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AN OBATA-TYPE THEOREM IN CR GEOMETRY

Song-Ying Li & Xiaodong Wang

Abstract

We discuss a sharp lower bound for the first positive eigenvalue
of the sublaplacian on a closed, strictly pseudoconvex pseudoher-
mitian manifold of dimension 2m + 1 ≥ 5. We prove that the
equality holds iff the manifold is equivalent to the CR sphere up
to a scaling. For this purpose, we establish an Obata-type the-
orem in CR geometry that characterizes the CR sphere in terms
of a nonzero function satisfying a certain overdetermined system.
Similar results are proved in dimension 3 under an additional con-
dition.

1. Introduction

In Riemannian geometry, estimates on the first positive eigenvalue of
the Laplace operator have played important roles and there have been
many beautiful results. We refer the reader to the books by Chavel [C]
and Schoen-Yau [SY]. The following theorem is a classic result.

Theorem 1. (Lichnerowicz-Obata) Let (Mn, g) be a closed Riemann-
ian manifold with Ric ≥ (n− 1) κ, where κ is a positive constant. Then
the first positive eigenvalue of the Laplacian satisfies

(1.1) λ1 ≥ nκ.

Moreover, equality holds iff M is isometric to a round sphere.

The estimate λ1 ≥ nκ was proved by Lichnerowicz [L] in 1958. The
characterization of the equality case was established by Obata [O] in
1962. In fact, he deduced it from the following more general

Theorem 2. (Obata [O]) Suppose (Nn, g) is a complete Riemann-
ian manifold and u a smooth, nonzero function on N satisfying D2u =
−c2ug, then N is isometric to a sphere S

n (c) of radius 1/c in the Eu-
clidean space R

n+1.

In CR geometry, we have the most basic example of a second order
differential operator that is subelliptic, namely the sublaplacian ∆b. On
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a closed pseudohermitian manifold, the sublaplacian ∆b still defines a
selfadjoint operator with a discrete spectrum

(1.2) λ0 = 0 < λ1 ≤ λ2 ≤ · · ·
with limk→∞ λk = +∞. One would naturally hope that the study of
these eigenvalues in CR geometry will be as fruitful as in Riemannian
geometry. An analogue of the Lichnerowicz estimate for the sublapla-
cian on a strictly pseudoconvex pseudohermitian manifold (M2m+1, θ)
was proved by Greenleaf [G] for m ≥ 3 and by Li and Luk [LL] for
m = 2. Later it was pointed out that there was an error in the proof
of the Bochner formula in [G]. Due to this error, the Bochner formula
as well as the CR-Lichnerowicz theorem in [G, LL] are not correctly
formulated. The corrected statement is

Theorem 3. Let (M,θ) be a closed, strictly pseudoconvex pseudo-
hermitian manifold of dimension 2m+1 ≥ 5. Suppose that the Webster
pseudo Ricci curvature and the pseudo torsion satisfy

(1.3) Ric (X,X)− m+ 1

2
Tor (X,X) ≥ κ |X|2

for all X ∈ T 1,0 (M), where κ is a positive constant. Then the first
positive eigenvalue of −∆b satisfies

(1.4) λ1 ≥
m

m+ 1
κ.

The estimate is sharp since one can verify that equality holds on the
CR sphere

S
2m+1 = {z ∈ C

m+1 : |z| = 1}
with the standard pseudohermitian structure

θ0 = 2
√
−1∂(|z|2 − 1).

The natural question whether the equality case characterizes the CR
sphere was not addressed in [G]. The torsion appearing in (1.3) is a
major new obstacle compared with the Riemanian case. This question
has been recently studied by several authors and partial results have
been established. Chang and Chiu [CC1] proved that the equality case
characterizes the CR sphere if M has zero torsion. In [CW], Chang
and Wu proved the rigidity under the condition that the torsion satisfies
certain identities involving its covariant derivatives. Ivanov and Vassilev
[IV] proved the same conclusion under the condition that the divergence
of the torsion is zero. Li and Tran [LT] considered the special case that
M is a real ellipsoid E(A) in C

m+1. They computed κ explicitly and
proved that the equality, λ1 = mκ/(m+ 1) implies E(A) is the sphere.
But in general it is very difficult to handle the torsion.

In this paper, we provide a new method which can handle the torsion
and yields an affirmative answer to this question in the general case.
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Theorem 4. If equality holds in Theorem 3, then (M,θ) is equivalent
to the sphere S

2m+1 with the standard pseudohermitian structure θ0 up
to a scaling, i.e., there exists a CR diffeomorphism F : M → S

2m+1

such that F ∗θ0 = cθ for some constant c > 0.

