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TAUT SUBMANIFOLDS AND FOLIATIONS

Stephan Wiesendorf

Abstract

We give an equivalent description of taut submanifolds of com-
plete Riemannian manifolds as exactly those submanifolds whose
normal exponential map has the property that every preimage of
a point is a union of submanifolds. It turns out that every taut
submanifold is also Z2-taut. We explicitly construct generalized
Bott-Samelson cycles for the critical points of the energy func-
tionals on the path spaces of a taut submanifold that, generically,
represent a basis for the Z2-cohomology. We also consider singu-
lar Riemannian foliations all of whose leaves are taut. Using our
characterization of taut submanifolds, we are able to show that
tautness of a singular Riemannian foliation is actually a property
of the quotient.

1. Introduction

The terminology of taut submanifolds was introduced by Carter and
West in [CW72], where they call a submanifold L of a Euclidean space
V taut if all the squared distance functions d2q : L → R, d2q(p) = ‖p−q‖2,
with respect to points q ∈ V that are not focal points of L, are perfect
Morse functions for some field F; i.e., if the number of critical points of
index k of d2q coincides with the k-th Betti number of L with respect to
the field F for all k. If L is taut and F is a field as in the defintion of
tautness, then L is also called F-taut. Thus, geometrically, taut subman-
ifolds are as round as possible. If one tries to generalize this defintion
to submanifolds of arbitrary Riemannian manifolds, the problem arises
that the squared distance function is not a priori everywhere smooth
anymore. Namely, it is not differentiable in the intersection of the cut
locus of the respective point q with the submanifold.

Using different approaches, Grove and Halperin [GH91] and, in-
dependently, Terng and Thorbergsson [TT97] generalized this notion
to submanifolds L of complete Riemannian manifolds M by saying
that L is taut if there exists a field F such that every energy func-
tional Eq(c) =

∫
[0,1] ‖ċ(t)‖

2dt on the space P(M,L × q) of H1-paths

c : [0, 1] → M from L to a fixed point q ∈ M is a perfect Morse function
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with respect to F if q is not a focal point of L. The critical points of Eq

are exactly the geodesics that start orthogonally to L and end in q. In
particular, in the case where M = V is a Euclidean space, there is an
obvious way to identify a submanifold L with the space of segments in
P(V,L×q), and under this identification the map d2q corresponds to Eq.
Further, it is not hard to see that in this case the path space P(V,L×q)
admits the subspace of segments from L to q as a strong deformation
retract. So the definitions agree for submanifolds of a Euclidean space
and it turns out that this is indeed the right way to generalize tautness.

It is shown in [TT97] that if L →֒ M is an F-taut submanifold, then
the energy functionals Eq are Morse-Bott functions for all points q ∈ M .
Our first main result now states that this property actually characterizes
taut submanifolds.

Theorem A. A closed submanifold L of a complete Riemannian mani-
fold M is taut if and only if all energy functionals Eq : P(M,L×q) → R

are Morse-Bott functions.

In fact, if all the energy functionals are Morse-Bott functions, then the
field with respect to which L is taut is Z2. Thus, as a direct consequence,
we obtain the following result, which was, just as Theorem A, so far not
even known in the case of a Euclidean space.

Theorem B. If a submanifold is F-taut, then it is also Z2-taut.

Based on this result it is reasonable to consider only Z2-taut subman-
ifolds, so that we no longer distinguish between Z2-taut and taut.

As the definition shows, tautness is a very special property. In some
sense, it is a kind of homogeneity requirement for the pair (M,L). So it
is no surprise that so far not many examples of taut submanifolds are
known. This makes it all the more remarkable that taut submanifolds, if
at all, often occur in families which then decompose the ambient space;
e.g., an orbit decomposition induced by the isotropy representation of
a symmetric space. It is for this reason that we study such families as
they usually appear; i.e., singular Riemannian foliations with only taut
leaves. We call such families taut foliations. As a main result in this
direction we observe that tautness of a foliation is indeed a property of
the quotient of the foliation, so that it actually makes sense to talk about
taut quotients as equivalence classes of quotients under isometries.

Theorem C. Let F and F ′ be closed singular Riemannian foliations
on complete Riemannian manifolds M and M ′ such that their quotients
M/F and M ′/F ′ are isometric. Then F is taut if and only if F ′ is taut.

Due to this result one could think about taut foliations as foliations
with pointwise taut quotients, where we follow [Le06] and call a mani-
fold pointwise taut if all of its points are taut (submanifolds). Of course,
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in general a quotient of a singular Riemannian foliation is far from be-
ing a manifold, but as soon as it is a nice space in the sense that one
could use differential geometric methods, it turns out that this picture
is reasonable. Viewed in this light, the largest class of spaces for which
one has the appropriate tools available is the class of Riemannian orb-
ifolds; i.e., spaces locally modeled by quotients of Riemannian manifolds
modulo the action of a finite group of isometries. Now, given a taut sin-
gular Riemannian foliation F on M such that the quotient M/F is an
orbifold, it follows that M/F is already a good Riemannian orbifold;
that is to say M/F is isometric to N/Γ, where N is a Riemannian man-
ifold and Γ ⊂ Iso(N) is a discrete group of isometries. This observation
together with the last theorem leads directly to our next result, which
mainly motivates our picture of pointwise taut quotients.

Theorem D. Let F be a closed singular Riemannian foliation on a com-
plete Riemannian manifold M . Then F is taut and M/F is an orbifold
if and only if M/F is isometric to N/Γ, where N is a pointwise taut
Riemannian manifold and Γ ⊂ Iso(N) is a discrete group of isometries
of N .

In view of applications, the more interesting direction of this result is
that the existence of a pointwise taut quotient covering implies tautness
of the foliation. The known examples of pointwise taut Riemannian
manifolds are mainly two classes of spaces, together with Riemannian
products of elements of these classes and their subcoverings. The first
one is the class of symmetric spaces, which are pointwise taut by the
work of Bott and Samelson [BS58], and the second class consists of
manifolds without conjugate points; e.g., manifolds with non-positive
curvature. In fact, if there are no conjugate points along any geodesic
in a Riemannian manifold, the index of every critical point of a given
energy functional is zero, hence all points in such a manifold are taut. A
conjecture in [TT97] states that a compact pointwise taut Riemannian
manifold that has the homotopy type of a compact symmetric space is
symmetric. We want to mention as an aside that it is shown in [TT97]
that in the case of a compact rank-one symmetric space this conjecture
is equivalent to the Blaschke conjecture, which is still not settled.

It is therefore not a surprise that in all known examples of taut foli-
ations with orbifold quotients, these quotients are isometric to a space
(N×P )/Γ, where N is a symmetric space, P is a manifold without con-
jugate points, and Γ is a discrete subgroup of isometries. Consider, for
instance, the parallel foliation F of a Euclidean space V that is induced
by an isoparametric submanifold L of V . Such a foliation is a singular
Riemannian foliation and is also called an isoparametric foliation. In
this case, the quotient V/F is isometric to (p+νp(L))/Γ, where p ∈ L is
some point and Γ is the finite Coxeter group generated by the reflections
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across the focal hyperplanes in p + νp(L) ⊂ V . So V/F admits a flat
orbifold covering that is a manifold, thus F is taut. In particular, our
result implies that isoparametric submanifolds are taut, which is well
known by [HPT88]. More generally, if a closed singular Riemannian
foliation F on a Riemannian manifold M is polar (i.e., through every
regular point in M there exists a complete submanifold meeting all the
leaves and always perpendicularly) every section covers the orbit space
M/F (as an orbifold). We therefore see again that the orbits of hyper-
polar actions (i.e., when the sections are flat) are taut. Since sections
are always totally geodesic and totally geodesic submanifolds of sym-
metric spaces are symmetric spaces, we also reobtain the result from
[BG07] that a polar action of a compact Lie group on a compact rank-
one symmetric space is taut. In [GT03], Gorodski and Thorbergsson
classified all taut irreducible representations of compact Lie groups as
either hyperpolar and hence equivalent to the isotropy representation of
a symmetric space, or as one of the exceptional representations of co-
homogeneity three. Let ρ : G → O(V ) be an exeptional representation;
i.e., the induced action of G on V has cohomogeneity equal to three.
Then, the restriction of this action on the unit sphere S ⊂ V has coho-
mogeneity two, so that S/G is isometric to a quotient S2/Γ of the round
2-sphere with a finite Coxeter group Γ. Since the orbits of the G-action
on V are taut if and only if the orbits of the G-action on S are taut, it
follows from Theorem D again that the exeptional representations are
taut.

Practically, the only way to prove that a given submanifold L →֒ M is
taut is the explicit construction of so called linking cycles for the energy.
Namely, one has to find cycles that complete the local unstable mani-
folds associated to some Morse chart around the critical points below
the corresponding critical energy. This concept is explained in Section
2.1. For the proof of Theorem A in Section 2.3 (cf. Theorem 2.9) we
therefore first make the easy observation that all the energy functionals
Eq : P(M,L×q) → R are Morse-Bott if and only if the normal exponen-

tial map exp⊥ : ν(L) → M has integrable fibers, by which we mean that
(exp⊥)−1(exp⊥(v)) is a union of submanifolds for all vectors v ∈ ν(L).
If so, we explicitely construct linking cycles for non-degenerate critical
points (i.e., a basis for the (co-)homology of P(M,L × q) if q ∈ M is
not a focal point) proving that L is taut. For this purpose, for a normal
vector v ∈ ν(L), we define Zv to be the set of all piecewise continuous
paths c : [0, 1] → ν(L) obtained as follows. Follow the segment tv toward
the zero section up to the first focal vector t1v, then take an arbitrary
normal vector v1 in the fiber of exp⊥ through t1v and follow the segment
tv1 toward the zero section up to first focal vector t2v1, then take an
arbitrary normal vector in the fiber through t2v1 and repeat this pro-
cedure. By construction, for every c ∈ Zv, exp

⊥ ◦c is a broken geodesic
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from exp⊥(v) to L and we define the space ∆v ⊂ P(M,L× exp⊥(v)) to
consist of all broken geodesics obtained in this manner, reparameterized
on [0, 1] after reversing the orientation. If the occurring focal multiplici-
ties are locally constant, then ∆v is an iterated fiber bundle and thus a
compact manifold of the right dimension. In this case, its fundamental
class ensures that it indeed provides a linking cycle. In the general case,
∆v is a “fiber bundle” with singularities. Using sheaf cohomology we
prove that it still carries a “fundamental class” and therefore actually
represents a linking cycle. As mentioned above, Theorem B is then a
direct consequence of this result.

In the second section we recapitulate the notion of singular Riemann-
ian foliations and make some preliminary observations about taut fo-
liations. As the main property, a geodesic either meets the leaves of
a singular Riemannian foliation orthogonally at all or at none of its
points. If a geodesic intersects one and hence all leaves perpendicularly,
it is called horizontal. Roughly speaking, the possibilities for varying a
horizontal geodesic through horizontal geodesics consist of variations of
the projection of the geodesic to the quotient and of variations through
horizontal geodesics, all of which meet the same leaves simultaneously.
This results in an index splitting for horizontal geodesics into a hori-
zontal and vertical index that we discuss in Section 3.3; the latter one
counting the intersections with the singular leaves (with their multi-
plicities). In 3.4 we then prove Theorem C using Theorem A and the
fact that the horizontal index is an intrinsic notion of the quotient (cf.
Theorem 3.19). Using the arguments from our proof of Theorem C, we
are able to give a general construction to obtain lots of examples of taut
submanifolds, including all the known examples that occur in families.
Finally, Theorem D is then proved as a special case of Theorem C (cf.
Theorem 3.25).

At the end of this section we recall some basic facts about infinites-
imally polar foliations (i.e., those foliations whose quotients are orb-
ifolds) from [LT10] and reformulate our Theorem D for those foliations.
Infinitesimally polar foliations can also be described as those foliations
admitting a canonical geometric resolution (cf. [L10]); that is to say,
a canonically related regular foliation with an isometric quotient. As
a consequence of our results we therefore observe that the canonical
resolution of an infinitesimally polar foliation is taut if and only if the
foliation is taut.

Our proof of Theorem A (as well as of Theorem C) may be viewed
as a generalization of the construction of Bott and Samelson in [BS58],
which proves that the orbit foliation of a variationally complete action
(i.e., when the focal points of the orbits are only caused by singular or-
bits) is taut. Given an orbit of such an action, Bott and Samelson came
up with concrete cycles associated to the critical points of the energy
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on the space of paths to a fixed point that, generically, represent a basis
for the Z2-(co-)homology of the corresponding path space. For such a
generic critical point c, their cycle can be described as a connected com-
ponent of the set of broken horizontal geodesics (i.e., broken geodesics
that intersect all the orbits orthogonally) that have the same projection
to the orbit space as c, hence coincide with our space ∆(c) from Lemma
3.21. Thus we reobtain their result as a special case of Corollary 3.23.

Finally, we must warn the reader that the use of the term “taut folia-
tion” could lead to confusion. In the theory of (regular) foliations there
are other definitions of tautness, such as geometrically or topologically
taut foliations. But in this work, by a taut foliation, we always mean a
singular Riemannian foliation all of whose leaves are taut submanifolds
as defined above.
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2. Taut Submanifolds

2.1. Linking Cycles. The terminology of tautness for submanifolds
of a Euclidean space was introduced by Carter and West in [CW72].
They call a submanifold L of a Euclidean space V taut if there exists a
field F such that for generic points q ∈ V , the squared distance functions
d2q : L → R, given by d2q(p) = ‖p − q‖2, are perfect with respect to the
field F. A definition similar to this can be used for submanifolds of the
round sphere Sn ⊂ V .

Reminder. A Morse function on a complete Hilbert manifold P is a
smooth function f : P → R that is bounded below, has a nondegenerate
critical set Crit(f), and satisfies Condition (C); i.e., if (pn) is a sequence
of points in P with {f(pn)} bounded and ‖dfpn‖ → 0, then (pn) has
a convergent subsequence. Thus Condition (C) can be regarded as an
analogue of a compactness claim in the infinite-dimensional setting.

If p is a critical point for the Morse function f , then the index ind(p) is
defined to be the dimension of a maximal subspace of TpP on which the
Hessian is negative definite; i.e., the number of independent directions
in which f decreases. As in the finite dimensional case, a Morse function
gives rise to a cell complex with one cell of dimension k for each critical
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point with index k, which is homotopy equivalent to P . If we set P r =
{p ∈ P |f(p) ≤ r}, then the weak Morse inequalities say that if νk(a, b)
denotes the number of critical points of index k in f−1(a, b) for regular
values a < b, then bk(P

b, P a;F) ≤ νk(a, b) for all k, where bk(P
b, P a;F)

is the k-th Betti number of (P b, P a) with respect to the field F and f
is called perfect (with respect to F) if the weak Morse inequalities are
equalities for all k and all regular values a < b. For a detailed background
we refer the reader to Part II of [PT88].

A Morse-Bott function f : P → R on a complete Hilbert manifold P is
a smooth function whose critical set is the union of closed submanifolds
and whose Hessian is non-degenerate in the normal direction. That is
to say, every critical point lies in a closed submanifold whose tangent
space coincides with the kernel of the Hessian at each point. If so, the
index of a critical point is defined to be the index of the restriction of
the Hessian to the normal space of the corresponding critical manifold.
Since the Hessian depends continuously on the points of the critical
manifolds, the index is constant along the connected components of the
critical set.

Using different approaches, Grove and Halperin [GH91] as well as
Terng and Thorbergsson [TT97] defined a general notion of taut im-
mersions into a complete Riemannian manifold. In [TT97] it has been
proven that for submanifolds of a Euclidean space the generalized defini-
tion of tautness coincides with the one previously known. We are going
to introduce this generalized notion using the exposition in [TT97].

