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ON THE HOLONOMIC RANK PROBLEM
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Abstract

A tautological system, introduced in [17, 18], arises as a regular
holonomic system of partial differential equations that govern the
period integrals of a family of complete intersections in a complex
manifold X , equipped with a suitable Lie group action. In this
article, we introduce two formulas—one purely algebraic, the other
geometric—to compute the rank of the solution sheaf of such a
system for CY hypersurfaces in a generalized flag variety. The
algebraic version gives the local solution space as a Lie algebra
homology group, while the geometric one as the middle de Rham
cohomology of the complement of a hyperplane section in X . We
use both formulas to find certain degenerate points for which the
rank of the solution sheaf becomes 1. These rank 1 points appear
to be good candidates for the so-called large complex structure
limits in mirror symmetry. The formulas are also used to prove a
conjecture of Hosono, Lian, and Yau, on the completeness of the
extended GKZ system when X is Pn [12].

1. Introduction

Let X be a compact complex manifold, such that the complete linear
system of anticanonical divisors in X is base point free. In [18], the pe-
riod integrals of the corresponding universal family of CY hypersurfaces
is studied. It is shown that they satisfy a certain system of partial dif-
ferential equations defined on the affine space V ∗ = Γ(X,ω−1

X ), which
we call a tautological system. When X is a homogeneous manifold of
a semi-simple Lie group G, such a system can be explicitly described.
For example, one description says that the tautological system can be
generated by the vector fields corresponding to the linear G action on
V ∗, together with a set of quadratic differential operators corresponding
to the defining relations of X in PV under the Plücker embedding. The
case where X is a Grassmannian has been worked out in detail [17].

Definition 1.1. [17, 18] Let Ĝ be a complex Lie group, let Z : Ĝ →

Aut V be a given holomorphic representation such that Z(Ĝ) contains
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C
×1V , and let Z : ĝ → End V be the corresponding Lie algebra repre-

sentation. Let X̂ ⊂ V be a Ĝ-stable subvariety, and letβ : ĝ → C be a
Lie algebra homomorphism. The tautological system τ(X̂, V, Ĝ, β) is the
differential system generated by the operators

Zβ(x) := Z(x) + β(x), x ∈ ĝ,

p(∂ζ), p(ζ) ∈ I(X̂, V ).

Here ∂ζ ∈ Der C[V ∗] is defined by ∂ζ · a = 〈ζ, a〉 (a ∈ V , ζ ∈ V ∗);

I(X̂, V ) ⊂ C[V ] is the defining ideal of X̂ ⊂ V .

Note that in the definition, we can view Z(x) ∈ End V as a differential
operator on V ∗ because End V ⊂ Der (Sym V ) = Der C[V ∗].

There are a number of important special cases of this definition that
have been extensively studied in various contexts, and we shall now
briefly discuss some examples.

Let X be a complete toric variety with a dense torus T , and let L be a
base point free line bundle on X. Put V = Γ(X,L)∗, let ϕL : X → PV ∗

be the natural T -equivariant map and X̂ the projective cone over its
image. Put T̂ = T ×Gm, and let β : t̂ → C be any character of the Lie
algebra t̂ of T̂ . Then τ(X̂, V, T̂ , β) is a GKZ hypergeometric system [10].
We can also replace T by Aut X, in which case our tautological system
becomes an extended GKZ hypergeometric system [12]. We can further
specialize either system to the case L = ω−1

X . It is well known that both
of these systems are important tools for studying and computing period
integrals of CY hypersurfaces in toric varieties, especially in the context
of mirror symmetry [2, 13].

The theory of GKZ systems has been generalized by replacing the
torus T with a reductive algebraic group G [16]. Let R be a holomorphic
representations of G, and let X ⊂ PV be the projectivization of the
closure of

Im(ρ : G →֒ Aut R ⊂ End R ≡ V ).

Then X is a spherical variety and G × G acts on X naturally. Let
X̂ be the projective cone of X in V , and let β be any character of
the Lie algebra g ⊕ g ⊕ C. In this case, our tautological system τ =
τ(X̂, V,G×G×Gm, β) specializes to Kapranov’s hypergeometric system.

Let us return to the geometric context. Let π : Y → B := Γ(X,ω−1
X )sm

be the family of smooth CY hyperplane sections in X, and let Htop be
the Hodge bundle over B whose fiber at f ∈ B is the line Γ(Yf , ωYf

) ⊂

Hn−1(Yf ), where n = dimX. In [18], the period integrals of this fam-
ily are constructed by giving a canonical trivialization of H

top. Let
Π = Π(X) be the period sheaf of this family, i.e., the locally constant
sheaf generated by the period integrals [18, Definition 1.1].
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Theorem 1.2. The period integrals of the family are solutions to the
tautological system M = τ(X̂, V, Ĝ, (0; 1)), where X̂ is the cone over X

in V = Γ(X,ω−1
X )∗ and Ĝ = Aut X ×Gm.

This was proved in [17] for X a partial flag variety, and in full gen-
erality in [18], in which the result was also generalized to hyperplane
sections of general type. Applying an argument of [16], it was also shown
that if X has only a finite number of G = Aut X-orbits, then M is reg-
ular holonomic [17, Theorem 3.4]. In this case, if X = ⊔r

l=1Xl is the
decomposition into G-orbits, then the singular locus of M is contained
in ∪r

l=1X
∨
l . Here X∨

l ⊂ V ∗ is the conical variety whose projectivization
P(X∨

l ) is the projective dual to the Zariski closure of Xl in X.
In the well-known applications of variation of Hodge structures in

mirror symmetry, it is important to decide which solutions of our differ-
ential system come from period integrals. By Theorem 1.2, the period
sheaf is a subsheaf of the solution sheaf of a tautological system. Thus an
important problem is to decide when the two sheaves actually coincide.
If they do not coincide, how much larger is the solution sheaf? From
Hodge theory, we know that (see Proposition 6.3) the rank of the pe-
riod sheaf is given by the dimension of the middle vanishing cohomology
of the smooth hypersurfaces Yf . Therefore, to answer those questions,
it is desirable to know precisely the holonomic rank of our tautological
system.

Let us recall what is known on these questions in a number of special
cases. In the case of CY hypersurfaces in, say, a semipositive toric man-
ifold X, it is known [10, 1] that the holonomic rank of the GKZ hyper-
geometric system in this case is the normalized volume of the polytope
generated by the exponents of the monomial sections in Γ(X,ω−1

X ). This
number is also the same as the degree of the anticanonical embedding
X →֒ PΓ(X,ω−1

X )∗. However, it is also known [12] that this number
always exceeds (and is usually a lot larger than) the rank of the pe-
riod sheaf. If one considers the extended GKZ hypergeometric system,
where the torus T acting on X is replaced by the full automorphism
group Aut X, one would expect that the rank of the extended system
to be closer to that of the period sheaf. In fact, based on numerical evi-
dence, it was conjectured [12] that for X = P

n (which lives in both the
toric world and the homogeneous world), the rank of M coincides with
that of the period sheaf at generic points. In the case when X = XA is
a spherical variety of a reductive group G corresponding to a given set
of irreducible G-modules A, Kapranov [16] showed that the rank of his
A-hypergeometric system is bounded above by the degree of embedding
XA ⊂ PM∗

A, if the cone X̂A over XA in M∗
A is assumed to be Cohen-

Macaulay. This result was generalized to any smooth G-variety X with
a finite number of G-orbits by Lian, Song, and Yau [17]. Note, however,
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that the rank upper bound in each case cited above makes no assump-
tions about whether the underlying D-module arises from the variation
of Hodge structures of CY varieties. Moreover, since the holonomic rank
gives the number of independent solutions only away from the singular
locus, the bound yields no information about solutions at singularities.