In fact our proof yields the following more general result which can
be viewed as the CR analogue of Theorem 2 (for notation see Section 2).

Theorem 5. Let M be a closed pseudohermitian manifold of di-
mension 2m + 1 ≥ 5. Suppose there exists a real nonzero function
u ∈ C∞ (M) satisfying

uα,β = 0,

uα,β =

(
− κ

2(m+ 1)
u+

√
−1

2
u0

)
hαβ ,

for some constant κ > 0. Then M is equivalent to the sphere S
2m+1

with the standard pseudohermitian structure up to a scaling.

The 3-dimensional case is more subtle. It is not clear if these results
are true in 3 dimensions. Partial results with additional conditions are
discussed in the last section.

The approach in [CC1] is to consider a family of adapted Riemann-
ian metrics and try to apply the Lichnerowiz-Obata theorem. This ap-
proach requires very complicated calculations to relate the various CR
quantities and the corresponding Riemannian ones. In December 2010,
the authors found a new approach working directly with the Riemann-
ian Hessian of the eigenfunction. With this approach we generalized
the Chang-Chiu result to show that rigidity holds provided the double
divergence of the torsion vanishes (see Remark 5 in Section 4). In their
preprint [IV], Ivanov and Vassilev found the same strategy indepen-
dently and proved rigidity under the condition that the divergence of
the torsion is zero. But to solve the general case requires a new ingredi-
ent. We employ a delicate integration by parts argument which requires
a good understanding of the critical set of the eigenfunction.

The paper is organized as follows. In Section 2, we review some basic
facts in CR geometry. In Section 3, following the argument of Greenleaf
we present the proof of Theorem 2 with all the necessary corrections.
Theorem 3 is proved in Sections 4 and 5. Finally, in Section 6, we
discuss the 3-dimensional case.

Acknowledgments. The authors wish to thank the referees for care-
fully reading the paper and making valuable suggestions.

The second author was partially supported by NSF grant DMS-
0905904.
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2. Preliminaries

Let (M,θ, J) be a strictly pseudoconvex pseudohermitian manifold
of dimension 2m+1. Thus Gθ = dθ (·, J ·) defines a Riemannian metric
on the contact distribution H (M) = ker θ. As usual, we set T 1,0 (M) =

{w −
√
−1Jw : w ∈ H (M)} ⊂ T (M) ⊗ C and T 0,1 (M) = T 1,0 (M).

Let T be the Reeb vector field and extend J to an endomorphism φ on
TM by defining φ (T ) = 0. We have a natural Riemannian metric gθ on
M such that TM = RT ⊕H (M) is an orthogonal decomposition and
gθ (T, T ) = 1. In the following, we will simply denote gθ by 〈·, ·〉. Let

∇̃ be the Levi-Civita connection of gθ while ∇ is the Tanaka-Webster
connection. For basic facts on CR geometry, one can consult the recent
book [DT] or the original papers by Tanaka [T] and Webster [W].

Recall that the Tanaka-Webster connection is compatible with the
metric gθ, but it has a non-trivial torsion. The torsion τ satisfies

τ (Z,W ) = 0,

τ
(
Z,W

)
= ω

(
Z,W

)
T,

τ (T, J ·) = −Jτ (T, ·)
for any Z,W ∈ T 1,0 (M), where ω = dθ. We define A : T (M) → T (M)
by AX = τ (T,X). It is customary to simply call A the torsion of
the CR manifold. It is easy to see that A is symmetric. Moreover
AT = 0, AH (M) ⊂ H (M) and AφX = −φAX.

The following formula gives the difference between the two connec-

tions ∇̃ and ∇. The proof is based on straightforward calculation and
can be found in [DT].

Proposition 1. We have

∇̃XY = ∇XY + θ (Y )AX +
1

2
(θ (Y )φX + θ (X)φY )

−
[
〈AX,Y 〉+ 1

2
ω (X,Y )

]
T.

Remark 1. We have

∇̃XT = AX +
1

2
φ (X) .

In particular, ∇̃TT = 0. If X and Y are both horizontal i.e., X,Y ∈
H(M), then

∇̃XY = ∇XY −
[
〈AX,Y 〉+ 1

2
ω (X,Y )

]
T.

In the following, we will always work with a local frame {Tα : α =
1, · · · ,m} for T 1,0 (M). Then {Tα, Tα = Tα, T0 = T} is a local frame for

T (M)⊗C. Let hαβ = −iω
(
Tα, Tβ

)
= gθ

(
Tα, Tβ

)
be the components of
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the Levi form. For a smooth function u onM , we will use notations such
as uα,β to denote its covariant derivatives with respect to the Tanaka-

Webster connection ∇. Let D2u be the Hessian of u with respect to the
Riemannian metric gθ.