Let (M,g) be a complete Riemannian manifold and let H1(I,M) be
the complete Riemannian Hilbert manifold of H1-paths I = [0, 1] → M
with its canonical differentiable and metric structure; i.e., H1(I,M) is
locally modeled on H1(I,Rn). Recall that a path is of class H1 if and
only if it is absolutely continuous with finite energy. The charts for
H1(I,M) are given by the identification of an open neighborhood of
the zero section in H1(I, c∗(TM)), for c ∈ H1(I,M) piecewise smooth,
with an open neighborhood of c in H1(I,M) by the exponential map
of M . Then, for such c, one has TcH

1(I,M) ∼= H1(I, c∗(TM)) and the
expression

〈X,Y 〉 =

∫

I
g(X(t), Y (t))dt +

∫

I
g(∇X(t),∇Y (t))dt,

which is a priori defined for X,Y piecewise smooth, can be extended
to a complete Riemannian metric on H1(I,M) (cf. [Kl82]). Furnished
with this differentiable structure, the map e : H1(I,M) → M × M ,
given by e(c) = (c(0), c(1)), defines a submersion.

Now for a proper immersion φ : L → M into a complete Riemannian
manifold and a point q ∈ M , we define the path space P(φ,q)(M,L) to

be the pullback of H1(I,M) along the map p 7→ (φ(p), q) from L into
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M ×M ; i.e., P(φ,q)(M,L) consists of pairs (p, c) ∈ L ×H1(I,M) with
φ(p) = c(0) and c(1) = q. In particular, P(φ,q)(M,L) inherits a smooth
structure that turns it into a complete Hilbert manifold and one can
show that the induced energy functional E(φ,q) : P(φ,q)(M,L) → R,
defined by

E(φ,q)((p, c)) =

∫

I
‖ċ(t)‖2dt,

is a Morse function if and only if q is not a focal point of L (along
any normal geodesic). Recall that for a normal vector v ∈ ν(L), the
point exp⊥(v) ∈ M is called a multiplicity µ focal point of L along the
geodesic exp⊥(tv) and v is called a multiplicity µ focal vector if and
only if dim(ker(d exp⊥v )) = µ > 0, where exp⊥ : ν(L) → M denotes the
normal exponential map. The critical points of E(φ,q) are exactly the
pairs (p, γ), where γ is a geodesic, which starts perpendicularly to L
and ends in q. By the famous theorem of Morse, the index of a critical
point (p, γ) is then given by the sum

ind((p, γ)) =
∑

t∈(0,1)

µ(t)

over the multiplicities µ(t) of the points γ(t) as focal points of L along γ.
A geodesic γ that starts perpendicularly to L (i.e., γ̇(0) ∈ ν(L))

is called an L-geodesic. In this case we frequently use the notation γv
to denote the L-geodesic t 7→ exp⊥(tv) (or respective restrictions). A
vector field J along an L-geodesic γ is called an L-Jacobi field along γ if
and only if it is a variational vector field of a variation of γ through L-
geodesics and the nullity of a critical point (p, γv) of E(φ,γv(1)) is given by

µ(v) = dim(ker(d exp⊥v )) and equals the dimension of the vector space

{J |J is an L-Jacobi field along γv, J(1) = 0} .

In our setting of path spaces, every energy sublevel contains finite di-
mensional submanifolds consisting of broken geodesics, each of them
homotopy equivalent to this sublevel, such that the restriction of the
energy to each of these submanifolds has the same relevant behavior;
i.e., the critical points of the restriction are exactly the critical points
of the energy functional and their indices and nullities coincide. In par-
ticular, the indices and nullities are finite.

For these facts and a detailed discussion on path spaces and the en-
ergy functional we refer the reader who is not familiar with these notions
to [Kl82] and [Sak96].

Finally, if φ is a closed embedding identifying L with its image φ(L) in
M , we will drop the reference to the map φ and simply write P(M,L×q)
instead of P(φ,q)(M,L) for the space of H1-paths from L to q.

Suppose that M = V is a Euclidean space and that, for simplic-
ity, L ⊂ V is a closed submanifold. Then, for every fixed point q
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in V , the submanifold L is diffeomorphic to the space of segments
S = {sp(t) = p+ t(q − p), p ∈ L} in P(V,L × q) and with respect to
this identification the energy is given by the squared distance; i.e., by
Eq(sp) = d2q(p) = ‖p − q‖2. Moreover, it is not hard to see that this
identification respects the critical behavior of these functions. Since all
the critical points of the energy Eq are contained in S and, by convexity,
the space P(V,L × q) contains S as a strong deformation retract, the
squared distance function d2q is a perfect Morse function on L if and
only if Eq is a perfect Morse function on P(V,L × q). This observation
led Terng and Thorbergsson to a natural generalization of the notion of
a taut immersion into any complete Riemannian manifold M .

Definition 2.1. A proper immersion φ : L → M of a manifold L into
a complete Riemannian manifold (M,g) is called taut if there exists a
field F such that the energy functional E(φ,q) : P(φ,q)(N,L) → R, given

by E(φ,q)(p, c) =
∫
I ‖ċ(t)‖

2dt, is a perfect Morse function with respect
to the field F for every point q ∈ M that is not a focal point of L.
In particular, a point p ∈ M is called a taut point if {p} is a taut
submanifold of M ; i.e., Eq : P(M,p × q) → R is perfect with respect
to some field for every q ∈ M that is not conjugate to p along some
geodesic. If a submanifold L is taut and F is a field as in the definition
of tautness, then L is also called F-taut.

In [Le06] Leitschkis called a manifold with only taut points pointwise
taut and we will continue with this notion.

Note 2.2. In [TT97] it is shown that a properly immersed, taut
submanifold of a simply connected, complete Riemannian manifold is
actually embedded. Because we will see in Section 3.2 that one can al-
ways assume that the ambient space is simply connected, we will proceed
assuming that all submanifolds are embedded and closed, but all of our
results will also hold in the case of a proper immersion. For this reason,
if not otherwise stated, by a submanifold L of M we always mean an
embedded submanifold and consider all submanifolds as subsets of M .
Finally, a manifold is always assumed to be connected.

The only way that is known to prove tautness in general (i.e., that a
given Morse function is perfect) is the concept of linking cycles, which
we are going to explain now. For this reason let f : P → R be again a
Morse function on a complete Hilbert manifold. Then, for every r ∈ R,
the sublevel P r contains only a finite number of critical points of f and
we can assume that these critical points have pairwise distinct critical
values. That the latter assumption is not restrictive follows from the
fact that one can lift a small neighborhood of a critical point a little
without changing the relevant behavior of the function. Moreover, using
the flow of the negative gradient, one sees that for small ε the sublevel
sets P r+ε and P r−ε have the same homotopy type unless r is a critical
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value. If so, let p be the critical point of f with f(p) = r and choose an
ε such that (r−ε, r+ε) contains no critical value except r. If we denote
the index of p by i then P r+ε has the homotopy type of P r−ε with an
i-cell ei attached to f−1(r − ε). Consider the following part of the long
exact cohomology sequence of the pair (P r+ε, P r−ε) with coefficients in
a field F:

H i−1(P r+ε, P r−ε)︸ ︷︷ ︸
=0

→ H i−1(P r+ε) → H i−1(P r−ε)
∂∗

−→ H i(P r+ε, P r−ε)︸ ︷︷ ︸
∼=F

→ H i(P r+ε) → H i(P r−ε) → H i+1(P r+ε, P r−ε)︸ ︷︷ ︸
=0

Since we are using coefficients from a field, we can switch between the
more common homological and the (for our approach) more suitable
cohomological point of view by dualization; i.e., H∗(P r;F) ∼= HomF

(H∗(P
r;F),F). Anyway, we see that by passing from P r−ε to P r+ε the

only possible changes in homology or cohomology occur in dimensions
i−1 and i. To understand this geometrically, let us have a look at what
happens in homology. In the first case, the boundary ∂ei of the attaching
cell is an (i − 1)-sphere in P r−ε that does not bound a chain in P r−ε;
i.e., ei has as boundary the nontrivial cycle ∂ei and so ∂∗ 6= 0. In the
second case, ∂ei does bound a chain in P r−ε, which we can cap with ei
to create a new nontrivial homology class in P r+ε; that is to say, ∂∗ = 0
and Hi(P

r+ε) ∼= Hi(P
r−ε)⊕ F.

We see that the Morse inequalities are equalities if and only if

H i(P r+ε, P r−ε) → H i(P r+ε) is nontrivial; i.e., ∂∗ ≡ 0,

or, equivalently,

Hi(P
r+ε) → Hi(P

r+ε, P r−ε) is surjective; i.e., ∂∗ ≡ 0,

for all critical points p of f .
For a critical point p ∈ P , one can show that

H∗(P f(p)+ε, P f(p)−ε) ∼= H∗(P f(p), P f(p) \ {p}).

Thus suppose that we have a map hp : ∆p → P f(p) for every critical
point p such that the composition

H i(P f(p), P f(p) \ {p})
h∗
p

−→ H i(∆p, h
−1
p (P f(p) \ {p})) → H i(∆p)

is nontrivial. In this case, because the connecting homomorphism ∂∗ is
a natural transformation, we have that

h∗p ◦ ∂
∗ = ∂∗ ◦ h∗p

and we conclude that the mapH i(P f(p), P f(p)\{p}) → H i(P f(p)) cannot
be zero, so that f is a perfect Morse function under this assumption. If
so, we call the pair (∆p, hp) a linking cycle for p, the critical point p of
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linking type, and we say that the function f : P → R is of linking type
if all the critical points are of linking type. Of course, if f is perfect,
then the inclusions of the corresponding sublevels define linking cycles,
so that f is of linking type. Thus we see that a Morse function is perfect
if and only if it is of linking type.

Note 2.3. At the end of this section we will prove that an F-taut
submanifold is always Z2-taut. For this reason, and due to the fact that
when dealing with (co-)homology there is just a little chance to get
general results with other coefficients, we restrict our attention to the
case F = Z2. From now on, saying taut we always mean Z2-taut and we
drop the reference to the field everywhere.

Remark 2.4. Using finite-dimensional approximations of the path
space we see that, in the setting we are interested in, singular coho-
mology is isomorphic to Čech cohomology (cf. Section 2.2). Because the
latter groups satisfy a continuity property and are more easy to handle,
we focus on the Čech cohomology groups in the following.

2.2. The Main Tool. As already mentioned in the introduction, the
problem when dealing with general cycle constructions is the behavior of
the focal data. The construction of Bott and Samelson works well, also in
the general case, if the focal points along a variation do not collapse; i.e.,
if the cardinality of the intersections of normal geodesics with the focal
set is locally constant. Unfortunately, the occurrence of focal collapses
along a variation of normal geodesics cannot be avoided in general, but
since these collapses depend continuously on the initial directions of the
geodesics, it turns out that this indeed constitutes no problem for our
goal. In the following will work this out using the theory of sheaves and
sheaf cohomology as it is presented in [B67] and chapter 5 of [Wa83].
We refer the reader to these textbooks for the facts that we presume.

To fix a notation we recall the following:

Definition 2.5. A sheaf (of Abelian groups) on X is a pair (A, π),
where

1) A is a topological space;
2) π : A → X is a local homeomorphism;
3) Each fiber Ax = π−1(x) is an Abelian group and is called the stalk

of A at the point x;
4) The group operations are continuous; i.e., the map

A×π A → A,
(α, β) 7→ α− β,

with A×π A = {(α, β) ∈ A×A|π(α) = π(β)}, is continuous.

If the context is clear we will drop the reference to the map π and talk
about the sheaf A. For an Abelian group G, we say that A is a G-sheaf
on X if all the fibers π−1(x) are isomorphic to G.
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Given a continuous map f : X → B from a compact Hausdorff topo-
logical space X onto some nice space B with a fundamental class in
Z2-(co-)homology (e.g., a manifold) such that all the fibers are compact
manifolds of constant dimension, one would expect that the union over
the baseB of all the fibers defines a non-trivial class in Z2-(co-)homology
of dimension equal to the sum of the (co-)homological dimension of B
and the fiber dimension. In order to prove our main theorem later on,
we are dependent on a tool like this because we want to construct ex-
plicit (co-)cycles with specified cohomological behaviour. The easiest
way, known to the author, to prove such a statement is by means of
sheaf cohomology.

The first step in this direction is the following easy observation for
which we have not found any reference in the literature.

Lemma 2.6. Let X be a locally compact Hausdorff topological space.
Then there are no nontrivial Z2-sheaves on X.

Proof. Assume that (A, π) is a Z2-sheaf on X; i.e., π−1(x) ∼= Z2 for
all x ∈ X. Then each fiber π−1(x) has exactly one element that is
not zero and we denote this nontrivial element by 1x. Because the zero
section 0 : X → A is a global section, it remains to observe that the
well-defined map 1 : X → A, given by 1(x) = 1x, is continuous, which
is straightforward. Thus the map X ×Z2 → A, given by (x, ε) 7→ εx for
ε ∈ {0, 1}, defines an isomorphism of sheaves. q.e.d.

A presheaf on a topological space X is a contravariant functor from
the category of open subsets of X, where the morphisms are just the
inclusions, to the category of Abelian groups; i.e., a function that assigns
to each open set U an Abelian group A(U) and to each pair U ⊂ V a
homomorphism, called the restriction, rU,V : A(V ) → A(U) in such a
way that rU,U = 1A(U) and rU,V ◦ rV,W = rU,W whenever U ⊂ V ⊂ W .
The set of (local) sections of a sheaf A is a presheaf in the obvious way.
Conversely, given a presheaf A, taking fiberwise the direct limit over all
neighborhoods of a fixed point, one gets a sheaf A by the so-obtained
set of germs topologized by the natural sections induced by A. In this
case, one says that the sheaf A is generated by the presheaf A.

Examples.

• For any standard cohomology theory H∗ on X, the assignment
given by U 7→ Hr(U ;G) defines a presheaf, where the coefficients
are taken to be any Abelian group G.

• Let f : Y → X be a continuous map between topological spaces.
Then for every r ≥ 0 there is an associated presheaf on X given by
the prescription U → Ȟr(f−1(U);G), where we denote the Čech
cohomology by Ȟ∗. The sheaf Hr(f ;G) generated by this presheaf
is called the Leray sheaf of f on X.
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There is a way to define general cohomology theories with coefficients
in a presheaf or in a sheaf. These concepts coincide for paracompact
spaces. But a developement of this theory would go beyond the scope
of our discussion, the more so as it is not really necessary for our goal.
For this reason we have to refer the reader to the literature; e.g., [B67],
[Sp66], or [Wa83]. Because it is all we need, we just want to mention
that in the case of a constant sheafX×G, this cohomology is exactly the
same as the usual Čech cohomology with coefficients in G. Moreover,
it can be shown that if X is a topological manifold of dimension n,
then all the cohomology groups with coefficients in any sheaf vanish in
dimensions greater than n. This is an important feature of which we
make essential use.

Remark 2.7. It is shown in [Sp66] that in the cases we are in-
terested in, the cohomology groups Hr(X;G) with coefficients in the
constant sheaf G = X ×G are nothing else than the Alexander-Spanier
cohomology groups with coefficients in G and that the latter coincide
with the Čech cohomology groups Ȟr(X;G). In particular, it is there-
fore clear that we have long exact sequences, excision, and that the
homotopy axiom holds. Finally, because we are dealing only with nice
spaces, please recall that for compact subsets (K,L) of a manifold, the
Čech cohomolgy groups Ȟr(K,L) are isomorphic to the direct limit

lim
−→

{Hr(U, V )|(K,L) ⊂ (U, V )} ,

where the limit is taken over open subsets (U, V ) ⊃ (K,L).

