
j. differential geometry

98 (2014) 467-528

LARGE TIME BEHAVIOR OF THE HEAT KERNEL

Guoyi Xu

Abstract

In this paper, we study the large time behavior of the heat
kernel on complete Riemannian manifolds with nonnegative Ricci
curvature, which was studied by P. Li with additional maximum
volume growth assumption. Following Y. Ding’s original strategy,
by blowing down the metric, using Cheeger and Colding’s theory
about limit spaces of Gromov-Hausdorff convergence, combining
with the Gaussian upper bound of heat kernel on limit spaces,
we succeed in reducing the limit behavior of the heat kernel on
manifold to the values of heat kernels on tangent cones at infinity
of manifold with renormalized measure. As one application, we
get the consistent large time limit of heat kernel in more general
context, which generalizes the former result of P. Li. Furthermore,
by choosing different sequences to blow down the suitable metric,
we show the first example manifold whose heat kernel has incon-
sistent limit behavior, which answers an open question posed by
P. Li negatively.
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1. Introduction

On (Mn, g), we consider the fundamental solution H(x, y, t), which
solves the heat equation with initial data:

{ (

∂
∂t

−∆
)

F (x, t) = 0 on Mn × (0,∞)
F (x, 0) = f(x) on Mn

by setting

F (x, t) =

∫

Mn

H(x, y, t)f(y)dy.

It is well-known that there exists a minimal positive fundamental so-
lution of (Mn, g) (cf. Theorem 12.4 in [Li12]). In [Dod83], J. Dodziuk
showed that if the Ricci curvature (Mn, g) is bounded from below, then
the minimal positive fundamental solution of (Mn, g) is the unique pos-
itive fundamental solution of (Mn, g). In this case, we say that the
unique positive fundamental solution H(x, y, t) is the heat kernel of
(Mn, g).

Especially, when (Mn, g) has non-negative Ricci curvature, in [LY86],
P. Li and S-T. Yau proved that for all ǫ > 0, there exists constants
C(ǫ) > 0, such that

C(ǫ)−1

V
(√

t
) exp

(

− d2(x, y)

(4 − ǫ)t

)

≤ H(x, y, t) ≤ C(ǫ)

V
(√

t
) exp

(

− d2(x, y)

(4 + ǫ)t

)

(1.1)

where the terms V
(√

t
)

and d(x, y) denote the volume of the geodesic

ball centered at y of radius
√
t and the geodesic distance from x to y,

respectively.
In particular, there are constants C1(n) and C2(n) depending only

on dimension n of Mn, such that

C1(n) ≤ lim
t→∞

V
(
√
t
)

H(x, y, t) ≤ lim
t→∞

V
(
√
t
)

H(x, y, t) ≤ C2(n).(1.2)

For smooth manifold Mn with non-negative Ricci curvature, Bishop-
Gromov volume comparison theorem asserts that the relative volume
V (r)
rn

is decreasing in the radius r. As r → ∞, it converges a non-
negative number Θ, which is called asymptotic volume ratio. If Θ > 0,
then we say that Mn has maximal volume growth.

In [Li86], P. Li initiated the study of large time behavior of heat
kernel on open manifolds with Rc ≥ 0 and maximal volume growth.
Among other things, he proved the following theorem:



LARGE TIME BEHAVIOR OF THE HEAT KERNEL 469

Theorem 1.1 (P. Li). If (Mn, g) has Rc ≥ 0 and maximal volume
growth, then

lim
t→∞

V
(
√
t
)

H(x, y, t) = ω(n)(4π)−
n
2(1.3)

where ω(n) is the volume of the unit n-ball in R
n.

The key of the proof is Li-Yau’s Harnack inequality established in
[LY86] and the Bishop-Gromov Volume Comparison Theorem.

Inspired by the above work, in [CM97b] T. Colding and W. Minicozzi
studied the large scale behavior of the Green’s function G(x, y). Among
other things, they proved

Theorem 1.2 (T. Colding and W. Minicozzi). If Mn, n ≥ 3 has
nonnegative Ricci curvature and maximal volume growth, then for a
fixed x ∈ Mn,

lim
d(x,y)→∞

G(x, y)

GRn(x, y)
=

ω(n)

Θ

where GRn(x, y) is the Green’s function on R
n.

And they also pointed out that the geometric motivation behind of
Theorem 1.2 is the fact: every tangent cone at infinity of a manifold
satisfying the assumptions of Theorem 1.2 is a metric cone, which was
shown in [CC96].

Let us recall that for a complete noncompact manifold Mn with
Rc ≥ 0, a metric space M∞ is a tangent cone at infinity of Mn if it
is a Gromov-Hausdorff limit of a sequence of rescaled manifolds (Mn, p,

t−2
j g), where tj → ∞. By Gromov’s compactness theorem, [Gro99],
any sequence tj → ∞, has a subsequence, also denoted as tj → ∞,

such that the rescaled manifolds (Mn, p, t−2
j g) converge to some M∞

in the Gromov-Hausdorff sense. Example of Perelman ([Per97]) shows
that tangent cone at infinity is not unique in general even if the mani-
fold with Rc ≥ 0 has maximal volume growth and quadratic curvature
decay. We refer the reader to [CC97] for more examples including col-
lapsing case. Note tangent cones at infinity of Mn reflect the geometry
at infinity of manifoold Mn.

Later on, in [LTW97], in addition to providing another proof of The-
orem 1.2, P. Li, L. Tam and J. Wang proved the sharp bound of the
heat kernel under the assumption in Theorem 1.1. Their sharp bound

of heat kernel shows that the coefficients C(ǫ)−1

V
(√

t
) and C(ǫ)

V
(√

t
) in (1.1) have

some relationship with the asymptotic volume ratio Θ.
As the asymptotic volume ratio is one quantity reflecting the geome-

try at infinity of manifolds, combined with the above observation about
the Green’s function and tangent cones at infinity of manifold, it is
reasonable to speculate that Theorem 1.1 has one proof from the view



470 G. XU

point of tangent cones at infinity of manifold. In other words, the large
time behavior of the heat kernel should have close relationship with the
geometry at infinity of manifolds.

In [Din02], under the maximum volume growth assumption, Y. Ding
reduced the study of large scale behavior of the Green’s function and
large time behavior of the heat kernel, to the analysis on tangent cones
at infinity of manifolds, where all tangent cones are metric cones and
the Gromov-Hausdorff convergence is non-collapsing. Note the analysis
on metric cones had been done by J. Cheeger [Che83] in different con-
text. By the above strategy, Y. Ding provided one alternative proof for
Theorem 1.1 and Theorem 1.2 in unified way.

However, as pointed out in [Li86], the answer to the following question
was still unknown:

Question 1.3. Does lim
t→∞

V
(
√
t
)

H(x, y, t) exist generally without the

assumption of maximal volume growth?

To study the above question, we firstly set up the setting as the
following:

Blow Down Setup: Note that (Mn, g, µ) is a complete Riemannian
manifold with Rc ≥ 0, where µ is the volume element determined by the
metric g. We can define (Mi, y, ρi, νi), where Mi is the same differential
manifold as Mn, ρi is the metric defined as ρi = t−1

i g, {ti}∞i=1 is an
increasing positive sequence whose limit is ∞, and y is a fixed point on
Mi = Mn. νi is a Borel regular measure defined by

νi(A) +
(

∫

Bi(1)
1dµi

)−1(
∫

A

1dµi

)

= t
n
2
i V (

√
ti)

−1µi(A)(1.4)

where A ⊂ Mi, Bi(1) + {z ∈ Mi| dρi(z, y) ≤ 1}, and µi is the volume
element determined by ρi. Then by Gromov’s compactness theorem (see
[Gro99]) and Theorem 1.6 in [CC97], after passing to a suitable subse-

quence, we have (Mi, y, ρi, νi)
dGH−→ (M∞, y∞, ρ∞, ν∞) in the measured

Gromov-Hausdorff sense, where ν∞ is the renormalized limit measure
defined as in Section 1 of [CC97].

Unless otherwise mentioned, in this paper (Mn, y, g, µ), (Mn
i , y, ρi, νi)

and (M∞, y∞, ρ∞, ν∞) are as in the above Blow Down Setup and
n ≥ 3.

A main result of this paper is the following:

Theorem 1.4. Assume (Mi, y, ρi, νi)
dGH−→ (M∞, y∞, ρ∞, ν∞) as in

the above Blow Down Setup and n ≥ 3, then

lim
i→∞

V (
√
ti)H(x, y, ti) = p∞(y∞, y∞, 1)(1.5)

where p∞ is the heat kernel on the metric measure space (M∞, y∞, ρ∞,

ν∞), and the convergence is point-wise convergence.
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Remark 1.5. In fact, after some suitable modification, it is not hard
to show that the results of this paper also hold on complete Riemann
surface, i.e. the n = 2 case. For space reason, we will not discuss the
n = 2 case separately here.

To prove Theorem 1.4, we follow Y. Ding’s strategy loosely. How-
ever, by combining K.-T. Sturm’s study about heat kernel on metric
spaces (see [Stu94], [Stu95], [Stu96], [Stu98]), with Cheeger-Colding’s
theory about limit spaces with Ricci curvature bounded from below (see
[CC96], [CC97], [CC00a], [CC00b], [Che99]), we manage to overcome the
difficulties caused by collapsing during Gromov-Hausdorff convergence.

More concretely, in [Din02], the assumption of maximum volume
growth was needed to get the Li-Yau’s estimate for the Green’s func-
tion on tangent cones at infinity of manifolds, then the reduction for the
Green’s function from manifolds to limit space under Gromov-Hausdorff
convergence can be obtained, finally the reduction for the heat kernel
as in Theorem 1.4 follows from the integral formula connecting the heat
kernel with the Green’s function.

Our approach is kind of direct by avoiding the discussion of the
Green’s function. Note in Ding’s proof, the Li-Yau’s estimate for the
Green’s function on the limit spaces (metric cones) plays the essential
role in getting the reduction for the Green’s function. To get the reduc-
tion for the heat kernel, we need such an estimate for the heat kernel
on the general limit spaces (metric measure spaces). Following K.-T.
Sturm’s method, we proved the general existence result and Gaussian-
type upper bounds of heat kernel on M∞, which is enough for our use.

Note on compact domains, the heat kernel has the expansion deter-
mined by eigenvalues and eigenfunctions. On the other hand, J. Cheeger
and T. Colding [CC00b] (also see [Che99] for some technical details)
had proved that the eigenvalues and eigenfunctions on compact metric
measure spaces behave continuously under measured Gromov-Hausdorff
convergence, which was originally conjectured by K. Fukaya in [Fuk87].
Combining the suitable modifications of these two facts about heat ker-
nel, eigenvalues and eigenfunctions on bounded domains, we can get
the reduction of the heat kernel on bounded domains over complete
manifolds, see Theorem 7.3.

Then applying the crucial Gaussian-type upper bounds of heat ker-
nel on tangent cones at infinity of manifolds and the family of blowing
down manifolds, using the suitable compact exhaustion of these com-
plete blowing down manifolds, we succeed in getting the above reduction
generally for the heat kernel on complete manifolds, from the reduction
of the heat kernel on bounded domains over complete manifolds. Note
the role of Gaussian-type upper bounds of heat kernel on tangent cones
at infinity of manifolds and on blowing down manifolds, in getting our
reduction, is analogous to the role that the uniform integrable function
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bound of measurable functions plays to guarantee two limit processes
commute in Lebesgue’s Dominated Convergence Theorem.

A byproduct of the above general reduction result is, a generalization
of the former results of P. Li and Y. Ding about the consistent large
time behavior of heat kernel. More concretely, we have the following
theorem.

Theorem 1.6. Assume that (Mn, g) is a complete manifold with
cone structures at infinity, y is some fixed point on Mn and n ≥ 3.
Furthermore assume that for any r > 0, any two positive sequence {si},
{li} with the following property:

lim
i→∞

si = lim
i→∞

li = ∞ , lim
i→∞

Vy(
√
sir)

Vy(
√
si)

= h(r) , lim
i→∞

Vy(
√
lir)

Vy(
√
li)

= h̃(r)

(1.6)

where h(r), h̃(r) are positive functions, the following equation holds:

h′′(r)
h′(r)

=
h̃′′(r)

h̃′(r)
.(1.7)

Then

lim
t→∞

Vy(
√
t) ·H(x, y, t) = p∞(y∞, y∞, 1)(1.8)

where p∞ is the heat kernel on any tangent cone at infinity of manifold
Mn with renormalized measure, and the value of the right hand side is
consistent.

The concept of manifolds with cone structures at infinity will be de-
fined in Section 8. Especially, the manifolds with nonnegative Ricci
curvature and maximal volume growth satisfy the assumptions in The-
orem 1.6, in fact h(r) = h̃(r) = rn in this case.

Furthermore, we construct the first example of manifold with Rc ≥ 0,
where the limit in Question 1.3 does not exist. More precisely, we have
the following theorem.

Theorem 1.7. There exists a complete Riemannian manifold (M8, g)
with Rc ≥ 0, such that on (M8, g),

lim
t→∞

V (
√
t)H(x, y, t) < lim

t→∞
V (

√
t)H(x, y, t).

Following Cheeger and Colding’s strategy in Section 8 of [CC97],
we modify the examples there to construct our example. Note that
not every two different tangent cones at infinity of manifold will give
different values of p∞(y, y, 1). The different renormalized measures on
tangent cones at infinity of manifold are the key point to result in the
inconsistent limit behavior of heat kernel.

The organization of this paper is as the following. In Section 2,
we state some background facts about Gromov-Hausdorff convergence,
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which are needed for later sections. For this part, we mainly refer to
[CC96], [CC97], [Gro99]. And we also review the results about the first
order differentiation, Sobolev spaces and Laplacian operator on metric
measure spaces, which were proved in [Che99] and [CC00b].

In Section 3, we proved a Harnack’s convergence theorem in Gromov-
Hausdorff topology (Theorem 3.1), which roughly says that the limit (if
it exists) of harmonic functions on manifolds, is a harmonic function
on limit spaces under some gradient bounds assumption. Theorem 3.1
was originally due to Y. Ding (see Section 3 of [Din02]). For reader’s
convenience, we provide a detailed proof here.

In Section 4, as in [Din02], combining with the well-known estimates
of eigenvalues and eigenfunctions, the convergence of eigenvalues and
eigenfunctions in Gromov-Hausdorff sense follows from the Harnack’s
convergence theorem proved in Section 3.

In Section 5, the heat equation on metric measure space M∞ is dis-
cussed. Using the theory of abstract Cauchy problem developed in
[LM72], we get the existence of the solutions of heat equation on M∞ as
in [Stu95]. In addition, some mean value inequality of the heat equation
solutions are obtained, whose proof imitates L. Saloff-Coste’s argument
on smooth manifolds (cf. see [SC02]).

In Section 6, we follow closely the argument of K.-T. Sturm in [Stu95]
(also see [Stu94], [Stu96] and [Stu98]) and L. Saloff-Coste in [SC02] (also
see [SC92a], [SC92b]) to prove the existence and Gaussian upper bound
of heat kernel on metric measure space (M∞, ρ∞, ν∞). We believe that
some results in this section are well-known to experts in this field in more
general context, but we provide the details here to make our argument
self-contained.

In Section 7, using the results established in the former sections, we
manage to reduce the lim

i→∞
V
(√

ti
)

H(x, y, ti) to the heat kernel value

p∞(y, y, 1) on (M∞, ν∞), where M∞ is any tangent cone at infinity of
complete manifold Mn with Rc ≥ 0 and ν∞ is the renormalized measure
on M∞.

In Section 8, by the general reduction results obtained in Section
7, the general criterion in Theorem 1.6 is given to determine whether
the limit behavior of heat kernel is consistent. This general criterion
includes the former related results of P. Li and Y. Ding as a special
case.

In Section 9, using the generalized Hopf fibration of S7, we construct
the example (M8, g) by modifying the metric on R

8 step by step. When
M∞ have cone structure dr2 + f(r)2dX, one key point to get different
heat kernel values p∞(y, y, 1) on (M∞, ν∞) is, to assure that (1.7) does
not hold for two specially chosen positive sequences whose limits are
infinity. The computation involved in the construction of this example
is long but straightforward, we give the details for completeness.
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Finally in Appendix A, some Lp-convergence results in Gromov-
Hausdorff sense are stated, and the proof of the Rellich-type compact-
ness theorem is also provided for reader’s convenience.
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2. Preliminaries on Cheeger-Colding’s theory

In this section we review some background material about Gromov-
Hausdorff convergence and analysis on limit spaces, which were estab-
lished in [Gro99] and [CC97], [CC00a], [CC00b], [Che99]. Especially,
the doubling condition and local Poincaré inequality on limit spaces are
showed. Also the existence of self-adjoint Laplacian operator on limit
spaces is established. Those two results are used repeatedly through the
whole paper.

Let
{

(Mn
i , yi, ρi)

}

be a sequence of pointed Riemannian manifolds,

where yi ∈ Mn
i and ρi is the metric onMn

i . If
{

(Mn
i , yi, ρi)

}

converges to

(M∞, y∞, ρ∞) in the Gromov-Hausdorff sense, we write (Mn
i , yi, ρi)

dGH−→
(M∞, y∞, ρ∞). See [Gro99] for the definition and basic facts concerning
Gromov-Hausdorff convergence.

Obviously if a sequence of pointed metric spaces converges to a pointed
space (X, p) in the Gromov-Hausdorff sense, it also converges to its
completion. We will only consider complete metric spaces as Gromov-
Hausdorff limits. Then, similarly to the case of ordinary convergence, a
Gromov-Hausdorff limit of pointed spaces is essentially unique. For gen-
eral background on metric space and length space, we refer the reader
to [BBI01].

Let (Xi, pi)
dGH−→ (X, p) whereXi are length spaces andX is a complete

metric space, from Theorem 8.1.9 in [BBI01], X is a complete length
space.

From the above argument, we get that
(

M∞, y∞, ρ∞, ν∞
)

is a com-
plete length space.