By straightforward calculation using Proposition 1, one can derive

Proposition 2. We have the following formulas

D2u (T, T ) = u0,0,

D2u (T, Tα) = uα,0 −
√
−1

2
uα,

D2u (Tα, Tβ) = uα,β +Aαβu0,

D2u
(
Tα, Tβ

)
= uα,β −

√
−1

2
hαβu0.

In doing calculations we will need to use repeatedly the following
formulas which can be found in [DT] or [Lee].

Proposition 3. We have the following formulas

u0,α = uα,0 +Aβαuβ,

uα,β = uβ,α,

uα,β = uβ,α +
√
−1hαβu0,

uα,0β = uα,β0 +Aγβuα,γ +Rσβ0αuσ

= uα,β0 +Aγβuα,γ −Aαβ,γh
σγuσ,

uα,0β = uα,β0 + ua,γh
γνAνβ + hγνAνβ,αuγ ,

uα,βγ = uα,γβ +
√
−1

(
hαβA

σ
γ − hαγA

σ
β

)
uσ,

uα,βγ = uα,γβ +
√
−1hβγuα,0 −Rσβγαuσ,

uα,βγ = uα,γβ −Rσβγαuσ

= uα,γβ +
√
−1 (Aαγuβ −Aαβuγ) .

Remark 2. Our convention for the curvature tensor is

R (X,Y,Z,W ) =
〈
−∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z,W

〉
.

3. The estimate on λ1

In this section, we prove the estimate on λ1 following Greenleaf [G].
This serves two purposes. First, there is a mistake in [G] as pointed
out in [GL] and [CC1]. This has caused some confusion (e.g., see
the presentation in [DT]) and we hope to clarify the whole situation.
Secondly, we need to analyze the proof when we address the equality
case.
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From now on, we always work with a local unitary frame {Tα : α =
1, · · · ,m} for T 1,0 (M). Given a smooth function u, its sublaplacian is
given by

∆bu =
∑

α

uα,α + uα,α.

We have the following Bochner formula.

Theorem 6. Let |∂bu|2 = uαuα. Then

1

2
∆b |∂bu|2 = |uα,β|2 +

∣∣∣uα,β
∣∣∣
2
+

1

2
[(∆bu)α uα + (∆bu)α uα]

+Rασuσuα +
m

2

√
−1 [Aασuαuσ −Aασuσuα]

+
√
−1

(
uβuβ,0 − uβuβ,0

)
.

Remark 3. This was first derived by Greenleaf [G]. But due to a
mistake in calculation pointed out in [GL] and [CC1], the coefficient
m
2 on the RHS was mistaken to be m−2

2 .

The following formulas are also derived in [G].

Lemma 1. Let u be a smooth function on a closed pseudohermi-
tian manifold M of dimension 2m + 1. We have the following integral
equalities
∫

M

√
−1

(
uβuβ,0 − uβuβ,0

)
=

2

m

∫

M

∣∣∣uα,β
∣∣∣
2
− |uα,β |2 −Rασuσuα,

∫

M

√
−1

(
uβuβ,0 − uβuβ,0

)

=

∫

M

1

m
(∆bu)

2 − 4

m

∣∣∣
∑

uα,α

∣∣∣
2
−

√
−1

(
Aαβuαuβ −Aαβuαuβ

)
,

(m− 2)

∫

M

√
−1

(
uβuβ,0 − uβuβ,0

)

=

∫

M
4
∣∣∣uα,β

∣∣∣
2
− (∆bu)

2 +
√
−1m (Aασuαuσ −Aασuσuα) .

We can now state the main estimate on λ1. For completion and future
application in the next section, we also provide the detail of the proof
here.

Theorem 7. Let M be a closed pseudohermitian manifold of dimen-
sion 2m+ 1 ≥ 5. Suppose for any X ∈ T 1,0 (M)

(3.1) Ric (X,X) − m+ 1

2
Tor (X,X) ≥ κ |X|2 ,

where κ is a positive constant. Then the first eigenvalue of −∆b satisfies

λ1 ≥
m

m+ 1
κ.
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Remark 4. In terms of our local unitary frame, the assumption (3.1)
means that for any X = fαTα

Rασfσfα +
m+ 1

2

√
−1 [Aασfαfσ −Aασfσfα] ≥ κ

∑

α

|fα|2 .