As mentioned above, the cohomology groups Hr(U ;G) with coeffi-
cients in the constant sheaf G = X ×G are isomorphic with the corre-
sponding Čech groups. Thus the generated sheaves are also isomorphic.
Due to this, our definition of the Leray sheaf in this case behaves well
with respect to the general definition of the Leray sheaf in the context
of sheaf cohomology, which is, given a sheaf A on Y , generated by the
presheaf U → Hr(f−1(U);A).

We now come to the heart of this section, presenting a very powerful
tool for our use. We formulate the following lemma in an easy to handle
version, adjusted accordingly to our purpose, but the reader who goes
through the proof will notice that it also holds under weaker assump-
tions; e.g., if B as in the claim has the cohomological behavior of a
manifold.

Lemma 2.8. Let X be a connected and compact Hausdorff topologi-
cal space and let f : X → B be a continuous map onto a manifold B of
dimension k. Assume that every fiber f−1(b) is a connected manifold of
(constant) dimension n or, more generally, that Ȟn(f−1(b);Z2) ∼= Z2
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and Ȟ l(f−1(b);Z2) = 0 for all l > n, where Ȟ∗ denotes the Čech coho-
mology. Then X has cohomological dimension n+k; i.e., Ȟn+k(X;Z2) ∼=
Z2 and Ȟ l(X;Z2) = 0 for l > n+ k.

Proof. Since X is compact and connected and f is surjective, B is
compact and connected, too. If we consider cohomology with coefficients
in the constant sheaf Z2 = X ×Z2, then, due to Theorem 6.1 in [B67],

there exists a spectral sequence {Er, dr} with dr : Em,l
r → Em+r,l−r+1

r

converging to H∗(X;Z2) with E2 page

Em,l
2 = Hm(B;Hl(f ;Z2)),

where Hl(f ;Z2) denotes the above-defined Leray sheaf on B, generated
by the presheaf U 7→ H l(f−1(U);Z2). Further, it is also proven there
that, under this assumptions, the stalks Hl(f ;Z2)p of the Leray sheaf
are isomorphic to the cohomology groups of the corresponding fibers
H l(f−1(b);Z2) ∼= Ȟ l(f−1(b);Z2). Then, by our assumptions and Lemma
2.6, the nth Leray sheaf is the constant sheaf on B; that is to say,

Hn(f ;Z2) ∼= B × Z2. Therefore, the entry Ek,n
2 is just given by the

kth Čech cohomology group Ȟk(B;Z2) ∼= Z2. Because B is a manifold
of dimension k, all the groups Hm(B;Hl(f ;Z2)) vanish for m > k, by

dimensional reasons mentioned above. Also, all the entries Em,l
2 with

l > n vanish, because Hl(f ;Z2) is the 0-sheaf in this case. But this

means that the entry Ek,n
2 survives in the spectral sequence since it

is the top-right entry in the nontrivial rectangle on the E2 page. The
second statement of the claim follows from the fact that if m+ l > k+n
then m > k or l > n. q.e.d.

2.3. An Equivalent Description. Having achieved our key tool in
the last section, we are now able to prove our main result.

Theorem 2.9. Let L ⊂ M be a closed submanifold of a complete
Riemannian manifold M . Then the following statements are equivalent.

1. L is taut.
2. All energy functionals are Morse-Bott functions.
3. The fibers of the normal exponential map exp⊥ : ν(L) → M are

integrable.

Proof. The implication 1. ⇒ 2. holds by Theorem 2.8 of [TT97],
where Terng and Thorbergsson show that if L is a taut submanifold
(with respect to any field), then all the energy functionals are Morse-
Bott functions, adapting the idea of Ozawa [Oz86] for the Euclidean
case.

The equivalence of 2. and 3. is more or less by definition. If S ⊂
P(M,L× q) is a critical submanifold of Eq, then the image of the map
S → ν(L), s 7→ ṡ(0) is an integral manifold of the kernel distribution.
Conversely, if S ⊂ ν(M) is an integral manifold of the kernel distribution
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(i.e., an open and compact submanifold of some fiber (exp⊥)−1(q)) then
the image of the map S → P(M,L × q), v 7→ exp⊥(tv)|[0,1] defines a
non-degenerate connected component of the critical set of Eq.

Therefore, it remains to show 3. ⇒ 1. We prove this by constructing
explicit linking cycles for Z2-coefficients.

Let us first fix some notation before we discuss our construction. For
convenience, let η = exp⊥ : ν(L) → M denote the normal exponential
map. By the ray through v ∈ ν(L) we mean the map rv : R+

0 → ν(L),
given by rv(t) = tv, and by the segment to v we mean sv = rv|[0,1]. Then
for α ≥ 1, the point q = η(v) is a focal point of L along the geodesic
γαv = η ◦ sαv if and only if dηv is singular and the multiplicity of q at
such a point is just the dimension of the kernel of dηv. Recall that in
the case where dηv is not onto, we call v a focal vector of multiplicity
µ(v) = dim(ker(dηv)). Let us denote by C the union of all points in
ν(L), where dη is singular, and call it the (tangent) focal locus. We call
every number in r−1

v (C) a focal time along the ray rv. It is a well known
fact that the focal times are discrete along any ray and that they depend
continuously on the rays. Namely, that there are continuous functions

λi : S(1) =
{
v ∈ ν(L):‖v‖2 = 1

}
→ R

with 0 < λ1 ≤ λ2 ≤ . . . and r−1
v (C) = {λi(v)}i≥1 (cf. [IT01]). This

implies that every vector v ∈ ν(L) has an open neighborhood U such
that every ray that intersects U contains µ(v) focal vectors in U counted
with multiplicities; i.e., if im(rw) ∩ U 6= ∅, then

∑

t∈r−1
w (U)

µ(tw) =
∑

t∈r−1
w (U∩C)

µ(tw) = µ(v).

Finally, we call a focal vector v ∈ C regular if there is an open neighbor-
hood U of v such that all rays that intersect U intersect U ∩ C exactly
once. Due to Warner [Wa65] and Hebda [Heb81], the set CR of regular
focal vectors is an open and dense subset of C that is a codimension-one
submanifold of ν(L) such that Tvν(L) ∼= TvCR ⊕Rv for all v ∈ CR. Let
ν(L)R denote the set of vectors v ∈ ν(L) \ C such that sv intesects C
only in CR; i.e., such that w 7→ #{s−1

w (C)} is constant on a neighbor-
hood of v. Then ν(L)R is obviously open in ν(L) and it is also dense.
To see this, consider the function n : ν(L) \ C → Z, given by

n(v) = #
{
s−1
v (C)

}
,

which is lower semi-continuous by our above observations. Then

ν(L)R = {v ∈ ν(L) \ C: n is constant on a neighborhood of v}

=
{
v ∈ ν(L) \ C: s−1

v (C) = s−1
v (CR)

}
.

Since the set of regular vectors ν(L) \ C is open and dense in ν(L),
it is enough to show that ν(L)R is dense in ν(L) \ C. Thus assume
that ν(L)R is not dense in ν(L) \ C. Then the complement of ν(L)R in
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ν(L) \ C contains an open set U . The function n admits its maximum
nr on every intersection U ∩B(r) of U with an open tube B(r) of radius
r around the zero section. Choose r so large that U ∩ B(r) 6= ∅. Due
to the semi-continuity of n, the set n−1(nr) ∩U ∩B(r) defines an open
subset of ν(L) \C on which n is constant, which clearly contradicts our
definition of ν(L)R.

Suppose now that the singular kernel distribution
⋃

v∈ν(L) ker(dηv) is

completely integrable; i.e., through every point v ∈ ν(L) there is a µ(v)-
dimensional compact connected submanifold Cv with TwCv = ker(dηw)
for all w ∈ Cv. Then we have that Cv ⊂ S(‖v‖), where S(‖v‖) denotes
the sphere bundle over L of normal vectors of length ‖v‖, and the index
i(v) =

∑
t∈(0,1) µ(tv) is constant along Cv. As above, for a unit vector

v ∈ S(1), we denote by 0 < λ1(v) ≤ λ2(v) ≤ · · · the (continuous) focal
times along the ray rv, counted with their multiplicities.

Let us now define a function m : ν(L) → [0, 1) which assigns to a
normal vector v ∈ ν(L) \ {0} the number

m(v) = max {t ∈ (0, 1)|µ(tv) 6= 0}

if i(v) > 0, and m(v) = 0 if i(v) = 0 or if v belongs to the zero section.
In particular, by our above observations, the restriction of m to each
submanifold Cv is continuous, because of m(v) = λi(v/‖v‖)/‖v‖ for
some i and ‖v‖ 6= 0.

Denote by C =
⋃

v∈ν(L) Cv the η-fiber decomposition of the normal

bundle ν(L) and define Q : ν(L) → ν(L)/C to be the natural quotient
map. Since the fibers of Q are compact submanifolds of ν(L), which
are connected components of the fibers of the continuous map η from
the complete space ν(L) to the manifold M , the quotient is a locally
compact Hausdorff space and the restriction of the projection to ν(L)\C
is a homeomorphism onto an open subspace of ν(L)/C. The fiber norms
on ν(L) push down to the distance function from the image Q(0) of
the zero section, so that every compact subset in ν(L)/C has to be of
bounded distance from Q(0). In particular, the map Q is proper and
therefore closed.

We now define a natural cycle candidate ∆v for every geodesic γv =
η ◦ sv with v ∈ ν(L) \C. Because η factorizes over ν(L)/C by a map η̄ :
ν(L)/C → M , we will work in the quotient space and consider the space
P (ν(L)/C, Q(0) × Q(v)) of continuous paths c : [0, 1] → ν(L)/C from
Q(0) to Q(v) with the compact open topology. The constructed cycles
will embed in an energy preserving and obvious way into P(M,L×η(v))
under the map on the path space level induced by η̄, so that we renounce
the reference to the latter space for the rest of the proof.

Because the η-kernel distribution on ν(L) is integrable, there is a
natural cycle through Q ◦ sv intuitively having the right dimension.
Namly, take Zv to be the set of all piecewise continuous maps from
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[0, 1] to ν(L) obtained (with the reversed orientation) as follows: Follow
the segment sv toward the zero section up to the first focal vector m(v)v,
take a vector w1 ∈ Cm(v)v and follow the straight line tw1 toward the
zero section up to the first focal vector m(w1)w1. Then take an arbitrary
focal vector w2 in the corresponding leaf and follow the line tw2 toward
the zero section up to the first focal vector, then take an arbitrary focal
vector w3 in the corresponding leaf Cm(w2)w2

and follow the line tw3 up
to the first focal vector, and so on. This process will end after a finite
number of steps and we can push down these piecewise continuous maps
via Q, obtaining broken geodesics [0, 1] → ν(L)/C starting in Q(0) and
ending in Q(v). We define ∆v to be the injective image of Zv under this
map.

To be more precise, let us say that a tuple c = (cr, . . . , c1) is an η-
polygon on [0, 1] if there exists a partition 0 = tr < tr−1 · · · < t1 < t0 = 1
of the interval [0, 1] such that ci : [ti, ti−1] → ν(L) is given by ci(t) =
rwi

(t) = twi for some vector wi ∈ ν(L). Then for v ∈ ν(L) \ {0}, let Zv

be the set consisting of all η-polygons c on [0, 1] inductively defined as
follows. If i(v) =

∑
t∈(0,1) µ(tv) = 0, set Zv = {sv}, and if i(v) = 1 with

t1 = m(v) = s−1
v (C) =

λ1(v/‖v‖)

‖v‖
,

define Zv to consist of pairs c = (c2(w), c1), where w ∈ Cm(v)v and

c2(w) : [0,m(v)] → ν(L) is given by c2(w)(t) = tw

and

c1 : [m(v), 1] → ν(L) is given by c1(t) = tv.

Note that, because of w ∈ Cm(v)v , we have

λ1(w/‖w‖) = ‖w‖ = m(v)‖v‖ = λ1(v/‖v‖).

Now assume that we have already defined Zw if i(w) ≤ n in such
a way that it consists of all η-polygons c = (cr, . . . , c1) with segments
ci : [ti, ti−1] → ν(L) satisfying ci+1(ti) ∈ Cci(ti) for i ≥ 1. Let v be a
normal vector with i(v) = n + 1. Then for every vector w in the fiber
Cm(v)v through m(v)v we have i(w) = i(m(v)v) < i(v). We define the
space Zv to consist of pairs (d(w), c1) for some w ∈ Cm(v)v , where c1 :
[m(v), 1] → ν(L) is defined by c1(t) = tv and d(w) : [0,m(v)] → ν(L) is a

linear reparameterization on [0,m(v)] of an element d̃ ∈ Zw. This means

that there exists an η-polygon d̃ = (d̃r, . . . , d̃1) ∈ Zw with d̃i defined on
an interval [t̃i, t̃i−1], for a partition 0 = t̃r < t̃r−1 < · · · < t̃1 < t̃0 = 1,
such that d(w) = (dr, . . . , d1) with segments di : [ti, ti−1] → ν(L), given

by di(t) = d̃i

(
t

m(v)

)
, where ti = m(v)t̃i. If we set ci+1 = di, we have

that c = (d(w), c1) = (cr+1, . . . , c2, c1) with c1 = sv|[m(v),1], and for i ≥ 2
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and w1 = v we obtain the formula

ci(t) = s ‖v‖
‖wi‖

wi
(t), t ∈

[
m(wi)

‖wi‖

‖v‖
,m(wi−1)

‖wi−1‖

‖v‖

]

with wi ∈ Cm(wi−1)wi−1
.

Thus, in the above notation, ti = m(wi)
‖wi‖
‖v‖ . Note that this is well

defined because of m(wi−1)‖wi−1‖ = ‖wi‖ and m(w) = 0 if i(w) = 0.
We can regard an η-polygon on [0, 1] as a piecewise continuous map
c : [0, 1] → ν(L), defined by c(0) = 0 and c|(ti,ti−1] = ci|(ti,ti−1], where,
of course, here c(0) = 0 means the origin of the normal space that is
uniquely defined by c(ε) for some small number ε > 0. Anyway, there is
a well-defined injective map

Q̄ : Zv → P (ν(L)/C, Q(0) ×Q(v)),

given by Q̄(c)|[ti,ti−1] = Q ◦ ci with energy

E(Q̄(c)) = (1−m(w1))‖v‖
2 +

∑

i≥2

E(ci)

= (1−m(w1))‖v‖
2 +

∑

i≥2

(m(wi−1)
‖wi−1‖

‖v‖
−m(wi)

‖wi‖

‖v‖
)‖v‖2

= ‖v‖2.

We define the space ∆v to be the image Q̄(Zv) ⊂ P (ν(L)/C, Q(0) ×
Q(v)) with the relative topology; i.e., induced by the compact open
topology on the path space P (ν(L)/C, Q(0)×Q(v)). With this topology
the space ∆v is compact because Q is proper. The map Q̄ : Zv → ∆v is
a bijection and we topologize Zv by the postulation that this map is a
homeomorphism. As mentioned above, we can regard Zv as a space of
piecewise continuous maps.