A metric space is said to be boundedly compact if all closed bounded
sets in it are compact. By Exercise 8.1.8 in [BBI01], (M∞, ρ∞) is also
boundedly compact.
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We define the convergence concept for functions on manifolds {Mn
i }

as the following, it is so called ”uniform convergence in Gromov-Haus-
dorff topology”, for simplification, sometimes it is written as ”uniform
convergence in G-H topology”.

Definition 2.1 (Uniform Convergence in G-H topology). Suppose

Ki ⊂ Mn
i

dGH−→ K∞ ⊂ M∞

Assume that {fi}∞i=1 are functions on Mn
i , f∞ is a function on M∞. and

Φi : K∞ → Ki are ǫi-Gromov-Hausdorff approximations, limi→∞ ǫi = 0.
If fi ◦Φi converge to f∞ uniformly, we say that fi → f∞ uniformly over

Ki
dGH−→ K∞.

As in Section 9 of [Che99], we have the following definition.

Definition 2.2. If νi, ν∞ are Borel regular measures on Mn
i , M∞,

we say that (Mn
i , yi, ρi, νi) converges to (M∞, y∞, ρ∞, ν∞) in the mea-

sured Gromov-Hausdorff sense, if (Mn
i , yi, ρi)

dGH−→ (M∞, y∞, ρ∞),
in addition, for any xi → x∞, (xi ∈ Mn

i , x∞ ∈ M∞), r > 0, we have

νi

(

Bi(xi, r)
)

→ ν∞
(

B∞(x∞, r)
)

where (M∞, ρ∞) is a length space with length metric ρ∞, and

Bi(xi, r) = {z ∈ Mn
i | dρi(z, xi) ≤ r} ,

B∞(x∞, r) = {z ∈ M∞| dρ∞(z, x∞) ≤ r}.
In the rest of this section, we assume that {Mn

i } is a sequence of
complete noncompact manifolds with non-negative Ricci curvature, νi is

the renormalized measure onMn
i defined as νi(A) =

µi(A)
µi(Bi(1))

, where µi is

the volume element determined by ρi. And (Mn
i , yi, ρi, νi) converges to

(M∞, y∞, ρ∞, ν∞) in the measured Gromov-Hausdorff sense. Note from
Theorem 1.6 in [CC97], any sequence (Mi, yi, ρi) with Rc ≥ 0, there is
a subsequence, (Mn

i , yi, ρi, νi), convergent to some (M∞, y∞, ρ∞, ν∞) in
the measured Gromov-Hausdorff sense.

Before discussing the analysis on M∞, we firstly consider the general
metric measure space (X,m), where X is a metric space and m is a
Borel regular measure on X. Hence (M∞, ρ∞, ν∞) is a special case of
(X,m). Fixed a set A ⊂ X, let f be a function on A with values in the
extended real numbers.

Definition 2.3. An upper gradient, g, for f is an extended real
valued Borel function, g : A → [0,∞], such that for all points, z1, z2 ∈ A,
and all continuous rectifiable curves, γ : [0, l] → A, parameterized by
arc-length, s, with γ(0) = z1, γ(l) = z2, we have

|f(z1)− f(z2)| ≤
∫ l

0
g(γ(s))ds.(2.1)
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Fix an open set U ⊂ X, and until further notice, write Lp for Lp(U).
For f ∈ Lp, we set

|f |1,p + |f |Lp + inf
{gi}

lim inf
i→∞

|gi|Lp(2.2)

where the inf is taken over all sequences {gi}, for which there exists a

sequence, fi
Lp

−→ f , such that gi is an upper gradient for fi, for all i.

Definition 2.4. For p ≥ 1, the Sobolev space W 1,p(U) is the sub-
space of Lp(U) consisting of functions, f , for which |f |1,p < ∞, equipped
with the norm | · |1,p.

Let 0 → W 1,p i→ Lp denote the natural map, Uη ⊂ U denote the set of
points at distance ≥ η from ∂U . Let K(U) denote the subset of W 1,p(U)
consisting of those functions, f , for which there exists η > 0, such that
i(f), the image of f , in Lp(U), has a representative with support in Uη.

Definition 2.5. The Sobolev space W
1,p
0 (U) ⊂ W 1,p(U), is the clo-

sure of the space K(U) in W 1,p(U).

From Definition 2.8, 2.9 and Theorem 2.10 in [Che99], we have the
following theorem.

Theorem 2.6 (Cheeger). For all 1 < p < ∞ and f ∈ W 1,p(U), there
exists a unique gf ∈ Lp(U) (up to modification on subsets of measure
zero) such that

|f |1,p = |f |Lp + |gf |Lp(2.3)

and there exist sequences, fi
Lp

→ f , gi
Lp

→ gf , where gi is an upper gradient
for fi, for all i.

gf is called a minimal generalized upper gradient for f , which
may depend on the choice of p and U .

When p = 2, the above Sobolev spaces become Hilbert spaces, we use
the following notations:

H1
+ W 1,2 , H1

0 + W
1,2
0 .

We define the following properties:
Property (B)(the doubling condition): For all balls B2r(x) ⊂ X,

we have

m
(

B2r(x)
)

≤ 2n ·m
(

Br(x)
)

(2.4)

Property (C ): There exists a constant C = C(n) such that for all
balls B2r(x) ⊂ X, we have

∫

Br(x)
|f − fx,r|2dm ≤ Cr2

∫

B2r(x)
|gf |2dm(2.5)
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for all f ∈ H1
(

X,m
)

, and

fx,r =
1

m
(

Br(x)
)

∫

Br(x)
fdm.(2.6)

We have the following proposition about (M∞, y∞, ρ∞, ν∞).

Proposition 2.7. Property (B), (C ) hold on
(

M∞, ρ∞, y, ν∞
)

.

Proof: It follows from Volume Comparison Theorem that Property
(B) holds on (Mn

i , yi, ρi, νi).
By Rc ≥ 0 on Mn

i , from Theorem 5.6.5 in [SC02], we have

∫

Bi(z,r)
|f − fz,r|

3
2 dνi ≤ C(n)r

3
2

∫

Bi(z,r)
|∇f | 32 dνi , f ∈ H1(Mi, νi).

(2.7)

Using Hölder inequality, we obtain that
(

∣

∣f − fz,r
∣

∣

)

z,r
≤ C(n)r

[

(

|∇f | 32
)

z,r

]
2
3
, f ∈ H1(Mi, νi).(2.8)

By Theorem 9.6 in [Che99], we get Property (B) and the following
inequality holds on (M∞, y∞, ρ∞, ν∞):

(

|f − fz,r|
)

z,r
≤ C(n)r

[

(

|g|2
)

z,r

]
1
2

(2.9)

where f ∈ H1(M∞, ν∞) and g is any upper gradient for f .

Using Theorem 2.6, there exist sequences, fi
L2

→ f , gi
L2

→ gf , and gi is
an upper gradient for fi. From (2.9), we get

(

|fi − (fi)z,r|
)

z,r
≤ C(n)r

[

(

|gi|2
)

z,r

]
1
2

taking i → ∞ in the above inequality, we have
(

|f − fz,r|
)

z,r
≤ C(n)r

[

(

|gf |2
)

z,r

]
1
2
, f ∈ H1(M∞, ν∞).(2.10)

From the argument in the beginning of Section 2, we know that
(M∞, ρ∞) is a complete boundedly compact length space. By Corol-
lary 1 in [HK95], B∞(z, r) satisfies the C(λ,M) condition (defined in
[HK95]) for λ = 1 and some independent constant M . Then we can use
(2.10) and Theorem 1 in [HK95] to get

[

(

|f − fz,r|2χ
)

z,r

]
1
2χ ≤ τr

[

(

|gf |2
)

z,r

]
1
2
, f ∈ H1(M∞, ν∞)(2.11)

where χ = χ(n) > 1, τ = τ(n, χ) > 0 are some constants.
By (2.11) and Hölder inequality, we conclude that

∫

B∞(z,r)

∣

∣f − fz,r
∣

∣

2
dν∞ ≤ C(n)r2

∫

B∞(z,r)
|gf |2dν∞ , f ∈ H1(M∞, ν∞)

(2.12)
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which implies Property (C ) on (M∞, y∞, ρ∞, ν∞). q.e.d.

We have the following theorem about “df”:

Theorem 2.8 ([Che99], [CC00b]). f ∈ H1(M∞)
(

H1
0 (M∞)

)

, if and

only if there exists a sequence of Lipschitz functions (compactly sup-

ported Lipschitz functions) fi
L2

−→ f and dfi
L2

−→ ω for some L2-section
ω of T ∗M∞, and ω is unique.

Proof: By Theorem 4.47 in [Che99] (also see Theorem 6.7 in [CC00b])
and Proposition 2.7 above, we get our conclusion. q.e.d.

Remark 2.9. ω in Theorem 2.8 is called a strong L2 exterior deriv-
ative of f in [CC00b], we can define df + ω for f ∈ H1

0 (M∞), then df is
the L∞ section of T ∗M∞ (the cotangent tensor bundle) determined by
f , which is called the differential of f . From the Theorem above, it is
well defined.

We define

L (U) = {f | f is Lipschitz function on U}
Lc(U) = {f | f is compactly supported Lipschitz function on U}.

From Theorem 2.8 above, we know that Lc(U) is dense in H1
0 (U).

We define H1
0 (M∞) as the closure of Lc(M∞) in H1(M∞).

It is easy to see Cc(U) is dense in L2(U), from the fact that any com-
pactly supported continuous function can be uniformly approximated by
compactly supported Lipschitz functions, we get that Lc(U) is dense in
L2(U). Then H1

0 (U) is also dense in L2(U).
Because the operator d is well defined on L (M∞), we can view the

operator d on L2(M∞) as a densely defined unbounded operator. By
Theorem 2.8, this operator is closable as an operator on L2(M∞). We
have the existence of self-adjoint operator ∆∞ on M∞ as the following.

Theorem 2.10 ([CC00b]). The bilinear form

∫

M∞

< df1, df2 > dν∞

is a densely defined, closed symmetric form on L2(M∞). Hence, there is
a unique self-adjoint operator, ∆∞, (associated to the minimal closure),
such that

∫

M∞

|df |2dν∞ =

∫

M∞

< (−∆∞)
1
2 f, (−∆∞)

1
2 f > dν∞ , f ∈ H1

0 (M∞).

(2.13)

Proof: It follows from Theorem 2.23 of [Kat95]. q.e.d.
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3. Harnack’s convergence theorem in the Gromov-Hausdorff
sense

In this section, we will show that under uniform gradient bound as-
sumption, the uniform limit of solutions, of Poisson equations on a se-
quence of convergent manifolds (in Gromov-Hausdorff sense), if it exists,
will be the solution of Poisson equation on the limit space. The result
of this section will only be needed in Section 4.

Compared with the classical Harnack’s convergence theorem (cf. The-
orem 2.9 in [GT01]), which says that the limit of monotonic increasing
bounded harmonic functions is still harmonic, where monotonicity is
used to apply Harnack estimate on harmonic functions. With the uni-
form gradient bound assumption replacing Harnack estimate, one may
think of our theorem (Theorem 3.1) as Harnack’s convergence theorem
in the Gromov-Hausdorff sense, which is crucial in the proof of Propo-
sition 4.5.

On Riemannian manifold (Mn
i , ρi, νi), one solves the Poisson equation

{

∆ρiu = f

u
∣

∣

∣

∂Bi(xi,r)
= h

for Lipschitz functions f , h on Bi(xi, r) ⊂ Mn
i . By the Dirichlet’s

principle, u is the unique minimizer of the functional

I(u, νi, xi, r) =

∫

Bi(xi,r)

(1

2
|∇u|2 + fu

)

dνi

within the space Hi + h+H1
0

(

Bi(xi, r)
)

.

Similarly, for (M∞, ρ∞, ν∞), by Theorem 2.10, the solution of the
Poisson equation

{

∆∞u = f

u
∣

∣

∣

∂B∞(x∞,r)
= h

is the unique minimizer of the functional

I(u, ν∞, x∞, r) =

∫

B∞(x∞,r)

(1

2
|du|2 + fu

)

dν∞

within the space H∞ + h+H1
0

(

B∞(x∞, r)
)

.

The following theorem was originally proved by Y. Ding. We present
a detailed proof here for completeness, which is loosely based on that
in [Din02].

Theorem 3.1. Suppose ui, fi are C2 functions over Bi(xi, 2r) ⊂
(Mn

i , yi, ρi, νi), where Bi(xi, 2r) = {z ∈ Mn
i | dρi(z, xi) ≤ 2r}; ∆ρiui =

fi on Bi(xi, 2r) and r is some fixed positive constant. Also assume
ui → u∞, fi → f∞ uniformly over the sequence of converging balls
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Bi(xi, 2r) → B∞(x∞, 2r) ⊂ (M∞, y∞, ρ∞, ν∞), and there exists L > 0
such that for any i:

|∇ui(x)| ≤ L , |∇fi(x)| ≤ L for x ∈ Bi(xi, 2r)(3.1)

Then

∆∞u∞ = f∞ on B∞
(

x∞, r
)

.(3.2)

Proof: To prove the theorem, we need the following lemma:

Lemma 3.2. Let u∞, f∞ be as in Theorem 3.1, then we have

I(u∞, ν∞, x∞, r) ≤ lim inf
i→∞

I(ui, νi, xi, r)(3.3)

where

I(u∞, ν∞, x∞, r) =

∫

B∞(x∞,r)

(1

2
|du∞|2 + f∞u∞

)

dν∞

I(ui, νi, xi, r) =

∫

Bi(xi,r)

(1

2
|∇ui|2 + fiui

)

dνi.

The proof of the Lemma is deferred to the end of this section. We
assume that Lemma 3.2 holds, and prove the theorem by contradiction.
Assume ∆∞u∞ = f∞ is not true over B∞(x, s) ⊂⊂ B∞

(

x∞, r
)

.
By solving the Dirichlet problem on B∞(x, s) (see Theorem 7.8 and

Remark 7.11 in [Che99]), we can find ũ∞ with the same boundary value
as u∞ over ∂B∞(x, s) and

I(ũ∞, ν∞, x, s) < I(u∞, ν∞, x, s)− 2δ(3.4)

where δ > 0 is some constant.
By Lemma 3.2, assume that x(i) → x, then there exists i1 > 0, for

i > i1,

I(u∞, ν∞, x, s) ≤ I(ui, νi, x
(i), s) + δ.(3.5)

By Lemma 10.7 in [Che99], we can find a sequence of Lipschitz func-

tions ũi : Bi(x
(i), s) → R, such that ũi converges uniformly to ũ∞ and

lim
i→∞

∫

Bi(x(i),s)
|∇ũi|2dνi ≤

∫

B∞(x,s)
|dũ∞|2dν∞.

Hence there exists i2 > 0, for i > i2,

I(ũi, νi, x
(i), s) < I(ũ∞, ν∞, x, s) +

1

2
δ.(3.6)

By (3.4), (3.5) and (3.6), we get that for i > i0, where i0 = max{i1, i2},

I(ũi, νi, x
(i), s) < I(ui, νi, x

(i), s)− 1

2
δ.(3.7)

When i > i0, solve the following Dirichlet problem:
{

∆ûi = fi on Bi(x
(i), s)

ûi = ũi on ∂Bi(x
(i), s)
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then by Dirichlet principle and (3.7), we get that

I(ûi, νi, x
(i), s) ≤ I(ũi, νi, x

(i), s) < I(ui, νi, x
(i), s)− 1

2
δ.(3.8)

Note in fact we have
{

∆(ûi − ui) = 0 on Bi(x
(i), s)

(ûi − ui) = (ũi − ui) on ∂Bi(x
(i), s)

and

lim
i→∞

sup
∂Bi(x(i),s)

|ũi − ui| = sup
∂B∞(x,s)

|ũ∞ − u∞| = 0.

By maximum principle, we get

lim
i→∞

sup
z∈Bi(x(i),s)

|
(

ûi − ui
)

(z)| ≤ lim
i→∞

sup
z∈∂Bi(x(i),s)

|
(

ũi − ui
)

(z)| = 0.

(3.9)

From (3.8) and (3.9), there exists i3 > 0, such that for i > i3,

1

2

∫

Bi(x(i),s)
|∇ûi|2dνi <

1

2

∫

Bi(x(i),s)
|∇ui|2dνi −

1

4
δ.

By |∇ui| ≤ L in (3.1) and volume convergence of Bi(x
(i), s), there

exists i4 > 0 and s1 ∈ (0, s), such that for i > i4,
∫

Bi(x(i),s)\Bi(x(i),s1)
|∇ui|2dνi <

1

100
δ

hence for i > i4, we have
∫

Bi(x(i),s)
|∇ûi|2dνi <

∫

Bi(x(i),s1)
|∇ui|2dνi −

1

4
δ.(3.10)

On Bi(x
(i), s1) ⊂⊂ Bi(x

(i), s), from Cheng-Yau’s gradient estimate
(also see Lemma 4.4 later), we get

sup
Bi(x(i),s1)

|∇ûi −∇ui| ≤
C(n)

s− s1
sup

Bi(x(i),s)

|ûi − ui|.(3.11)

From (3.9), (3.11) and |∇ui| ≤ L, there exists i5 > 0, for i > i5,
∫

Bi(x(i),s1)
|∇ui|2dνi −

∫

Bi(x(i),s1)
|∇ûi|2 ≤

1

100
δ.(3.12)

From (3.10) and (3.12), we get
∫

Bi(x(i),s)\Bi(x(i),s1)
|∇ûi|2 < −1

8
δ.

That is contradiction, the theorem is proved. q.e.d.
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Proof of Lemma 3.2: Recall the Bochner formula:

1

2
∆
(

|∇ui|2
)

=
∣

∣

∣
∇2ui

∣

∣

∣

2
+ < ∇∆ui,∇ui > +Rc(∇ui,∇ui).(3.13)

Multiply by a cut-off function φ with supp(φ) ⊂ Bi(xi, 2r),

φ|Bi(xi,
3
2
r) = 1, |∆φ| ≤ C(n, r), |∇φ|2

φ
≤ C(n, r) (see Theorem 6.33

of [CC96]):

1

2
φ∆

(

|∇ui|2
)

= φ
∣

∣

∣
∇2ui

∣

∣

∣

2
+ φRc(∇ui,∇ui) + φ < ∇∆ui,∇ui > .