Proof. Suppose −∆bu = λ1u. Applying the Bochner formula, we
have

0 =

∫
|uα,β|2 +

∣∣∣uα,β
∣∣∣
2
− λ1 |∂bu|2

+Rασuσuα +
m

2

√
−1 [Aασuαuσ −Aασuσuα]

+
√
−1

(
uβuβ,0 − uβuβ,0

)
.

We write the last term as c times the first identity plus (1− c) times
the second identity of Lemma 1,

0 =

∫
|uα,β|2 +

∣∣∣uα,β
∣∣∣
2
− λ1 |∂bu|2

+Rασuσuα +
m

2

√
−1 [Aασuαuσ −Aασuσuα]

+
2c

m

∫ (∣∣∣uα,β
∣∣∣
2
− |uα,β|2 −Rασuσuα

)

+

∫
1− c

m
λ21u

2 − 4 (1− c)

m

∣∣∣
∑

uα,α

∣∣∣
2

− (1− c)
√
−1

(
Aαβuαuβ −Aαβuαuβ

)

=

∫ (
1− 2c

m

)
|uα,β|2 +

(
1 +

2c

m

) ∣∣∣uα,β
∣∣∣
2
+

(
−1 +

2 (1− c)

m

)
λ1 |∂bu|2

+

(
1− 2c

m

)
Rασuσuα +

(m
2

− 1 + c
)√

−1 [Aασuαuσ −Aασuσuα]

− 4 (1− c)

m

∣∣∣
∑

uα,α

∣∣∣
2
.

Since
∑m

α,β=1

∣∣∣uα,β
∣∣∣
2
≥ |∑uα,α|2 /m, we have

0 ≥
∫ (

1− 2c

m

)
|uα,β|2 +

(
−1 +

2 (1− c)

m

)
λ1 |∂bu|2

+

(
1− 2c

m

)
Rασuσuα +

(m
2

− 1 + c
)√

−1 [Aασuαuσ −Aασuσuα] +

+

[(
1 +

2c

m

)
1

m
− 4 (1− c)

m

] ∣∣∣
∑

uα,α

∣∣∣
2
.

We choose c such that(
1 +

2c

m

)
1

m
− 4 (1− c)

m
= 0,
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i.e., c = 3m/ (4m+ 2). Then

0 ≥
∫

2 (m− 1)

2m+ 1
|uα,β |2 −

2
(
m2 − 1

)

m (2m+ 1)
λ1 |∂bu|2

+
2 (m− 1)

2m+ 1

{
Rασuσuα +

m+ 1

2

√
−1 [Aασuαuσ −Aασuσuα]

}
.

Therefore

(m− 1)

2m+ 1

∫
2

(
κ− m+ 1

m
λ1

)
|∂bu|2 + |uα,β|2 ≤ 0.

It follows that λ1 ≥ mκ/ (m+ 1) when m ≥ 2. q.e.d.

4. Equality case

We now discuss the equality case. By scaling, we can assume κ =
(m+ 1) /2 and thus λ = m/2.

Proposition 4. If equality holds in Theorem 7, we must have

uα,β = 0,(4.1)

uα,β =

(
−1

4
u+

√
−1

2
u0

)
δαβ,(4.2)

u0,α = 2Aασuσ +

√
−1

2
uα,(4.3)

u0,0 = −1

4
u+

4

m
ImAασ,αuσ.(4.4)

Moreover, at any point where ∂bu 6= 0

(4.5)
√
−1Aαβ =

Q

|∂bu|4
uαuβ,

where Q =
√
−1Aασuαuσ.

Proof. If equality holds, we must have uα,β = 0 and

(4.6) uα,β = fδαβ ,

where f is a complex-valued function. Taking the conjugate of (4.6)
yields

fδαβ = uα,β

= uβ,α −
√
−1δαβu0

=
(
f −

√
−1u0

)
δαβ.

Hence Imf = 1
2u0. We also have

m

2
u = −∆bu

= −uα,α − uα,α

= −m
(
f + f

)
.
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Thus Ref = −1
4u. Therefore

(4.7) f = −1

4
u+

√
−1

2
u0.

This proves (4.2).
Differentiating (4.1), we have

0 = uα,βγ − uα,γβ

=
√
−1 (Aαγuβ −Aαβuγ) .

Therefore

Aαγuβ −Aαβuγ = 0.