We follow this direction and define e : Zv × [0, 1] → ν(L) by e(c, 0) =
c(0) and e(c, t) = limt′րt ci(t

′) if t ∈ (ti, ti−1], so that t 7→ et(c) is the
required map. Let us set ē : ∆v×[0, 1] → ν(L)/C for the continuous eval-
uation map, given by the prescription ē(Q̄(c), t) = Q̄(c)(t), and consider
the commutative diagram

Zv × [0, 1]
e //

Q̄×id
��

ν(L)

Q
��

∆v × [0, 1]
ē // ν(L)/C

from which it follows that e is continuous in (c, t) if Q̄(c)(t) /∈ Q(C). If
we define et = e(·, t), then em(v) : Zv → ν(L) is also continuous. To see
this, we first observe that em(v) is continuous iff it is continuous when
considered as a map to the submanifold Cm(v)v ⊂ S(m(v)‖v‖). Thus
take an open subset U ⊂ Cm(v)v and note that by definition we have
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em(v)(c) = w ∈ U iff the image of c2|[m(w),m(v)] is contained in the set
[m(·), 1] · U = {r(w)w|r(w) ∈ [m(w), 1], w ∈ U}. Because m is bounded
away from 1 on Cm(v), we can find an ε > 0 such that (1−ε, 1) ·Cm(v) ⊂
ν(L) \ C, and because Q is an embedding on ν(L) \ C we have

e−1
m(v)(U) = e−1

m(v)−ε/2((1− ε, 1) · U) = Q̄−1(ē−1
m(v)−ε/2(Q((1− ε, 1) · U))),

which is therefore open.
The crucial point with regard to our goal is that therefore the map

prv = em(v) ◦ Q̄
−1 : ∆v → Cm(v)v

Q̄(c) 7→ c(m(v))

is continuous, so ∆v is given as the (continuous) family of fibers

∆v =
⋃

w∈Cm(v)v

pr−1
v (w) ∼=

⋃

w∈Cm(v)v

∆w,

what enables us to use an inductive argument to verify the right co-
homological behavior. For this reason, we identify pr−1

v (w) ∼= ∆w by
restriction and reparametrization; i.e., forgetting the last irrelevant seg-
ment we regard a broken geodesic Q̄(c) in ∆v as a path from Q(0) to the
furthermost breaking point Q(Cm(v)v), namely as a path in the space
∆c(m(v)).

By definition, ∆v = {sv} if i(v) = 0. If i(v) = 1, then Cm(v)v
∼= S1

and we have pr−1
v (w) ∼= ∆w

∼= {sw} for all w ∈ Cm(v)v . Of course, in

this case we have Ȟ1(∆v) ∼= Z2 and Ȟk(∆v) = 0 if k > 1. In the general
case, we note again that for all w ∈ Cm(v)v we have

i(w) = i(m(v)v) = i(v) − µ(m(v)v) = i(v)− dim(Cm(v)v).

In particular, if i(v) > 0, then i(w) < i(v) for all w ∈ Cm(v)v . Thus,

because of the fact that pr−1
v (w) ∼= ∆w, we can assume by induction

that we have Ȟ i(w)(pr−1
v (w)) ∼= Z2 and Ȟk(pr−1

v (w)) = 0 if k > i(w)
for all w ∈ Cm(v)v . Applying Lemma 2.8 to the map prv : ∆v → Cm(v)

it then follows that Ȟ i(v)(∆v) ∼= Z2 and Ȟk(∆v) = 0 if k > i(v).
Having come this far, it remains to prove that the spaces ∆v indeed

represent linking cycles for generic geodesics Q ◦ sv, because using con-
tinuity arguments as in Section 3.1 this would imply tautness. But this
follows from the fact that, due to [Wa67] and [Heb81], C defines a
smooth distribution on every connected component of the set of regular
focal vectors, so that it is more or less obvious by our construction that
Q◦sv admits a manifold neighborhood in ∆v for all v ∈ ν(L)R. Further,
this neighborhood can be deformed into the local unstable manifold in
some Morse chart around Q ◦ sv because of the following expression
of the tangent space that is a direct consequence of our construction.
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Namely,

TQ◦sv∆v =
r⊕

k=1

J (tk),

where s−1
v (C) = {t1, . . . , tr} and J (tk) equals the vector space of con-

tinuous vector fields J along Q ◦ sv such that J |[0,tk ] is an L-Jacobi field
along Q ◦ sv and J |[tk ,1] ≡ 0. A direct computation or a look at the
proof of the Index Theorem of Morse (cf. [Sak96]) now shows that the
projection of TQ◦sv∆v onto the tangent space at Q ◦ sv of the unstable
manifold corresponding to some Morse chart is an isomorphism; that is
to say, locally around the critical point, ∆v can be deformed into the
unstable manifold of some Morse chart. In this case, if we denote by
PL,η(v) the space P(M,L× η(v)), the following commutative diagramm

Ȟ i(v)(P
‖v‖2

L,η(v))
// Ȟ i(v)(∆v)

Ȟ i(v)(P
‖v‖2

L,η(v),P
‖v‖2

L,η(v) \ {η ◦ sv})

OO

∼= // Ȟ i(v)(∆v,∆v \ {Q ◦ sv})

∼=

OO

yields the claim if v ∈ ν(L)R is not a focal vector. Since for manifolds
Čech cohomology is isomorphic to singular cohomology and ν(L)R is
dense in ν(L), we deduce, with the same arguments as in the proof of
Proposition 2.7 in [TT97], that the energy Eq : P(M,L × q) → R is
Z2-perfect for all points q that are not focal points of L. q.e.d.

Remark 2.10. As we mentioned in the last section, for compact
subsets (K,L) of a manifold P the Čech cohomolgy groups Ȟj(K,L)
are isomorphic to the direct limit

lim
−→

{
Hj(U, V )|(K,L) ⊂ (U, V )

}

where the limit is taken over open subsets (U, V ) ⊃ (K,L). Therefore,
one could also show directly that

H i(v)(P
‖v‖2

L,η(v),P
‖v‖2

L,η(v) \{η ◦ sv}) → Ȟ i(v)(∆v,∆v \{η ◦ sv}) → Ȟ i(v)(∆v)

is nontrivial for all the spaces ∆v with v ∈ ν(L) \ C, because using

the deformation retraction of P
‖v‖2+ε
L,η(v) onto the Morse complex one can

assume that a neighborhood base of η ◦ sv in ∆v is contained in some
ball around the origin in R

i(v).

As a direct consequence of the proof of Theorem 2.9 and the above
remark, we obtain the following fact, which was so far not known even
in the case of a Euclidean space.

Theorem 2.11. If a closed submanifold of a complete Riemannian
manifold is taut with respect to some field, then it is also Z2-taut.
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It is worth mentioning that although tautness is defined by means
of perfect Morse functions, an analogous statement for Morse functions
is wrong. This indicates the high degree of geometry involved in this
setting.

Example. Consider the unit 3-sphere S3 ⊂ C
2 with the Zp-action,

generated by

1 · (z, w) = (e
i2π
p z, e

i2πq

p w)

with p and q relatively prime. The quotient S3/Zp is known as the lens
space L(p, q) with fundamental group π1(L(p, q)) ∼= Zp and homology
Hk(L(p, q);Zp) ∼= Zp for k = 0, 1, 2, 3. Now, the Morse-Bott function |z|2

is invariant under the Zp-action so it descends to a Morse-Bott function
on L(p, q) with critical set corresponding to the two critical circles z = 0
and w = 0 of index 0 and index 2, respectively. One can perturb this
Morse-Bott function in the neighborhoods of the critical submanifolds
by adding a bump function depending on the distance to the respective
submanifold times a (perfect) Morse function on the respective circle
so that the indices add. This, therefore, results in a Zp-perfect Morse
function on L(p, q). Now, if p is odd, we have H2(L(p, q);Z2) = 0, so
that this Zp-perfect Morse function is not perfect with respect to Z2. In
particular, there are no taut immersions of L(2k+1, q) into a Euclidean
space. Indeed, Thorbergsson actually proved in [T88] that there are no
taut immersions of L(p, q) into a Euclidean space, except in the case of
the projective space RP 3 = L(2, 1), by showing that the first nontrivial
homology group can only have torsion elements of order two.

3. Taut Foliations

Even if there are not many examples of taut submanifolds, a remark-
able observation is that they often occur, if at all, in families, which
then decompose the ambient space. In this section we therefore focus
on taut families as they usually occur, namely on singular Riemannian
foliations all of whose leaves are taut. For this reason, we first recall
some basic facts about singular Riemannian foliations and make some
preliminary observations that we need to prove our second result in Sub-
section 3.4, which characterizes taut singular Riemannian foliations by
means of their quotients.

3.1. Singular Riemannian Foliations and Orbifolds. For a more
detailed discussion on singular Riemannian foliations and the proofs of
the following statements we refer to [Mol88] and [LT10].

Definition 3.1. Let F be a partition of a manifold Mn+k into con-
nected, injectively immersed submanifolds with maximal dimension n.
For a point p ∈ M , let Lp denote the element of F which contains p.
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Set

TF =
⋃

p∈M

TpLp.

Then the partition F is called a singular foliation of M of dimension
n/codimension k iff the C∞(M)-module Γ(TF) of smooth vector fields
X tangential to F (i.e., with Xp ∈ TpLp for all p ∈ M) exhaust TpLp

for every p ∈ M . We call the elements of F leaves. A leaf is regular if it
has dimension n, otherwise singular. A point belonging to a regular leaf
is regular, otherwise singular. By M0 we denote the set of regular points
and call it the regular stratum. If (M,g) is a Riemannian manifold,
a singular foliation is called a singular Riemannian foliation if every
geodesic in M that intersects one leaf orthogonally intersects every leaf
it meets orthogonally.

We sometimes also speak about a singular Riemannian foliation (M,F),
or also (M,g,F), if we want to abbreviate that F is a singular Riemann-
ian foliation on the Riemannian manifold M , or (M,g).

Example. The set of orbits of an isometric Lie group action on a
Riemannian manifold M is a singular Riemannian foliation, closed if
and only if the group considered as a subgroup of the isometry group is
closed.

For d ≤ n, denote by Md the subset of all points p ∈ M with fixed
leaf dimension dim(Lp) = n−d. Since the dimension of the leaves varies
lower semi-continuously, the set

⋃
d′≤dMn−d′ = {p ∈ M | dim(Lp) ≤

d} is closed. Further, Md is an embedded submanifold of M and the
restriction of F to Md is a (regular) Riemannian foliation. The main
stratum M0 is open, dense, and connected if M is connected. All the
other singular strata have codimension at least 2 in M .

Let p be a point in (M,g,F) and let B be a small open ball in Lp.
Then there is a number ε > 0 and a distinguished tubular neighborhood
U at p so that the following holds true:

1) The foot point projection π : U → B is well defined;
2) U is the image of the ε-discs νε(B) in the normal bundle ν(B) of

B under the exponential map and the map exp : νε(B) → U is a
diffeomorphism;

3) Tq = π−1(q) is a global transversal of (U,F|U ) for all q ∈ B; i.e.,
Tq meets all the leaves of F|U and always transversally;

4) For each real number λ ∈ [−1, 1] \ {0} the map hλ : U → U , given
by hλ(exp(v)) = exp(λv), for all v ∈ νε(B), preserves F .

Indeed, the fact that the geodesics perpendicular to B remain perpen-
dicular to the leaves implies that if d(q,B) = δ, then the connected
component Pq of q in the open subset Lq ∩ U of the leaf Lq is entirely
contained in the tube SB

δ of radius δ around B. The leaf of FU through
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q, which is exactly Pq, is called the plaque of F passing through q in
the neighborhood U . In particular, we have B = Pp by construction.
Moreover, we see that for all q ∈ U , the distance from q to B remains
constant as q moves along the plaque Pq, thus the distance between the
neighboring leaves is locally constant.

Definition 3.2. We say that a singular Riemannian foliation (M,F)
has the property P if every leaf of F has the property P ; e.g., F is closed
if all the leaves are closed subspaces of M .

It is well kown that the leaves of a closed singular Riemannian folia-
tion F on a complete Riemannian manifold M admit global ε-tubes, so
that the distance between two leaves is globally constant. In this case,
the quotient M/F is a complete metric space, where the distance be-
tween two points is just the distance between the corresponding leaves
as submanifolds of M .

Lemma 3.3. Let (M,F) be a singular Riemannian foliation. Then
a leaf L ∈ F is embedded if it is closed.

Proof. Let r be the dimension of L. Then Mn−r is an embedded
submanifold of M and F|Mn−r

is a regular Riemannian foliation. Due
to Molino [Mol88, p.22]), the statement is true for (Mn−r,F|Mn−r

), so
it is true for (M,F). q.e.d.

Again, let p ∈ M be a point and let B be a small open neighborhood in
the leaf Lp through p. Then there is an ε > 0 and a distinguished tubular
neighborhood (U,B, π) around p such that there is an embedding φ of
U into the tangent spaces TpM with dφp = Id and a singular Riemann-
ian foliation Fp on TpM , called the infinitesimal singular Riemannian
foliation of F at the point p, that coincides with φ∗F on φ(U) and such
that Fp is invariant under all rescalings rλ : TpM → TpM, rλ(v) = λv,
for all λ 6= 0. In particular, Fp is closed if and only if F is locally closed
at p. If F is locally closed at p, the quotient TpM/Fp is a non-negatively
curved Alexandrov space and the local quotient U/F is a metric space
of curvature bounded below in the sense of Alexandrov. Further, the
space TpM/Fp is the tangent space to this Alexandrov space at the leaf
L ∩ U ∈ U/F . The inclusion U → M induces a map between the quo-
tients U/F → M/F , which is an open finite-to-one map if F is closed.
So, assume that F is closed and M is complete. Then the quotient M/F
is a complete metric space with the metric induced by the distance of
the leaves of F (as submanifolds). Let T be a global ε-tube around L
with the same ε as in the definition of the distinguished neighborhood
U , then U is saturated (i.e., it is a union of leaves) and T/F is a neigh-
borhood of L in the global quotient M/F . In this case, there is a finite
group of isometries Γ acting on the local quotient U/F that fixes the
plaque L ∩ U ∈ U/F such that U/F is isometric to T/F .
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A concept that is closely related to that of (Riemannian) foliations
is the notion of (Riemannian) orbifolds. We therefore summarize the
basic facts and defintions as a reminder and discuss orbifold coverings
thereafter in more detail, because we will need this later on.

Reminder. As a manifold is locally modeled on open sets U of
R
n, orbifolds are locally modeled on finite quotients U/G, where G ⊂

Diff(U) is a finite group. Thus an orbifold (B,U) is a Hausdorff topolog-
ical space B together with a maximal orbifold atlas U consisting of com-
patible orbifolds charts (U,G,ϕ); i.e., the mapping ϕ : U → B induces a
homeomorphism U/G ∼= ϕ(U) with ϕ(U) open. The compatibility con-
dition just means that the transition maps (U1, G1, ϕ1) → (U2, G2, ϕ2)
commute with the respective projections. In this case there is (up to
isomorphism) a well defined notion of isotropy group for the points in
B as the isotropy group of any preimage point in an arbitrary chart.
The points in B with trivial isotropy group are called regular otherwise
singular. If, in addition, B is a metric space and there is a Riemann-
ian metric on the Ui such that Gi ⊂ Iso(Ui) and the homeomorphisms
Ui/Gi → ϕi(Ui) are isometric, then B is called a Riemannian orbifold.

Let B be a Riemannian orbifold. Then B is locally isometric to a
quotient N/Γ, where Γ is a finite group of isometries of a smooth Rie-
mannian manifold N . The tangent bundle TB of B is therefore locally
also given as a finite quotient TN/Γ. Since geodesics are invariant under
isometries, there is a local geodesic flow on TB and the orbifold geodesics
are (locally) the projections of geodesics in the covering manifolds under
the quotient map. For v ∈ TB, we denote by ηv the orbifold-geodesic in
direction v.

For each orbifold-geodesic ηv, the curvature endomorphism along ηv is
well defined. Therefore, the notions of Jacobi fields and conjugate points
are also well defined. Let us now assume that B is complete as a metric
space. Then each orbifold-geodesic is defined on R and the local geodesic
flow is a global flow. Denote by B0 the regular stratum and note that B is
stratified by Riemannian manifolds, where the unique maximal stratum
B0 is open and dense in B. Take a regular point b ∈ B0 and consider the
orbifold exponential map exp : TbB → B, given by exp(tv) = ηv(t). This
map (since defined in metric terms) factors over local branched covers of
B; i.e., for each w ∈ TbB there is a finite quotient N/Γw = O ⊂ B with
exp(w) ∈ O, such that exp lifts on a neighborhood of w to a smooth
map to N . The vector w = tv is a conjugate vector along the geodesic ηv
if and only if this lift has a non-injective differential at w. For a detailed
discussion about orbifolds see [MM03].