(3.14)

Integration by parts, using Rc ≥ 0, we get

1

2

∫

Bi(xi,2r)
|∇ui|2∆φdνi

≥
∫

Bi(xi,2r)

[

φ
∣

∣

∣
∇2ui

∣

∣

∣

2
− φ|∆ui|2 −∆ui

(

∇φ · ∇ui

)]

dνi

≥
∫

Bi(xi,2r)

[

φ
∣

∣

∣
∇2ui

∣

∣

∣

2
− 3

2
φ|∆ui|2 −

|∇φ|2
2φ

∣

∣∇ui
∣

∣

2
]

dνi

≥
∫

Bi(xi,2r)

[

φ
∣

∣

∣
∇2ui

∣

∣

∣

2
− C(n, r)|∇ui|2 −

3

2
φ|fi|2

]

dνi.

Hence when i is big enough,
∫

Bi(xi,2r)
φ
∣

∣

∣
∇2ui

∣

∣

∣

2
dνi ≤ C(n, r)

∫

Bi(xi,2r)
|∇ui|2

(

|∆φ|+ 1
)

dνi

+
3

2

∫

B∞(x∞,2r)
|f∞|2dν∞ + 1

≤ C(n, r)L ·
[

ν∞
(

B∞(x∞, 2r)
)

+ 1
]

+
3

2

∫

B∞(x∞,2r)
|f∞|2dν∞ + 1.

We get a uniform upper bound of
∫

Bi(xi,
3
2
r)

∣

∣

∣
∇2ui

∣

∣

∣

2
dνi.

By Theorem A.5 in the Appendix, we can get that some subsequence

of |∇ui| converges to a function Γ on B∞(x∞, r) in L2
(

B∞(x∞, r), ν∞
)

,

from (3.1) we also know that Γ ∈ L∞
(

B∞(x∞, r), ν∞
)

. By Lusin’s theo-

rem for general topological spaces with measure and Γ ∈
L2

(

B∞(x∞, r), µ∞
)

, for any ǫ > 0, there exists Kǫ ⊂⊂ B∞
(

x∞, r
)

and ν∞
(

B∞(x∞, r)\Kǫ

)

< ǫ, Γ is continuous on Kǫ, note Kǫ is ν∞-

measurable.
Note ν∞ satisfies the doubling condition, which implies the Vitali

Covering Theorem
(

see Chapter 2 of [Mat95]
)

, hence the Lebesgue



LARGE TIME BEHAVIOR OF THE HEAT KERNEL 483

Differentiation Theorem holds for measure ν∞. Then

lim
s→0

ν∞
(

B∞(x, s) ∩Kǫ

)

ν∞
(

B∞(x, s)
) = 1 ν∞ a.e. x ∈ Kǫ.(3.15)

For x ∈ Kǫ satisfying (3.15), we will show
∣

∣

∣
du∞(x)

∣

∣

∣
≤ Γ(x).(3.16)

Finally for x ∈ ∞∪
i=1

K2−i , (3.16) is valid. Hence for ν∞ a.e. x ∈
B∞(x∞, r), (3.16) is valid, which implies (3.3) holds.

To prove (3.16), it is enough to prove that for any δ > 0, there exists
1 > ǫ(δ) > 0, when dρ∞(y, x) < ǫ(δ), the following holds:

∣

∣

∣
u∞(x)− u∞(y)

∣

∣

∣
≤ dρ∞(y, x)

(

Γ(x) + 7δ
)

.(3.17)

By contradiction. Then there is 1 > δ0 > 0, {yi}∞i=1, yi ∈ B∞(x∞, r),
such that dρ∞(yi, x) = ℓi → 0, and

∣

∣

∣
u∞(x)− u∞(yi)

∣

∣

∣
> dρ∞(yi, x)

[

Γ(x) + 7δ0

]

.(3.18)

Then for z ∈ B∞
(

x, ℓiδ0
L

)

, y ∈ B∞
(

yi,
ℓiδ0
L

)

, we have

∣

∣

∣
u∞(z)− u∞(y)

∣

∣

∣

≥
∣

∣

∣
u∞(x)− u∞(yi)

∣

∣

∣
−

∣

∣

∣
u∞(z)− u∞(x)

∣

∣

∣
−

∣

∣

∣
u∞(yi)− u∞(y)

∣

∣

∣

> ℓi

[

Γ(x) + 7δ0

]

− L · dρ∞(yi, y)− L · dρ∞(z, x)

≥ ℓi

[

Γ(x) + 5δ0

]

.(3.19)

Pick x̃j, yj,i ∈ Mn
j , x̃j → x, yj,i → yi, and d(x̃j , yj,i) = d(x, yi).

When j is big enough, for all zj ∈ Bj

(

x̃j ,
ℓiδ0
L

)

, ỹj ∈ Bj

(

yj,i,
ℓiδ0
L

)

and

all minimal geodesic γj connecting zj , ỹj, by (3.19), we have

∫

γj

|∇uj |dρj ≥ ℓi

[

Γ(x) + 4δ0

]

.(3.20)

Since |∇uj | ≤ L, a simple computation shows along every γj,

|∇uj | > Γ(x) + 2δ0(3.21)

on a subset of γj , which has 1-dim Hausdorff measure at least 2δ0ℓi
L

.
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By Rc ≥ 0 and Theorem 2.11 in [CC96], we get that the global

segment inequality holds on
(

Mn
j , ρj , y, νj

)

:

∫

A1×A2

(

∫ dρj (p,q)

0
e
(

γp,q(s)
)

ds
)

dpdq

≤ C(n)D
[

νj(A1) + νj(A2)
]

·
(

∫

W

edνj

)

(3.22)

where e is any nonnegative integrable function on W ⊂ Mn
j , and γp,q is

a minimal geodesic from p to q,

D + max
p∈A1,q∈A2

dρj (p, q) , A1, A2 ⊂ Mn
j , ∪

p,q
γp,q ⊂ W.

Choose A1 = Bj

(

x̃j ,
ℓiδ0
L

)

, A2 = Bj

(

yj,i,
ℓiδ0
L

)

and e = χEi
j
in (3.22),

where

Ei
j +

{

z| z ∈ Bj

(

x̃j, ℓi
(

1 +
δ0

L

)

)

, |∇uj(z)| > Γ(x) + 2δ0

}

then we get

νj(E
i
j) · C(n)

[

1 +
δ0

L

]

ℓi

[

νj

(

Bj(x̃j ,
ℓiδ0

L
)
)

+ νj

(

Bj(yj,i,
ℓiδ0

L
)
)]

≥ 2δ0ℓi
L

· νj
(

Bj(x̃j,
ℓiδ0

L
)
)

· νj
(

Bj(yj,i,
ℓiδ0

L
)
)

.

Using the Bishop-Gromov volume comparison theorem, we get that for
any i, if j big enough,

νj(E
i
j)

νj

(

Bj

(

x̃j, ℓi(1 +
δ0
L
)
)

) ≥ C(δ0, L,Γ(x), n).(3.23)

From (3.23), we obtain that there exists

Ci ⊂ Bi + B∞
(

x, ℓi
(

1 +
δ0

L

)

)

such that ν∞(Ci) ≥ δ1ν∞(Bi), where δ1 =
1
2C(δ0, L,Γ(x), n), and

F i
j ⊂ Ei

j , F i
j

dGH−→ Ci as j → ∞.

For fixed i, we further assume ϕj : F
i
j → Ci is a measure approxima-

tion and an ǫj-Gromov-Hausdorff approximation for some ǫj → 0.

Let τ1 =
δ1
10ν∞(Bi), τ2 =

δ1δ
2
0

40 ν∞(Bi).

Let hj = |∇uj |, note that hj converges to Γ in L2 on B∞(x∞, r). By

Definition A.4, on Ci ⊂ B∞(x∞, r) there exists h
(k)
∞ : Ci → R, such that

lim
k→∞

∫

Ci

|h(k)∞ − Γ|2dν∞ = 0(3.24)
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and

lim
k→∞

lim
j→∞

∫

F i
j

|hj − h(k)∞ ◦ ϕj |2dνj = 0.(3.25)

For τ1, from (3.24) and Egoroff’s Theorem, there exists A ⊂ Ci, such

that ν∞(A) < τ1, and on Ci −A, h
(k)
∞ → Γ uniformly.

Note there exists C0 > 0, such that νj(Bj

(

x̃j , ℓi(1 + δ0
L
)
)

) ≤ C0 for
any i, j. And there exists k1 > 0, if k > k1,

|h(k)∞ − Γ| ≤
√

τ2

C0
on Ci −A.(3.26)

For τ2 > 0, from (3.25), there exists k2 > k1 > 0, if k ≥ k2,

lim
j→∞

∫

F i
j

|hj − h(k)∞ ◦ ϕj |2dνj ≤
τ2

2

hence, there exists j1 > 0, if j > j1, then
∫

F i
j

|hj − h(k2)∞ ◦ ϕj |2dνj < τ2.(3.27)

Let Qi
j = F i

j − ϕ−1
j (A), then when j > j1,

∫

Qi
j

|hj − Γ ◦ ϕj |2dνj

≤ 2
[

∫

Qi
j

|h(k2)∞ ◦ ϕj − Γ ◦ ϕj |2 +
∫

Qi
j

|hj − h(k2)∞ ◦ ϕj |2
]

≤ 4τ2(3.28)

the last inequality above follows from (3.26) and (3.27).
Define

W∞ = {z| Γ(z) ≤ Γ(x) + δ0 , z ∈ Ci −A}
and

Wj = ϕ−1
j (W∞) ⊂ F i

j − ϕ−1
j (A) = Qi

j

hence on Wj , hj(z) > Γ(x) + 2δ0, and
(

Γ ◦ ϕj

)

(z) ≤ Γ(x) + δ0, we get
∫

Wj

|hj − Γ ◦ ϕj |2 ≥
∫

Wj

δ20 = δ20νj(Wj).(3.29)

From (3.28) and (3.29),

νj(Wj) ≤
4τ2
δ20

=
δ1

10
ν∞(Bi).

Hence

ν∞(W∞) = lim
j→∞

νj(Wj) ≤
δ1

10
ν∞(Bi).
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Define Ai = {z ∈ Bi| Γ(z) > Γ(x)+ δ0}, note that on Ci−A−W∞ ⊂
Bi, Γ(z) > Γ(x) + δ0, hence

ν∞(Ai) ≥ ν∞(Ci)− ν∞(A)− ν∞(W∞) ≥ 4

5
δ1ν∞(Bi).(3.30)

Note δ1 =
1
2C(δ0, L,Γ(x), n), we get

ν∞(Ai)

ν∞
(

Bi

) ≥ C(δ0, L,Γ(x), n) > 0(3.31)

where C(δ0, L,Γ(x), n) in different lines may be different.
Now we have

0 < C(δ0, L,Γ(x), n) ≤
ν∞(Ai)

ν∞
(

Bi

) =
ν∞(Ai ∩Kǫ) + ν∞(Ai\Kǫ)

ν∞(Bi)

≤ ν∞(Bi\Kǫ)

ν∞(Bi)
+

ν∞(Ai ∩Kǫ)

ν∞(Bi)
= (I)i + (II)i.(3.32)

From (3.15) and the choice of x, we get limi→∞(I)i = 0. Because Γ is
continuous on Kǫ, it is easy to see that (II)i = 0 when i is big enough.
We take i → ∞ in (3.32), it is contradiction. Hence (3.17) holds for any
δ > 0, (3.16) holds ν∞ a.e. B∞(x∞, r). We are done. q.e.d.

4. The convergence of eigenfunctions in the
Gromov-Hausdorff sense

In this section, we will show that the eigenvalues, eigenfunctions
on the convergent sequence of manifolds converge (subsequentially) to
eigenvalues, eigenfunctions on limit space under Gromov-Hausdorff con-
vergence. The main tools are eigenvalue and eigenfunction estimates
obtained by P. Li, S-Y. Cheng, S-T. Yau and Harnack’s convergence
theorem in the Gromov-Hausdorff sense (Theorem 3.1).

Write λ
(R)
j,i for the j-th Dirichlet eigenvalue over Bi(R) ⊂ (Mi, y, ρi, νi),

and φ
(R)
j,i is the corresponding eigenfunction satisfying the following:

(4.1)

{

∆ρiφ
(R)
j,i = −λ

(R)
j,i φ

(R)
j,i on Bi(R)

φ
(R)
j,i (x) = 0 on ∂Bi(R)

and
∫

Bi(R) φ
(R)
j,i · φ(R)

k,i dνi = δjk, where ∆ρi is the Laplace operator with

respect to the metric ρi.
From Theorem 3.1 in [SC92a], for any f ∈ H1

0 (Bi(R)), we get
[

∫

Bi(R)
|f |

2n
n−2 dµi

]
n−2
n

≤ C(n)
R2

µi

(

Bi(R)
)

2
n

·
[

∫

Bi(R)

(

|∇f |2 +R−2f2
)

dµi

]

.(4.2)
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Using Corollary 1.1 in [LS84],

R−2

∫

Bi(R)
f2dµi ≤ C(n)

∫

Bi(R)
|∇f |2dµi.(4.3)

By (4.2) and (4.3), we have
∫

Bi(R)
|∇f |2dµi ≥ C(n)µi

(

Bi(R)
)

2
n
R−2 ·

[

∫

Bi(R)
|f |

2n
n−2dµi

]
n−2
n

= CS D

[

∫

Bi(R)
|f |

2n
n−2 dµi

]
n−2
n

(4.4)

where

CS D + C(n)µi

(

Bi(R)
)

2
n
R−2.(4.5)

Lemma 4.1. There exists a constant C(n) such that

C(n)−1 ·R−2 · j 1
n ≤ λ

(R)
j,i ≤ C(n) ·R−2 · j2.(4.6)

Proof: Define C1(n) +
∑∞

ℓ=0
1

2βℓ−1
, where β = n

n−2 . Then we have
n
4 ≤ C1(n) ≤ n

2 . By the argument of (10.9) in [Li12] (also see [Li80]),

we get the lower bound of λ
(R)
j,i as the following:

λ
(R)
j,i ≥ C(n)j

1
2C1(n)CS D · µi

(

Bi(R)
)− 2

n(4.7)

combining with the definition of CS D in (4.5), we have

λ
(R)
j,i ≥ C(n)j

1
2C1(n)R−2 ≥ C(n) · R−2 · j 1

n .(4.8)

By the similar argument of Theorem 2 on page 105 of [SY94] (also see

[Che75]), we get the upper bound of λ
(R)
j,i . q.e.d.

The following lemma is standard, for completeness, we provide the
proof following the argument of Theorem 10.1 in [Li12].

Lemma 4.2. If R > 2, we have

‖φ(R)
j,i ‖L∞(νi) ≤ C(n,R)j

n
2(4.9)

where ‖ · ‖Lk(νi) denotes the Lk norm with respect to the measure νi.

Proof: We observe that for a C∞ function u, from Lemma 7.6 and
Lemma 7.7 in [GT01], |∇u|2 = |∇|u||2 for µi a.e. x. The identities

∆(u2) = 2u∆u+ 2|∇u|2

and

∆(|u|2) = 2|u|∆|u| + 2|∇|u||2

imply u∆u = |u|∆|u| a.e. Hence we have

|φ(R)
j,i |∆ρi |φ

(R)
j,i | = φ

(R)
j,i ∆ρiφ

(R)
j,i = −λ

(R)
j,i |φ

(R)
j,i |2.(4.10)
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For any constant k ≥ 2, by (4.10), (4.4) and integration by parts,
∫

Bi(R)

∣

∣

∣
φ
(R)
j,i

∣

∣

∣

k

dµi = − 1

λ
(R)
j,i

∫

Bi(R)

∣

∣

∣
φ
(R)
j,i

∣

∣

∣

k−1
·∆ρi

∣

∣

∣
φ
(R)
j,i

∣

∣

∣
dµi

=
4(k − 1)

λ
(R)
j,i · k2

∫

Bi(R)

∣

∣

∣
∇
(

|φ(R)
j,i |

k
2
)

∣

∣

∣

2
dµi

≥ 2CS D

kλ
(R)
j,i

(

∫

Bi(R)

∣

∣

∣
φ
(R)
j,i

∣

∣

∣

kn
n−2

dµi

)
n−2
n

.

Denote β = n
n−2 , then for all k ≥ 2,

‖φ(R)
j,i ‖Lk(µi) ≥

(2CS D

kλ
(R)
j,i

)
1
k ‖φ(R)

j,i ‖Lkβ(µi).

Setting k = 2βs for s = 0, 1, 2, . . . , we have

‖φ(R)
j,i ‖L2βs+1 (µi)

≤
(βjλ

(R)
j,i

CS D

)
1

2βs · ‖φ(R)
j,i ‖L2βs(µi)

.

Iterating this estimate and using

‖φ(R)
j,i ‖L2(µi) = t

−n
4

i V (
√
ti)

1
2 ‖φ(R)

j,i ‖L2(νi) = t
−n

4
i V (

√
ti)

1
2

we conclude that

‖φ(R)
j,i ‖L2βs+1 (µi)

≤
[

s
∏

l=0

(βlλ
(R)
j,i

CS D

)
1

2βl
]

· t−
n
4

i V (
√
ti)

1
2 .

Let s → ∞ and applying the fact that

‖φ(R)
j,i ‖L∞(νi) = ‖φ(R)

j,i ‖L∞(µi) = lim
p→∞

‖φ(R)
j,i ‖Lp(µi).

We obtain

‖φ(R)
j,i ‖L∞(νi) ≤

(

CS D

)−n
4 ·

(

λ
(R)
j,i

)
n
4 · C(n)t

−n
4

i V (
√
ti)

1
2

= C(n)
[V (

√
ti)R

n

V (
√
tiR)

]
1
2 ·

(

λ
(R)
j,i

)
n
4

≤ C(n)R
n
2

(

λ
(R)
j,i

)
n
4
.(4.11)

Combining with Lemma 4.1, we get

‖φ(R)
j,i ‖L∞(νi) ≤ C(n,R)j

n
2 .

q.e.d.