From this we easily obtain (4.5).
Differentiating (4.6), we have

fγδαβ = uα,βγ

= uα,γβ +
√
−1

(
hαβA

σ
γ − hαγA

σ
β

)
uσ

= fβδαγ +
√
−1

(
δαβA

σ
γ − δαγA

σ
β

)
uσ,

i.e.,
(
fγ −

√
−1Aσγuσ

)
δαβ =

(
fβ −

√
−1Aσ

β
uσ

)
δαγ . It follows fγ −

√
−1Aσγuσ = 0. Using (4.7), this yields

(4.8)
√
−1Aασuσ =

1

2
uα +

√
−1uα,0.

This then implies (4.3) by using the first identity of Proposition 3.
To prove the last identity, taking the trace of (4.2) we obtain

m

(
−1

4
u+

√
−1

2
u0

)
= uα,α.

Differentiating and using Proposition 3 yields

m

(
−1

4
u0 +

√
−1

2
u0,0

)
= uα,α0

= uα,0α −Aασ,αuσ

=

(
Aασuσ +

√
−1

2
uα

)

,α

−Aασ,αuσ

= Aασ,αuσ +

√
−1

2
uα,α −Aασ,αuσ

= 2
√
−1ImAασ,αuσ +m

√
−1

2

(
−1

4
u+

√
−1

2
u0

)

= −m
4
u0 +

√
−1

(
2ImAασ,αuσ −

m

8
u
)
.

Taking the imaginary part yields (4.4). q.e.d.
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Lemma 2. We also have

(4.9) Rασuσ + (m+ 1)
√
−1Aασuσ =

m+ 1

2
uα.

Proof. This follows easily from the fact that equality is achieved by
X = uσTσ in (3.1). We can also derive it in the following way. Differ-
entiating (4.1) and using (4.6) yields

0 = uα,βγ

= uα,γβ +
√
−1δβγuα,0 −Rβγασuσ

=

(
−1

4
uβ +

√
−1

2
u0,β

)
δαγ +

√
−1uα,0δβγ −Rβγασuσ.

Taking the trace over β and γ, we obtain

0 = −1

4
uα +

√
−1

2
u0,α +m

√
−1uα,0 +Rασuσ

= −1

4
uα +

√
−1

2
Aασuσ +

(
m+

1

2

)√
−1uα,0 +Rασuσ

= −(m+ 1)

2
uα + (m+ 1)

√
−1Aασuσ +Rασuσ,

where in the last step we have used (4.8) to replace uα,0. q.e.d.

Lemma 3. Q is real and nonpositive.

Remark 5. This lemma will not be needed in the proof of the rigid-
ity. However, it yields a quick proof if we assume the following extra
condition

Aαβ,αβ = 0,

i.e., the double divergence of the torsion is zero. Indeed, integrating by
parts and using (4.1) we obtain

∫

M
Q = −

√
−1

∫

M
Aαβ,αuβu

=

√
−1

2

∫

M
Aαβ,αβu

2

= 0.

As Q is nonpositive, this implies that Q = 0. Therefore A = 0. See the
discussion on the torsion-free case below.

Proof. From (4.9) we have

Rασuαuσ + (m+ 1)Q =
m+ 1

2
|∂bu|2 .

This shows that Q is real. Taking the conjugate, we also have Q =
−
√
−1Aασuαuσ. In the inequality (3.1), taking X = eituαTα yields

Rασuαuσ + (m+ 1)Q cos 2t ≥ m+ 1

2
|∂bu|2 .
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Therefore Q ≤ 0. q.e.d.

Theorem 4 follows from

Lemma 4. The torsion A = 0.

The proof of this statement will be presented in the next section.
Assuming this lemma, Theorem 4 then follows from Chang and Chiu

[CC1]. In the following, we present a simpler and more direct argument.
Since A vanishes, we have

u0,α = uα,0 =

√
−1

2
uα,(4.10)

uα,β = 0, u0,0 = −1

4
u(4.11)

uα,β =

(
−1

4
u+

√
−1

2
u0

)
δαβ .(4.12)

By Proposition 2, we obtain

Proposition 5. Let D2u be the Hessian of u with respect to the
Riemannian metric gθ. Then

D2u = −1

4
ugθ.

By Obata’s theorem (Theorem 2), (M,gθ) is isometric to the sphere
S
2m+1 with the metric g0 = 4gc, where gc is the canonical metric. With-

out loss of generality, we can take (M,gθ) to be (S2m+1, g0). Then θ is
a pseudohermitian structure on S

2m+1 whose adapted metric is g0 and
the associated Tanaka-Webster connection is torsion-free. It is a well
known fact that the Reeb vector field T is then a Killing vector field
for g0 (this can be easily proved by the first formula in Remark 1).
Therefore there exists a skew-symmetric matrix A such that for all
X ∈ S

2m+1, T (X) = AX; here we use the obvious identification between
z = (z1, . . . , zm+1) ∈ C

m+1 and X = (x1, y1, . . . , xm+1, ym+1) ∈ R
2m+2.