In this paper, we introduce two new formulas—one purely algebraic,
and the other geometric—to compute the rank of the solution sheaf of
a tautological system for CY hyperplanes sections in X. The algebraic
formula expresses the solution space at any given point (singular or
not), as the dual of a certain Lie algebra homology with coefficient in
the coordinate ring of X (Theorem 2.9). The geometric formula uses the
algebraic result to identify the solution space with the middle de Rham
cohomology of the complement of the same CY hyperplane section inX.
Based on much numerical evidence, it is conjectured that the geometric
result holds for an arbitrary homogeneous variety. Our proof is valid for
most familiar cases (e.g., projective spaces, Grassmannians, quadrics,
spinor varieties, maximal Lagrangian Grassmannians, two exceptional
varieties, full flag varieties G/B, and products of such).

We also use both formulas to find certain degenerate points for which
the rank of the solution sheaf is 1. We conjecture that the rank 1 points
in Theorem 8.1 in fact correspond to large complex structure limits (in
the sense of [19, 11]), in the moduli space of CY hypersurfaces in X.

Conjecture 1.3. (Holonomic rank conjecture) Let X be an n-
dimensional projective homogeneous space of a semisimple Lie group
G. Then the dimension of the solution space of the tautological system
τ(X̂, V,G × Gm, β), where V = Γ(X,ω−1

X )∗, β = (0; 1), at the point
f ∈ V ∗, coincides with

dimHn
dR(X − Yf ).

In this paper, we will prove the following.

Theorem 1.4. Assume that the natural map

g⊗ Γ(X,ω−r
X ) → Γ(X,TX ⊗ ω−r

X )

is surjective for each r ≥ 0. Then Conjecture 1.3 holds for all f ∈ V ∗.

The list of homogeneous spaces known to satisfy the condition in
the theorem includes Grassmannians, full flag varieties G/B, quadrics,
spinor varieties, maximal Lagrangian Grassmannians, and two excep-
tional X’s, as well as products of such; see Proposition 4.1. As one
immediate consequence, we also deduce the following corollary.

Corollary 1.5. [12] For X = P
n, the tautological system

τ(X̂,Γ(X,ω−1
X )∗, SLn+1 ×Gm, (0; 1))
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(which is a special case of an extended GKZ system) is complete. In
other words, the solutions at a generic point f ∈ V ∗ are precisely the
period integrals of CY hypersurfaces in X.

More generally, we will show as a corollary of Conjecture 1.3 that the
question of completeness for a givenX can be reduced to the vanishing of
the middle primitive cohomology of X, which is essentially topological.

After the posting of this paper, Conjecture 1.3 has recently been
solved by X. Zhu and two of the coauthors following a different a ap-
proach [14]. Namely, they use Fourier transform and the Riemann–
Hilbert correspondence to realize the de Rham cohomology as a part of
the perverse sheaf corresponding to the tautological system under RH.
Conjecture 1.3 then follows from a certain vanishing theorem. The con-
jecture has also inspired a generalization of the rank formula whereby
the homogeneous variety X is replaced by an arbitrary G-variety with
finitely many orbits.

Acknowledgments. B.H.L. is partially supported by NSF FRG grant
DMS-0854965, and S.T.Y. by NSF FRG grant DMS-0804454. A.H. has
benefited greatly from discussions with Marcel Bökstedt and Shenghao
Sun, and part of the work was done during his visit to the Tsinghua
Mathematical Sciences Center. S.B. would also like to acknowledge sup-
port from the Tsinghua Mathematical Sciences Center and from the
Tata Institute for Fundamental Research. His role in the project grew
out of conversations he had at these institutions in the fall and winter
of 2011–2012.

2. Solution sheaf and Lie algebra homology

We begin with the set up in [18] and consider the rank of the solution

sheaf to the tautological system τ(X̂, V, Ĝ, β). We have a holomorphic
representation

Z : ĝ → End V

and its contragredient dual representation

Z∗ : ĝ → End V ∗.

Since End V ⊂ Der (Sym V ) = Der C[V ∗] and End V ∗ ⊂ Der
(Sym V ∗) = Der C[V ], we can view, for x ∈ ĝ,

Z(x) ∈ Der C[V ∗], Z∗(x) ∈ Der C[V ].

Thus, by fixing a basis ai for V and dual basis a∗i for V ∗, we can write

C[V ∗] = C[a], C[V ] = C[a∗]

and

Z(x) =
∑

i,j

xjiaj
∂

∂ai
, Z∗(x) = −

∑

i,j

xija
∗
j

∂

∂a∗i
.
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Put
Zβ(x) = Z(x) + β(x) (x ∈ ĝ).

Definition 2.1. Let D = C[a][∂1, ∂2, . . .] be the Weyl algebra on V ∗,
where ∂i =

∂
∂ai

, and consider the linear isomorphism

Φ : D → C[V × V ∗] = C[a, a∗],
∑

u

gu(a)∂
u 7→

∑

u

gu(a)a
∗u.

Let Ψ : D → End C[a, a∗] be the D-module structure induced by Φ, i.e.,

Ψ(Q) · q = Φ(Q · Φ−1(q)), (Q ∈ D, q ∈ C[a, a∗]).

Observe that on the variables ∂i, Φ is precisely the inverse of the
Fourier transform we used to define the tautological system τ(X̂, V, Ĝ, β)
in [17, 18]; cf. [1, Equation (4.5)].

Next, it is straightforward to check the following.

Lemma 2.2. We have Ψ(ai) = ai (acting by left multiplication) and

Ψ(∂i) =
∂
∂ai

+a∗i . Let I = I(X̂, V ) ⊂ C[a∗] = C[V ] be the vanishing ideal

of X in PV . Then the ideal C[a]I of the ring C[a, a∗] is a D-submodule
of C[a, a∗] under the action Ψ.

Lemma 2.3. The image under Φ of DΦ−1(I) is C[a]I. In particular,
Φ induces a D-module isomorphism

D/DΦ−1(I) ∼= R[a],

where R = RV := C[V ]/I(X̂, V ) = C[a∗]/I.

Proof. Since Φ−1(I) ⊂ C[∂1, ∂2, . . .], we have Φ(DΦ−1(I)) = C[a, a∗]I.
The right side is C[a]I, since I is an ideal in C[a∗]. q.e.d.

Put
f =

∑

i

aia
∗
i ∈ C[V × V ∗] = C[a, a∗],

which is the “generic” hyperplane section under the embeddingX ⊂ PV .
Then by a straightforward calculation, we find that the following holds.

Lemma 2.4. The map Z∗
f ,β : ĝ → End C[a, a∗] given by

x 7→ Z∗
f ,β(x) = Z∗(x) + (Z∗(x)f)− β(x) (x ∈ ĝ)

is a Lie algebra homomorphism. (Here (Z∗(x)f) means the operator
“multiplication by Z∗(x)f .” This is not the same as the composition of
the two operators Z∗(x) and multiplication by f .)