Definition 3.4. A covering orbifold of an orbifold (B,U) is an orb-

ifold (B̃, Ũ), with a map P : B̃ → B between the underlying spaces such
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that each point b ∈ B has a neighborhood V = U/G for which each com-

ponent Ṽi of P
−1(V ) is isomorphic to U/Gi for some subgroup Gi ⊂ G,

and such that the isomorphisms commute with the projection P .

It is well known that any orbifold admits a universal orbifold covering,
that is to say, for a regular base point b0 ∈ B there exists a pointed

connected covering orbifold P : B̃ → B with base point b̃0 projecting
to b0 such that for any other covering orbifold P ′ : B′ → B with base

point b′0 and P ′(b′0) = b0, there is a lift Q : B̃ → B′ of P along P ′

to an orbifold covering. In particular, a universal orbifold covering is
regular in the sense that its group of deck transformations acts simply
transitive on a generic fiber. This group is denoted by πorb

1 and is called
the orbifold fundamental group.

Definition 3.5. An orbifold is called good if it is a global quotient or,
equivalently, if the universal covering orbifold is a manifold; i.e., there
are no singular points.

In the case of a Riemannian orbifold all the definitions are to be mod-
ified in the obvious manner, so that we can speak about Riemannian
orbifold coverings and good Riemannian orbifolds. Of course, the state-
ment about the universal orbifold covering also holds in the Riemannian
category.

Example. Again let N be a Riemannian manifold and let Γ be a

discrete group of isometries of N . If Ñ denotes the universal covering of

N , then Ñ is the universal Riemannian covering orbifold of N/Γ. This
can be seen, for instance, by observing that every covering orbifold of

N/Γ has to be of the form Ñ/Γ̃′, where Γ̃′ is a subgroup of the group Γ̃

of deck transformations of Ñ over N/Γ. Hence the two definitions of a
good orbifold are indeed equivalent.

Because we will use it in what follows, we will formulate the next
observation as a lemma.

Lemma 3.6. Let F be a closed (regular) Riemannian foliation on

a complete Riemannian manifold M and let F̃ denote its lift to the

universal Riemannian covering M̃ of M . Then the quotient M̃/F̃ is

a complete Riemannian manifold (i.e., F̃ is simple) if M/F is a good

Riemannian orbifold. In particular, the orbifold covering M̃/F̃ → M/F
coincides with the universal Riemannian orbifold covering.

Proof. Since F is closed its lift F̃ is closed, too (cf. Lemma 3.8),

and the leaves of F̃ admit global ε-tubes, because M̃ is complete.
Due to [Hae88] or [Sal88], there is a surjective group homomorphism

π1(M̃ ) → πorb
1 (M̃/F̃), where the latter group is the group of deck trans-

formations of the universal orbifold covering of M̃/F̃ . Now, if M/F is a
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good Riemannian orbifold, its branched cover M̃/F̃ is a good Riemann-

ian orbifold, too. But then πorb
1 (M̃/F̃) = 1 implies that M̃/F̃ already

coincides with its universal covering orbifold and is therefore a manifold.
q.e.d.

3.2. Simplifications and Preliminaries. In this section we give some
preliminary results to simplify the discussion of taut foliations; e.g.,
we will see that one can always assume that the manifold is simply
connected (cf. Lemma 3.11) and that a dense family of leaves forces a
foliation to be taut (cf. Corollary 3.16).

Definition 3.7. Let F be singular Riemannian foliation on a com-
plete Riemannian manifold M . If F is closed, we call F taut if every
leaf of F is taut.

Note that if F is closed, then by Lemma 3.3 all the leaves are em-
bedded submanifolds. Further, if F is the trivial foliation given by the
points of M and F is taut, then, as already defined in Section 2.1, we
call M pointwise taut.

In order to prove tautness of a foliation, one can always assume that
M is simply connected. To see this, we first need the closeness property
of lifts.

Lemma 3.8. Let F be closed and let π : N → M be a covering

map. Then the lift F̃ of F given by the involutive singular distribution

T F̃ = π∗(TF) is closed.

Remark 3.9. Note that the converse is false, as one can see by the
dense torus foliation induced by the submersion f : R2 → R given by
f(x, y) = y − λx, where λ is irrational.

Proof. For every leaf L of F , the preimage π−1(L) =
⋃

i L̃i is a union

of leaves of F̃ and the restriction π|
L̃i

: L̃i → L is a covering projection

for each i. Thus each leaf L̃ ∈ F̃ is a connected component of the closed

saturated set π−1(π(L̃)) and hence closed. q.e.d.

Assume that f : N → M is a Riemannian submersion between com-
plete Riemannian manifolds and L ⊂ M is a closed submanifold. Then,
by [He60], the map f : N → M is a locally trivial fiber bundle and
therefore, for any point q̄ ∈ f−1(q), the spaces P(N, f−1(L) × q̄) and
P(M,L×q) are homotopy equivalent. Since f yields a 1:1 correspondece
between the critical points and preserves their indices [HLO06, Lemma
6.1]), we obtain

Lemma 3.10. If f : N → M is a Riemannian submersion between
complete Riemannian manifolds and L ⊂ M is a closed submanifold,
then L is taut if and only if f−1(L) is taut.



TAUT SUBMANIFOLDS AND FOLIATIONS 483

Now, since the homology of a path connected component injects in
the homology of the whole space, it is not hard to see that a union of
connected, closed submanifolds is taut if and only if its components are
taut. From that we deduce

Lemma 3.11. Let π : N → M be a Riemannian covering and let M

be complete. If F is closed, then F is F-taut if and only if the lift F̃ of
F to N is F-taut.

Given a closed singular Riemannian foliation F on a complete Rie-
mannian manifold M , every leaf posses a global ε-tube. For a regular
leaf L with such a global tube, the restriction of the foot point projection
on a nearby regular leaf induces a finite covering map onto L. We say
that L has trivial holonomy if all these coverings are diffeomorphisms.
It is well known that the set of regular points whose leaves have trivial
holonomy is open and dense in M .

In particular, all regular leaves of F have trivial holonomy; that is
to say, the quotient M0/F is a Riemannian manifold if the foliation is
taut and M is simply connected. To see this, for p, q ∈ M , let Ωp,q(M)
denote the space of all paths from p to q. Then Ωp,q(M) ≃ Ωq,q(M) and
the long exact sequence of the path space fibration yields isomorphisms
πi(M) ∼= πi−1(Ωq,q(M)), which implies that Ωp,q(M) is connected.

The fibration P(M,L × q) → L given by c 7→ c(0) gives this part of
the corresponding long exact homotopy sequence:

π0(Ωq,q(M)) → π0(P(M,L × q)) → π0(L) → 1.

Thus P(M,L × q) is connected. Now a leaf with nontrivial holonomy
would yield at least two local minima for the energy on the path space
of a neighboring generic leaf; i.e., a leaf without holonomy. By tautness,
all the maps in homology are injective, which clearly contradicts our
connectedness observation.

We are now able to state a characterization of taut regular foliations,
which indeed also follows from our second main result, Theorem 3.19
below. For the notion of Riemannian orbifolds see Section 3.2.

Lemma 3.12. Let F be a closed (regular) Riemannian foliation on
a complete Riemannian manifold M . Then F is F-taut if and only if
the quotient M/F is a good Riemannian orbifold with a pointwise F-taut
universal covering orbifold; i.e., M/F is isometric to N/Γ with a simply
connected Riemannian manifold N , all of whose points are F-taut and
Γ ⊂ Iso(N) is a discrete subgroup of isometries.

Proof. Let F̃ denote the lift of F to the universal cover M̃ of M .

Then, by Lemma 3.11, F̃ is taut if and only if F is taut. By the discus-

sion above, if F̃ is taut, then it is simple; i.e., given by the fibers of a

Riemannian submersion. So if F is taut, the quotient map M̃ → M̃/F̃ is
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a Riemannian submersion between complete Riemannian manifolds and

M̃/F̃ is 1-connected by the exact sequence for fibrations. In this case,

the map M̃/F̃ → M/F coincide with the universal orbifold covering. On
the other hand, assume that M/F is a good Riemannian orbifold. Then,

due to Lemma 3.6, F̃ is simple; that is to say, M̃/F̃ is a Riemannian
manifold and we can reduce the problem to Lemma 3.10. q.e.d.

Remark 3.13. At the end of Section 3.4 we prove the corresponding
statement for the class of foliations whose quotients are orbifolds and
coefficients in Z2.

We end this section with some genericity results.

Lemma 3.14. Let F be closed. Then L ∈ F is F-taut if and only
if the energy functional Eq : P(M,L × q) → R is an F-perfect Morse
function for all non L-focal regular points q ∈ M . Further, F is F-taut
if and only if all regular leaves are F-taut.

Proof. Since the set of non-focal points of L, as well as the set of
regular points, is open and dense in M , every neighborhood of a given
point q contains a regular point that is not a focal point. Therefore, the
same argument as in the proof of Proposition 2.7 in [TT97] yields the
first claim.

For the second claim, assume that all regular leaves are F-taut. Let
N be a singular leaf and let q ∈ M be a non-focal point of N . By our
above observations, we can assume that the point q is regular. Let γ
be a critical point of EN

q . Then γ̇(0) is a regular vector of Fγ(0), hence
there exists an ε > 0 such that L = Lγ(ε) is a regular leaf contained in a
global tube of N and the point q is not a focal point of L. Denote by γ̄
the restriction γ|[ε,1] after linear reparameterization on [0, 1]. Then the
horizontal geodesic γ̄ is a critical point of the perfect Morse function
EL

q : P(M,L× q) → R. Now let i = ind(γ̄) be the index of the geodesic

γ̄ and denote by κ = EL
q (γ̄) its energy. For notational reasons let us set

Lc = (EL
q )

−1([0, c]), resp. N c = (EN
q )−1([0, c]). Denote by σ ∈ Hi(L

κ)
the completion of the local unstable manifold representing a nontrivial
cycle in Hi(L

κ,Lκ \{γ̄}) associated to γ̄. We then have ind(γ) = ind(γ̄)
for small numbers ε, for continuity reasons.

The restriction of the foot point projection R : L → N, (p, v) 7→ p,
induces a map

R̄ : Lκ → NEN
q (γ)

c 7→ c̃,

where c̃ is the curve that one gets by concatenation of the unique hor-
izontal geodesic from R(c(0)) to c(0) with c, followed by reparameteri-
zation between 0 and 1. The map R̄ maps level sets to level sets. More-

over, R̄ is clearly an immersion. Therefore, R̄∗(σ) is a cycle in NEN
q (γ)

that can be deformed within a morse chart around γ into a cycle z that
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agrees with the unstable manifold at γ above the EN
q -level EN

q (γ)−δ for
small δ. It follows that the homology class of z, and thus the homology

class R̄∗(σ), is mapped onto a generator of Hi(N
EN

q (γ),NEN
q (γ) \ {γ}).

Since the critical point γ was chosen arbitrarily, every local unstable

manifold can be completed to a cycle in Hi(γ)(N
EN

q (γ)+δ); i.e., the map

Hn(N
λ+δ) → Hn(N

λ+δ,N λ−δ) is surjective for all n and regular values
λ± δ. Hence N is F-taut. q.e.d.

Our last observation in this section is that a foliation F is F-taut if and
only if a dense family of regular leaves is F-taut, where we call a family
of leaves dense if their union is a dense set. The next lemma shows that
tautness is a closed property relative to non-collapsing convergence. It
is then straightforward to see that tautness of a dense family of regular
leaves forces a foliation to be taut.

Lemma 3.15. Let F be a closed singular Riemannian foliation on a
complete manifold M , and let {Ln} be a sequence of F-taut regular leaves
converging to a regular leaf L without holonomy; i.e., for every tubular
neighborhood T of L there is a number n0 ∈ N such that Ln ⊂ T , and
the canonical projection π : T → L restricted to Ln is a diffeomorphism
for every n ≥ n0. Then L is F-taut.

Proof. Let T be a tubular neighborhood of L and let π : T → L be
the canonical projection. Choose a number n0 ∈ N so large that Ln ⊂ T
for all n ≥ n0. Now let q ∈ M be a non-focal point of L. Then for
large n, the point q is not a focal point of Ln as well. We denote by
fn : P(M,L×q) → P(M,Ln×q) and gn : P(M,Ln×q) → P(M,L×q),
respectively, the induced maps between the path spaces that one gets
by assigning to a curve c the curve γc(0) · c and then reparameterizing
it between 0 and 1, where γc(0) is the unique shortest geodesic between
Ln and L that intersects L in c(0), resp. γc(0) is the unique shortest
geodesic between L and Ln that intersects Ln in c(0). Then fn is, in an
obvious way, a homotopy equivalence with homotopy inverse gn.

Let γ be a critical point of EL
q with κ = EL

q (γ). We can choose
n so large (i.e., a tube T so small) that there is an ε > 0 such that
(κ−3ε, κ+3ε)\{κ} contains only regular values and g◦f(P κ−2ε) ⊂ P κ−ε

with f = fn, g = gn, and P r = P(M,L×q)r , and P r
n defined analogously.

Moreover, we can deform g ◦ f : P κ−2ε → P κ−ε into the inclusion
j : P κ−2ε →֒ P κ−ε below the κ-level of EL

q ; i.e.,

(g ◦ f)∗ = j∗ : H∗(P
κ−2ε) → H∗(P

κ−ε).

Since P κ−2ε is a strong deformation retract of P κ−δ for all 2ε > δ > 0,
the above map is an isomorphism. In particular, the induced map in
homology

f∗ : H∗(P
κ−2ε) → H∗(P

α
n )
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with α = max{ELn
q (f(c)) : c ∈ (EL

q )
−1(κ− 2ε)} injective.

Set i = ind(γ) and define α̃ = max{ELn
q (f(c)) : c ∈ (EL

q )
−1(κ)}.

Now consider the commutative diagram that comes from the long exact
sequence for pairs of spaces together with the natural behavior of the
connecting homomorphism

Hi(P
κ)

f∗ //

��

Hi(P
α̃
n )

��
Hi(P

κ, P κ−2ε)
f∗ //

∂∗
��

Hi(P
α̃
n , P

α
n )

∂̃∗
��

Hi−1(P
κ−2ε)

f∗ // Hi−1(P
α
n )

Since Ln is taut, we have ∂̃∗ = 0. So

f∗ ◦ ∂∗ = ∂̃∗ ◦ f∗ = 0.

As we have seen, the map f∗ : H∗(P
κ−2ε) → H∗(P

α
n ) is injective. But

this means ∂∗ = 0; i.e., L is taut. q.e.d.

Now assume under the assumptions of Lemma 3.15 that all Ln are
regular leaves without holonomy and that L is an exceptional leaf; i.e.,
has nontrivial holonomy. Due to Lemma 3.11, we can assume that M
is simply connected. Then for large n, the leaf L would provide at least
two local minima for Ln. Again, by tautness of Ln, the path space
corresponding to Ln would be disconnected. But this is clearly a con-
tradiction, since M is simply connected. So, L necessarily has trivial
holonomy. Thus combining Lemma 3.11, Lemma 3.14, and Lemma 3.15
together with the fact that the set of regular leaves without holonomy
is open and dense in M/F , we have

Corollary 3.16. The closed singular Riemannian foliation F is F-
taut if and only if a dense family of leaves is F-taut.