Changing coordinates by an orthogonal transformation we can assume
that A is of the following form

A =




0 a1
a1 0

. . .

0 am+1

am+1 0




where ai ≥ 0. Therefore

T =
∑

i

ai

(
yi

∂

∂xi
− xi

∂

∂yi

)
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Since T is of unit length we must have

4
∑

i

a2i (x
2
i + y2i ) = 1

on S
2m+1. Therefore all the ai’s are equal to 1/2. It follows that

θ = g0(T, ·) = 2
√
−1∂(|z|2 − 1).

This finishes the proof of Theorem 4.

5. Proof of Lemma 4

Let ψ = |A|. In local unitary frame we have

ψ =
√∑

|Aαβ |2.

We note that ψ is continuous and ψ2 is smooth. Let K = {∂bu = 0}.
By (4.5), on M\K ψ is smooth and

ψ = − Q

|∂bu|2
,

or
Aαβ =

√
−1ψ

uαuβ

|∂bu|2
.

Lemma 5. The compact set K is of Hausdorff dimension at most
n−2 (n = 2m+1 = dimM). More precisely we have a countable union
K = ∪∞

i=1Ei, where each Ei has finite n − 2 dimensional Hausdorff
measure: Hn−2 (Ei) <∞.

Remark 6. Here the Hausdorff dimension is defined using the dis-
tance function of the Riemannian metric gθ.

Proof. We have K = K1 ⊔K2, where

K1 = {p ∈ K : u (p) 6= 0 or u0 (p) 6= 0} ,
K2 = {p ∈M : u (p) = 0 and du (p) = 0} .

We first prove that K1 is of Hausdorff dimension n−2. Suppose p ∈ K1.
In a local unitary frame {Tα} we have by Proposition 4

uα,β =

(
−1

4
u+

√
−1

2
u0

)
δαβ .

We write Tα = Xα −
√
−1Yα in terms of the real and imaginary parts.

Then we have 2m real local vector fields {Zi}, where Zi = Xi for i ≤ m
and Zi = Yi−m for i > m. Along K1 the above equation takes the
following form

XβXαu+ YβYαu = −1

4
uδαβ ,

YβXαu−XβYαu =
1

2
u0δαβ .
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Since either u (p) 6= or u0 (p) 6= 0, from the above equation it is straight-
forward to check that there exists i < j such that the local map F :
q → (Ziu (q) , Zju (q)) from M to R

2 is of rank 2 at p. By the implicit
function theorem, F−1 (0) is a codimension 2 submanifold at p. As
K1 ⊂ F−1 (0), we conclude that K1 is of Hausdorff dimension at most
n− 2.

To handle K2, we note that u satisfies the following 2nd order elliptic
equation by Proposition 4

∆u = −
(
m

2
+

1

4

)
u+

4

m
ImAασ,αuσ.

As K2 is the singular nodal set of u, we have (see, e.g., [HHL])

Hn−2 (K2) <∞.

q.e.d.

Lemma 6. We have on M\K

Re
∑

ψαuα = 0.

Proof. Let v = Tu = u0. By the second formula of Lemma 1
∫

M

√
−1

(
vβvβ,0 − vβvβ,0

)
=

∫

M

1

m
(∆bv)

2 − 4

m

∣∣∣
∑

vα,α

∣∣∣
2

−
√
−1

(
Aαβvαvβ −Aαβvαvβ

)
.

(5.1)

We will use Proposition 4 to simplify both sides. On M\K

vα = u0,α =
√
−1

(
2ψ +

1

2

)
uα,

vα,β =
√
−12ψβuα +

(
2ψ +

1

2

)(
−1

2
u0 −

√
−1

4
u

)
δαβ .

Differentiating the first equation yields vα,β = 2
√
−1ψβuα. As vα,β =

vβ,α, we have ψβuα = ψαuβ. As a result, on M\K there are smooth
real functions a, b such that

ψα = (a+ ib) uα.