As we shall see later, in the case when ĝ is a direct sum of Lie alge-
bras g ⊕ C, the choice β = (0; 1) and Z∗(1) being the negative Euler
operator on C[a∗] will be important for computing the holonomic rank
using the method of Feynman measures. Note further that the lemma

also holds true if we replace f by a fixed section f =
∑

i a
(0)
i a∗i ∈ V ∗ and
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C[a, a∗] by C[a∗] (i.e., evaluate the ai at ai = a
(0)
i ∈ C), since the deriva-

tions Z∗(x) ∈ Der C[a∗] do not affect the variables ai in the calculation
leading to Lemma 2.4.

Lemma 2.5. For x ∈ ĝ, Z∗
f ,β(x) ∈ End DC[a, a

∗]. In other words,

the ĝ-action and the D-action on C[a, a∗] commute.

Proof. It is obvious that [Z∗
f ,β(x), ai] = 0. We also have

[Z∗
f ,β(x),

∂

∂ai
+ a∗i ] = 0.

By Lemma 2.2, it follows that [Z∗
f ,β(x),Ψ(D)] = 0, i.e., the ĝ-action and

the D-action on C[a, a∗] commute. q.e.d.

Lemma 2.6. The D-submodule C[a]I ⊂ C[a, a∗] is also a ĝ-submodule,
where ĝ acts via the operators Z∗

f ,β(x). Hence ĝ acts on the quotient

R[a] = C[a, a∗]/C[a]I.

Proof. Since I ⊂ C[a∗] = C[V ] is the vanishing ideal of the Ĝ invari-

ant subvariety X̂ ⊂ V , and since the Lie algebra ĝ of Ĝ acts on C[V ] by
Z∗ : ĝ → Der C[V ], it follows that Z∗(x)I ⊂ I. Since the Z∗(x)f acts on
C[V ×V ∗] = C[a, a∗] by left multiplication, they also leave C[a]I stable.
It follows that the Z∗

f ,β(x) = Z∗(x) +Z∗(x)f − β(x) leave C[a]I stable.
q.e.d.

Lemma 2.7. For x ∈ ĝ, ΦZβ(x) = −Z∗
f ,β(x) ·1. Moreover, the image

under Φ of DZβ(ĝ) is Z∗
f ,β(ĝ) · C[a, a

∗].

Proof. For x ∈ ĝ, we have

ΦZβ(x) = Φ(
∑

xjiaj
∂

∂ai
+ β(x))

=
∑

xjiaja
∗
i + β(x)

= −Z∗(x)f + β(x) = −Z∗
f ,β(x) · 1,

which gives the first assertion. Since the D-action on C[a, a∗] commutes
with the Z∗

f ,β(x) by Lemma 2.5, it follows that

Φ(DZβ(x)) ⊂ Z∗
f ,β(x)C[a, a

∗].

Hence Φ(DZβ(ĝ)) ⊂ Z∗
f ,β(ĝ)C[a, a

∗]. To see the reverse inclusion, let

q ∈ C[a, a∗], x ∈ ĝ. We have

Z∗
f ,β(x)q = Z∗

f ,β(x)Φ(Φ
−1(q) · 1)

= Z∗
f ,β(x)Ψ(Φ−1(q)) · 1

= Ψ(Φ−1(q))Z∗
f ,β(x) · 1

= −Ψ(Φ−1(q))Φ(Zβ(x))

= −Φ(Φ−1(q)Zβ(x)) ∈ Φ(DZβ(x)).
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Here the second, fourth, and last equalities follow from Definition 2.1,
while the third equality follows from Lemma 2.5. This proves the reverse
inclusion. q.e.d.

Recall Definition 8.1 of [18]:

τ(X̂, V, Ĝ, β) := D/(DZβ(ĝ) +DΦ−1I(X̂, V )).

Combining Lemmas 2.3, 2.6, and 2.7, we get the following.

Theorem 2.8. Φ induces a D-module isomorphism

τ(X̂, V, Ĝ, β) ∼= R[a]/Z∗
f ,β(ĝ)R[a],

where R := C[V ]/I(X̂, V ) and R[a] = R[V ∗].

For a(0) ∈ C
dimV , let Ôa(0) be the D-module of formal power series at

a(0), and let Oa(0) be the D-module of convergent power series at a(0).
Let Ca(0) = C be the one-dimensional C[a]-module such that ai acts by

a
(0)
i . As before, we put

f =
∑

i

a
(0)
i a∗i ∈ V ∗.

Theorem 2.9. Suppose X̂ has only a finite number of Ĝ-orbits. Put
M = τ(X̂, V, Ĝ, β). Then we have

HomD(M,Oa(0) )
∼= HomD(M, Ôa(0) )

∼= HLie
0 (ĝ, Rf )

∗,

where ĝ acts on Rf := C[X̂ ] by

Z∗
f,β : ĝ → End Rf ,

x 7→ Z∗(x) + Z∗(x)f − β(x).

Part of the argument of Theorem 4.17 of [1] generalizes to our setting.
The main point here is that even though the argument there which
contained calculations that relied heavily on the assumptions that X is
a toric variety and that the ideal I is binomial, when the argument is
reinterpreted suitably, the assumptions turn out to be unnecessary. One
further new observation here is that it is useful to interpret the space
Rf/Z

∗
f,β(ĝ)Rf as the Lie algebra homology of the ĝ-module Rf .

Proof. By Theorem 3.4 of [17], M is regular holonomic, so the first
isomorphism holds [3, Proposition 14.8]. Since M is a finitely generated
D-module, we have

HomD(M, Ôa(0))
∼= HomC(Ca(0) ⊗C[a] M,C).

By the preceding theorem, the right side is

HomC(Ca(0) ⊗C[a] R[a]/Z∗
f ,β(ĝ)R[a],C) ∼= HomC(Rf/Z

∗
f,β(ĝ)Rf ,C)

∼= HLie
0 (ĝ, Rf )

∗.

This completes the proof. q.e.d.
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Remark 2.10.

(a) Consider the linear isomorphism Rf → Ref , φ 7→ φef . Under this
identification, the ĝ-action by Z∗

f,β(ĝ) on Rf corresponds to the action

ĝ⊗Ref → Ref , x⊗ φef 7→ (Z∗(x)− β(x))(φef ).

From now on, HLie
∗ (ĝ, Ref ) will be understood to be the Lie algebra

homology with respect to this action. We can do the same for the ĝ-
modules I(X̂, V ) and C[V ].
(b) We will see that writing the ĝ-action as such allows us to use the
idea of Feynman measures [4] to directly compute the holonomic rank

of τ(X̂, V, Ĝ, β) in some cases.
(c) In a later section, we will reinterpret the Lie algebra homology in
the theorem in terms of certain de Rham cohomology, in the case X →֒
PV where V = Γ(X,ω−1

X )∗, Ĝ = G × Gm where G is semisimple and
β = (0; 1).

Example 2.11. As an application of Theorem 2.9, we will show that
for X = P

n the period integrals of Calabi–Yau hypersurfaces form a com-
plete set of solutions to the tautological system (Corollary 1.5). This will
also turn out to be an easy consequence the geometric formula (Theorem
1.4) later.

We will eventually specialize to the Fermat case f = xn+1
0 + · · · +

xn+1
n , but for now f can be any smooth CY hyperplane section. First

consider the period sheaf, i.e., the sheaf defined on Γ(X,ω−1
X )sm, that is

generated by the period integrals of smooth CY hypersurfaces Yf in X.
By Proposition 6.3, it is locally constant of rank given by the dimension
of the vanishing cohomology. That is

νn := dimHn−1(Yf )− dim i∗Hn−1(X),

where i : Yf →֒ X is the inclusion map. By the Lefschetz hyperplane
theorem, it is easy to show that for X = P

n,

νn =
n

n+ 1
(nn − (−1)n).