Note that the volume element νi of (Mi, y, ρi, νi) is not determined
by the metric ρi, the heat kernel of (Mi, y, ρi, νi) is

Hi(x, y, s) = t
n
2
i µi

(

Bi(1)
)

·H(x, y, tis) = V (
√
ti) ·H(x, y, tis)(4.12)
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where H(x, y, s) is the heat kernel of (Mn, y, g, µ), µ is the volume
element determined by g, V (

√
ti) +

∫

B(ti)
1dµ, and B(ti) + {z ∈

Mn| dg(z, y) ≤ ti}. Note Hi(x, y, s) is different from the heat kernel

H̃i(x, y, s) of (Mi, y, ρi, µi), which is t
n
2
i H(x, y, tis).

Hence we have

lim
i→∞

V (
√
ti)H(x, y, ti) = lim

i→∞
Hi(x, y, 1)(4.13)

and by (1.1),

Hi(x, y, t) = V (
√
ti)H(x, y, tit) ≤ C(n)V (

√
ti)V (

√
tit)

−1e
− d2g(x,y)

5tit .

(4.14)

Let us denote by HR(x, y, t) the Dirichlet heat kernel on the metric
ball

B(R) = {z ∈ Mn| dg(z, y) ≤ R} ⊂ (Mn, g, µ)

where R > 0 is a constant, and put HR = 0 outside of B(R). Simi-
larly, we denote by HR,i(x, y, t) the Dirichlet heat kernel on Bi(R) ⊂
(Mi, y, ρi, νi).

From Lemma 4.1 and Lemma 4.2, using similar argument in the proof
of Theorem 10.1 in [Li12], it is easy to get the following eigenfunction
expansion of HR,i(x, y, t):

HR,i(x, y, t) =
∞
∑

j=1

e−λ
(R)
j,i tφ

(R)
j,i (x)φ

(R)
j,i (y).(4.15)

Lemma 4.3. For any N > 0, there exists a function ǫ(N,R, δ) such
that for any fixed R > 2, lim

δ→0
ǫ(N,R, δ) = 0. And for j satisfying

λ
(R)
j,i < N , we have

∫

Ai(R−δ,R)

∣

∣

∣
φ
(R)
j,i

∣

∣

∣

2
dνi ≤ ǫ(n,N,R, δ) for 0 < δ ≤ 1(4.16)

where Ai(R− δ,R) + {z ∈ Mi| R− δ ≤ dρi(z, y) ≤ R}.
Proof: Using (4.15) and (4.14), we get

∫

Ai(R−δ,R)

∣

∣

∣
φ
(R)
j,i (x)

∣

∣

∣

2
dνi(x) ≤

∫

Ai

eλ
(R)
j,i HR,i(x, x, 1)dνi(x)

≤ eλ
(R)
j,i

∫

Ai

Hi(x, x, 1)dνi(x)

≤ C(n)eN
∫

Ai

e
− 1

5ti dνi(x)

≤ C(n,N)
µ(Ai)

V (
√
ti)

≤C(n,N)
[

Rn − (R− δ)n
]
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in the last inequality above, we used the Bishop-Gromov inequality. Our
conclusion is proved. q.e.d.

The following lemma follows from a standard argument of Cheng-Yau
in [CY75], which is needed in the proof of Proposition 4.5.

Lemma 4.4. Assume that (Mn, g) is a complete manifold with Rc ≥
0, if ∆u = −λu on Bp(2r) ⊂ Mn and λ ≥ 0, then we have

|∇u|(x) ≤ C(n)[r−1 + λ] · sup
x∈Bp(2r)

|u(x)| , x ∈ Bp(r)

where Bp(r) = {z ∈ Mn| dg(z, p) ≤ r}.
Proof: Let M = sup

x∈Bp(2r)
|u(x)|, f(x) = u(x) + M , without loss of

generality, assume M > 0. It is easy to get ∆f = −λf + λM on
Bp(2r), and f ≥ 0.

Apply Theorem 6 in [CY75] to f(x), we get

|∇f(x)| ≤ C(n)[r−1 + λ] · [f(x) + M ] , x ∈ Bp(r).(4.17)

By the definition of f(x) and M , our conclusion follows from (4.17).
q.e.d.

Proposition 4.5. For fixed j, k > 0, assume (for a subsequence of

the eigenvalues) λ
(R)
j,i → λ

(R)
j,∞, λ

(R)
k,i → λ

(R)
k,∞ as i → ∞. Then there is

a subsequence (denoted also by φ
(R)
j,i , φ

(R)
k,i ) that converges uniformly on

compact subsets of B̊∞(R), and also in L2
(

B∞(R)
)

, to two compactly

supported Lipschitz functions φ
(R)
j,∞, φ

(R)
k,∞ on B∞(R), where B∞(R) =

{z ∈ M∞| dρ∞(z, y) ≤ R}, B̊∞(R) denotes the interior of B∞(R).
Moreover,

∆∞φ
(R)
j,∞ = −λ

(R)
j,∞φ

(R)
j,∞ , ∆∞φ

(R)
k,∞ = −λ

(R)
k,∞φ

(R)
k,∞ ,(4.18)

∫

B∞(R)
φ
(R)
j,∞φ

(R)
k,∞dν = δj,k.(4.19)

Proof: Locally uniform convergence follows from Lemma 4.2 and 4.4.
The L2 convergence and (4.19) are implied by locally uniform conver-
gence and Lemma 4.3. Finally, (4.18) follows from Theorem 3.1 and
Lemma 4.4. q.e.d.

5. Solutions of the heat equations on metric measure spaces

In this section, on metric measure spaces, we will show the existence
of the solution of the heat equations and the parabolic mean value in-
equality. For smooth manifolds, all these results are well-known. On
metric measure spaces, our setup is closely related with the discussion
in [Stu95].
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Assume U ⊂ M∞, and U is open. We will be concerned with the
following Banach spaces.

• L2
(

(0, T );H1
0 (U)

)

is the Hilbert space consisting of functions u(x,

t), measurable on (0, T ) with range in H1
0 (U) (for the Lebesgue

measure dt on (0, T )), for any t ∈ (0, T ), u(·, t) ∈ H1
0 (U) and the

norm of the space is
(

∫ T

0

∣

∣u(·, t)
∣

∣

2

H1
0 (U)

dt
)

1
2
.

• H1
(

(0, T );H1
0 (U)∗

)

is the Sobolev space of functions u, where

H1
0 (U)∗ is the dual space of H1

0 (U), and u ∈ L2
(

(0, T );H1
0 (U)∗

)

,

and it has distributional time derivative ∂
∂t
u ∈ L2

(

(0, T );H1
0 (U)∗

)

equipped with the norm

(

∫ T

0

∣

∣u(·, t)
∣

∣

2

H1
0 (U)∗

+
∣

∣

∂

∂t
u(·, t)

∣

∣

2

H1
0 (U)∗

dt
)

1
2
.

• F
(

(0, T ) × U
)

+ L2
(

(0, T );H1
0 (U)

)

∩ H1
(

(0, T );H1
0 (U)∗

)

. We
mention the following important result from [RR93]:

F
(

(0, T ) × U
)

⊂ C
(

[0, T ], L2(U)
)

.

• Similarly, G
(

(0, T )×U
)

+ L2
(

(0, T );H1(U)
)

∩H1
(

(0, T );H1(U)∗
)

.

Definition 5.1. A function u is called a Dirichlet solution of the
heat equation on (0, T ) × U :

∂

∂t
u = ∆∞u on (0, T ) × U(5.1)

iff u ∈ F
(

(0, T ) × U
)

, and for all φ ∈ F
(

(0, T )× U
)

:
∫ T

0

∫

U

< du, dφ > dν∞dt+

∫ T

0

∫

U

∂u

∂t
· φdν∞dt = 0.(5.2)

Remark 5.2. For u ∈ G
(

(0, T ) × U
)

, we say that
( ∂

∂t
−∆∞

)

u = (≤)0 on (0, T )× U

if for almost all t ∈ (0, T ) except a subset of (0, T ) with Lebesgue
measure 0,

∫

U

< du, dφ > dν∞ +

∫

U

∂u

∂t
· φdν∞ = (≤)0

holds for all non-negative φ ∈ H1
0 (U). Such u is also called a solution

(subsolution) of the heat equation on (0, T )× U .

Definition 5.3. Given a function f ∈ L2(U), the function u is called
a Dirichlet solution of the initial value problem on [0, T )× U :

(5.3)

{

∂
∂t
u = ∆∞u on (0, T )× U

u(·, 0) = f(·) on U
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iff u is a Dirichlet solution of (5.1) and limt→0

∫

U
|u(x, t)− f(x)|2dν∞ =

0.

Proposition 5.4. For every f ∈ L2(U), there exists a unique Dirich-
let solution u ∈ F

(

(0, T ) × U
)

of the initial value problem (5.3).

Proof: It follows from Theorem 4.1 and Remark 4.3 in Chapter 3 of
[LM72]. q.e.d.

For the solutions of heat equations on M∞, we have the following
mean value inequalities.

Theorem 5.5. If ∂u
∂t

−∆∞u = 0 in Q1, then for any 0 < δ < 1, we
have

sup
z∈Qδ

u2(z) ≤ C(n)

(1− δ)n+2r2ν∞(B)

∫

Q1

u2dν∞dt(5.4)

sup
z∈Qδ

u(z) ≤ C(n)

(1− δ)n+2r2ν∞(B)

∫

Q1

udν∞dt(5.5)

where B = B∞(x, r), s > r2 > 0, τ > 0 is a fixed positive constant, and

Q1 + (s− r2, s)×B∞(x, r) , Qδ + (s− δr2, s)×B∞(x, δr).

Remark 5.6. The parabolic mean value inequality on smooth man-
ifold were firstly proved in [LT91], however the proof there used the
upper bound of heat kernel, which is the target we want to prove. The
conclusion on metric measure spaces was essentially obtained in [SC02],
although the context there are smooth manifolds. The following argu-
ment is just slight modification of the original argument there, hence it
is sketchy. For the complete details, we refer the reader to that book.

Proof: Firstly, from the argument of Lemma 5.3.2, Lemma 5.2.5 in
[SC02] and Proposition 2.7, we can get the following Dirichlet Poincaré
Inequality:

There exists positive constant C(n) > 0, such that for any B =
B∞(x, r) ⊂ M∞,

|f |L2 ≤ C(n)r|gf |L2 , f ∈ H1
0 (B).(5.6)

Secondly, from the argument of Theorem 5.3.3 in [SC02], Proposition
2.7 and (5.6), we can obtain Local Sobolev Inequality as the following:

There exists C(n) > 0, such that for any B = B∞(x, r) ⊂ M∞, we
have

(

∫

B

|f |
2n
n−2 dν∞

)
n−2
n ≤ C(n)

r2

ν∞(B)
2
n

(

∫

B

|gf |2dν∞
)

, f ∈ H1
0 (B).

(5.7)

Next, employing (5.7), we can use almost exactly the same argument
of Theorem 5.2.9 in [SC02] to get the following two inequalities:
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If ∂u
∂t

−∆∞u ≤ 0 in Q1 and u ≥ 0, then for any 0 < δ < 1, (5.4) and
(5.5) hold.

Finally, for any ǫ > 0, it is easy to show that v +
√
u2 + ǫ is the

solution of the heat equation, which was defined in Remark 5.2, and
v ≥ 0. By the above argument,

sup
z∈Qδ

(u2 + ǫ)(z) ≤ C(n)

(1− δ)n+2r2ν∞(B)

∫

Q1

(u2 + ǫ)dν∞dt.(5.8)

Let ǫ → 0 in (5.8), we get (5.4).
Similar argument yields (5.5). q.e.d.

6. The existence and Gaussian upper bound of heat kernel
on limit spaces

In this section we will prove the existence of heat kernel on limit
spaces under Gromov-Hausdorff convergence, and establish Gaussian
upper bound of heat kernel.

To prove the existence of heat kernel on limit spaces, we are inspired
by the method of K.-T. Sturm in [Stu95]. Firstly, from Proposition 5.4,
there exists a uniquely determined operator:

T : L2
(

M∞
)

→ F
(

(0, T )×M∞
)

(6.1)

with the property that for every f ∈ L2(M∞), the unique Dirichlet
solution of (5.3) (U = M∞ there) is given by u(x, t) = [Tf ](x, t).

We also define
[

Ttf
]

(x) = [Tf ](x, t) for every t ∈ (0, T ), then

Tt : L2
(

M∞
)

→ L2
(

M∞
)

.(6.2)

Lemma 6.1. There exists C(n) > 0 such that for any t ∈ (0, 8R2),

sup
x∈B∞(R)

∣

∣

(

Ttf
)

(x)
∣

∣

≤ C(n)
( R√

t

)n+2
ν∞

(

B∞(R)
)− 1

2 |f |L2(M∞) , ∀f ∈ L2
(

M∞
)

where R > 0 is any positive constant.

Proof: We will apply Theorem 5.5 on Ttf for given t ∈ (0, 4R2). Let
r = 2R, δ = 1 − t

10R2 , s = (2R)2 + 1
2t, τ = 1 in (5.4), note that

t ∈ (s− δr2, s), then we get

sup
x∈B∞(R)

|(Ttf)(x)| ≤ sup
Qδ

|(Ttf)(x)|

≤ C(n)
( 1

1− δ

)
n+2
2
( 1

(2R)2ν∞
(

B∞(2R)
)

∫

Q1

|Ttf |2
)

1
2

≤ C(n)
( R√

t

)n+2
ν∞

(

B∞(R)
)− 1

2 |f |L2(M∞)
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in the last inequality, we used that
∫

M∞

|Ttf |2dν∞ ≤
∫

M∞

|f |2dν∞ , ∀t > 0

which follows from (5.2). q.e.d.

We also have the following parabolic maximum principle on M∞ (for
the proof, see Proposition 4.11 in [GH08]).

Lemma 6.2 ([GH08]). Assume h is a solution of the heat equation
on (0, T + 1)×B∞(z,R), and

lim
t→0

∫

B∞(z,R)
h2(x, t)dν∞(x) = 0 , h|∂B∞(z,R)×(0,T ] ≤ 0(6.3)

for any f(x) ∈ L2
(

B∞(z,R)
)

. Then h ≤ 0 on (0, T ] ×B∞(z,R).

The following result is one modification of classical result in functional
analysis, which was due to J-X Hu and Grigor’yan (see Lemma 3.3 in
[GH]).

Lemma 6.3 ([GH]). Let K : L2(Y ) → L∞(X) be a bounded linear
operator, with the norm bounded by C, that is, for any f ∈ L2(Y ),

sup
X

|Kf | ≤ C|f |2.(6.4)

There exists a mapping k : X → L2(Y ) such that, for all f ∈ L2(Y ),
and almost all x ∈ X,

Kf(x) = (k(x), f).(6.5)

Moreover, for all x ∈ X, ||k(x)||L2(Y ) ≤ C. Furthermore, there is a
function k(x, y) that is jointly measurable in (x, y) ∈ M ×M , such that,
for almost all x ∈ X, k(x, ·) = k(x) almost everywhere on Y .

Now we can prove the existence of the heat kernel with respect to the
Dirichlet boundary condition on M∞.

Theorem 6.4. There exists a nonnegative measurable function

p∞ : M∞ ×M∞ ×R
+ → [0,∞]

with the following properties:

1) On [0,∞) ×M∞, the function

u(x, t) =

∫

M∞

p∞(x, z, t)f(z)dν∞(z)

is a solution of (5.3), where f ∈ L2
(

M∞
)

.
2) For any fixed w ∈ M∞, any T > 0,

p∞(x,w, t) ∈ L2
(

(0, T );H1
0 (M∞)

)

∩H1
(

(0, T );H1
0 (M∞)∗

)

is a Dirichlet solution of the heat equation (defined as in Definition
5.1).
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Remark 6.5. Such p∞ is called the heat kernel of (M∞, ρ∞, ν∞).

Proof: By Lemma 6.1 and Lemma 6.3, there exists p∞(x, z, t), which
is jointly measurable in (x, z) ∈ M∞ ×M∞, such that

Tt(f)(x) =

∫

M∞

p∞(x, z, t)f(z)dν∞(z).

From Lemma 6.2, we get that if f ≥ 0, Tt(f) ≥ 0. It follows from
Lemma 3.2 in [GH], p∞(x, z, t) ≥ 0. Then p∞ ≥ 0 and the conclusion
in (1) above are proved.

For any f ∈ L2
(

B∞(R)
)

, from the uniqueness of solution in Proposi-
tion 5.4 and the definition of T , Tt, we get
[

Tt+sf
]

(z) =
[

Tf
]

(z, t+ s) = T
[

(Tf)(·, s)
]

(z, t)

= Tt

[

(Tf)(·, s)
]

(z) =

∫

M∞

p∞(z, x, t) ·
[

Tf
]

(x, s)dν∞(x)

=

∫

M∞

p∞(z, x, t)
(

∫

M∞

p∞(x,w, s)f(w)dν∞(w)
)

dν∞(x)

=

∫

M∞

(

∫

M∞

p∞(z, x, t)p∞(x,w, s)dν∞(x)
)

· f(w)dν∞(w).

Hence we have

p∞(z, w, t + s) =

∫

M∞

p∞(z, x, t)p∞(x,w, s)dν∞(w)

=
[

Tt

(

p∞(·, w, s)
)

]

(z) =
[

T
(

p∞(·, w, s)
)

]

(z, t).

By the definition of T , and t+ s can be chosen as any positive number,
we get that p∞(z, w, t) is a Dirichlet solution of the heat equation on
(0,∞) ×M∞. q.e.d.

And we have the following theorem about the upper bound of p∞(x, y,
t). We will follow the method developed by E. B. Davies on smooth
manifolds (see [Dav89], also [SC02]), our proof is just slight modification
of the proof given in [SC02], and it is presented here for completeness
and reader’s convenience.

Theorem 6.6. Assume that p∞(x, y, t) is the heat kernel of
(

M∞, y,

ρ∞, ν∞
)

, then

p∞(x, y, t) ≤ C(n)ν∞
(

B∞(y,
√
t)
)−1

e−
1
5t
ρ2∞(x,y)(6.6)

where C(n) is the positive constant depending only on n.