A simple calculation shows

√
−1

(
vβvβ,0 − vβvβ,0

)
=

√
−1

(
2ψ +

1

2

)2 (
uβuβ,0 − uβuβ,0

)

= −
(
2ψ +

1

2

)2

(2ψ + 1) |∂bu|2 .
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The integrand of the right hand side can be simplified as follows:

1

m
(∆bv)

2 − 4

m

∣∣∣
∑

vα,α

∣∣∣
2
−

√
−1

(
Aαβvαvβ −Aαβvαvβ

)

= − 4

m

∣∣∣Im
∑

vα,α

∣∣∣
2
−

√
−1

(
Aαβvαvβ −Aαβvαvβ

)

= − 4

m

(
2a |∂bu|2 −

m

4

(
2ψ +

1

2

)
u

)2

−
(
2ψ +

1

2

)2

2ψ |∂bu|2

= −m
4

(
2ψ +

1

2

)2

u2 + 4a |∂bu|2
(
2ψ +

1

2

)
u− 16

m
a2 |∂bu|4

−
(
2ψ +

1

2

)2

2ψ |∂bu|2 .

Integrating by parts (see the remark below) yields
∫

−m
4

(
2ψ +

1

2

)2

u2 = Re

∫ (
2ψ +

1

2

)2

uα,αu

= −
∫ (

2ψ +
1

2

)2

|∂bu|2 − 4Re

∫ (
2ψ +

1

2

)
uψαuα

= −
∫ (

2ψ +
1

2

)2

|∂bu|2 − 4

∫ (
2ψ +

1

2

)
au |∂bu|2 .

Plugging these calculations in (5.1), we obtain

16

m

∫

M
a2 |∂bu|4 = 0.

Therefore Re
∑
ψαuα = a |∂bu|2 = 0. q.e.d.

Remark 7. We can justify the integration by parts in the following
way. We note that the compact set K has zero 2-capacity by Lemma 5
(cf. [EG, HKM]). Therefore there exists a sequence χk ∈ C∞

c (M\K)
s.t. χk → 1 in W 1,2 (M). Then

−
∫ (

2φ+
1

2

)2

uα,αu (χk)
2 =

∫ (
2φ+

1

2

)2

|∂bu|2 (χk)2

+ 2

∫ (
2φ+

1

2

)
φαuαu (χk)

2 + Ek,

where

Ek = 2

∫ (
2φ+

1

2

)2

uαuχk (χk)α .

It is easy to see that limk→∞Ek = 0. Therefore, letting k → ∞ yields

−
∫ (

2φ+
1

2

)2

uα,αu =

∫ (
2φ+

1

2

)2

|∂bu|2 + 4

∫ (
2φ+

1

2

)
φαuαu.



AN OBATA-TYPE THEOREM IN CR GEOMETRY 497

We now prove Lemma 4. Suppose ψ2 is not identically zero. Let ε2

be a regular value of ψ2 such that {ψ ≥ ε} is a nonempty domain with
smooth boundary. Define

F =

{
ψ(ψ − ε)2 if ψ ≥ ε,

0 if ψ < ε.

Then F ∈W 1,2 (M). Integrating by parts, we obtain

∫

M
Fu2(k+1) =− 4

m
Re

∫

M
F |u|2k+1 uα,α

=
4 (2k + 1)

m
Re

∫

M
Fu2k |∂bu|2

+
4

m

∫

{ψ≥ε}

(
3ψ2 − 4εψ + ε2

)
|u|2k+1Reuαψα

=
4 (2k + 1)

m

∫

M
Fu2k |∂bu|2 ,

(5.2)

by Lemma 6. Integrating by parts again, we have

∫

M
Fu2k |∂bu|2

=

∫

M
u2k (ψ − ε)2+ ψ |∂bu|2

= −Re
√
−1

∫

M
u2k (ψ − ε)2+Aαβuαuβ

= −Re

√
−1

2k + 1

∫

M
(ψ − ε)2+Aαβ

(
u2k+1

)
α
uβ

= Re

√
−1

2k + 1

(∫

M
(ψ − ε)2+Aαβ,αu

2k+1uβ

+ 2

∫

{ψ≥ε}
(ψ − ε) u2k+1ψαAαβuβ

)

= Re

√
−1

2k + 1

∫

M
(ψ − ε)2+Aαβ,αu

2k+1uβ

− 2

2k + 1

∫

{ψ≥ε}
(ψ − ε)ψu2k+1Reψαuα

= Re

√
−1

2k + 1

∫

M
(ψ − ε)2+Aαβ,αu

2k+1uβ,
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by Lemma 6 again. Let C be the super norm of divA = Aαβ,α. Then
by the Hölder inequality
∫

M
Fu2k |∂bu|2 ≤

C

ε (2k + 1)

∫

M
F |u|2k+1 |∂bu|

≤ C

ε (2k + 1)

(∫

M
F |u|2(k+1)

)1/2 (∫

M
F |u|2k |∂bu|2

)1/2

.