Since the period sheaf is a subsheaf of the solution sheaf Sol(M) (The-
orem 1.2), dimHLie

0 (ĝ, Ref ) ≥ νn. Thus it remains to show that

(2.1) dimHLie
0 (ĝ, Ref ) ≤ νn.

Note that we can identify R with the subring of C[x] := C[x0, . . . xn]
consisting of polynomials of degrees divisible by n+ 1.

Lemma 2.12. We have

(2.2) ĝ · (Ref ) = Ref ∩
∑

i

∂

∂xi
(C[x]ef ).
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Proof. Consider the action ĝ → End Ref , y 7→ Z∗(y)−β(y). Here Z∗

comes from the dual of the representation Z : ĝ = gln+1 → End V . We
have

Z∗(1) = −
1

n+ 1

∑

i

xi
∂

∂xi
= −

1

n+ 1

∑

i

∂

∂xi
xi + 1.

We also have Z∗(Xij) = −xi
∂

∂xj
= − ∂

∂xj
xi (i 6= j) and Z∗(Hi) =

−x0
∂

∂x0
+xi

∂
∂xi

= − ∂
∂x0

x0+
∂
∂xi

xi, where the Xij ,Hi form the standard

basis of g = sln+1. Using β(g) = 0 and β(1) = 1 (this value is crucial!),
it follows easily that

(Z∗ − β)(ĝ) =
∑

ij

C
∂

∂xi
xj.

This shows that the left side of (2.2) is a subspace of the right side.
To see the reverse inclusion, we consider the Z/(n + 1)Z grading on

C[x]ef : for p(x) ∈ C[x] a degree k polynomial, the grading of p(x)ef is
k mod (n+ 1). Since R ⊂ C[x] is the subring generated by polynomials
of degree 0 mod (n+1), both sides of (2.2) have grading 0 mod (n+1).
Let A be an element on the right side of (2.2), so that it has grading
0 mod (n+ 1) and it has the form

A =
∑

i

∂

∂xi
(pi(x)e

f ),

where pi(x) ∈ C[x]. By grouping homogeneous terms, we may as well
assume that the pi(x) have polynomial degree 1 mod (n + 1), which
means that pi(x) =

∑

j xjpji(x) for some pji(x) of degree 0 mod (n+1).

This shows that A =
∑

ij
∂
∂xi

xj(pji(x)e
f ), which lies in the left side of

(2.2). This proves the reverse inclusion. q.e.d.

To complete the proof of the Corollary 1.5, we now choose

f = xn+1
0 + · · ·+ xn+1

n .

Consider an element of the form xk00 . . . xknn ef in Ref with k0 ≥ n. Then

∂

∂x0
(xk0−n

0 xk11 . . . xknn ef ) = (n+ 1)xk00 . . . xknn ef

+
∂

∂x0
(xk0−n

0 xk11 . . . xknn ) ef .

By the lemma, xk00 . . . xknn ef and ∂
∂x0

(xk0−n
0 xk11 . . . xknn ) ef represent the

same element in HLie
0 (ĝ, Ref ). The analogous statement also holds for

each ki ≥ n. It follows that any element in HLie
0 (ĝ, Ref ) can be rep-

resented by a linear combination of elements of the form xk00 . . . xknn ef ,
where the ki are at most n− 1 and

k0 + · · ·+ kn ≡ 0 mod (n+ 1).
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For integer 0 ≤ s ≤ (n+ 1)(n − 1), we denote by a(s) the number of
integer solutions to the equation

k0 + · · ·+ kn = s,

where the ki are between 0 and n− 1. By the preceding paragraph,

(2.3) dimHLie
0 (ĝ, Ref ) ≤

∑

(n+1)|s

a(s).

To calculate the right side, we consider the Gauss sum
n
∑

λ=0

∑

0≤ki≤n−1

e
2πi(k0+···+kn)λ

n+1 ,

which is equal to (n+1)
∑

(n+1)|s a(s). On the other hand, by summing

over the ki individually, this sum is equal to
∑n

λ=0(
1−ξnλ

1−ξλ
)n+1, where

ξ = e
2πi
n+1 . The latter sum can be calculated, and it is equal to (n+1)νn.

Therefore,

(2.4)
∑

(n+1)|s

a(s) = νn.

Finally, (2.3) and (2.4) yield (2.1).

3. Lie algebra homology in geometric terms

Let X be a smooth, projective variety over C, and let πL : L → X be
a line bundle over X. Let G be a reductive Lie group acting on (L,X).
Let g be the Lie algebra of G. g acts by derivations on the function
algbera Sym L∗. In particular, if ℓ is a local section of L∗ and f is a
function on X, then for x ∈ g we have x(fℓ) = fx(ℓ)+x(f)ℓ; i.e., g acts
by relative derivations. In addition, the action is linear; i.e., g preserves
the grading on Sym L∗.

Let U := L − {0} be the complement of the zero section, and write
π = πL|U : U → X. We have an exact sequence of tangent bundles

(3.1) 0 → π∗
LL → TL → π∗

LTX → 0.

Here π∗
LL is the sheaf of tangent vectors along the fibres. Restricting

(3.1) over U yields

(3.2) 0 → OU → TU → π∗TX → 0.

The sheaf OU in this context has a canonical generator that is the Euler
operator E given by E(fℓr) = rfℓr. Assuming the action of g is faithful,
we have

(3.3) g+C · E ⊂ Γ(U, TU ).

Another way to think about this is to note that G × Gm acts on L. It
follows that E commutes with the action of g. Assuming that g acts
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faithfully on X (note even in the homogeneous space case, this is an
extra hypothesis if g is not simple), we will have a sub-Lie algebra
g⊕ C ·E →֒ Γ(U, TU ).

Because of the Gm-action on U , sheaves like π∗OU , π∗TU , and π∗Ω
i
U

will have a grading. The exterior derivative d : π∗Ω
i
U → π∗Ω

i+1
U has

degree 0.

Lemma 3.1. π∗L has a unique (upto C
×) non-vanishing section of

degree −1 for the Gm-action.

Proof. It suffices to check with X = P
n = Proj C[t0, . . . , tn], L =

OPn(1). Write P
n =

⋃

Ui with Ui = Spec C[t0/ti, . . . , tn/ti]. Identify
L|Ui = OUi

with transition cocycle σij = tj/ti (so the sections tk/ti on

Ui glue to global sections). We have π−1(Ui) = Spec C[t0, . . . , tn, t
−1
i ].

The global section of π∗L is given by t−1
i on π−1(Ui). q.e.d.

Assume now that the canonical bundle ωX
∼= L−N for some N ≥ 1.

We have Ω1
U/X = OU

dℓ
ℓ , so there is an isomorphism that we denote by α,

(3.4) α : ωU
∼= π∗ωX

∼= OU [−N ].

Note that if α1, α2 are two choices for such an isomorphism, then α2 ◦
α−1
1 is an isomorphism OU → OU of degree 0, and hence it lies in C

×.
In particular, if we assume the group G is semi-simple and hence has
no abelian characters, the isomorphism α is invariant under the action
of G.

Let dimX = n, so ωU = Ωn+1
U . Then we define a map θ,

(3.5) θ : TU = Hom(Ω1
U ,OU ) ∼= Hom(Ω1

U , ωU )[N ] = Ωn
U [N ].