We firstly need to prove a lemma.
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Lemma 6.7. For any function φ ∈ H1
0 (M∞) with |gφ| ≤ 1 and any

α ∈ R, we define the operator H
α,φ
t as the following:

H
α,φ
t f(x) + e−αφ(x)

∫

M∞

p∞(x, y, t)eαφ(y)f(y)dν∞(y) , f ∈ L2(M∞).

(6.7)

Then as an operator from L2(M∞) to L2(M∞), Hα,φ
t satisfies ||Hα,φ

t || ≤
eα

2t.

Proof: For any f ∈ L2(M∞), set u(t) = |Hα,φ
t f |2

L2 , then

u′(t) = 2

∫

M∞

∂

∂t

(

H
α,φ
t f

)

·Hα,φ
t f

=

∫

M∞

e−αφ(x)∆
(

eαφ(x)H
α,φ
t f(x)

)

H
α,φ
t f(x)dν∞(x)

= −2

∫

M∞

< d
(

eαφ(x)H
α,φ
t f(x)

)

, d
(

e−αφ(x)H
α,φ
t f(x)

)

>

= 2
[

α2

∫

M∞

|dφ|2|Hα,φ
t f |2 −

∫

M∞

|Hα,φ
t f |2

]

≤ 2α2u(t).

Hence u(t) ≤ e2α
2tu(0), note u(0) =

∣

∣

∣
f
∣

∣

∣

2

L2
, we get

∣

∣

∣
H

α,φ
t f

∣

∣

∣

2

L2
≤ e2α

2t
∣

∣

∣
f
∣

∣

∣

2

L2
.

The conclusion follows from the above inequality. q.e.d.

Proof of Theorem 6.6: Fix x, y ∈ M∞, and r1, r2 > 0. Let χ1 (respec-
tively χ2) be the function equal to 1 on B1 = B∞(x, r1) (respectively
B2 = B∞(y, r2)) and equal to 0 otherwise. Then

∫

B1

∫

B2

p∞(ξ, ζ, t)e−α(φ(ξ)−φ(ζ))dζdξ =

∫

M∞

χ1(ξ)
(

H
α,φ
t χ2

)

(ξ)dξ

≤ ||Hα,φ
t || · ||χ1||L2 · ||χ2||L2 ≤ eα

2tν∞(B1)
1
2 ν∞(B2)

1
2 .

Using |dφ| ≤ 1, we get
∫

B1

∫

B2

p∞(ξ, ζ, t)dζdξ

≤
∫

B1

∫

B2

p∞e−α
[

(φ(ξ)−φ(x))−(φ(ζ)−φ(y))
]

· e|α|(r1+r2)

≤
[

ν∞(B1)ν∞(B2)
]

1
2
exp{α2t+ α[φ(x) − φ(y)] + |α|(r1 + r2)}.
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As p∞(x, ·, t) is a Dirichlet solution of heat equation in (0,∞)×M∞,
assume t ≥ 1

4r
2
2 and applying Theorem 5.5, we obtain

p∞(ξ, y, t) ≤ C(n)

r22ν∞(B2)

∫ t

t− 1
4
r22

∫

B2

p∞(ξ, ζ, s)dζds.

Thus
∫

B1

p∞(ξ, y, t)dξ

≤ C(n)ν∞(B1)
1
2

ν∞(B2)
1
2

· exp
{

α2t+ α[φ(x) − φ(y)] + |α|(r1 + r2)
}

.

Assume t ≥ 1
4(r

2
1 + r22), by Theorem 5.5 again, combining with the

above inequality, we get

p∞(x, y, t) ≤ C(n)

r21ν∞(B1)

∫ t

t− 1
4
r21

∫

B1

p∞(ξ, y, s)dξds

≤ C(n)
[

ν∞(B1)ν∞(B2)
]

1
2

exp
{

α2t+ α[φ(x) − φ(y)] + |α|(r1 + r2)
}

.

Taking α = φ(y)−φ(x)
2t , r1 = r2 =

t√
t+ρ∞(x,y)

, we obtain

p∞ ≤ C(n)
[

ν∞(B1)ν∞(B2)
]

1
2

· exp
{

−
(

φ(x)− φ(y)
)2

4t
+

|φ(x)− φ(y)|√
t+ ρ∞(x, y)

}

.

(6.8)

Choosing φ(·) = ρ∞(x, ·) in (6.8) gives

p∞(x, y, t) ≤ C(n)
[

ν∞(B1)ν∞(B2)
]

1
2

exp
{

− ρ2∞(x, y)

4t

}

≤
C(n)

(

1 + ρ∞(x,y)√
t

)
n
2

[

ν∞
(

B∞(x,
√
t)
)

ν∞
(

B∞(y,
√
t)
)

]
1
2

exp
{

− ρ2∞(x, y)

4t

}

≤ C(n)

ν∞
(

B∞(y,
√
t)
) exp

{

− ρ2∞(x, y)

5t

}

.

The conclusion is proved. q.e.d.

Corollary 6.8. For positive constant T > 0, there exists a positive
constant ǫ(n, T,R) with lim

R→∞
ǫ(n, T,R) = 0 such that for t ∈ (0, T ]:

∫

M∞\B∞(R)
p∞(x, y, t)dν∞(x) ≤ ǫ(n, T,R).(6.9)
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Proof: From (6.6) and Property (B) on (M∞, ρ∞, ν∞), we get

∫

M∞\B∞(R)
p∞(x, y, t)dν∞(x)

≤ C(n)

∫

M∞\B∞(R)
ν∞

(

B∞(
√
t)
)−1

e−
ρ2∞(x,y)

5t dν∞

≤ C(n)

ν∞
(

B∞(
√
t)
)

∞
∑

k=0

∫

B∞(2k+1R)\B∞(2kR)
e−

ρ2∞(x,y)

5t dν∞

≤ C(n)

ν∞
(

B∞(
√
t)
)

∞
∑

k=0

e−
(2kR)2

5t · (2kR)n

≤ C(n, T )
∞
∑

k=0

e
− 1

5

(

2kR√
t

)2

·
(2kR√

t

)n

.

Without loss of generality, we can assume R ≥
√
T . Then from the

above,

∫

M∞\B∞(R)
p∞(x, y, t)dν∞(x) ≤ C(n, T )

∫ ∞

R√
T

e−
1
5
s2snds ≤ ǫ(n, T,R).

q.e.d.

7. The convergence of heat kernels in the Gromov-Hausdorff
sense

In this section, we will prove one main theorem of this paper, Theorem
1.4. The eigenfunction expansion of heat kernel and Proposition 4.5
provides the bridge between local Dirichlet heat kernels on bounded
regions of Mi and M∞. Combined with Gaussian upper bounds of heat
kernels onMi, M∞, maximum principle leads to the convergence of local
Dirichlet heat kernel to global Dirichlet heat kernel on Mi, M∞. From
all these, the hear kernels’ convergence in the Gromov-Hausdorff sense
is proved.

Lemma 7.1. For positive constant T > 0, there exists ǫ(n, T,R) > 0
with limR→∞ ǫ(n, T,R) = 0, such that for t ∈ (0, T ]:

∫

Mi\Bi(R)
Hi(x, y, t)dνi(x) ≤ ǫ(n, T,R).(7.1)
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Proof: Without loss of generality, assume R ≥
√
T , then from νi =

1
V (

√
ti)
µ and (4.14), we get

∫

Mi\Bi(R)
Hi(x, y, t)dνi(x)

≤ C(n)

∫

Mn\B(
√
tiR)

V (
√
tit)

−1e
− d2

5tit dµ

=
C(n)

V (
√
tit)

∫ ∞

√
tiR

e
− r2

5titA(r)rn−1dr

≤ C(n)
A(

√
tiT ) ·

(

tit
)

n
2

V (
√
tit)

·
(

∫ ∞

R√
t

e−
1
5
s2sn−1ds

)

≤ C(n)
A(

√
tiT )

A(
√
tit)

·
(

∫ ∞

R√
T

e−
1
5
s2sn−1ds

)

≤ C(n) ·
∫ ∞

R√
T

e−
1
5
s2sn−1ds ≤ ǫ

(

n, T,R
)

where A(r)rn−1 in the first equality is the surface area element of
∂B(r), in the second inequality above we used the fact that A(r) is

non-increasing (from Bishop-Gromov inequality) and R ≥
√
T ; the third

inequality from the end follows from the fact V (
√
tit) ≥ 1

n
A(

√
tit)

(

tit
)

n
2 .

q.e.d.

Proposition 7.2.

lim
R→∞

HR,i(·, y, t) = Hi(·, y, t).(7.2)

The convergence is uniform on x ∈ Mn
i , i = 1, 2, . . . , and uniform in

L1(νi) on any finite time interval (0, T ].

Proof: Assume R ≥ 1, put

MR,i + sup{Hi(x, y, t)| x ∈ ∂Bi(R), 0 < t ≤ T}.(7.3)

By (4.14) and Volume Comparison Theorem, we have

MR,i ≤ sup
0<t≤T

C(n)V (
√
ti)V (

√
tit)

−1e−
R2

5t

≤ C(n) ·max
{

e−
R2

5T , sup
0<t≤1

t−
n
2 e−

R2

5t

}

(7.4)

≤ C(n)max
{

e−
R2

5T , R−n
}

.(7.5)

By the maximum principle, when x ∈ Bi(R),

Hi(x, y, t) −MR,i ≤ HR,i(x, y, t) ≤ Hi(x, y, t).(7.6)
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From (7.5) and (7.6), we get lim
R→∞

HR,i(·, y, t) = Hi(·, y, t) uniformly

on (0, T ] × Bi(R), i = 1, 2, 3, · · · . Combining with (4.14), we get that
the convergence is uniform on (0, T ] ×Mn

i and i = 1, 2, 3, · · · .
From (7.4) and Volume Comparison Theorem, we get

lim
R→∞

MR,iνi

(

Bi(R)
)

≤ lim
R→∞

C(n)Rn ·max
{

e
R2

5T , sup
0<t≤1

t−
n
2 e−

R2

5t

}

≤ lim
R→∞

C(n)max
{

Rne−
R2

5T , sup
s≥R2

s
n
2 e−

s
5

}

= 0.(7.7)

Combining (7.6), (7.7) with Lemma 7.1, we have

‖HR,i(·, y, t) −Hi(·, y, t)‖L1(νi) ≤ ǫ(n, T,R)(7.8)

and lim
R→∞

ǫ(n, T,R) = 0. q.e.d.

By Lemma 4.1, Lemma 4.2 and Proposition 4.5, we can assume, after
passing to a subsequence of {i}∞i=1, that for every j, eigenvalue and
eigenfunction converge:

lim
i→∞

λ
(R)
j,i = λ

(R)
j,∞ , lim

i→∞
φ
(R)
j,i = φ

(R)
j,∞.(7.9)

Theorem 7.3.

HR,∞(x, y, t) +
∞
∑

j=1

e−λ
(R)
j,∞tφ

(R)
j,∞(x)φ

(R)
j,∞(y)(7.10)

is well defined on B∞(R)×B∞(R)× (0,∞), where R > 2. And

lim
i→∞

HR,i(·, y, t) = HR,∞(·, y, t)(7.11)

where the convergence is in L2
(

B∞(R)
)

, and is also locally uniform on

B̊∞(R). Furthermore, HR,∞(·, y, t) is locally Lipschitz on B̊∞(R).

Remark 7.4. HR,∞ may depend on the choice of subsequence of
{Mn

i }.
Proof: By (4.11) and (7.9), we get

‖φ(R)
j,∞‖L∞(ν∞) ≤ C(n)R

n
2

(

λ
(R)
j,∞

)
n
4
.(7.12)

Using (7.12), when t ∈ [t0,∞), t0 > 0 is any positive constant, we
can obtain

‖e−λ
(R)
j,∞tφ

(R)
j,∞(x)φ

(R)
j,∞(y)‖L∞(ν∞)

≤ e−λ
(R)
j,∞t‖φ(R)

j,∞‖2L∞(ν∞)

≤ C(n,R)e−λ
(R)
j,∞t

(

λ
(R)
j,∞

)
n
2 ≤ C(n,R, t0)e

−
λ
(R)
j,∞t

2 .(7.13)
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Applying (7.9) and Lemma 4.1, we conclude that
∞
∑

j=1

∣

∣

∣
e−λ

(R)
j,∞tφ

(R)
j,∞(x)φ

(R)
j,∞(y)

∣

∣

∣
≤ C(n,R, t0)

∞
∑

j=1

e−
[

C(n,R)j
1
n t
]

which clearly converges uniformly on B∞(R) × B∞(R) × [t0,∞) for
any t0 > 0. Hence the kernel HR,∞(x, y, t) is well defined and locally

Lipschitz on B̊∞(R).
Similar as (7.13), it is easy to see

‖e−λ
(R)
j,i tφ

(R)
j,i (x)φ

(R)
j,i (y)‖L∞(νi) ≤ C(n,R, t0)e

−
[

C(n,R)j
1
n t
]

(7.14)

when t ∈ [t0,∞). Then (7.11) follows from (4.15), (7.10), (7.13), (7.14)
and Proposition 4.5. q.e.d.

Fix one increasing sequence Rk → ∞, by a diagonal argument, we
can choose one subsequence of {Mn

i }, also denoted as {Mn
i }, such that

for each k, HRk,i → HRk,∞ in L2
(

B∞(Rk)
)

and also locally uniform on

B̊∞(Rk).
On Mn

i , for Rj < Rk, we have

HRj ,i(x, y, t) ≤ HRk,i(x, y, t) ≤ Hi(x, y, t) ≤
C(n)

νi
(√

t
)e−

d2ρi
(x,y)

5t(7.15)

where νi(
√
t) + νi

(

Bi(
√
t)
)

. Taking i → ∞ in (7.15), we get

0 ≤ HRj ,∞(x, y, t) ≤ HRk,∞(x, y, t) ≤ C(n)

ν∞
(√

t
)e−

d2ρ∞ (x,y)

5t(7.16)

where ν∞(
√
t) = ν∞

(

B∞(
√
t)
)

. Thus we can get that the non-decreasing
sequence HRj ,∞ converges pointwise to some function H∞:

H∞(x, y, t) = lim
k→∞

HRk,∞(x, y, t) = lim
k→∞

lim
i→∞

HRk,i(xi, y, t)(7.17)

for some subsequence of {Mn
i }∞i=1, {Rk}∞k=1 and any xi → x.

Proposition 7.5. HR,∞ is a Dirichlet solution of the heat equation

(7.18)











(

∂
∂t

−∆∞
)

HR,∞ = 0

lim
t→0

HR,∞(x, y, t) = δy(x)

on B∞(R) ⊂
(

M∞, y, ρ∞, ν∞
)

.

Proof: By Lemma 4.1, 4.2, 4.4 and Proposition 4.5, we have

lim
k→∞

∞
∑

j=k

∣

∣

∣
e−λjt

[

dφj,∞(x)
]

φj,∞(y)
∣

∣

∣
= 0 , x ∈ B̊∞(R).(7.19)

Hence HR,∞ is a Dirichlet solution of the heat equation by directly
checking that (5.2) holds for it.
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From (7.11), (7.16) and the definition of HR,i, using the similar ar-
gument as in Lemma 7.1, we get

lim
t→0

∫

M∞

HR,∞(x, y, t)f(x)dν∞(x) = f(y)(7.20)

where f is any Lipschitz function with compact support on M∞. q.e.d.

Proposition 7.6.

lim
R→∞

HR,∞(·, y, t) = p∞(·, y, t).(7.21)

The convergence is uniform on x ∈ M∞, and uniform in L1(ν∞) on any
finite time interval (0, T ].

Proof: Assume R ≥ 1, put

MR,∞ + sup{p∞(x, y, t)| x ∈ ∂B∞(R), 0 < t ≤ T}.(7.22)

By (6.6) and Property (B) on M∞(from Proposition 2.7), we have

MR,∞ ≤ sup
0<t≤T

C(n)ν∞
(

B∞(
√
t)
)−1

e−
R2

5t

≤ C ·max
{

e−
R2

5T , sup
0<t≤1

ν∞
(

B∞(
√
t)
)

e−
R2

5t

}

≤ C ·max
{

e−
R2

5T , sup
0<t≤1

t−
n
2 e−

R2

5t

}

(7.23)

≤ C(n)max
{

e−
R2

5T , R−n
}

.(7.24)

From Proposition 7.5 and comparison inequalities for heat kernels on
metric measure spaces (see Proposition 4.1 in [GHL10]), we get

p∞(x, y, t)−MR,∞ ≤ HR,∞(x, y, t) ≤ p∞(x, y, t).(7.25)

From (7.24) and (7.25), lim
R→∞

HR,∞(·, y, t) = p∞(·, y, t) uniformly on

B∞(R). Combining with (6.6), the convergence is uniform on (0, T ] ×
M∞.

From (7.23) and Property (B), note ν∞
(

B∞(1)
)

= 1, we get

lim
R→∞

MR,∞ν∞
(

B∞(R)
)

≤ lim
R→∞

C(n)Rn ·max
{

e
R2

5T , sup
0<t≤1

t−
n
2 e−

R2

5t

}

≤ lim
R→∞

C(n)max
{

Rne−
R2

5T , sup
s≥R2

s
n
2 e−

s
5

}

= 0.(7.26)

Combining (7.26) with Corollary 6.8, we have

‖HR,∞(·, y, t)− p∞(·, y, t)‖L1(ν∞) ≤ ǫ(n, T,R)(7.27)

and lim
R→∞

ǫ(n, T,R) = 0. q.e.d.
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Proposition 7.7. Assume xi → x as (Mi, y, ρi, νi)
dGH−→ (M∞, y∞, ρ∞,

ν∞), then

lim
i→∞

Hi(xi, y, t) = p∞(x, y, t) t ∈ (0,∞).(7.28)

The convergence is locally uniform on M∞.

Remark 7.8. H∞ in (7.17) is equal to p∞ in (7.28).

