ ≤ 1, ε < n/2.

Now we list a few facts about scaling of currents in Euclidean spaces
as in [P81, §3.4(5)(6)(7)]. Given r > 0, 0 ≤ λ ≤ 1, denote B(0, r) by
the closed ball of radius r in R

n+1, and T ∈ Zn−1(∂B(0, r)), then we
can define the cone of T over the annulus A(0, λr, r) = B(0, r)\B(0, λr)
as [Si83, 26.26]

S = δ0X(T − μ(λ)#T ) ∈ Zn(R
n+1),

then

(g) ∂S = T − μ(λ)#T ;
(h) M(S) = rn−1(1− λn)M(T );
(i) spt(S) ⊂ A(0, λr, r), where spt(S) is the support of S [Si83,

26.11].

Given λ ≥ 0, and T ∈ In(R
n+1), then it is easily seen that

M(μ(λ)#T ) = λnM(T ).

Using notions as above,

(j) Given r > 0, 0 ≤ λ ≤ 1, B(p, r) ⊂ Z, and T ∈ Zn

(
B(p, r),

∂B(p, r)
)
, then by (f),

(7.2) M
(
(E ◦ μ(λ) ◦ E−1)#T

) ≤ λn(1 + ε(1− λ))M(T ) ≤ M(T );

(k) Denote Sλ = E#

(
δ0X

[
E−1

# (∂T ) − (μ(λ) ◦ E−1)#(∂T )
])
, then by

(g)(h)(i),

∂Sλ = ∂T − ∂
[
(E ◦ μ(λ) ◦ E−1)#T

]
,

spt(Sλ) ⊂ A(p, λr, r) = B(p, r)\B(p, λr),

M(Sλ) ≤ (LipE)n(LipE)−nrn−1(1− λn)M(∂T )

≤ 2rn−1(1− λn)M(∂T ).
(7.3)
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Finally, let us recall the contraction map in [P81, §3.4(8)]. For r > 0,
define

h(r) : Rn+1 → R
n+1,

by h(r)(x) = x if |x| ≤ r, and h(r)(x) = r|x|−1x if |x| > r. If V ∈
Vn(R

n+1), then

(l) spt(h(r)#V ) ⊂ B(0, r);
(m) (h(r)#V )�Gn

(
B0(0, r)

)
= V �Gn

(
B0(0, r)

)
;21

(n) M(h(r)#V ) ≤ M(V ).

7.3. Isoperimetric choice. We refer the notions to §4.2.

Lemma 7.2. Given T1, T2 = Zn(M
n+1), with F(T1, T2) ≤ νM , as-

sume that T1 = ∂[[Ω1]], T2 = ∂[[Ω2]], Ω1,Ω2 ∈ C(M), and M
(
[[Ω2]] −

[[Ω1]]
)
< vol(M)/2, then the isoperimetric choice of T2−T1 is [[Ω2−Ω1]].

Proof. Let Q ∈ In+1(M) be the isoperimetric choice of T2 − T1, then
M(Q) = F(T1, T2) ≤ M

(
[[Ω2 −Ω1]]

)
, and ∂Q = T2 − T1. As T2 − T1 =

∂[[Ω2 − Ω1]], ∂
(
Q − [[Ω2 − Ω1]]

)
= 0 in In+1(M

n+1). The Constancy
Theorem [Si83, 26.27] implies that Q − [[Ω2 − Ω1]] = n[[M ]] for some
n ∈ Z. But M

(
Q− [[Ω2−Ω1]]

) ≤ M(Q)+M([[Ω2−Ω1]]) ≤ 2M([[Ω2−
Ω1]]) < vol(M), hence n = 0, and Q = [[Ω2 − Ω1]]. q.e.d.

We will also need a more subtle technical lemma concerning the
isoperimetric choice.

Lemma 7.3. Given T1, T2 as above, with T1 �= 0, there exists δ > 0
(depending on T1), such that if F(T1, T2) ≤ δ, then the isoperimetric
choice of T2 − T1 is [[Ω2 − Ω1]].

Proof. We use the same notions as in the proof of the above Lemma.
T1 �= 0 implies that Ω1 �= ∅ and Ω1 �= M . Take

δ =
1

2
min{Hn+1(Ω1),Hn+1(M\Ω1)}.

Then 0 < δ < vol(M)/2. As we always assume that Ω1, Ω2 have
the same orientation as M , hence M

(
[[Ω2]] − [[Ω2]]

)
= Hn+1(Ω1
Ω2),

where Ω1
Ω2 is the symmetric difference, i.e., Ω1
Ω2 = (Ω1\Ω2) ∪
(Ω2\Ω1). Let Q be the isoperimetric choice of T2 − T1, by the above
proof Q − [[Ω2 − Ω1]] = n[[M ]]. If n = 0, the proof is done. If n �= 0,
then |n|vol(M) = M(Q − [[Ω2 − Ω1]]) ≤ M(Q) + M([[Ω2 − Ω1]]) ≤
F(T1, T2) + Hn+1(Ω1
Ω2) ≤ δ + vol(M) < 2vol(M), hence n = ±1.
If n = 1, then Q = [[M ]] + [[Ω2 − Ω1]] = [[M − Ω1]] + [[Ω2]]; hence
M(Q) ≥ Hn+1(M\Ω1) > δ (as M − Ω1 has the same orientation as
Ω2), a contradiction. If n = −1, then −Q = [[M ]] − [[Ω2 − Ω1]] =
[[M − Ω2]] + [[Ω1]]; hence M(Q) ≥ Hn+1(Ω1) > δ (as M − Ω2 has the
same orientation as Ω1), a contradiction. q.e.d.

21B0(0, r) denotes the open ball of radius r in R
n+1.
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in Mathematics, Vol. 80, Birkhäuser Verlag, Basel, 1984. MR0775682, Zbl
0545.49018.

[Gr] M. Gromov, Paul Levy’s isoperimetric inequality. Appendix C in Met-
ric structures for Riemannian and non-Riemannian spaces. Reprint of
the 2001 English edition. Modern Birkhäuser Classics. Birkhäuser Boston,
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