Under this identification, the exterior derivative d : Ωn
U → ωU is iden-

tified with a map (of degree 0)

(3.6) D := α ◦ d ◦ θ : TU → OU .

Now suppose given 0 6= f ∈ Γ(X,LN ) = Γ(X,ω−1
X ). We have a

contraction operator

(3.7) idf : TU → OU [N ],

and we may consider the composition (ignoring the grading)

(3.8) (g⊕ C ·E)⊗C OU → TU
D+idf
−−−−→ OU .

To connect with Theorem 2.9, we will now assume that L is very ample
and G is semi-simple. We claim the following.

Lemma 3.2. the resulting action

(3.9) (g⊕ C ·E)⊗C Γ(U,OU ) → Γ(U,OU )

is given by

(3.10) x⊗ φ 7→ ρ(x)φ+ φρ(x)f, E ⊗ φ 7→ E(φ) + φE(f) +Nφ,
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where x ∈ g.

Proof. Let φ, δ be local sections of OU , TU , respectively. We have

α(dφ ∧ θ(δ)) = δ(φ),(3.11)

D(φδ) = φD(δ) + δ(φ).(3.12)

Let ρ : g →֒ Γ(U, TU ) be the map given by the action. Since the actions
of G and Gm on U commute, the image of ρ lies in the degree 0 part of
Γ(U, TU ). Since D has degree 0, we get D ◦ ρ(g) ⊂ Γ(U,OU )deg 0 = C.
Since D commutes with the action of G, we get that D ◦ ρ[g, g] = (0).
But G semi-simple implies g = [g, g]. Thus D ◦ ρ = 0.

Taking δ = ρ(x) in (3.12), where x ∈ g, we conclude that the diagram

(3.13)

Γ(U, TU )
D

−−−−→ Γ(U,OU )
x





∥

∥

∥

g⊗ Γ(U,OU )
natural action
−−−−−−−−→ Γ(U,OU )

commutes. This yields the first half of (3.10).
Next, we calculate D(E). Let S = Spec A be a non-empty open

in X such that L|S ∼= OS . Let US = π−1(S) = Spec A[t, t−1]. (Here
t ∈ OU has degree 1.) Then ωS = OS · η for some n-form η, and
α−1(1)|US = tNdt/t ∧ π∗η. Restricted to S, we have E = td/dt, and
it is straightforward to check from (3.11) that θ(E) = tNπ∗η. Thus

D(E) = αdθ(E) = α(NtNdt/t ∧ η) = N,(3.14)

D(φE) = Nφ+ E(φ).(3.15)

Finally, we have α(d+df)θ = D+α(dfθ). For δ ∈ TU , it follows from
(3.11) that α(df)θ(δ) = δ(f). This yields the second half of (3.10).q.e.d.

Assume now that ωX = OX(−N) for some N ≥ 1. We view the
various graded rings and modules as being graded modN , and the sub-
script 0 mod N will refer to the sub-object of graded degree 0 modN .
For example,

(3.16) Γ(U,OU )0 mod N
∼=

⊕

r≥0

Γ(X,ω−r
X ).

Corollary 3.3. Assume the following

(i) ωX
∼= L−N for some N ≥ 1.

(ii) The map g⊗OX → TX is surjective.
(iii) The maps g ⊗ Γ(X,ω−r

X ) → Γ(X,T ⊗ ω−r
X ) are surjective for all

r ≥ 0.

Then the Lie algebra homology HLie
0 (ĝ, Rf ) in Theorem 2.9 is isomor-

phic to

(3.17) Coker(Γ(U,Ωn
U )0 mod N

d+df
−−−→ Γ(U,ωU )0 mod N ).
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Proof of corollary. It follows from (ii) together with (3.1) and (3.5) that
(g ⊕ C) ⊗ OU ։ TU

∼= Ωn
U [N ]. Moreover, the coordinate ring of X ⊂

PΓ(X,ω−1
X )∗ is

C[X̂] =
⊕

r≥0

Γ(X,ω−r
X ) ∼= Γ(U,OU )0 mod N .

Comparing the ĝ-actions on both sides (Theorem 2.9 and Lemma 3.2),
we see that this is an isomorphism of ĝ-module.

Now consider the diagram of global sections viewed as graded mod
N .

(3.18)

Γ(U,Ωn
U )0 mod N

d+df
−−−−→ Γ(U,ωU )0 mod N

θ

x





∼= α





y

∼=

Γ(U, TU )0 mod N
D+idf
−−−−→ Γ(U,OU )0 mod N

surj

x





∥

∥

∥

(g⊕ C)⊗ Γ(U,OU )0 mod N −−−−→ Γ(U,OU )0 mod N .

It follows from (iii) that the left vertical arrow in (3.18) is surjective, so
the three horizontal arrows have isomorphic cokernels. q.e.d.

4. Homogeneous spaces having the surjectivity property

Concerning condition (iii) of the Corollary 3.3. Here is what we can
say at the moment.

Proposition 4.1. Let G be a semi-simple group over a field of char-
acteristic 0, and let P ⊂ G be a parabolic subgroup. Write X = G/P .
Let OX(1) on X be very ample with G action, and assume ωX =
OX(−N) for some N > 0. Write S =

⊕

r≥0 Γ(X,OX (rN)), and let

M :=
⊕

r≥0 Γ(X,TX (rN)), so M is a graded S-module. Then M is
generated in degree 0 in the following cases:
(a) g ∼= Γ(X,TX ), and the unipotent u ⊂ p := Lie(P ) is abelian. (In
[20], such X are referred to as Hermitian symmetric. Examples include
Grassmannians, quadrics, spinor varieties, maximal Lagrangian Grass-
mannians, and two exceptional X’s, as well as products of such.)
(b) P = B is a Borel.

Proof. In case (a), let l ⊂ p be the Lie algebra of the Levi. The
representation of p on g/p factors through p ։ l. In particular, this
representation is completely reducible. It follows that the tangent bundle

TX = G
P
× g/p breaks up as a direct sum of bundles (TX)i associated

to irreducible representations. The same will be true if we tensor with
any abelian character of p. By Theorem IV, of [5], Γ(X, (TX )i) is an
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irreducible G-module. By assumption

(4.1) g ∼= Γ(X,TX) ∼=
⊕

i

Γ(X, (TX )i),

so we get a decomposition g =
⊕

gi of the adjoint representation of
G on g. Again by Bott, Γ(X, (TX )i ⊗ ω−r

X ) is G-irreducible for r > 0.

Finally, the maps gi⊗Γ(X,ω−r
X ) → Γ(X, (TX )i⊗ω−r

X ) are non-zero and
hence surjective since they are compatible with the G-action.

Suppose now G is arbitrary semi-simple and P = B is a Borel with
Lie algebra b, maximal torus T with Lie algebra t, and unipotent radical
U with Lie algebra u.

Lemma 4.2. Let M be a G-module. Then the vector bundle G
P
×

M ∼= OX ⊗C M .

Proof. The bundle is obtained from G ×M by identifying (gb,m) ∼
(g, bm). A section of G × M is given by a function f : G → M . Since

(gb, f(gb)) ∼ (g, bf(gb)), this section descends to a section of G
P
× M

if and only if f(gb) = b−1f(g). If the representation of P on M lifts
to G, we define for m ∈ M , fm(g) := g−1m. Then fm(gb) = b−1fm(g),
so fm descends to a section of the bundle. In this way, we obtain a
trivialization. q.e.d.

Applying the lemma to the exact sequence of b-modules 0 → b →
g → g/b → 0 yields an exact sequence of bundles

(4.2) 0 → V → g⊗C OX → TX → 0.