Proof: For any sequence (Mi, y, ρi, νi)
dGH−→ (M∞, y∞, ρ∞, ν∞), we can

get a subsequence of {Mn
i } as before, also denoted as {Mn

i }, such that,
there exists increasing sequence Rk → ∞, and

lim
i→∞

HRk,i(·, y, t) = HRk,∞(·, y, t) k = 1, 2, 3, · · ·

where the convergence is as in Theorem 7.3.
Then

|Hi(xi, y, t) − p∞(x, y, t)| ≤
(

|Hi(xi, y, t)−HRk,i(xi, y, t)|

+ |HRk,∞(x, y, t) − p∞(x, y, t)|
)

+ |HRk,i(xi, y, t)−HRk,∞(x, y, t)|.
(7.29)

For any ǫ > 0, from Proposition 7.2 and 7.6, we get the first two terms
on the right side of (7.29) will be less than 1

3ǫ when k is big enough.

Now fixed k such that x ∈ B̊∞(Rk) and

(

|Hi(xi, y, t)−HRk,i(xi, y, t)|+ |HRk,∞(x, y, t)− p∞(x, y, t)|
)

<
2

3
ǫ.

Using Theorem 7.3, if i is big enough (which may depend on k we chose
above), then we get

|HRk,i(xi, y, t)−HRk,∞(x, y, t)| < 1

3
ǫ.

By the above argument, we get that for such subsequence of {Mn
i },

lim
i→∞

Hi(xi, y, t) = p∞(x, y, t).

However, any subsequence of {Mn
i }must contain a subsequence whose

limit is also p∞ by the above argument. Hence, in fact we prove that
for the original sequence {Mn

i }, (7.28) holds. q.e.d.

Proof of Theorem 1.4: From (4.12), (7.28) and x → y∞ as i → ∞ for
any x ∈ Mi. q.e.d.
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8. Analysis on manifolds with cone structures at infinity

In this section we will discuss large time behavior of the heat kernel
on manifolds with cone structures at infinity (see Definition below), and
prove Theorem 1.6.

Definition 8.1. Assume that (Mn, g) is a complete manifold with
Rc ≥ 0, y is some fixed point on Mn, and for any ti → ∞, define
(Mi, y, ρi, νi) as in Blow Down Setup, such that

(Mi, y, ρi, νi)
dGH−→ (M∞, y∞, ρ∞, ν∞).(8.1)

If (M∞, y∞, ρ∞) (may be different for different choice of {ti}) always
has the cone structure, i.e.

ρ∞ = dr2 + l(r)2dX(8.2)

where X is some compact metric space, l(r) > 0 is some function of r,
then we say that Mn is amanifold with cone structures at infinity.

Proof of Theorem 1.6: Assume that si → ∞, blowing down the metric
g by s−1

i instead of t−1
i , define (Mi, y, ρi, νi) as in Blow Down Setup,

and the following holds:

(Mi, y, ρi, νi)
dGH−→ (M∞, y∞, ρ∞, ν∞).

From (1.4) and (1.6), it is easy to get ν∞(B∞(y∞, r)) = h(r). By
the assumption that Mn is a complete manifold with cone structures
at infinity, we get that the heat kernel p∞ on (M∞, y∞, ρ∞, ν∞), only
depends on r = ρ(x, y∞) and t, denoted as p∞(r, t).

It is easy to get

∆p∞(r, t) =
∂2p∞
∂r2

+
(h′′(r)
h′(r)

)

· ∂p∞
∂r

.

Hence p∞(r, t) is the unique positive solution of










∂p∞
∂t

= (p∞)rr +
(

h′′

h′

)

(p∞)r

lim
t→0

p∞(r, t) = δy∞(x).

From the above, it is easy to see that p∞(r, t) is uniquely determined by

(h
′′

h′ )(r). The conclusion follows from Theorem 1.4, the above argument
and (1.7). q.e.d.

Remark 8.2. Note (1.7) is equivalent to the assumption that h′(r)

h̃′(r)

is a constant independent of r. Although the tangent cones at infinity
of manifold Mn may be different metric measure spaces for different
choices of si, p∞ only depends on the function h′(r) when the tangent
cone at infinity (M∞, y∞, ρ∞) has the cone structure as in (8.2).
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Theorem 8.3. Assume that (Mn, g) is a complete manifold with
nonnegative sectional curvature, n ≥ 3, y is some fixed point on Mn,
and for any r > 0,

lim
s→∞

Vy(sr)

Vy(s)
= h(r)(8.3)

where h(r) > 0 is some positive function.
Then there exists a unique (M∞, y∞, ρ∞, ν∞), where ν∞(B∞(y∞, r)) =

h(r), such that for any ti → ∞, define (Mi, y, ρi, νi) as in Blow Down

Setup, we have

(Mi, y, ρi, νi)
dGH−→ (M∞, y∞, ρ∞, ν∞)(8.4)

lim
t→∞

Vy(
√
t) ·H(x, y, t) = p∞(y∞, y∞, 1)(8.5)

where p∞ is the heat kernel on (M∞, y∞, ρ∞, ν∞).

Proof: Because Mn has non-negative sectional curvature, from The-
orem I.26 in [CCG+10], we know that the tangent cone at infinity
(M∞, y∞, ρ∞) is the unique metric cone. Hence Mn is a manifold with
cone structures at infinity and (8.4) is obtained.

From the assumption (8.3) and the above argument, we can apply
Theorem 1.6, (8.5) is obtained. q.e.d.

As an application of the above theorem, we have the following in-
teresting result about nonnegatively curved manifolds with asymptotic
polynomial volume growth.

Corollary 8.4. Assume that (Mn, g) is a complete manifold with
nonnegative sectional curvature, n ≥ 3 and it has asymptotic polynomial
volume growth, i.e.

lim
r→∞

V (r)

rk
= C0

where k ≥ 1 and C0 > 0 are constants. Then (8.5) holds.

Proof: The proof follows directly from Theorem 8.3. q.e.d.

9. Example with limt→∞ V (
√
t)H(x, y, t) < limt→∞ V (

√
t)H(x, y, t)

In this section we will construct the first example, which is a complete
manifold with nonnegative Ricci curvature and

lim
t→∞

V (
√
t)H(x, y, t) < lim

t→∞
V (

√
t)H(x, y, t).

From Theorem 1.4, the example should have different tangent cones at
infinity of the manifold with renormalized measure. Furthermore, from
Theorem 1.6 and its proof, if two tangent cones at infinity of (Mn, g)
have the cone structure as defined in Definition 8.1, only different
renormalized measure will result in the inconsistent limit behavior
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of heat kernel. Note in this context, if there exists r > 0, such that
ν∞

(

B∞(r)
)

6= ν̃∞
(

B̃∞(r)
)

, where B∞(r) ⊂ M∞ = C(X) and B̃∞(r) ⊂
M̃∞ = C(X̃) are two balls with the same radius r in different metric

tangent cones C(X), C(X̃); we say that the renormalized measures ν∞,
ν̃∞ are different.

Hence, the different structure of tangent cones at infinity alone can
not guarantee the inequality the inconsistent limit behavior of heat ker-
nel. As mentioned in the introduction of this paper, Perelman ([Per97])
had constructed the manifold with Rc ≥ 0, maximal volume growth
and quadratic curvature decay, where the tangent cone at infinity is not
unique. However it is not hard to see that the renormalized measure on
those different tangent cones (in fact, metric cones) are the same, so will
not lead to inconsistent limit behavior of heat kernel on such manifolds.

In fact, from Theorem 1.1, the example manifold must be collapsing
case. The construction of the following example is inspired by the re-
lated discussion in Section 8 of [CC97]. However, we need to do some
suitable modifications to assure the different renormalized measure on
different tangent cones at infinity of manifold.

Let us start from the generalized Hopf fibration of S7 as the following:

S
3 −→ S

7 π−→ S
4 , gS

7
= k1 + k2

where S
3, S7, S4 carry the metrics gS

3
, gS

7
, 1

4g
S
4
; π is a Riemannian

submersion with totally geodesic fibers and k1 = gS
3
, k2 = π∗(1

4g
S
4)

;

gS
n
denotes the canonical metric of curvature ≡ 1 on S

n.
Define g̃ = f2k1 + h2k2, then the following formulas are well-known

(for example, see Section 2 in [BKN12]):

Rc(g̃)|k1 =
( 2

f2
+

4f2

h4

)

I , Rc(g̃)|k2 =
6(2h2 − f2)

h4
I.(9.1)

Other mixed Rc(g̃) = 0.
Then for metric g = dr2 + f2(r)k1 + h2(r)k2 on M8, which is diffeo-

morphic to R
8, from (8.13) in [CC97] and (9.1), we have

Rc(g)|k1 =
2
(

1− (f ′)2
)

f2
− f ′′

f
+

4f2

h4
− 4

f ′h′

fh
(9.2)

Rc(g)|k2 =
6(2h2 − f2)

h4
− h′′

h
− 3

(h′)2

h2
− 3

f ′h′

fh
(9.3)

Rc(g)(~n, ~n) = −
[

3
f ′′

f
+ 4

h′′

h

]

.(9.4)

Our construction will be broken into four steps in subsections 9.1-9.4
separately, we will verify that our example (M8, g) has the property
lim
t→∞

H(x, y, t) < lim
t→∞

H(x, y, t) in subsection 9.4.
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9.1. Step (I).
Initial approximation f̄ , h̄ to the functions f , h will be constructed in-
ductively at this stage. These approximations have jump discontinuities
at the points bi; see (9.29), (9.30), (9.31), (9.32). However, the left- and
right-hand limits of the first derivatives do agree at all bi, i ≥ 1, see
(9.11) and (9.19).

We can define f̄(r) as the following:

(9.5) f̄(r) =







β2ib
−ω2i
2i+1r

1−η1 r ∈ (b2i, b2i+1]

β2i+1b
ω2i+1

2i+2 r1−η2 r ∈ (b2i+1, b2i+2]

where for i = 0, 1, 2, · · · we have:

Assumption 1.

1− ǫ0 >
1− η2

1− η1
≥ 99

100
, 1 > η2 > η1 >

1

2
(1 + ǫ0)(9.6)

β2i+2 > β2i > 0 , β2i+1 > β2i+3 > 0 , β0 ≥
99

100
, β1 ≤

1

100
(9.7)

lim
i→∞

β2i = 1 , lim
i→∞

β2i+1 = 0(9.8)

βi, ωi, ǫ0 are positive constants to be determined later and satisfy

Assumption 2. lim
i→∞

ωi = 0 ,
η2 − η1

100
> ω0 > ω1 > ω2 > · · ·

We have the following equations for i = 0, 1, 2, · · ·
Assumption 3.

1− η1

1− η2
· β2i

β2i+1
=

b
ω2i+1

2i+2

b
η2−η1−ω2i
2i+1

(9.9)

1− η2

1− η1
· β2i+1

β2i+2
=

b
η2−η1−ω2i+1

2i+2

b
ω2i+2

2i+3

(9.10)

which implies that for i ≥ 1,

f̄ ′(bi) = lim
r→b+i

f̄ ′(r) = lim
r→b−i

f̄ ′(r).(9.11)

We define h̄(r) in the following way:

(9.12) h̄(r) =







α2ib
−ǫ2i
2i+1r

1+ǫ2i r ∈ (b2i, b2i+1]

α2i+1b
ǫ2i+1

2i+2 r
1−ǫ2i+1 r ∈ (b2i+1, b2i+2]

where for i = 0, 1, 2, · · · , we have

Assumption 4.

α2i+2 > α2i > 0 , α2i+1 > α2i+3 > 0(9.13)

lim
i→∞

α2i = 1 , α0 ≥
99

100
, lim

i→∞
α2i+1 = 0 , α1 ≤

1

100
(9.14)
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ǫi, bi are to be determined later, and satisfies

Assumption 5.

1 < b0 < b1 < b2 < · · · , lim
i→∞

bi = ∞(9.15)

1 > ǫ0 > ǫ1 > ǫ2 > · · · , lim
i→∞

ǫi = 0(9.16)

We also have the following equations for i = 0, 1, 2, · · · ,

Assumption 6.

α2i

α2i+1
=

(1− ǫ2i+1

1 + ǫ2i

)(b2i+2

b2i+1

)ǫ2i+1

(9.17)

α2i+2

α2i+1
=

(1− ǫ2i+1

1 + ǫ2i+2

)(b2i+3

b2i+2

)ǫ2i+2

(9.18)

which implies that for i ≥ 1,

h̄′(bi) = lim
r→b+i

h̄′(r) = lim
r→b−i

h̄′(r).(9.19)

In the rest part of Step (I), we will prove Rc(f̄ , h̄) > 0 on (b0,∞)
except the points bi, i = 1, 2, · · · .

(i). We firstly consider the interval (b0, b1]:
If we assume that

Assumption 7. b
η1
0 ≥ 7

then

Rc|k1(f̄ , h̄) ≥
2

r2

[

β−2
0 b2ω0

1 r2η1 − (1− η1)(3 + 2ǫ0 − η1)
]

> 0.(9.20)

If we assume that

Assumption 8. α0b
η1
0 >

(b1

b0

)ǫ0

then h̄(r) > f̄(r). And if we further assume that

Assumption 9. ǫ2i <
1

2
(α−1

2i − 1) , i = 0, 1, 2, · · ·

we have

Rc|k2(f̄ , h̄) >
6

h̄2
− ǫ0(1 + ǫ0)

r2
− 3(1 + ǫ0)

2

r2
− 3(1− η1)(1 + ǫ0)

r2

>
6

r2

[

α−2
0 − (1 + 2ǫ0)

2
]

≥ 0.(9.21)

If we assume

Assumption 10. ǫ0 <
1

4
η1(1− η1)b

−η1
0 b−ω0

1



LARGE TIME BEHAVIOR OF THE HEAT KERNEL 509

then

Rc(~n, ~n) =
3η1(1− η1)

r2
− 4

ǫ0(1 + ǫ0)

r2
> 0.(9.22)

From (9.20), (9.21) and (9.22), we get Rc(f̄ , h̄) > 0 on (b0, b1).
(ii). Next we consider the interval (b2i, b2i+1], i ≥ 1.
From Assumption 7 and (9.2), it is easy to get

Rc|k1 > 0(9.23)

If we assume that

Assumption 11. b
η1
2i > α−1

2i−1

( 1 + ǫ2i

1− ǫ2i−1

)

, i = 1, 2, · · ·

then h̄(r) > f̄(r), from it and Assumption 9, we get

Rc|k2 >
6

h̄2
− ǫ2i(1 + ǫ2i)

r2
− 3(1 + ǫ2i)

2

r2
− 3(1− η1)(1 + ǫ2i)

r2
> 0.

(9.24)

Similarly, from Assumption 10, we get

Rc(~n, ~n) > 0(9.25)

From (9.23), (9.24) and (9.25), we get that Rc(f̄ , h̄) > 0 on (b2i, b2i+1),
where i ≥ 1.

(iii). Finally, we consider the interval (b2i+1, b2i+2], i ≥ 0.
From Assumption 7, (9.5) and (9.12), it is easy to get

Rc|k1 ≥ 2

r2

[(1− η2

1− η1

)2
β−2
2i b

2η1+2ω2i
2i+1 − 3

]

> 0.(9.26)

From Assumption 7, it is easy to get that h̄(r) > f̄(r). From (9.6)
and Assumption 9, we get

Rc|k2 >
6

h̄2
− 3(1− ǫ2i+1)

2

r2
− 3

(1 − η2)(1 − ǫ2i+1)

r2
> 0.(9.27)

From f̄ ′′ < 0 and h̄′′ < 0, it is easy to get

Rc(~n, ~n) > 0.(9.28)

From (9.26), (9.27) and (9.28), we get that Rc(f̄ , h̄) > 0 on (b2i+1,

b2i+2), where i ≥ 0.
From all the above, we get Rc(f̄ , h̄) > 0 on (b0,∞) excepts the points

bi, where i ≥ 1.
Note f̄ has jump discontinuities at the points bj , j = 1, 2, · · · . For

i = 0, 1, 2, · · · , we have

τ2i+1 + f̄(b2i+1)− lim
r→b+2i+1

f̄(r) = −
(η2 − η1

1− η1

)

β2i+1b
ω2i+1

2i+2 b
1−η2
2i+1(9.29)

τ2i+2 + f̄(b2i+2)− lim
r→b+2i+2

f̄(r) =
(η2 − η1

1− η1

)

β2i+1b
1−η2+ω2i+1

2i+2 .(9.30)
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Similarly, h̄ has jump discontinuities at the points bj , j = 1, 2, · · · .
For i = 0, 1, 2, · · · , we have

δ2i+1 + h̄(b2i+1)− lim
r→b+2i+1

h̄(r) = −α2ib2i+1

(ǫ2i+1 + ǫ2i

1− ǫ2i+1

)

(9.31)

δ2i+2 + h̄(b2i+2)− lim
r→b+2i+2

h̄(r) = α2i+1b2i+2

(ǫ2i+2 + ǫ2i+1

1 + ǫ2i+2

)

.(9.32)

9.2. Step (II).

We construct f̃ , h̃ on the interval [0, b0] in this step.

Define f̃ , h̃ on [0, b0] as the following:

(9.33) f̃(r) +

{

r r ∈ [0, b02 ]

r − C1

(

r − b0
2

)2
r ∈ ( b02 , b0]

where C1 =
1
b0

[

1− β0b
−ω0
1 b

−η1
0 (1− η1)

]

> 0.

(9.34) h̃(r) +

{

r r ∈ [0, b02 ]

r − C2

(

r − b0
2

)2
r ∈ ( b02 , b0]

where C2 =
1
b0

[

1− α0(1 + ǫ0)(
b0
b1
)ǫ0

]

> 0.

Then f̃(0) = h̃(0) = 0, f̃ ′(0) = h̃′(0) = 1,

f̃ ′(b0) = β0b
−ω0
1 b

−η1
0 (1− η1) , h̃′(b0) = α0(1 + ǫ0)

(

b0

b1

)ǫ0

.

On ( b02 , b0), we have f̃ ′′(r) = −2C1 < 0 and h̃′′(r) = −2C2 < 0, hence

(1− η)b−η
0 ≤ f̃ ′(r) ≤ 1 , α0(1 + ǫ0)

(

b0

b1

)ǫ0

≤ h̃′(r) ≤ 1.(9.35)

It is easy to see f̃ ′(b0) = lim
r→b+0

f̄ ′(r) and h̃′(b0) = lim
r→b+0

h̄′(r).

In the rest part of Step (II), we will show that Rc(f̃ , h̃) > 0 on

( b02 , b0).