3.3. Index Splitting for Horizontal Geodesics. In this section we
summarize some general observations on the focal indices of geodesics
with respect to Lagrangian subspaces of the space of normal Jacobi
fields, which we then apply to the case of a horizontal geodesic of a
singular Riemannian foliation (M,F). We will see that the focal data
of the space of normal Lγ(a)-Jacobi fields along a regular horizontal
geodesic γ : [a, b] → M are of two types. Namely, for t ∈ (a, b), there is
a vertical multiplicity dim(F)−dim(Lγ(t)) that counts the intersections
with the singular stratum, and a horizontal multiplicity that is, roughly
speaking, the multiplicity of γ(t) as a conjugate point of γ(a) in the
quotient M/F along the projection of γ. Our discussion is based on
[L09], [LT10], and [Wil07].
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If F is a singular Riemannian foliation on a Riemannian manifold
(M,g) we call a geodesic γ horizontal if it meets all leaves of F perpen-
dicularly. We will call such a geodesic γ : [a, b] → M regular, if γ(a) and
γ(b) are regular points of F .

A regular horizontal geodesic intersects the singular strata of F in
only finitely many points a < t1 < · · · < tr < b (see [LT10, Cor.4.6]).
We set

c(γ) =

r∑

i=1

dim(Lγ(a))− dim(Lγ(ti))

and call this number the crossing number of γ.

Definition 3.17. Let γ : [a, b] → M be a horizontal geodesic. An
F-Jacobi field along γ is a variational field through horizontal geodesics
starting on the leaf Lγ(a). An F-vertical Jacobi field along γ is an F-
Jacobi field J with J(t) ∈ Tγ(t)Lγ(t) for all t.

Let us recall some required facts about the Jacobi equation, Jacobi
fields, and focal points. We refer to [L09] and [Wil07] for the proofs and
a more detailed discussion of the following facts. Our summary follows
the exposition given in [LT10].

Let γ : [a, b] → M be a geodesic and let N be the normal bundle
of γ. Let Jac denote the space of all normal Jacobi fields along γ; i.e.,
solutions of the equation

∇2J +R(J, γ̇)γ̇ = 0,

where R denotes the curvator tensor. By ω we denote the canonical
symplectic form on Jac, defined by ω(J1, J2) = 〈∇J1, J2〉+〈J1,∇J2〉. For
subspaces W of Jac, we denote by W⊥ the orthogonal complement with
respect to ω. A subspace W ⊂ Jac is called isotropic, resp. Lagrangian,
if W ⊂ W⊥, resp. W = W⊥.

For an isotropic subspaceW and t ∈ [a, b], we define theW -focal index
of t to be fW (t) = dim(W )− dim(W (t)) with W (t) = {J(t) | J ∈ W}.
Note that we have the equality fW (t) = dim(W t), where we have set
W t = {J ∈ W | J(t) = 0}. One can show that the set of points with
non-zero focal index is discrete and such points are called W -focal. The
W -index of γ is defined by indW (γ) =

∑
t∈[a,b] f

W (t).

Set (M,F , g) as usual and let γ : [a, b] → M be a horizontal geodesic.
Then the space ΛLγ(a) of all normal F-Jacobi fields is Lagrangian but
depends not only on the maximal geodesic containing γ but also on the
starting point γ(a). To arrange this problem, consider the space W γ

consisting of all Jacobi fields along γ with the property that these fields
are variational fields through horizontal geodesics γs with γs(t) ∈ Lγ(t)

for all t. One can show [LT10, Sec 4.5] that W γ(t) = {J(t) | J ∈ W γ}
coincides with Tγ(t)Lγ(t), for all t, and by definition we have W γ ⊂

ΛLγ(a) . The space W γ is just the space of all F-vertical Jacobi fields
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along γ and does not depend on the starting point, in contrast to ΛLγ(a) .
If d(γ) denotes the maximal dimension of L(γ(t)), then we have d(γ) =
dim(W γ). Moreover, theW γ-focal points along γ are precisely the points
ti with dim(Lγ(ti)) < d(γ) and the W γ-focal index is d(γ)−dim(Lγ(ti)).
In particular, for a regular horizontal geodesic γ, its crossing number
c(γ) coincides with the vertical index indW γ (γ). If, in addition, we call
a Jacobi field horizontal if it is the variational field of a variation of γ
through horizontal geodesics, one can describe the space (W γ)⊥ as the
space consisting of normal horizontal Jacobi fields.

We now recall the construction of Wilking [Wil07] of the transversal
Jacobi equation in our situation. Again let γ : [a, b] → M be a geodesic
and consider the normal bundle N of γ with the connection induced
by the pull back. Let R : N → N denote the curvature endomorphism
defined by R(X) = R(X, γ̇)γ̇. Let Jac be as above and consider an
isotropic subspace W of Jac. Set

W̃ (t) = W (t)⊕
{
∇J(t) | J ∈ W t

}

and note that W̃ (t) = W (t) for every non W -focal t ∈ [a, b].

Then Wilking observed (in a more generall setting) that W̃ defines a
smooth subbundle of N . If we denote by H the orthogonal complement

of W̃ and by P : N → H the orthogonal projection, then P defines an

identification H ∼= N/W̃ and we can define a smooth endomorphism

field A : W̃ → H, by A(J(t)) = P (∇J(t)) and A(∇J(t)) = 0 for all
J ∈ W t. Consider the field RH : H → H of symmetric endomorphisms,
defined by

RH(Y ) = P (R(Y )) + 3AA∗(Y ),

and denote by ∇H the induced covariant derivative on H; i.e.,

∇H(Y ) = P (∇Y ).

Wilking proved in [Wil07] that for each Jacobi field J ∈ W⊥ the
projection Y = P (J) is an RH-Jacobi field; i.e., (∇H)2J + RH(J) = 0.
Moreover, two R-Jacobi fields J1, J2 ∈ W⊥ have the same projection to
H if and only if J1 − J2 ∈ W . Thus the induced map

I : W⊥/W → JacR
H

is injective and by dimensional reasons it is an isomorphism. Hence RH-
Jacobi fields are precisely the projections of Jacobi fields in W⊥; and

Lagrangians in JacR
H
are projections of Lagrangians in Jac that contain

W . As a consequence we obtain

Lemma 3.18. For each Lagrangian Λ ⊂ Jac that contains W , we
have the equality indW (γ) + indΛ/W (γ) = indΛ(γ).

Example. Let f : M → B be a Riemannian submersion and let
F(f) denote the induced foliation on M . Let γ be a horizontal geodesic
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in M and denote by γ̄ = f(γ) its image in B. Consider the space W γ of
F(f)-vertical Jacobi fields along γ; i.e., variational fields of variations
of horizontal lifts of γ̄. Then W γ is an isotropic subspace, since it is
contained in the space ΛN of normal N -Jacobi fields, where we set
N = f−1(f(γ(a))). In this case, for each t, the space W γ(t) is the
vertical space of f through γ(t), H is canonically identified with the
normal bundle of γ̄ in B and the transversal operator RH coincides
with the curvature endomorphism in the base space; i.e., the term AA∗ is
just the O’Neill tensor. So, the horizontal index indΛN/W γ (γ) describes

the index of γ̄. The vertical index indW γ (γ) is zero in this case, but
in the much more general situation of a singular Riemannian foliation,
the vertical index counts the intersections of γ with singular leaves and
coincides with the crossing number in the regular case.

Recall that two points c < d in [a, b] are called conjugate if there is
a non-zero Jacobi field J ∈ Jac with J(c) = 0 = J(d). Thus the state-
ment that the point a does not have conjugate points on (a, b) for the
transversal Jacobi equation on H, whereH is theW γ-transversal bundle
as defined above, is equivalent to the equality ind

Λ
Lγ(a) (γ0) = indW γ (γ0),

where γ0 denotes the subgeodesic γ0 : (a, b) → M of γ. To see this, note
that, by Lemma 3.18, ind

Λ
Lγ(a) (γ0) = indW γ(γ0) is equivalent to the

absence of focal points of ΛLγ(a)/W γ on the open interval (a, b). But
ΛLγ(a)/W γ is by definition the Lagrangian in Jac(H) of all Jacobi fields
Y with Y (a) = 0. Thus the statement that ind

Λ
Lγ(a)/W γ

(γ0) = 0 is

equivalent to the fact that a does not have conjugate points with re-
spect to the transversal Jacobi equation.

3.4. A Property of the Quotient. Dealing with singular Riemannian
foliations, one focuses mainly on the horizontal geometry of the foliation;
that is to say, the geometry of the quotient. For this reason, one is
often interested in geometric properties of the foliation that can be
read off the quotient and to consider equivalence classes of foliations by
means of isometric quotients. An example of such a quotient property is
infinitesimal polarity (cf. [LT10]), which is equivalent to the property
that the quotients are Riemannian orbifolds. Our second main result
now states that tautness of a foliation is actually also a property of
the quotient, so that one can speak about equivalence classes of taut
foliations by means of their leaf spaces.

Theorem 3.19. Let F and F ′ be closed singular Riemannian foli-
ations on complete Riemannian manifolds M and M ′ with isometric
quotients. Then F is taut if and only F ′ is taut. In particular, if one of
them is F-taut, then both are Z2-taut.

Before we begin with the proof of the theorem let us discuss and
apply this result in the context of the known examples.
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If M = Sk is the round sphere and F is the trivial foliation by points,
there is a well known cycle construction for critical points of the energy
functional [Mi63, pp.95–96]) that shows that Sk is pointwise taut. Terng
and Thorbergsson proved in [TT97] that the standard metric on the
sphere is the only one with respect to which the sphere is pointwise taut.

Now consider the more general case M/F = N/Γ, where N is a sym-
metric space. In their study of Morse theory of symmetric spaces, Bott
and Samelson came up with concrete cycles that represent a basis in
Z2-homology of generic path spaces P(N, p × q) and that are in fact
compact connected manifolds (see [BS58]) and coincide with those cy-
cles we constructed in Theorem 2.9. In particular, symmetric spaces are
pointwise taut. Therefore, the foliation F on M has to be taut by The-
orem 3.19. Of course, one could allow an additional constant direction
of nonpositive curvature in the quotient, because under this assumption
there are no focal points in this direction.

We want to emphasize that the following corollary covers all known
examples.

Corollary 3.20. If F is a closed singular Riemannian foliation on
a complete Riemannian manifold M and M/F = (N × P )/Γ is a good
Riemannian orbifold, where N is a symmetric space and P is a non-
positively curved manifold, then F is taut.

Another application of Theorem 3.19 are foliations admitting gener-
alized sections.

Example. Let M be a complete Riemannian manifold with an iso-
metric action of a compact Lie group G. In [GOT04] the authors devel-
oped the concept of a generalized section for such an action. They call
a connected, complete submanifold Σ of M a k-section if the following
hold:

• Σ is totally geodesic;
• Σ intersects all orbits;
• for every G-regular point p ∈ Σ, the tangent space TpΣ contains
the normal space νp(G(p)) as a subspace of codimension k;

• if p ∈ Σ is a G-regular point with g(p) ∈ Σ for some g ∈ G then
g(Σ) = Σ.

Generalized sections are also called fat sections and the copolarity of
(G,M) is defined by

copol(G,M) = min {k ∈ N | there is a k-section Σ ⊂ M}

and measures, roughly speaking, how far the action is from being polar;
i.e., admitting a 0-section. If Σ is a fat section, then it is shown in [Ma08]
that there is the fat Weyl group W (Σ) = NG(Σ)/ZG(Σ) that acts on Σ
with G(p) ∩ Σ = W (Σ)(p) if p ∈ Σ, inducing an isometry between the
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quotients Σ/W (Σ) = M/G. We therefore deduce that (Σ,FW ) is taut
if and only if (M,FG) is taut.

Before we start with the proof of Theorem 3.19, we now state a
preparing lemma that says that focal points caused by singular leaves
do not provide any difficulties when dealing with tautness. This fact was
already discussed in [No08].

Lemma 3.21. Let F be a closed singular Riemannian foliation on
a complete Riemannian manifold M and let L ∈ F be a regular leaf.
For every broken horizontal geodesic c : [0, 1] → M from L to a point
q ∈ M that intersects the singular stratum discretely, let ∆(c) denote the
space of broken horizontal geodesics in the path space P(M,L × q) that
have the same projection to the quotient M/F as c. Then ∆(c) carries
a smooth structure of a compact (possibly non-connected) manifold of
dimension

∑
t∈[0,1] dim(F)− dim(Lc(t)) such that the inclusion into the

path space P(M,L × q) becomes an embedding.

Proof. Given a leaf L ∈ F let νε(L) be a global ε-tube of L. Then the
pull back of F by the normal exponential map is invariant under the
homotheties rλ(v) = λv for all λ ∈ [−1, 1]\{0}, so that there is a unique
singular foliation G(L) that extends the pull back to ν(L) satisfying this
property. The singular foliation G(L) is closed if F is closed, and it is
shown in Section 4 of [LT10] that v,w ∈ ν(L) are in the same leaf of
G(L) if and only if γw(t) ∈ Lγv(t) for all t, where as usual γv is the
unique geodesic with γ̇v(0) = v. Let V be a small open neighborhood of
v in the leaf Lv of G(L) through v. Then the vector space of variational
vector fields of variations through geodesics γw with w ∈ V coincides
with the space W γv of F-vertical Jacobi fields along γv, as defined in
the last section. Due to [LT10], one has

W γv(t) = {J(t) | J ∈ W γv} = Tγv(t)Lγv(t),

and we deduce that the map ηt : Lv → Lγv(t), given by ηt(w) =
exp(tw) = γw(t), is a submersion for all t, which is surjective if F is
closed. In this case, all the preimages η−1

t (p) are compact submani-
folds of Lv of dimension dim(Lv) − dim(Lγv(t)). In particular, if L is
a regular leaf, the dimension of such a preimage equals the difference
dim(F)− dim(Lγv(t)).

We will now describe the compact set ∆(c) as the total space of an
iterated bundle. Since the general case requires no new ideas but only
some more notation, we will assume for the rest of the proof that c as
in the claim is smooth. So let L ∈ F be a regular leaf and let γ = γv
be a horizontal geodesic from L to a point q ∈ M . Let γ−1(M \M0) =
{ti}i=1,...,r with 0 < tr < · · · < t1 ≤ 1 denote the times where γ crosses
the singular stratum and set Li = Lγ(ti) and vi = dim(F) − dim(Li).
Note that if q is a regular point, the vertical index of γ is given by
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v(γ) =
∑r

i=1 vi. With the notation from above, let ηi : Lv → Li be
the surjective submersion defined by ηi(w) = exp(tiw). Starting with
the furthermost singular leaf, we now define V1 = η−1

1 (γ(t1)) ⊂ Lv and
identify this space with the subspace

∆1 =
{
cw ∈ ∆(γ)|cw|[0,t1] = γw|[0,t1] for w ∈ V1 and cw|[t1,1] = γ|[t1,1]

}

of ∆(γ) of (at most) once broken geodesics in the obvious way; i.e., by
w 7→ cw. With this identification, ∆1 inherits a smooth structure that
turns it into an embedded submanifold of P(M,L× q) of dimension v1.

At the second step we define V2 to be the twisted product

Lv ×η V1 = {(w2, w1) ∈ Lv × V1 | η2(w2) = exp(t2w1)} ,

which can be identified with the subspace ∆2 of ∆(γ) that consists of all
(at most) twice broken horizontal geodesics c(w2,w1) with c(w2,w1)|[0,t2] =
γw2 |[0,t2] for some element w2 ∈ Lv, and c(w2,w1)|[t2,1] = cw1 |[t2,1] for some
w1 ∈ V1. With the induced smooth structure, ∆2 becomes a submanifold
of P(M,L× q) with

dim(∆2) = dim(Lv) + dim(V1)− dim(L2) = v2 + v1.