The exact sequence 0 → u → b → t → 0 yields another exact sequence
of bundles

(4.3) 0 → Ω1
X → V → t⊗C OX → 0

(Note that the vector bundle associated to u is Ω1
X . Also note that t has

trivial b-action and hence by the lemma the corresponding equivariant
bundle is trivial.)

For the proof of proposition 4.1 we need

(4.4) H1(X,V(rN)) = (0), r ≥ 0.

When r = 0, this is true since g ∼= Γ(X,TX ). Assume r ≥ 1. The
character c of b associated to ω−1

X = OX(N) is the sum of all the positive
roots of g. (We follow the notation of [15]: (α, β) denotes the Killing
form, and 〈α, β〉 := 2(α, β)/(β, β).) One knows [15, p. 50] that 〈c, α〉 = 2
for any simple positive root α. For α, β both positive, we have 〈β, α〉 ≤
3 [15, p. 45] so 〈c − β, α〉 ≥ 2 − 3 = −1. Let L(c − β) be the line
bundle on G/B associated to the character c−β. We have the following
consequences of Borel-Bott-Weil theory [7, corollaire 8],
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(i) If 〈c− β, α〉 ≥ 0 for all positive simple α, then H∗(X,L(c− β)) =
(0), ∗ ≥ 1.

(ii) If there exists a simple positive α for which 〈c− β, α〉 = −1, then
H∗(X,L(c − β)) = (0) for all ∗ ≥ 0.

(iii) For n ≥ 2, the character nc−β is dominant, soH∗(X,L(nc−β)) =
(0), ∗ ≥ 1.

Start with the identity Ω1
X = G

B
× u; the vector bundle Ω1

X(rN) has
a filtration with quotients that are line bundles of the form L(rc − β)
as above. Since all these have vanishing cohomology in degrees ≥ 1,
it follows that the same will be true for Ω1

X(rN). Since the line bun-
dle OX(rN) corresponds to a dominant weight for r ≥ 1, the desired
vanishing (4.4) now follows from (4.3). q.e.d.

5. From Lie algebra homology to de Rham cohomology

In this section, we will prove Theorem 1.4.
With notation as above, define

(5.1) W = X − V(f).

It remains to interpret the cokernel in (3.17) in terms of the cohomol-
ogy of W in middle degree n. For this we adapt a method of Dimca [8].
X ⊂ P

n will be a smooth, projective variety with cone Spec R, so R =
C[x1, . . . , xn+1]/I for a homogeneous ideal I. Let B = C[x1, . . . , xn+1].
∆ =

∑

xi
∂
∂xi

will be the Euler operator that we view as acting by con-

traction ∆ : Ωi
B → Ωi−1

B . The following properties of ∆ are elementary:

Lemma 5.1. (i) ∆2 = 0. The complex Ωn+1
B

∆
−→ Ωn

B → · · · →
Ω1
B → B can be identified with the Koszul complex associated to the

ideal (x1, . . . , xn+1) ⊂ B. It is acyclic away from 0 ∈ Spec B.
(ii)The B-module Ωi

B =
⊕

r≥iΩ
i
B,r is graded, with xi and dxi of degree

1. ∆ and the exterior differential d have degree 0 for this grading, and
d∆ +∆d = µ is the number operator for this grading, acting by multi-
plication by r on Ωi

B,r. In particular, if f ∈ B is homogeneous of degree
N , then ∆df = Nf .

(iii) For u ∈ Ωi
B, v ∈ Ωj

B, we have ∆(u∧ v) = ∆(u)∧ v+(−1)iu∧∆(v).
(iv) Let I ⊂ B be a homogeneous ideal, and let I∗ ⊂ Ω∗

B be the dif-
ferential ideal generated by I. Then ∆(I∗) ⊂ I∗[−1]. In particular, ∆
induces a map of graded sheaves ∆R : Ω∗

R → Ω∗
R[−1], where R := B/I.

Proof. (ii) and (iii) are proved in detail in [9, section 2.1.3 lemma].
(i) is immediate, and (iv) is clear from the last assertion in (ii). q.e.d.

Let U = Spec R−{0} be the punctured cone. We have a Gm-bundle
π : U → X. As a consequence of Lemma 5.1, ∆ induces a surjection
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∆U : Ω1
U ։ OU , and the induced complex

(5.2) Ωr+1
U

∆U−−→ · · · → OU

is the corresponding Koszul complex and is acyclic. Note ∆U (π
∗Ω1

X) =
(0) (it suffices to remark for z homogeneous of degree 0 that ∆U (dz) =
0 · z = 0). It follows by looking at ranks that the sequence

(5.3) 0 → π∗Ω1
X → Ω1

U
∆U−−→ OU → 0

is exact, and from (5.2) and (5.3) that

(5.4) π∗Ωi
X = Image(∆U : Ωi+1

U → Ωi
U ).

(Alternatively, we can identify ∆ : Ω1
U ։ OU in (5.3) with Ω1

U ։

Ω1
U/X

∼= OU ·dt/t. The complex (5.2) then becomes the Koszul complex

on this arrow.)
We get exact sequences of sheaves on U and on X

0 → π∗Ωi
X → Ωi

U → π∗Ωi−1
X → 0,(5.5)

0 →
⊕

Z

Ωi
X(n) → π∗Ω

i
U →

⊕

Z

Ωi−1
X (n) → 0.(5.6)

Note that π∗Ω
i
U is Z-graded (locally U ∼= X×Spec C[t, t−1] and we give

t degree 1 and dt/t degree 0. The resulting grading is independent of
the choice of t. (Better said, there is a Gm-action on U/X.) The exact
sequence (5.6) is compatible with the grading. For convenience we will
assume Γ(X,Ω>0

X (n)) = (0) for n ≤ 0. It follows that for i ≥ 1, Γ(U,Ωi
U )

is graded in degrees > 0. For ω ∈ Γ(U,Ωi
U ) homogeneous, we write |ω|

for the homogeneous degree.
Let f ∈ RN be a non-zero homogeneous function of degree N ≥ 1.

For integers a, s, t with 0 ≤ a ≤ N − 1, we define

(5.7) Bs,t
a := Γ(U,Ωs+t+1

U )Nt−a.

(The subscript on the right refers to the homogeneous degree of the

form.) Let d′ : Bs,t
a → Bs+1,t

a be the exterior derivative, and define

da
′′(ω) = −tdf ∧ω for ω ∈ Bs,t

a . This defines da
′′(ω) for ω homogeneous,

and we extend the definition to all forms by linearity. We have da
′′ :

Bs,t
a → Bs,t+1

a . Note d′da
′′ = −da

′′d′, so the graded vectorspace B∗
a =

⊕

s+t=∗B
s,t
a is a complex with differential δa := d′ + da

′′ : B∗
a → B∗+1

a .
We write

Df = δ0 : B
∗
0 → B∗+1

0 ,(5.8)

σ : Bs,t
a → Γ(W,Ωs+t

W (−a)); σ(ω) =
∆ω

f t
.(5.9)

Lemma 5.2. Let dW : Γ(W,Ωs+t
W (−a)) → Γ(W,Ωs+t+1

W (−a)) be exte-
rior differentiation. Then (dW ◦σ+σ◦δa)(ω) =

−aω
f t . In particular, when

a = 0, σ induces a map on cohomology σ : H∗(B∗
0 ,Df ) → H∗

dR(W ).
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Proof. We have for ω ∈ Bs,t
a ,

dWσ(ω) = dW (∆(ω)/f t)) = (fdW∆(ω)− tdf ∧∆ω)/f t+1,(5.10)

σδa(ω) = σ(dω − tdf ∧ ω) =
f∆dω − tNfω + tdf ∧∆ω

f t+1
.