It is obvious that Rc(f̃ , h̃) = 0 on [0, b02 ).

Also it is easy to get that Rc(~n, ~n) > 0 from f̃ ′′ < 0 and h̃′′ < 0 on

( b02 , b0).
Next if we assume that

Assumption 12. α0(1 + ǫ0)

(

b0

b1

)ǫ0

=
2

3
+

1

3
β0b

−ω0
1 b

−η1
0 (1− η1)

then C2 =
1
3C1, h̃

′(r) > f̃ ′(r) on [ b02 , b0]. Hence h̃(r) ≥ f̃(r).
If we further have

( f̃

h̃

)3
≥ f̃ ′h̃′(9.36)

then it is easy to get Rc|k1 > 0 and Rc|k2 > 0 on ( b02 , b0).
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To show
(

f̃

h̃

)3 ≥ f̃ ′h̃′ on [ b02 , b0], we consider the function

ϕ1(r) + f̃3 − f̃ ′h̃′h̃3.

Note ϕ1(
b0
2 ) = 0, we only need to show ϕ′

1(r) ≥ 0 on [ b02 , b0]. It is easy
to get

ϕ′
1(r) ≥ 3f̃ ′[f̃ − h̃′h][f̃ + h̃′h̃].

Hence we just need to show that f̃ − h̃′h̃ ≥ 0 on [ b02 , b0]. Define

ϕ2(r) + f̃ − h̃′h̃.

Observe that ϕ2(
b0
2 ) = 0, the problem reduces to show that

ϕ′
2(r) = f̃ ′ − (h̃′)2 − h̃h̃′′ ≥ 0 , r ∈

[b0

2
, b0

]

.(9.37)

Let ϕ3(r) + f̃ ′ − (h̃′)2 − h̃h̃′′, then

ϕ′
3(r) = 6C2h̃

′ − 2C1 ≤ 0.(9.38)

Now using Assumption 12, which is equivalent to C2 = 1
3C1, it is easy

to get

ϕ3(b0) = b0C2

(

1− 1

2
b0C1

)

> 0.(9.39)

From (9.38) and (9.39), we get ϕ3(r) ≥ 0. Hence (9.36) is obtained, we
are done.

9.3. Step (III).
By adjusting the values of the functions f̄ , h̄, by suitable constants on
each interval (bi, bi+1], we can remove the jump discontinuities, thereby

obtaining C1 functions f̂ , ĥ by gluing f̃ , h̃ with f̄ , h̄.
The functions f̂ , ĥ may not have the second derivatives at the points

bi.
Now we define

(9.40) f̂(r) +

{

f̃(r) r ∈ [0, b0]

f̄(r) +
∑k

l=0 τl r ∈ (bk, bk+1] , k = 0, 1, 2, · · ·

where τ0 + f̃(b0)− lim
r→b+0

f̄(r) =
b0

4

[

3− (3+η1)β0b
−ω0
1 b

−η1
0

]

, when l ≥ 1,

τl is defined in (9.29) and (9.30). From Assumption 7 we can get that

τ0 ∈ (0, 34b0), and it is also easy to check that f̂ is of class C1 on [0,∞)
Similarly, we define

(9.41) ĥ(r) +

{

h̃(r) r ∈ [0, b0]

h̄(r) +
∑k

l=0 δl r ∈ (bk, bk+1] , k = 0, 1, 2, · · ·
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where δ0 + h̃(b0) − lim
r→b+0

h̄(r), when l ≥ 1, δl is defined in (9.31) and

(9.32). It is easy to get that δ0 ∈ (0, 34b0]. And it is also easy to check

that ĥ is of class C1 on [0,∞).
If we assume

Assumption 13. b
1− 1

2
(η2+η1)

2k+1 ≤ b
1−η2
2k+2 , ∀k ≥ 0.

We have the following claim about τi:

Claim 9.1.

|τ0| ≤
( 2b0

b
1−η1−ω0
1

)

min
r∈(bj ,bj+1]

f̄(r) , j ≥ 1(9.42)

|τi| ≤
(η2 − η1

1− η2

)

min
r∈(bi,bi+1]

f̄(r) , i ≥ 1(9.43)

|τi| ≤
(

b
− 1

2
(η2−η1)

i

)

min
r∈(bj ,bj+1]

f̄(r) , j > i ≥ 1.(9.44)

Proof: (9.42) follows directly from the definition of τ0, (9.5), (9.9) and
(9.10).

(9.43) follows from (9.29), (9.30), (9.5) and (9.10).
There are five cases for (9.44), in the rest of the proof, k ≥ 0.
(1). When i = 2k + 1, j = 2k + 2, k ≥ 0, we have

|τi|
minr∈(bj ,bj+1] f̄(r)

=
(η2 − η1

1− η2

)

·
(b2k+1

b2k+2

)1−η2

using Assumption 13, (9.44) is obtained in this case.

(2). When i = 2k + 1, j = 2k̃, k̃ > k + 1, we have

|τi|
minr∈(bj ,bj+1] f̄(r)

=
η2 − η1

1− η1
· β2k+1

β2k̃−2

·
b
ω2k+1

2k+2 b
1−η2
2k+1

b
1−η2

2k̃
b
η2−η1−ω2k̃−2

2k̃−1

≤ b
η1−η2+ω2k+1+ω2k̃−1

2k+2 ≤ b
− 1

2
(η2−η1)

2k+1 .

Then (9.44) is obtained in this case.

(3). When i = 2k + 1, j = 2k̃ + 1, k̃ > k, we have

|τi|
minr∈(bj ,bj+1] f̄(r)

=
1− η2

1− η1
· η2 − η1

1− η1
· β2k+1

β2k̃
·
b
ω2k+1

2k+2 b
1−η2
2k+1

b
1−η1−ω2k̃

2k̃+1

≤ b
− 1

2
(η2−η1)

2k+1 .

Hence (9.44) holds in this case.
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(4). When i = 2k + 2, j = 2k̃, k̃ > k + 1, we have

|τi|
minr∈(bj ,bj+1] f̄(r)

=
η2 − η1

1− η1
· β2k+1

β2k̃−2

·
b
1−η2+ω2k+1

2k+2

b
1−η2

2k̃
b
η2−η1−ω2k̃−2

2k̃−1

≤ b
− 1

2
(η2−η1)

2k+2 .

(9.44) is got here.

(5). When i = 2k + 2, j = 2k̃ + 1, k̃ > k, we have

|τi|
minr∈(bj ,bj+1] f̄(r)

=
1− η2

1− η1
· η2 − η1

1− η1
· β2k+1

β2k̃
·
b
1−η2+ω2k+1

2k+2

b
1−η1−ω2k̃

2k̃+1

≤ b
− 1

2
(η2−η1)

2k+2 .

This completes our proof of (9.44). q.e.d.

Similarly, We have the following claim about δi:

Claim 9.2.

|δ0| ≤ 3
b0

b1
min

r∈(bj ,bj+1]
h̄(r) , j ≥ 1(9.45)

|δi| ≤ 4ǫi−1 min
r∈(bj ,bj+1]

h̄(r) , 1 ≤ i ≤ j.(9.46)

Proof: For i ≥ 1, we can get the following estimate:

δ0

minr∈(b2i,b2i+1] h̄(r)

≤ 3

4
· b0

α2ib
−ǫ2i
2i+1b

1+ǫ2i
2i

=
3

4

1

α2i−1
· 1 + ǫ2i

1− ǫ2i−1
· b0

b2i−1
·
(α2i−1

α2i−2
· 1− ǫ2i−1

1 + ǫ2i−2

)
1

ǫ2i−1

≤ 3

2

1

α0

b0

b1
≤ 3

b0

b1
.

Similarly, we can get that for i ≥ 0,

δ0

minr∈(b2i+1,b2i+2] h̄(r)
≤ 3

4
· b0

α2i+1b
ǫ2i+1

2i+2 b
1−ǫ2i+1

2i+1

=
3

4

b0

α2i
· 1− ǫ2i+1

(1 + ǫ2i)b2i+1

≤ 3

2

1

α0

b0

b1
≤ 3

b0

b1
.

By the above two inequalities, we obtain (9.45).
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For k ≥ 1,

min
r∈(b2k ,b2k+1]

h̄(r) ≥ α2kb
−ǫ2k
2k+1b

1+ǫ2k
2k = α2k−1b2k

( 1 + ǫ2k

1− ǫ2k−1

)

= α2k−2b2k
(b2k−1

b2k

)ǫ2k−1 ·
(1 + ǫ2k−2

1− ǫ2k−1

)

·
( 1 + ǫ2k

1− ǫ2k−1

)

≥ α2k−2b2k−1.

When 1 ≤ i < k,

|δ2i| = α2i−1b2i ·
ǫ2i−1 + ǫ2i

1 + ǫ2i
≤ 2ǫ2i−1α2i−1b2i

≤ 2ǫ2i−1α2k−2b2k−1 ≤ 2ǫ2i−1 min
r∈(b2k ,b2k+1]

h̄(r).

And

|δ2k| = α2k−1b2k ·
ǫ2k + ǫ2k−1

1 + ǫ2k

≤ min
r∈(b2k ,b2k+1]

h̄(r) · 1− ǫ2k−1

1 + ǫ2k
· ǫ2k + ǫ2k−1

1 + ǫ2k

≤ 2ǫ2k−1 min
r∈(b2k ,b2k+1]

h̄(r).

When 0 ≤ i < k,

|δ2i+1| = α2ib2i+1 ·
ǫ2i+1 + ǫ2i

1− ǫ2i+1
≤ 4ǫ2i min

r∈(b2k ,b2k+1]
h̄(r).

From all the above, we get

|δi| ≤ 4ǫi−1 min
r∈(b2k ,b2k+1]

h̄(r) , 1 ≤ i ≤ 2k.(9.47)

For k ≥ 0,

min
r∈(b2k+1,b2k+2]

h̄(r) ≥ α2k+1b2k+1

(b2k+2

b2k+1

)ǫ2k+1

= α2kb2k+1

( 1 + ǫ2k

1− ǫ2k+1

)

≥ α2kb2k+1.

When 0 ≤ i ≤ k,

|δ2i+1| ≤ 4ǫ2iα2kb2k+1 ≤ 4ǫ2i min
r∈(b2k+1,b2k+2]

h̄(r).

When 1 ≤ i ≤ k,

|δ2i| ≤ 2ǫ2i−1α2kb2k+1 ≤ 2ǫ2i−1 min
r∈(b2k+1,b2k+2]

h̄(r).

Hence we obtain that

|δi| ≤ 4ǫi−1 min
r∈(b2k+1,b2k+2]

h̄(r) , 1 ≤ i ≤ 2k + 1.(9.48)

From (9.47) and (9.48), we (9.46). q.e.d.

We will assume
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Assumption 14.
∞
∑

l=0

ǫl + δ < 1,
∞
∑

l=1

b
− 1

2
(η2−η1)

l + τ < 1

where δ and τ are positive constants to be determined later.

We define ζk =

k
∑

l=0

τl, ξk =

k
∑

l=0

δl, then

f̂ |(bk ,bk+1] = f̄ + ζk , ĥ|(bk ,bk+1] = h̄+ ξk.

Note that we have Rc(f̂ , ĥ) ≥ 0 on [0, b0) from (II). In the rest part

of (III), we will prove Rc(f̂ , ĥ) > 0 on (b0,∞) except at points bj ,
j = 1, 2, · · · .

(i). We firstly consider the interval (b0, b1].
on (b0, b1], from Assumption 7, we get

Rc|k1(f̂ , ĥ) ≥
2
[

r2 − f̄2(1− η1)
2 − 2f̄(f̄ + τ0)

]

(f̄ + τ0)2r2

≥
2f̄2

[

(

δ−1
0 bω0

1 rη1
)2 − (1− η1)

2 − 2
(

1 + 3
4δ

−1
0 bω0

1 b
η1
0

)

]

(f̄ + τ0)2r2

≥
2f̄2

[

δ−1
0 bω0

1

(

b
2η1
0 − 1− 4bη10

)

]

(f̄ + τ0)2r2
> 0.

From Assumption 10, we obtain that

Rc(~n, ~n) >
3η1(1− η1)f̄
(

f̄ + τ0
)

r2
− 4ǫ0(ǫ0 + 1)

r2

≥ 2

r2

[3

2
· (1− η1)η1
1 + b

η1
0 bω0

1

− 2ǫ0(ǫ0 + 1)
]

> 0.

We assume that for i ≥ 0,

Assumption 15. ǫ2i < ω2i

then ĥ′ > f̂ ′ on (b0, b1]. Combining with ĥ(b0) > f̂(b0), we get that

ĥ > f̂ on (b0, b1].
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From (9.6), combining with Assumption 9, we can get

Rc|k2(f̂ , ĥ) ≥
6

ĥ2
− ĥ′′

ĥ
− 3(ĥ′)2

ĥ2
− 3f̂ ′ĥ′

f̂ ĥ

=
1

ĥ2

{

6−
[ h̄

r
+

δ0

r

]

(1 + ǫ0)ǫ0
h̄

r
− 3

[

(1 + ǫ0)
h̄

r

]2

− 3(1 − η1)
f̄

f̄ + τ0
(1 + ǫ0)

h̄

r

( h̄

r
+

δ0

r

)}

≥ 1

ĥ2

[

6− α0(1 + ǫ0)ǫ0

(3

4
+ α0

)

− 3
(

α0(1 + ǫ0)
)2

− 3(1 − η1)α0(1 + ǫ0)
(

α0 +
3

4

)]

≥ 1

ĥ2
[6− 2ǫ0 − 3− 6(1 − η1)] > 0.

So, we proved that Rc(f̂ , ĥ) > 0 on (b0, b1).
(ii). Next we consider the interval (b2i, b2i+1], i ≥ 1.
We assume that

Assumption 16.

2b0

b
1−η1−ω0
1

+
η2 − η1

1− η2
+ τ < η31,

b
2η1
1 > 2 + 20

(

1− 3
b0

b1
− 4δ

)−1

then combining with Claim 9.1 and Claim 9.2, we get

Rc|k1(f̂ , ĥ) ≥
2
[

1− (1 − η1)
2
(

f̄
r

)2
]

(

f̄ + ζ2i
)2 − 4(1− η1)(1 + ǫ2i)

(

f̄
r

)(

h̄
r

)

(

f̄ + ζ2i
)(

h̄+ ξ2i
)

(9.49)

=
2f̄2

(

f̄ + ζ2i
)2
r2

[ r2

f̄2
− (1− η1)

2 − 2(1 − η1)(1 + ǫ2i)
h̄

h̄+ ξ2i

(

1 +
ζ2i

f̄

)]

≥ 2f̄2

(

f̄ + ζ2i
)2
r2

[

b
2η1
2 − 1−

2
(

1 + 2b0
b
1−η1−ω0
1

+ η2−η1
1−η2

+ τ
)

1− 3b0
b1

− 4δ

]

> 0.

If we further assume that

Assumption 17. ǫ0 ≤
1

10
η1(1− η1)

(

1− 3
b0

b1
− 4δ

)
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then we get

Rc(~n, ~n) =
3η1(1− η1)f̄

(f̄ + ζ2i)r2
− 4ǫ2i(1 + ǫ2i)h̄

(h̄+ ξ2i)r2

≥ 3η1(1− η1)
(

1 + 2b0
b
1−η1−ω0
1

+ η2−η1
1−η2

+ τ
)

r2
− 4ǫ2i(1 + ǫ2i)

(

1− 3b0
b1

− 4δ
)

r2

≥ 3

r2
(

1− 3 b0
b1

− 4δ
)

[

η1(1− η1)
(

1− 3 b0
b1

− 4δ
)

(

1 + 2b0
b
1−η1−ω0
1

+ η2−η1
1−η2

+ τ
) − 2ǫ0

]

> 0.

We assume that

Assumption 18. b
η1
1 ≥ 100

1−4δ

From Assumptions 15 and 18, we get h̄ ≥ α0b
η1
2i f̄ on (b2i, b2i+1]. Also

note that the following holds:

f̂ = f̄ + ζ2i ≤ 5f̄ , ĥ = h̄+ ξ2i ≥ (1− 4δ)h̄

the above three inequalities imply that ĥ ≥ f̂ on (b2i, b2i+1].
We further assume that

Assumption 19.
3b0
b1

+ 4δ ≤ η1

Observe that ǫ0 <
η21

1+η1
, then using Assumption 9, we have

Rc|k2(f̂ , ĥ) ≥
1

ĥ2

[

6− ĥĥ′′ − 3(ĥ′)2 − 3
f̂ ′

f̂
ĥ′ĥ

]

=
1

ĥ2

{

6− h̄2

r2
ǫ2i(1 + ǫ2i)

( ĥ

h̄

)

− 3
[

(1 + ǫ2i)
h̄

r

]2

− 3
f̄(1− η1)(1 + ǫ2i)

f̄ + ζ2i
· h̄(h̄+ ξ2i)

r2

}

≥ 1

ĥ2

{

6− ǫ2i(1 + ǫ2i)α
2
2i

(

1 + 3
b0

b1
+ 4δ

)

− 3
[

α2i(1 + ǫ2i)
]2

3
(1− η1)(1 + ǫ2i)

(

1 + 3 b0
b1

+ 4δ
)

1− 2b0
b
1−η1−ω0
1

− η2−η1
1−η2

− τ
α2
2i

}

≥ 1

ĥ2

[

3− η21
1 + η1

(1 + η1)− 3
1− η1

1− η31
(1 + η1)

]

> 0.

From all the above, we proved that Rc(f̂ , ĥ) > 0 on (b2i, b2i+1), where
i ≥ 1.
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(iii). Finally we consider the interval (b2i+1, b2i+2), where i ≥ 0.
From Assumption 16, similarly as (9.49), we get

Rc|k1 ≥ 2f̄2

(

f̄ + ζ2i+1

)2
r2

[( rη2

β2i+1b
ω2i+1

2i+2

)2
− 1

− 2

1− 3b0
b1

− 4δ

(

1 +
2b0

b
1−η1−ω0
1

+
η2 − η1

1− η2
+ τ

)]

≥ 2f̄2

(

f̄ + ζ2i+1

)2
r2

[( 1− η2

β2i(1− η1)

)2
b
2η1
2i+1 − 1− 4

1− 3b0
b1

− 4δ

]

≥ f̄2

(

f̄ + ζ2i+1

)2
r2

[

b
2η1
2i+1 − 2− 8

(

1− 3b0
b1

− 4δ
)−1]

> 0.