Note that all we need to ensure that ∆2 is a submanifold is the fact that
the map η2 : Lv → L2 is a submersion, so that Lv × V1 → L2 × L2 is
transversal to the diagonal in L2 × L2.

Now assume that for some r−1 ≥ j ≥ 1 we have already defined Vj as

a submanifold of dimension
∑j

i=1 vi of the j-fold product Lj
v, together

with an identification Vj
∼= ∆j given by (wj , . . . , w1) 7→ c(wj ,...,w1). Then

we inductively define Vj+1 and ∆j+1 as follows. Set Vj+1 = Lv ×η Vj ,
where again the twisted product is defined by

Lv ×η Vj = {(wj+1, wj , . . . , w1) ∈ Lv × Vj | ηj+1(wj+1) = exp(tj+1wj)} ,

which is therefore a submanifold of Lj+1
v of dimension

dim(Vj+1) = dim(Lv) + dim(Vj)− dim(Lj+1)

= vj+1 + dim(Vj)

=

j+1∑

i=1

vi.

Finally, define ∆j+1 to be the subspace of ∆(γ) consisting of all (at
most) (j + 1)-fold broken horizontal geodesics c(wj+1,wj ,...,w1) such that

c(wj+1,wj ,...,w1)|[0,tj+1] = γwj+1 |[0,tj+1] for some wj+1 ∈ Lv and

c(wj+1,wj ,...,w1)|[tj+1,1] = c(wj ,...,w1)|[tj+1,1] for some (wj , . . . , w1) ∈ Vj .

By construction, it is clear that there is a 1:1 correspondence be-
tween (j + 1)-tuples (wj+1, . . . , w1) ∈ Vj+1 and paths c(wj+1,wj ,...,w1)

in ∆j+1. Moreover, the identification ∆j+1
∼= Vj+1 (as manifolds) via
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(wj+1, wj , . . . , w1) 7→ c(wj+1,wj ,...,w1) turns ∆j+1 into a compact subman-

ifold of P(M,L × q) of dimension
∑j+1

i=1 vi. In particular, this defines a
smooth structure for ∆r = ∆(γ) with the desired properties. q.e.d.

Remark 3.22. The assumptions in Lemma 3.21 are adapted to our
setting, but the conclusion also holds if the foliation is not closed or the
manifold is not complete. For this fact, because being a manifold is a
local property, one only has to localize the arguments given in the proof
of the lemma. Further, if c = γ is smooth, let W γ denotes the space of
F-vertical Jacobi fields along γ (see Section 3.3) and let t1 < · · · < tr
be the W γ-focal times along γ. Define W γ

i to be the space of continuous
vector fields J along γ such that J |[0,ti] ∈ W γ |[0,ti] and J vanishes on
[ti, 1]. Then by our description in the proof of the lemma, we conclude
that the tangent space of ∆(γ) at γ is given by

Tγ∆(γ) =
r⊕

i=1

W γ
i .

As a consequence of Lemma 3.21, using the same notation we reprove
the mentioned special case.

Corollary 3.23. If there are no horizontal conjugate points (i.e.,
conjugate points for the transversal Jacobi equation) along the horizontal
geodesic γ and γ(1) is not a focal point of Lγ(0), then γ is of linking type
(for Eγ(1)) with respect to Z2.

Proof. By Lemma 3.21, there is a compact manifold ∆(γ) through
every regular horizontal geodesic γ consisting of broken horizontal geo-
desics, all having the same length as γ, and dim(∆(γ)) coincides with the
vertical index v(γ). But by assumption, the index of γ is just the vertical
index. Moreover, the statement about Tγ∆(γ) and the discussion at the
end of the proof of Theorem 2.9 ensures that if we look at a finite
dimensional approximation of the path space, ∆(γ) is transversal to the
ascending cell in a Morse chart around γ, so that ∆(γ) can be deformed
into the descending cell, and hence defines a linking cycle for γ. q.e.d.

Proof of Theorem 3.19. Let us briefly sketch the idea of the proof. For
(M,F) and (M ′,F ′) as in the claim, let us identify B = M/F = M ′/F ′

via an isometry and consider the following diagram

M

Q   ❆
❆❆

❆❆
❆❆

❆ M ′

Q′
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

B

Now assume that F is taut. In order to prove that F ′ is taut it suffices
to prove that the normal exponential map of a generic leaf of F ′ has in-
tegrable fibers, by Theorem 2.9 and our genericity results from Section
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3.1. Let, therefore, L′ ∈ F ′ be a regular leaf without holonomy. In this
case, the leaf L = Q−1(Q′(L′)) ∈ F is a regular leaf without holonomy,
too, and its normal exponential map has integrable fibers, by assump-
tion. For v ∈ ν(L), let ∆v denote the connected component of the fiber
through v that contains v and identify it with the manifold of horizontal
geodesics from L to exp(v) that have initial velocity in ∆v. Now, given
a vector v′ ∈ ν(L′) with the same projection to B as v, we push ∆v

down to B and lift it to M ′ along Q′ to obtain a space ∆′
v′ of horizontal

geodesics that start in L′ and end in exp(v′). The observation that the
map ∆′

v′ → ν(L′), which assigns to a horizontal geodesic its starting
direction, provides an integral manifold of the kernel distribution of the
normal exponential map of L′ through v′ then finishes the proof.

Having sketched the proof, let us now work out the details. Given a
point p ∈ M , the infinitesimal foliation Fp splits as a product foliation
Fp = TpLp × F1

p on the tangent space TpM = TpLp × νp(Lp) so that

we have TpM/Fp = νp(Lp)/F
1
p, which is the tangent space to a local

quotient U/F at L ∩ U , where U is a distinguished neighborhood of p.
The map U/F → M/F , induced by the inclusion U → M , is a finite-
to-one open map, given by the quotient map of the action of a finite
group Γ of isometries, onto a neighborhood T ε/F of Lp, where T ε is
a global ε-tube around Lp with the same ε as in the definition of the
distinguished neighborhood U (cf. Section 3.1). Identifying νε(Lp) ∼= T ε

via the normal exponential map, we see that we can identify the tangent
space TLpB of B at Lp with (νp(Lp)/F

1
p)/Γ. We therefore define the

differential dQp : TpM → TQ(p)B of the projection Q : M → B at
the point p to be the composition of projections TpM → νp(Lp) →
(νp(Lp)/F

1
p)/Γ and write Q∗ : TM → TB for the induced map; i.e.,

Q∗(v) = dQP (v)(v). We use the analogous notations for Q′ : M ′ → B.
Since orbifold geodesics coincide if they coincide initially, we deduce

from the fact that the set of F-horizontal vectors v in TM with the
property that Q ◦ γv is completely contained in the open and dense
orbifold part of B has full measure in the subset of all horizontal vectors
(cf. [LT10]), that, given an F-horizontal vector v and an F ′-horizontal
vector v′ with the same projection (i.e., Q∗(v) = Q′

∗(v
′)) we have Q ◦

γv(t) = Q′ ◦ γv′(t) for all t ∈ R.
Now take a regular leaf L ∈ F and recall that in this case the folia-

tion G(L) on ν(L) (from the proof of Lemma 3.21) is a regular foliation
with closed leaves such that the intersection of every leaf L ∈ G(L) with
any normal space νp(L) is finite. Further, as explained there, for every
normal vector v ∈ ν(L) the restriction of the normal exponential map to
the leaf Lv induces a submersion ηv : Lv → Lγv(1), so that all the fibers

η−1
v (q) for q ∈ Lγv(1) are (unions of) compact submanifolds of dimension
dim(F) − dim(Lγv(1)), since the normal exponential map is proper. In
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this case, the smooth map η−1
v (q) → νq(Lγv(1)), given by w 7→ γ̇w(1), de-

fines a smooth identification of the connected component of η−1
v (q) that

contains w with the regular leaf Lγ̇w(1) of F
1
q through γ̇w(1) ∈ νq(Lγv(1)),

where w ∈ η−1
v (q) is any preimage of q. Moreover, due to the fact that

a regular horizontal geodesic intersects the singular stratum discretely,
we see that, for v ∈ ν(L) and a horizontal geodesic γ′v′ : [0, 1] → M ′

with Q ◦ γv = Q′ ◦ γ′v′ , their horizontal indices coincide, because the
corresponding transversal Jacobi equations coincide along the regular
parts. That is to say, the kernel ker((d exp⊥M )v) of the differential of the
normal exponential map in v contains the subspace TvLv ⊂ Tvν(L) and
the dimension of ker((d exp⊥M )v)/TvLv is independent of the foliation,
or to be more precise, an intrinsic datum of the quotient.

We now finish the proof as follows. Assume that F is taut. Combining
Lemma 3.16 and the proof of Theorem 2.9, it remains to prove that for
generic leaves L′ of F ′ the normal exponential map exp⊥M ′ : ν(L′) → M ′

has integrable fibers. Thus we can restrict our attention to a regular leaf
L′ ∈ F ′ without holonomy; i.e., Q′(L′) is a manifold point of B and the
restriction of Q′ to a tubular neighborhood of L′ defines a Riemannian
submersion. In particular, in this case the leaf L = Q−1(Q′(L′)) ∈ F
is a regular leaf without holonomy, too. Let v′ ∈ ν(L′) be a horizontal
vector and let us set q′ = γv′(1). Now, choose an F-horizontal vector
v ∈ ν(L) with Q∗(v) = Q′

∗(v
′) and set q = γv(1). Then, by construction,

Q ◦ γv = Q′ ◦ γv′ and

dim(ker((d exp⊥
M ′)v′))− (dim(F ′)− dim(Lexp⊥

M′ (v
′)))

= dim(ker((d exp⊥M )v))− (dim(F)− dim(Lexp⊥
M

(v))).

Since F is taut, the connected component ∆v of (exp
⊥
M )−1(q) contain-

ing v is a compact submanifold of ν(L) that is smoothly foliated by the
(dim(F)− dim(Lq))-dimensional regular foliation whose leaf through a

horizontal vector w ∈ ∆v is given by Nw = (exp⊥M )−1(q)∩Lw. Again, we
can regard ∆v as a saturated subset of the regular part of the singular
Riemannian foliation F1

q on νq(Lq) via dv : ∆v → νq(Lq), defined by

the prescription dv(w) = d(exp⊥M )w(w). Moreover, by our choice of L′,
the image of the composition dQq ◦ dv is completely contained in the
manifold part of TqM/Fq = νq(Lq)/F

1
q [LT10, Sec. 4]), so that every

leaf of Fq′ through a vector w′ ∈ νq′(L
′
q′) with dQ′

q′(w
′) ∈ dQq(dv(∆v))

is also regular without holonomy.
If we therefore define Kq′ ⊂ F1

q′ to be the preimage

Kq′ = (dQ′
q′)

−1((dQq ◦ dv)(∆v)),

then Kq′ is obviously a union of regular leaves of F1
q′ without holo-

nomy, namely of leaves of dimension dim(F ′) − dim(L′
q′), completely

contained in a concentric sphere. Further, because dQq(dv(∆v)) carries
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a natural smooth structure that turns it into a (dim(∆v) − (dim(F) −
dim(Lq)))-dimensional manifold, and the restriction of dQ′

q′ to the set
of points lying on regular leaves without holonomy is a submersion,
the set Kq′ is a compact submanifold of νq′(L

′
q′) of dimension equal to

dim(ker((d exp⊥M ′)v′)).
Recall that the infinitesimal foliations are invariant under all non-zero

homotheties. Thus, if we define ∆′
v′ = {−γ̇w′(1) ∈ ν(L′)| − w′ ∈ Kv′},

it easily follows from our above discussion that ∆′
v′ is a compact sub-

manifold of (exp⊥M ′)−1(q′) containing v′ whose tangent space satisfies

Tw′∆′
v′ = ker((d exp⊥M ′)w′) for all w′ ∈ ∆′

v′ . This proves the claim. q.e.d.

As already mentioned before, tautness of a submanifold L ⊂ M re-
quires very special symmetry of the pair (M,L) around the submanifold
L, which clarifies the fact that there are not many examples of taut sub-
manifolds actually known. By this reason, it is worth mentioning that
the ideas of the last proof can be used to construct lots of examples.
For this purpose, consider a closed singular Riemannian foliation F on
M such that the space of leaves M/F is a good Riemannian orbifold
N/Γ. Assume that there is a submanifold S ⊂ N completely contained
in the interior of a fundamental domain of the Γ-action, which we iden-
tify with M/F , and consider the saturated preimage T = Q−1(S) that
is a union of regular leaves without holonomy. Now let v ∈ νp(T ) be
a normal vector to T . Then every F-vertical Jacobi field along γv (cf.
Section 3.3) is also a T -Jacobi field along γv (i.e., W γv ⊂ ΛT ) and sim-
ilar arguments as in the proof of Theorem 3.19 can be used to see that
the multiplicity of Q∗(v) as a focal vector of S in N is the same as the
difference of the multiplicity of v as a focal vector of T in M and the
number dim(F) − dim(Lγv(1)). Thus the following lemma is obtained,
along the same lines as the proof of Theorem 3.19.

Lemma 3.24. Let F be a closed singular Riemannian foliation on a
complete Riemannian manifold M , such that the space of leaves M/F
is isometric to a quotient N/Γ, where N is a Riemannian manifold
and Γ ⊂ Iso(N) is a discrete group of isometries. Let N0 ⊂ N denote
a fundamental domain of the Γ-action and identify N0

∼= M/F . Now
assume that S ⊂ N is a taut submanifold that is completely contained
in the interior of N0. Then if Q : M → N0 denotes the projection, the
submanifold Q−1(S) is taut, too.

In the case where M = R
n+k is the standard Euclidean space and

F is an n-dimensional isoparametric foliation (i.e., the parallel foliation
induced by an isoparametric submanifold L of dimension n) identify a
section Σ with the Euclidean space R

k. Then take a small taut sub-
manifold S ⊂ R

k completely contained in the interior of a Weyl cham-
ber associated to the finite Coxeter group generated by the reflections
across the L-focal hyperplanes in Σ and consider the F-saturated set
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T =
{
p ∈ R

n+k | Lp ∩ S 6= ∅
}
. Then, due to the last lemma, T is a taut

submanifold of Rn+k.
We finally come to the refined version of Theorem 3.19.

Theorem 3.25. Let F be a closed singular Riemannian foliation on
a complete Riemannian manifold M . Then M/F is an orbifold and F
is taut if and only if the quotient M/F is a good Riemannian orbifold
with a pointwise taut universal covering orbifold.

Let us assume that M/F is a good Riemannian orbifold. Then, by
Theorem 3.19 the foliation F is taut if and only if the universal covering
orbifold, that is a manifold in this case, is pointwise taut. Thus we prove
Theorem 3.25 by the observation that in the orbifold case the quotient
of a taut foliation is developable.

Lemma 3.26. If F is a closed and taut singular Riemannian folia-
tion on a complete Riemannian manifold M that has an orbifold quo-
tient, then M/F is a good Riemannian orbifold.

Proof. It is a well known fact that every Riemannian orbifold is the
quotient of a regular Riemannian foliation. For instance, one could take

the foliation F̂ on the manifold M̂ of orthonormal frames of M/F in-
duced by the almost free action of O(k), where k is the dimension of
the orbifold (cf. [Hae84]). By Theorem 3.19, F is taut if and only if

F̂ is taut and the latter is taut if and only if its lift F̃ to the universal

covering is taut. Hence F̃ is taut, too. Since M̃ is simply connected, F̃

has trivial holonomy (cf. Section 3.2) and therefore, M̃/F̃ is a complete
Riemannian manifold, which is also simply connected by the exact ho-

motopy sequence. In particular, M̃/F̃ → M/F is the universal orbifold
covering. q.e.d.