Combining these, and using Lemma 5.1(ii),

(5.11) (dWσ + σδa)(ω) =
−aω

f t
.

q.e.d.

Lemma 5.3. Assume that Bi,0
0 = (0) for i ≥ 0 (i.e., Γ(X,Ωj) = (0)

for j ≥ 1.) Then B∗
0 with differential Df = d− tdf is quasi-isomorphic

to B∗
0 with differential d− df .

Proof. Define constants µs,t recursively by µs,1 = 1 and tµs,t+1 = µs,t.
(More simply, µs,t = 1/(t− 1)!.) The diagrams

(5.12)

Bs,t
0

d−tdf
−−−−→ Bs+1,t

0 ⊕Bs,t+1
0

µs,t





y

µs+1,t⊕µs,t+1





y

Bs,t
0

d−df
−−−−→ Bs+1,t

0 ⊕Bs,t+1
0

all commute. Note our assumption means we need only consider the
case t ≥ 1. q.e.d.

Theorem 5.4. We continue to assume Γ(X,Ωi) = (0) for i ≥ 1.
Then the map σ induces an isomorphism on cohomology H∗(B∗

0 ,Df ) →
H∗

dR(W ).

Proof. We have a decreasing filtration

(5.13) F pBk
0 :=

⊕

s≥p

Bs,k−s
0 ; Df (F

pBk
0 ) ⊂ F pBk+1

0 .

We define a filtration on Γ(W,Ω∗
W ) by

(5.14)

F pΓ(W,Ωj
W ) =

{

{ω/f j−p | ω has no pole along f = 0} j ≥ p

0 p > j.

Again, dF p ⊂ F p. We have σ(F pBk
0 ) ⊂ F pΓ(W,Ωk

W ) and a map of
spectral sequences

(5.15) σ : ′Ep,q
1 := Hp+q(grpFB

∗
0) → Ep,q

1 := Hp+q(grpFΓ(W,Ω∗
W )).

Let η/f j−p ∈ F pΓ(W,Ωj
W ) represent a class in Hj(grpFΓ(W,Ω∗

W )). (By
our hypothesis, j > p.) Then

(5.16) d(η/f j−p) = (fdη − (j − p)df ∧ η)/f j−p+1
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is divisible by f , i.e., θ := − |η|
N

df
f ∧η ∈ Bj

0. H
j(grpFB

∗
0) is the cohomology

of the complex

(5.17) Bp,j−1−p
0

df∧
−−→ Bp,j−p

0
df∧
−−→ Bp,j+1−p

0 .

The form η is well defined up to a multiple of f and a form df ∧ x, so
θ is well defined up to a form df ∧ ξ. Since df ∧ θ = 0, we see that θ
represents a well-defined class in Hj(grpFB

∗
0), and σ(θ) = |η|η/f j−p. It

follows that σ induces an isomorphism on E1 terms, and hence on Er-
terms for any finite r. To conclude, we remark that B∗

0 = lim
−→p→−∞

F pB∗
0

and Γ(W,Ω∗
W ) = lim

−→p→−∞
F pΓ(W,Ω∗

W ). For any finite value of p, there

are induced spectral sequences on F p. For any one of these, we have
Eu,v

1 , ′Eu,v
1 vanishing for u << 0. Again σ will induce isomorphisms on

E1. It follows that σ is a direct limit of isomorphisms and hence is an
isomorphism. q.e.d.

Corollary 5.5. We have (notation as in Corollary 3.3)

(5.18) Hn
dR(W ) ∼= HLie

0 (g⊕ C · E,Γ(U,OU )0 mod N ) ∼= HLie
0 (ĝ, Rf ).

Proof of Theorem 1.4. This follows immediately from Corollary 5.5 and
Theorem 2.9. �

6. Solution sheaf vs. period sheaf

As an application, we will compare the solution sheaf of our tauto-
logical system and the period sheaf of smooth CY hyperplane sections
in X by giving a completeness criterion for the tautological system. We
will then deduce Conjecture 1.5 as a special case.

Definition 6.1. We say that M = τ(X̂,Γ(X,ω−1
X )∗, G×Gm, (0; 1))

is complete if its solutions sheaf coincides with the period sheaf Π(X)
on Γ(X,ω−1

X )sm.

Corollary 6.2. The tautological system

M = τ(X̂,Γ(X,ω−1
X )∗, G×Gm, (0; 1))

is complete iff the primitive cohomology Hn(X)prim is zero.

Proof. We have the exact sequence

0 → Hn(X)prim
j∗
→Hn

dR(W )
Res
→ Hn−1(Yf )van → 0,

where Hn−1(Yf )van is the vanishing cohomology of Yf = V(f). Thus
Res is an isomorphism iff Hn(X)prim = 0. By Proposition 6.3, the
dimension of the vanishing cohomology coincides with the rank of the
period sheaf. By Theorem 2.9 and Corollary 5.5, this agrees with the
generic rank of our system M iff Hn(X)prim = 0. q.e.d.
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Proposition 6.3. The rank of Π(X) is equal to the dimension of the
vanishing cohomology of a smooth CY hypersurface Yf .

Proof. Fix a smooth CY hyperplane section f . We know that the
monodromy representation on the vanishing cohomology Hn−1(Yf )van
is irreducible. It follows that the monodromy action on Hn−1(Yf )/H

n−1

(Yf )
⊥
van is also irreducible. We have a non-zero homomorphism of rep-

resentations from Hn(Yf ) to the stalk of Π at f ,

Hn−1(Yf ) → Πf , γ 7→

∫

γ
Res Ωf ,

where Res Ωf is the Poincaré residue of a meromorphic form on X
with pole along Yf [18, Theorem 6.6]. Since Res Ωf ∈ Hn−1(Yf )van,

it follows that Hn−1(Yf )
⊥
van ⊂ Hn−1(Yf ) lies in the kernel of map. By

irreducibility, the map induces

Hn−1(Yf )/H
n−1(Yf )

⊥
van

∼= Πf .

q.e.d.

Corollary 6.4. Conjecture 1.5 holds. Therefore, the generic rank of
the solution sheaf of the tautological system in this case is

n

n+ 1
(nn − (−1)n).

Proof. For X = P
n, Corollary 5.5 holds in this case (see Proposition

4.1), and we obviously have Hn(X)prim = 0. So the tautological system
M in the preceding corollary is complete, proving Conjecture 1.5. The
last assertion is an easy calculation of dimHn−1(Yf ) using the Lefschetz
hyperplane theorem. q.e.d.

7. A chain map

Corollary 5.5 suggests that there might be a similar relation between
Lie algebra homology groups and de Rham cohomology groups in de-
grees other than 0 and n. In this section, we define a chain map between
the complexes defining those (co)homology groups.

Recall that the Lie algebra homology of ĝ with coefficient in Rf can
be given as the homology of the chain complex (C∗(ĝ, Rf ), dCE), where
dCE is the Chevelley–Eilenberg homology differential and

Cp(ĝ, Rf ) := (U ĝ⊗C ∧pĝ)⊗U ĝ Rf
∼= ∧pĝ⊗C Rf .