And Rc(~n, ~n) > 0 is trivial by f̂ ′′ < 0 and ĥ′′ < 0.
It is easy to see that we also have

f̂ = f̄ + ζ2i+1 ≤ 5f̄ , ĥ = h̄+ ξ2i+1 ≥ (1− 4δ)h̄(9.50)

Using (9.9) and (9.17), we have

h̄ ≥ α2i

β2i
· 1 + ǫ2i

1− ǫ2i+1
· 1− η2

1− η1
b
η1+ω2i
2i+1 f̄ ≥ α0

2
b
η1
2i+1f̄(9.51)

from (9.50), (9.51) and Assumption 18, we can get ĥ > f̂ on (b2i+1,

b2i+2), where i ≥ 0.
From Assumption 16 and Assumption 19, we can get

Rc|k2(f̂ , ĥ) ≥
1

ĥ2

[

6− 3
( h̄

r

)2
(1− ǫ2i+1)

2

− 3
h̄2

r2
(1− ǫ2i+1)(1 − η2) ·

(

1 + ξ2i+1

h̄

)

(

1 + ζ2i+1

f̄

)

]

≥ 1

ĥ2

{

6− 3
[

α2i(1 + ǫ2i)
]2
[

1 +
(1 + η1)(1 − η2)

(1− η31)(1− ǫ2i+1)

]}

≥ 1

ĥ2

{

6− 3
[

1 +
1 + η1

1 + η1 + η21

]}

> 0

in the last inequality, we used the inequality
1− η2

1− η1
< 1− ǫ0 from (9.6).

From all the above, we get Rc(f̂ , ĥ) > 0 on (b0,∞) excepts at points
bi, i = 1, 2, · · · .

9.4. Step (IV).

Finally, we can remove the jump discontinuities in the functions, f̂ ′′, ĥ′′,
by modifying them by linear interpolation, in arbitrarily small neighbor-
hoods of the points, {bi}∞i=0. Call the resulting functions f ′′, h′′, and let
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the corresponding functions, f , h, be obtained by integration with re-
spect to r, subject to the conditions, f(0) = h(0) = 0, f ′(0) = h′(0) = 1.
The modification in the second derivatives can be performed on intervals
whose size decreases rapidly enough to ensure the nonnegative property
of Rc|k1(f, h), Rc|k2(f, h) and Rc(~n, ~n)(f, h) on [0,∞).

For (M8, g), M8 is diffeomorphic to R
8, g = dr2+f2k1+h2k2, define

two sequences {ti}∞i=0, {t̃i}∞i=0 as the following:

ti =
(

b1−ǫ2i
2i+1

)2
, t̃i =

(

b
1−ǫ2i+1

2i+2

)2
, i = 0, 1, 2, · · ·

And define the scaling metrics gi + t−1
i g and g̃i + t̃−1

i g, we also assume
that

Assumption 20. lim
i→∞

bǫii = 1 , lim
i→∞

b
ǫ2i
i+1 = 1 , lim

i→∞
bǫii+1 = ∞.

It is not hard to check that we can find sequences {bi}, {αi}, {βi},
{ωi}, {ǫi} and η1, η2 satisfying the Assumptions 1− 20. Hence we get

(

M8, gi, y, νi
) dGH−→

(

M∞, ρ∞, y∞, ν∞
)

(9.52)

and define νi(A) + t
n
2
i V (

√
ti)

−1µi(A), where µi is the volume element
determined by metric gi.

M∞ is diffeomorphic to R
5 with metric ρ∞ = dr2 + 1

4r
2gS

4
, and

ν∞
(

B∞(r)
)

= r8−3η1 .

On the other side, we have

(

M8, g̃i, y, ν̃i
) dGH−→

(

M̃∞, ρ̃∞, y∞, ν̃∞
)

(9.53)

where ν̃i(A) + t̃
n
2
i V (

√

t̃i)
−1µ̃i(A), and ũi is the volume element deter-

mined by g̃i.
M̃∞ is diffeomorphic to R+ with metric ρ̃∞ = dr2 and

ν̃∞
(

B∞(r)
)

= r8−3η2 .

From the proof of Theorem 1.6, we can get that for rotational sym-
metric functions on (M∞, ρ∞, y∞, ν∞) and (M̃∞, ρ̃∞, y∞, ν̃∞) respec-
tively,

∆(ρ∞,ν∞) =
∂2

∂r2
+

7− 3η1
r

· ∂

∂r
, ∆(ρ̃∞,ν̃∞) =

∂2

∂r2
+

7− 3η2
r

· ∂

∂r
.

Then it is not hard to get

H∞(x∞, y∞, t) = CH · t− 1
2
(8−3η1) exp

(

− dρ∞(x∞, y∞)2

4t

)

(9.54)

H̃∞(x∞, y∞, t) = CH̃ · t− 1
2
(8−3η2) exp

(

− dρ̃∞(x∞, y∞)2

4t

)

(9.55)
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where CH =
(

∫ ∞

0
e−

u2

4 u7−3η1du
)−1

and CH̃ =
(

∫ ∞

0
e−

u2

4 u7−3η2du
)−1

,

which follows from
∫

M∞

H∞dν∞ = 1 ,

∫

M̃∞

H̃∞dν̃∞ = 1.

From (4.13) and Proposition 7.7, we get

lim
i→∞

V (
√
ti)H(x, y, ti) = H∞(y∞, y∞, 1) = CH

lim
i→∞

V (
√

t̃i)H(x, y, t̃i) = H̃∞(y∞, y∞, 1) = CH̃ .

But from η1 < η2, it is easy to see that CH < CH̃ . Hence

lim
i→∞

V (
√
ti)H(x, y, ti) < lim

i→∞
V (

√

t̃i)H(x, y, t̃i).

This answers one open question raised in [Li86] negatively. That is,

without maximal volume growth assumption, lim
t→∞

V (
√
t)H(x, y, t) does

not generally exist.

Appendix A. Rellich-type Compactness theorem

Similar with the Rellich-Kondrachov Theorem for Sobolev spaces on
a fixed domain, we have Rellich-type Compactness Theorem in the
Gromov-Hausdorff sense, which was used in the proof of Theorem 3.1.
In this appendix we will give a complete proof of Rellich-type Compact-
ness Theorem.

We firstly state some background knowledge needed for the proof.

Definition A.1 (Measure approximation, [KS03]). Let Mi and M∞
be measure spaces. A net {ϕi : Mi ⊃ D(ϕi) → M∞} of maps is called a
measure approximation if the following are satisfied:

• Each ϕi is a measurable map from a Borel subset D(ϕi) of Mi to
M∞.

• The push-forward by ϕi of the measure on Mi weakly-* converges
to the measure on M∞, i.e., for any f ∈ Cc(M∞),

lim
i→∞

∫

D(ϕi)
f ◦ ϕidνi =

∫

M∞

fdν∞(A.1)

where Cc(M∞) is the set of continuous functions on M∞ with
compact support.

As in [Fuk87] (also see [KS03]), there is another definition of measured
Gromov-Hausdorff convergence as the following.

Definition A.2 (Measured Gromov-Hausdorff convergence). If νi,
ν∞ are Borel regular measures on Mn

i , M∞, we say that (Mn
i , yi, ρi, νi)

converges to (M∞, y∞, ρ∞, ν∞) in the measured Gromov-Hausdorff
sense, if there exists a measure approximation {ϕi : Mi → M∞}, such
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that each ϕi is an ǫi-Gromov-Hausdorff approximation for some ǫi → 0,
and ϕi(yi) = y∞.

Remark A.3 (Fukaya’s definition VS definition of Cheeger & Cold-
ing).
If (Mn

i , yi, ρi, νi) converges to (M∞, y∞, ρ∞, ν∞) in the measured Gro-
mov-Hausdorff sense, from the above definition, we have

• (Mn
i , yi, ρi)

dGH−→ (M∞, y∞, ρ∞).
• In addition, for any xi → x∞, (xi ∈ Mn

i , x∞ ∈ M∞), r > 0, we
have

νi

(

Bi(xi, r)
)

→ ν∞
(

B∞(x∞, r)
)

where (M∞, ρ∞) is a length space with length metric ρ∞, and

Bi(xi, r) = {z ∈ Mn
i | dρi(z, xi) ≤ r} ,

B∞(x∞, r) = {z ∈ M∞| dρ∞(z, x∞) ≤ r}.
The above two items were used to define the measured Gromov-

Hausdorff convergence in [Che99](also see Definition 2.2). Hence the
definition of the measured Gromov-Hausdorff convergence we chose (fol-
lowing [Fuk87]), implies the measured Gromov-Hausdorff convergence
discussed in Cheeger and Colding’s work.

However, from Proposition 2.2 in [KS03], in fact, the definition of
the measured Gromov-Hausdorff convergence in the Definition 2.2 is
equivalent to the one used by Cheeger and Colding.

In most parts of the paper, we used the definition of the measured
Gromov-Hausdorff convergence by Cheeger and Colding as in Definition
2.2. However, to prove the following Rellich-type compactness result in
the Gromov-Hausdorff sense, we will use the definition of Fukaya in the
Definition A.2.

And as in [KS08], we define Lp convergence in Gromov-Hausdorff
topology in the following.

Definition A.4 (Lp Convergence in G-H topology). Assume that
{fi}∞i=1 are functions on Mn

i , f∞ is a function on M∞, we say fi → f∞
in Lp sense on U ⊂ M∞, if there exists f

(j)
∞ ∈ Cc(U), such that

lim
j→∞

∫

U

|f (j)
∞ − f∞|pdν∞ = 0 , lim

j→∞
lim
i→∞

∫

Ui

|fi − f (j)
∞ ◦ ϕi|2dνi = 0

(A.2)

where ϕi : Ui → U is a measure approximation and an ǫi-Gromov-
Hausdorff approximation for some ǫi → 0.

Theorem A.5 (Rellich-type Compactness Theorem). Assume

Bi(xi, r) ⊂ (Mn
i , yi, ρi, νi) , B∞(x∞, r) ⊂ (M∞, y∞, ρ∞, ν∞)
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and Bi(xi, r)
dGH−→ B∞(x∞, r) in the measured Gromov-Hausdorff sense,

ui is a function on Mn
i , and for some fixed constant N > 0,

∫

Bi(xi,r)

[

|ui|2 + |∇ui|2
]

dνi ≤ N.(A.3)

Then there exists a subsequence of {ui} such that ui → u∞ in L2 sense

on any K∞ ⊂⊂ B̊∞(x∞, r), where B̊∞(x∞, r) denotes the interior of
B∞(x∞, r).

Remark A.6. The proof of the above theorem was sketched in
[Din02]. Following closely the argument in [KS08] (see Theorem 4.15
there), also compare [CM97a], we give a detailed proof here.

Proof: For K∞ ⊂⊂ B̊∞(x∞, r), assume d∞(K∞, ∂B∞) = 100r0 > 0.
Then there exists i0 > 0, for i > i0, dρi

(

φi(K∞), ∂Bi

)

= 10r0 > 0.
DefineKi = φi(K∞) ⊂ Bi(xi, r). Take a sequence of numbers rj ց 0,

j = 1, 2, · · · , and rj ≤ 0. Let {Bi(z
i
jk, rj)}

N i
j

k=1 be a maximal set of

disjoint balls with radius rj, centers z
i
jk in Ki.

First, by the volume comparison theorem,

νi
(

Bi(z
i
jk, rj)

)

≥ νi
(

Bi(z
i
jk, rj + 2r)

)

·
( rj

rj + 2r

)n

≥ C(rj , r, n)νi
(

Bi(xi, r)
)

.

Note

N i
j

∑

k=1

νi
(

Bi(z
i
jk, rj)

)

≤ νi
(

Bi(xi, r)
)

therefore

N i
j ≤ C(rj, r, n).

It follows from maximality that double the balls covers Ki. We now
get N i

j disjoint subsets Si
j1, S

i
j2 · · · , Si

jN i
j

which cover Ki, where

Si
jk = Bi(z

i
jk, 2rj)\

(

∪k−1
l=1 Bi(z

i
jl, 2rj)

)

.

We define a step function ūij : Ki → R by ūij = ūijk on each Si
jk,

where

ūijk =
1

νi

(

Bi

(

zijk, 2rj
)

)

∫

Bi

(

zi
jk

,2rj

)
uidνi.

Let η(y) be the number of k, such that y ∈ Bi

(

zijk, 4rj
)

and let

C̄i = maxy∈Bi(xi,r) η(y).
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If y ∈ ∩η(y)
m=1Bi

(

zijk, 4rj
)

, it follows that Bi(y, 5rj) contains all of the
balls

Bi

(

zij1, rj
)

, Bi

(

zij2, rj
)

, · · · , Bi

(

zijη(y), rj
)

.

Since these are disjoint,

η(y)
∑

m=1

νi

(

Bi

(

zijm, rj
)

)

≤ νi

(

Bi(y, 5rj)
)

.(A.4)

Also for each m = 1, 2, · · · , η(y), the doubling condition together with
the triangle inequality yields

νi

(

Bi(y, 5rj)
)

≤ νi

(

Bi

(

zijm, 9rj
)

)

≤ 9nνi

(

Bi

(

zijm, rj
)

)

.(A.5)

Combining (A.4) and (A.5), we see that η(y) ≤ 9n = C(n), hence
C̄i ≤ C(n).

We have the following claim.

Claim A.7.

lim
j→∞

lim
i→∞

∫

Ki

|ui − ūij|2dνi = 0.(A.6)

Proof:

∫

Ki

|ui − ūij |2 =
N i

j
∑

k=1

∫

Si
jk

|ui − ūijk|2

≤
N i

j
∑

k=1

∫

Bi(zijk ,2rj)
|ui − ūijk|2

≤
N i

j
∑

k=1

C(n)(2rj)
2

∫

Bi(zijk ,4rj)
|∇ui|2

≤ C̄iC(n)r2j

∫

Bi(xi,r)
|∇ui|2 ≤ C(n,N)r2j .

The conclusion follows from it, and limj→∞ rj = 0. q.e.d.
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It follows from the Cauchy-Schwarz inequality, together with the dou-
bling condition that

ūijk ≤ 1
√

νi

(

Bi

(

zijk, 2rj
)

)

(

∫

Bi

(

zi
jk
,2rj

)
u2i

)
1
2

≤ N
√

νi

(

Bi

(

xi, r
)

)

·
(rj + r

rj

)
n
2

≤ N · C
(

n, r0, r, ν∞
(

B∞(x, r)
)

)

(A.7)

note that the bound on the right side is independent of i, k. Hence for
fixed j, k, {ūijk}∞i=1 has a convergent subsequence.

There is a measure approximation ϕi : Bi(xi, r) → B∞(x∞, r), such
that each ϕi is an ǫi-approximation for some ǫi ց 0+. There is a
subsequence of {i} depending on j, denoted as Ij, such that for every
k = 1, 2, · · · , N i

j ,

zjk + lim
i→∞

ϕi(z
i
jk) , Nj + lim

i→∞
N i

J , ūjk + lim
i→∞

ūijk

all the above limits exist, where i ∈ Ij.
By (A.7), replacing Ij with a subset of Ij, also denoted as Ij, we can

assume that Nj = N i
j for all i ∈ Ij. We may assume that Ij+1 ⊂ Ij for

every j.
Therefore, by a diagonal argument, we find a common cofinal subnet

of all Ij, and denote it by I. Set

Sjk + B∞(zjk, 2rj)\ ∪k−1
l=1 B∞(zjl, 2rj) , 1 ≤ k ≤ Nj .

Define

ξ[x, a, b](y) =







1 if ρ∞(x, y) ≤ a
b−ρ∞(x,y)

b−a
if a < ρ∞(x, y) < b

0 if ρ∞(x, y) ≥ b.

We see that ξ[x, a, b] is a Lipschitz function with Lipschitz constant 1
b−a

.
For any ǫ > 0, y ∈ K∞, we define

ζǫSjk
(y) = ξ[zjk, rj − 2ǫ, rj − ǫ](y) ·

k−1
∏

l=1

{

1− ξ[zjl, rj − 2ǫ, rj − ǫ]
}

.

It is easy to check that

lim
ǫ→0+

|ζǫSjk
− χSjk

|L2(K∞) = 0 , lim
ǫ→0+

lim
i→∞

|ζǫSjk
◦ ϕi − χSi

jk
|L2(Ki) = 0

for i ∈ I and any j = 1, 2, · · · , k = 1, 2, · · · , Nj .



REFERENCES 525

For ūjk = limi→∞ ūijk, we define two functions by

ūj(x) =

Nj
∑

k=1

χSjk
(x)ūjk , ũǫj(x) =

Nj
∑

k=1

ζǫSjk
(x)ūjk.

Then

lim
ǫ→∞

lim
i→∞

|ũǫj − ūij|L2(Ki)

≤ lim
ǫ→∞

lim
i→∞

Nj
∑

k=1

[

|ūjk| · |ζǫSjk
◦ ϕi − χSi

jk
|L2(Ki) + νi(Ki)|ūjk − uijk|

]

= 0

that is limǫ→∞ limi→∞ |ũǫj − ūij |L2(Ki) = 0.
Hence

|ūj − ūj′ |L2 ≤ lim
ǫ→∞

(

|ūj − ũǫj |L2 + |ūj′ − ũǫj′ |L2 + |ũǫj − ũǫj′ |L2

)

≤ lim
ǫ→∞

lim
i→∞

|ũǫj ◦ ϕi − ũǫj′ ◦ ϕi|L2

≤ lim
i→∞

|ūij − ūij′ |L2

≤ lim
i→∞

|ūij − ui|L2 + lim
i→∞

|ūij′ − ui|L2 .

From Claim A.7, we get that {ūj} is a Cauchy sequence in L2(K∞),
then set u∞ + limj→∞ ūj ∈ L2(K∞). From the above argument, it is
easy to see that ui → u∞ in L2 sense on K∞, this completes the proof
of Theorem A.5. q.e.d.
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