The property that the quotient of a singular Riemannian foliation is
a Riemannian orbifold can be described by means of the infinitesimal
foliations. Namely, this class of foliations coincides with the class of sin-
gular Riemannian foliations whose infinitesimal foliations have sections.
Let us recall that a singular Riemannian foliation (M,g,F) admits sec-
tions if there exists a complete, immersed submanifold Σp through every
regular point p ∈ M that meets every leaf and always orthogonally. It is
not hard to see that a section is totally geodesic in M . As an example,
the set of orbits of a polar action is a singular Riemannian foliation
admitting sections. Motivated by this example, we also speak about po-
lar foliations. We end this section with a short recollection of the basic
notions for those foliations and reformulate our result about foliations
whose quotients are orbifolds.

Singular Riemannian foliation with sections are well understood and
were studied, for example by Alexandrino and Töben. One nice feature
of this class is that one can canonically construct a blow up that has the
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same horizontal geometry (cf. [T06]). In [L10] it is shown that the exis-
tence of such a geometric resolution of a singular Riemannian foliation is
equivalent to the fact that the foliation carries at the infinitesimal level
the information of a singular Riemannian foliation with sections (see
Theorem 3.30). Such foliations are called infinitesimally polar and were
first defined and discussed by Lytchak and Thorbergsson in [LT10].

Let us recall once more the notion of the infinitesimal foliation (cf.
Section 3.2). Let p ∈ M be a point and let B be a small open neigh-
borhood in the leaf Lp through p. Then there is an ε > 0 and a distin-
guished tubular neighborhood (U,B, π) around p such that there is an
embedding φ of U into the tangent spaces TpM with Dpφ = Id and a
singular Riemannian foliation Fp on TpM , which we called the infinites-
imal singular Riemannian foliation of F at the point p that coincides
with φ∗F on φ(U) and such that Fp is invariant under all rescalings
rλ : TpM → TpM, rλ(v) = λv, for all λ 6= 0.

One can consider Fp as the blow up of F in the following sense. Iden-

tify U with φ(U). Set Uλ = rλ(U) for λ > 0. So
⋃

λ>0 U
λ = TpM . Define

the Riemannian metric gλ on Uλ as gλ = λ2(rλ)∗g. Then the blow up
metrics gλ smoothly converge to the flat metric gp. By construction, the

restriction of Fp to Uλ is a singular Riemannian foliation with respect

to gλ. Moreover, if dim(Lp) = r, then the infinitesimal singular foliation

Fp on TpM = TpMn−r × (TpMn−r)
⊥ is a product Fv

p × Fh
p , where Fv

p is

the trivial foliation given by parallels of TpLp and the main part Fh
p on

(TpMn−r)
⊥ is a singular Riemannian foliation, invariant under rescal-

ings and with the origin as the only 0-dimensional leaf. Thus Fh
p is the

cone over a foliation of dimension n − r on the unit sphere of TpM
⊥
n−r,

which is induced by the intersections of the nearby higher dimensional
leaves with a slice through p. In particular, the foliation Fp is polar if

and only if its factor Fh
p is polar.

Example. Let (Mm, g) be a complete, simply connected Riemann-
ian manifold with a closed singular Riemannian foliation F of codimen-
sion@2 and M/F = S2/Γ. Then F is infinitesimally polar and Γ is a
finite Coxeter group. Further, F is taut and therefore has no exceptional
leaves. Let L ∈ M/F be a point of codimension 2; i.e., a corner. Take a
point p ∈ Lm−k and consider the infinitesimal singular Riemannian foli-
ation Fh

p on (νp(L), gp). Since L has codimension 2 in M/F , the singular

Riemannian foliation Fh
p is the cone foliation over a singular Riemannian

foliation of codimension 1 on the unit sphere Sk−1 in νp(L). By a result

of Münzner (see [Mü80], [Mü81]), one therefore has Sk−1/Fh
p = Id for

an interval Id with length |Id| = π/d and d ∈ {1, 2, 3, 4, 6}; i.e., νp(L)/F
h
p

is an open cone over Id with angle π/d. Note that to obtain a local isom-
etry between νp(L)/F

h
p and U/F for a neighborhood U around p, indeed
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one has to change the metric on νp(L), but this has no influence on the
possible values of the angle, because the metrics coincide in 0. Now the
finite-to-one mapping U/F → M/F between the local and global quo-
tient is given by the quotient (U/F)/W , where W is a group acting on
U by isometries. But the absence of exceptional leaves implies that W
acts trivially, so that a neighborhood of L in M/F is isometric to U/F .
It follows by the known classification of S2/Γ that the quotient M/F is
either the whole sphere S2, the hemisphere S2/Z2, a sickle S2/Di with
i ∈ {2, 3, 4, 6}, or a spherical triangle with angles (π/n1, π/n2, π/n3)
and (n1, n2, n3) ∈ {(2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 2, 6), (2, 3, 3), (2, 3, 4)}

Obviously, if ι : Σ → M is a section of F then dιp(TpΣ) is a sec-
tion of Fι(p). Thus a singular Riemannian foliation with sections is in-
finitesimally polar. Conversely, in the general case a section Σ of Fp

cannot be realized as the tangent space of a local section, because
this is equivalent to the fact that the horizontal distribution given by
H =

⋃
p∈M0

(TpLp)
⊥gp over the regular stratum is integrable, what, un-

der the assumption of completeness of M , is equivalent to existence of
sections. A well known example of an infinitesimally polar singular Rie-
mannian foliation that is not polar is given by the fibers of the Hopf
fibration S1 →֒ S3 → S2(12 ).

In [LT10] Lytchak and Thorbergsson proved the following:

Theorem 3.27. Let F be a singular Riemannian foliation on a Rie-
mannian manifold M . Let p ∈ M be a point and let Fp be the infinites-
imal singular Riemannian foliation induced by F on the tangent space
TpM . Then the following are equivalent:

1) The infinitesimal singular Riemannian foliation Fp is polar;
2) F is locally closed at p and a local quotient U/F of a neighborhood

U of p is a Riemannian orbifold.

In fact, in [LT10] it is shown that the statements above are equiva-
lent to the non-explosion of the curvature in the local quotients as one
approaches a boundary point p of M0.

Using the description of Lytchak and Thorbergsson and Theorem 3.25
we obtain

Corollary 3.28. Let F be a closed singular Riemannian foliation on
a complete Riemannian manifold M . Then F is infinitesimally polar
and taut if and only if the quotient M/F is a good Riemannian orbifold
with a pointwise taut universal covering orbifold.

If the infinitesimal singular Riemannian foliation Fp on (TpM,gp) is
polar, Fp is an isoparametric foliation given by the parallel foliation
induced by a regular and hence isoparametric leaf. Since isoparametric
foliations on a Euclidean space are taut (see [HPT88]), the infinitesimal
foliation Fp is taut in this case. The next lemma states that this is always
true.
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Lemma 3.29. Let F be a closed singular Riemannian foliation on
a complete Riemannian manifold (M,g). If F is taut, then for every
p ∈ M , the infinitesimal foliation Fp on (TpM,gp) is taut.

Proof. We will use the notation from the beginning of this section.
Take a point p ∈ M with d = dim(Lp) and k = codim(Mn−d). Then we
have an orthogonal splitting TpM = TpMn−d ⊕ νp(Mn−d) that induces

a splitting of Fp into a product foliation Fp = Fv
p × Fh

p , where the first

factor is the foliation given by parallels of TpLp and the main part Fh
p

is the cone-foliation (i.e., invariant under all homotheties rλ(v) = λ · v)
of a singular Riemannian foliation with compact leaves of dimension at
least one on the unit sphere in νp(Mn−d) (if νp(Mn−d) 6= {0}). Since
the path spaces of these product submanifolds are the products of the
corresponding path spaces in the factors, and the critical points are
exactly the tuples of critical points in these factors, so that the critical
data behave additive, we conclude that Fp is taut if and only if Fh

p is taut,
because TpLp is contractible and Fv

p is the trivial foliation by parallels
of TpLp. Further, because Fp as well as the set of straight lines in TpM ,
is invariant under homotheties, it follows that Fp is taut if and only if

the restricted foliation Fh
p |D is taut, where D is a small ball in νp(Mn−d)

around the origin. Note that such a ball D is always saturated. Let U be
a distinguished tubular neighborhood around p and set V = φ(U) and
h = φ∗ g, where φ : U → TpM with φ∗(F|U ) = Fp|V is an embedding as
in the definition of the infinitesimal foliation at p. Now with respect to
the metric h and for a small ball D around the origin in νp(Mn−d), the
closed singular Riemannian foliation Fp|(TpMn−d×D)∩φ(U ′) is taut (i.e.,

the saturation of F|φ−1(D) in U ′ is taut) where U ′ ⊂ U is a smaller

distinguished tubular neighborhood at p that contains φ−1(D). To see
this, we can choose U ′ so small that we have to consider only critical
points γ in U ′ with energy r such that the whole ball of radius r around
γ(1) is contained in U , so that we have

P (U,Lγ(0) ∩ U × γ(1))r = P (M,Lγ(0) × γ(1))r

and conclude by tautness of F that all the local unstable manifolds can
be completed in U below the energy r. Thus, since U and U ′ can be
assumed to be diffeomorphic, the local unstable manifolds can also be
completed in U ′, which implies our claim. If we now consider the blow
up metrics hλ on V λ = {λv|v ∈ V } as defined above; i.e.,

hλ = λ2 · (rλ)∗ h,

it follows that our restricted foliation is also taut with respect to the
metrics hλ. But the constant metric gp is just the flat limit limλ→∞ hλ

and we deduce that Fp is taut with respect to gp, because it is not hard
to see that if a sequence of perfect Morse functions converge to a Morse
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function, this limit has to be perfect. This together with our genericity
results from Section 3.2 finish the proof. q.e.d.

In the standard picture of an isometric action of a Lie group G on
a Riemannian manifold M , one could ask if there exists another Rie-

mannian manifold (M̂, ĝ), canonically related to M , on which G acts
by isometries in such a way that all orbits of this action have the same
dimension, because the singular leaves are the main source of difficulties
if one tries to understand the geometric and topological properties of a
foliation. If one additionally tries to resolve the action in a way that pre-
serves the horizontal geometry, there was no such general construction
known before the work of Lytchak [L10], who came up with a canonical
resolution preserving the transverse geometry.

As the main result in [L10], Lytchak gave an equivalent characteri-
zation of the infinitesimally polar foliations as exactly those foliations
that admit a geometric resolution, where he defined a geometric res-

olution of (M,g,F) to be a smooth and surjective map F : M̂ → M

from a Riemannian manifold (M̂ , ĝ) with a regular foliation F̂ such that

the following holds true: For all smooth curves c in M̂ the transverse

lengths of c with respect to F̂ and of F (c) with respect to F coincide.
The transverse length of a smooth curve c : [a, b] → M is defined as the
length of the projection to local quotients

LT (c) =

∫ b

a
‖Pc(t)(ċ(t))‖dt,

where Pq : TqM → (TqLq)
⊥ =: Hq denotes the orthogonal projection. In

particular, a map F , as in the definition of a geometric resolution, sends

leaves of F̂ to leaves of F and induces a length preserving map between
the quotients. In general, a map between foliated manifolds that maps
leaves to leaves is called foliated.

In [L10] Lytchak proved

Theorem 3.30. Let (M,g) be a Riemannian manifold and let F be
a singular Riemannian foliation on M . Then (M,F) has a geometric
resolution if and only if F is infintesimally polar. If F is infinitesimally

polar, then there is a canonical resolution F : M̂ → M with the following
properties

1) dim(M̂ ) = dim(M);
2) F induces an isometry between the spaces of leaves;
3) F |F−1(M0) : F

−1(M0) → M0 is a diffeomorphism;
4) F is proper and 1-Lipschitz.

In particular, the resolution M̂ is compact or complete if M has the cor-
responding property. The isometry group Γ of (M,F) acts by isometries

on (M̂ , F̂) and the map F : M̂ → M is Γ-equivariant. If F is given by
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the orbits of a group G of isometries of M , then G acts by isometries

on M̂ , and F̂ is given by the orbits of G. If M is complete, then the
singular Riemannian foliation F has no horizontal conjugate points if

and only if F̂ has no horizontal conjugate points and F has sections if

and only if F̂ has sections.

For the notion of horizontal conjugate points see Section 3.3.
Let us now say some words about his canonical resolution. Recall that

the Grassmannian bundle Gk(M) of a given manifold Mn+k consists
fiberwise of the Grassmaniann manifolds

Gk(TpM) = {σ ⊂ TpM | σ is a k-plane}

of the k-dimensional linear subspaces of the tangent space TpM ; that is
to say, Gk(M) =

⋃
p∈M Gk(TpM). For a detailed discussion of the Grass-

manian bundle with its natural metric we refer the reader to [Wie08].

For a singular Riemannian foliation F of codimension k on M that
has sections, Boulam defined in [Bou95] the set

M̂ ′ = {TpΣ | Σ is a section through p}

of the Grassmannian bundle. Let P : M̂ ′ → M denote the restriction of
the canonical map Gk(M) → M . Boualem constructed a differentiable

structure on M̂ ′ and showed that there is some Riemannian metric on N
such that the lifted partition F̂ ′ =

{
P−1(L) | L ∈ F

}
becomes a regular

Riemannian foliation on M̂ ′. The foliation F̂ ′ is called the blow up of F .
In [T06] Töben proved this result again with another technique and

gives the following amplification: If we denote by h the natural Rie-

mannian metric on Gk(M) and by ĝ′ = ι∗h the pull back on M̂ ′, then

the pair (F̂ ′, F̂ ′⊥) is a bi-foliation on M̂ ′ with a Riemannian foliation

F̂ ′ and totally geodesic foliation F̂ ′⊥.

Therefore, in some sense, the sections of F play the role of a global
benchmark and give rise to a resolution of the singularities. In [L10]

Lytchak generalized this construction, replacing M̂ ′ by

M̂ = {Σ ⊂ TpM | Σ is a section of Fp through 0}

to infinitesimally polar singular Riemannian foliations. There is a unique

Riemannian metric ĝ on M̂ such that its restriction to T F̂ = T ((P |
M̂
)∗F)

coincides with the restriction of the canonical metric on the Grass-
mannian bundle and νΣ(L̂Σ) is isometrically identified with Σ, where
Σ is a section of FP (Σ). If we denote the restriction P |

M̂
by F , then

F : (M̂ , F̂ , ĝ) → (M,F , g) is the canonical geometric resolution. Thus
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what is really needed for such a resolution is just the infinitesimal geo-
metric information of a singular Riemannian foliation with sections, but
not the actual existence of sections.

Using Theorem 3.30 and Theorem 3.19 we therefore obtain

Corollary 3.31. Let F be a closed and infinitesimally polar singular
Riemannian foliation on a complete Riemannian manifold M and let

(M̂, F̂) denote the canonical geometric resolution. Then F̂ is taut if
and only if F is taut.
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1988, 265–196, MR 0932463, Zbl 0633.53001.

[Sp66] E.H. Spanier, Algebraic topology, McGraw-Hill Book Co., New
York/Toronto, Ont./London, 1966, MR 0210112, Zbl 0145.43303.

[TT97] C.-L. Terng & G. Thorbergsson, Taut Immersions into Complete Rie-
mannian Manifolds, In Tight and Taut Submanifolds, editors T. Cecil
and S.-S. Chern, Math. Sci. Res. Inst. Publ., Vol. 32, Cambridge Univ.
Press, Cambridge, 1997, 181–228, MR 1486873, Zbl 0906.53043.

[T88] G. Thorbergsson, Homogeneous spaces without taut embeddings, Duke
Math. J. 57 (1988), 347–355, MR 0952239, Zbl 0662.53051.
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