We will define a chain map

(7.1) ϕ : (C∗(ĝ, Rf ), dCE) → (Γ(U,Ωn+1−∗
U )0 mod N , d+ df ∧ −)

(where N will be 1) that induces the isomorphism in (co)homology in
one degree given by Corollary 3.3. Here the second complex extends
(horizontally) the top row of (3.18).
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As in Section 3, we choose L = ω−1
X , U = L−{0}, so that we have the

identification Rf = Γ(U,OU ). The space U has a unique (up to scalar)
G-invariant non-vanishing holomorphic top form ω1 such that

h · ω1 = h−1ω1

for h ∈ Gm [18, Theorem 3.3]. Then a straightforward calculation yields
the following.

Proposition 7.1. Define (7.1) by

ϕ(x1 ∧ · · · ∧ xp ⊗ g) = gix1 · · · ixpω1,

where g ∈ Rf , xj ∈ ĝ, and ixj
denotes the contraction with the vector

field generated by xj . Then ϕ is a chain map. Moreover, ϕ is surjective
iff the contraction map

ĝ⊗ Γ(U,Ωn+1−p
U ) → Γ(U,Ωn−p

U ), x⊗ λ 7→ ixλ

is surjective for each p ≥ 0.

Note that the p = 0 surjectivity condition above is equivalent to
condition (iii) of Corollary 3.3. We expect that ϕ is surjective in general.
However, it need not induce an isomorphism on all (co)homology groups.
In any case, the subcomplex ker(ϕ) ⊂ C∗(ĝ, Rf ) can be described as
follows.

First, note that the Cp(ĝ, Rf ) = ∧pĝ ⊗C C[X̂ ] as vector spaces and
ϕ as a linear map are both independent of f . The dependence on f is
through the differential of the complex. Put S0 := 0, and for p ≥ 1
define Sp ⊂ Cp(ĝ, Rf ) inductively by

(7.2) Sp := ∩g∈Γ(X,ω−1
X

)d
−1
g (Sp−1),

where dg : Cp(ĝ, Rg) → Cp−1(ĝ, Rg) denotes the Chevellay–Eilenberg
differential for a given g ∈ Γ(X,ω−1). In other words, given c ∈ Cp(ĝ, Rf ),

we have c ∈ Sp iff dgc ∈ Sp−1 for all g ∈ Γ(X,ω−1
X ). Clearly, S∗ ⊂

C∗(ĝ, Rf ) is a subcomplex. (Again, as a subspace it is clearly indepen-
dent of f .)

We claim that S∗ = ker(ϕ). This follows from the following standard
argument:

At degree p = 0, ker(ϕ) = 0 is obvious. To see that at degree p,
ker(ϕ) = Sp, note that ker(ϕ) ⊆ Sp is easy. On the other hand, for
any β ∈ Sp, by induction ϕ(β) is in the kernel of d + dg ∧ . for any
g ∈ H0(X,−KX ), then it is easy to show that ϕ(β) has to be zero, and
thus Sp ⊆ ker(ϕ).

8. Rank 1 points for G(2, N)

In this section, we give an example of a rank 1 point for G(2, N).
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Theorem 8.1. Let X = G(2, N), Ĝ = SLN ×Gm. At the hyperplane
section f = x1,2 · · · xN−1,NxN,1 (where the xij are the Plücker coordi-

nates of X), the rank of the solution sheaf to M := τ(X̂,Γ(X,ω−1
X )∗, Ĝ,

(0; 1)) is 1.

Proof. Write C
N = Ce1 ⊕ · · · ⊕ CeN . We have X →֒ P(

∧2
C
N ), and

X is identified with the space of decomposible tensors v∧w up to scale.
Write v =

∑

aiei, w =
∑

biei. Then xij(v∧w) = aibj−ajbi. We identify

(8.1) X − {x12 = 0} ∼= Hom(Ce1 ⊕ Ce2,
⊕

3≤i≤N

Cei)

in the standard way, which amounts to taking decomposible elements
v ∧ w with v = e1 +

∑

i≥3 aiei and w = e2 +
∑

i≥3 biei. We want to
compute

(8.2) H2N−4(X − {x12 · · · xN−1,NxN,1 = 0}).

We have

(8.3) X − {x12 · · · xN−1,NxN,1 = 0} ∼=

Spec C[a3, b3, . . . , aN , bN ,
1

a3
,

1

a3b4 − a4b3
, . . . ,

1

aN−1bN − aNbN−1
,
1

bN
].

Define V3 = Spec C[a3, b3, 1/a3] ∼= Gm × Ga, where I write Gm = C
×

for the multiplicative group and Ga = C for the additive group. More
generally, for p ≥ 4
(8.4)

Vp := Spec C[a3, b3, . . . , ap, bp,
1

a3
,

1

a3b4 − a4b3
, . . . ,

1

ap−1bp − apbp−1
].

Let G := Gm⋊Ga be the group of affine transformations x 7→ ux+ v.
Let πp : Vp → Vp−1 be the evident projection. We have

(8.5) π−1
p (α3, β3, . . . , αp−1, βp−1) =

{(α3, β3, . . . , αp, βp) | det

(

αp−1 αp

βp−1 βp

)

6= 0}.

The action of G on Vp/Vp−1 given by

(8.6) (u, v) · (. . . , αp−1, βp−1, αp, βp) =

(. . . , αp−1, βp−1, uαp + vαp−1, uβp + vβp−1)

makes Vp a principal G-bundle over Vp−1. But any such G-bundle is split,
because Vp−1 affine implies H1(Vp−1,Ga) = (0), and H1(Vp−1,Gm) =
(0) implies the set of G-bundles on Vp−1 which split when pushed out
to Ga has one element. Thus Vp

∼= Vp−1 × Gm × Ga as a variety. We
conclude

(8.7) Vp
∼= G

p−2
m ×G

p−2
a .
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In particular,

(8.8) H i(Vp,Z) = (0), i ≥ p− 1.

Next, define Wp →֒ Vp to be the closed subvariety defined by bp = 0.
One gets a diagram of bundles

(8.9)

Wp −−−−→ Vp




y
Gm





y
G

Vp−1 −Wp−1 −−−−→ Vp−1.

These are open subvarieties of affine space, so the Picard groups vanish
and we have

(8.10) Wp
∼= (Vp−1 −Wp−1)×Gm.

We prove by induction on p ≥ 3 that

(8.11) H i(Vp −Wp,Z) = (0); i ≥ 2p− 3; H2p−4(Vp −Wp) = Z.

For p = 3, the assertions are H i(G2
m) = (0), i ≥ 3 and H2(G2

m) = Z,
both of which are true. For p > 3, we have the Gysin sequence

(8.12) H i(Vp) → H i(Vp −Wp) → H i−1(Wp) → H i+1(Vp).

Since 2p − 4 ≥ p − 1 in our case, we see from (8.8), (8.10), and (8.12)
that

(8.13) H i(Vp −Wp) ∼= H i−1(Wp) ∼= H i−1((Vp−1 −Wp−1)×Gm) ∼=

H i−1((Vp−1 −Wp−1)⊕H i−2(Vp−1 −Wp−1).

By induction we get the desired vanishing for i ≥ 2p−3. For i = 2p−4,
the same argument yields

(8.14) H2p−4(Vp −Wp) ∼= H2p−6(Vp−1 −Wp−1) ∼= Z.

Again, we conclude by induction.
In the case p = N , we get from (8.14) that H2N−4(VN −WN ) ∼= Z as

desired, completing the proof. q.e.d.
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