Hence
∫

M
Fu2k |∂bu|2 ≤

[
C

ε (2k + 1)

]2 ∫

M
F |u|2(k+1)

≤ 4C2

ε2m (2k + 1)

∫

M
Fu2k |∂bu|2 ,

where in the last step we used (5.2). Choosing k such that 4C2

ε2m(2k+1)
≤ 1

2

yields ∫

M
Fu2k |∂bu|2 = 0.

This is a contradiction. Therefore Lemma 4 is proved.
Inspecting the proof of the rigidity, it is clear that we only need to

have a nonconstant function u satisfying (4.1) and (4.2) as all the other
identities used in the proof are derived from these two. In summary, we
have proved the following theorem.

Theorem 8. Let M be a closed pseudohermitian manifold of di-
mension 2m + 1 ≥ 5. Suppose there exists a nonconstant function
u ∈ C∞ (M) satisfying

uα,β = 0,

uα,β =

(
−1

4
u+

√
−1

2
u0

)
δαβ .

Then M is equivalent to the sphere (S2m+1, 2
√
−1∂(|z|2 − 1)).

This is equivalent to Theorem 5 by scaling.

6. Remarks for the case 2m+ 1 = 3

Generally speaking, 3-dimensional CR manifolds are more subtle to
understand than higher dimensional ones. A famous example is the CR
embedding problem. In our situation, it is not clear if Theorem 8 is true
in 3 dimensions. The reason is that (4.3) does not follow from (4.1) and
(4.2) in 3 dimensions (In deriving (4.8) we need at least 2 indices). The
arguments in Section 5 do yield the following weaker rigidity theorem
in dimension 3 with (4.3) as an extra condition.
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Theorem 9. LetM be a 3-dimensional closed pseudohermitian man-
ifold. Suppose there exists a nonconstant function u ∈ C∞ (M) satisfy-
ing

u1,1 = 0,

u1,1 =

(
−1

4
u+

√
−1

2
u0

)
,

u0,1 = 2A11u1 +

√
−1

2
u1.

Then M is equivalent to the sphere (S3, 2
√
−1∂(|z|2 − 1)).

In fact, the eigenvalue estimate (Theorem 3) is not known in the
3-dimensional case without any extra condition. Chang and Chiu in
[CC2] proved the estimate under the extra condition that the Panietz
operator is nonnegative. They also proved that M is CR equivalent to
the sphere if equality holds and the torsion is zero.

Recall that the Panietz operator P0 acting on functions on a pseudo-
hermitian manifold M of dimension 2m+ 1 is defined by

P0u = 4Re
(
uβ,βα +m

√
−1Aαβuβ

)
,α
.

It is proved by Graham and Lee [GL] that P0 is always nonnegative if
M is closed and of dimension ≥ 5 in the sense

∫

M
uP0u ≥ 0

for any smooth function u. In 3 dimensions, P0 is known to be nonneg-
ative if the torsion is zero.

With our method, we can remove the torsion-free condition in the
characterization of the equality case in Chang and Chiu’s work.

Theorem 10. Let (M3, θ) be a closed pseudohermitian manifold such
that for any X = cT1

(6.1) R11|c|2 −
√
−1(A11c

2 −A11c
2) ≥ |c|2.

If P0 ≥ 0, then λ1 ≥ 1
2 and the equality holds if and only if (M3, θ) is

equivalent to (S3, 2
√
−1∂(|z|2 − 1)).

Remark 8. The first part of the theorem was proved by Chiu [Ch]
and the second part of the theorem was proved by Chang and Chiu
[CC2] under the extra condition that M is torsion free.

We sketch the proof here. By Lemma 2.2 in [CC1], one has
∫

M
u20 =

∫

M
(∆bu)

2 − 2
√
−1(A11u

2
1
−A11u

2
1)]−

1

2

∫

M
uP0u.
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Using Proposition 3 and integrating by parts yields

Re
[√

−1

∫

M
(u1u1,0 − u1u1,0)

]
= −

∫

M
(u0)

2 −
∫

M

√
−1(A11u

2
1
−A11u

2
1).

Let u be a non-zero first eigenfunction, ∆bu = −λ1u. Then∫

M
(∆bu)

2 = 2λ1

∫

M
|∂bu|2.

By the Bochner formula (Theorem 6), Lemma 1, and the above two
identities, we have

0 =

∫

M
|u1,1|2 + |u1,1|2 − λ1|∂u|2 +R11u1u1 +

1

2

√
−1[A11u

2
1
−A11u

2
1]

+ Re
√
−1

∫

M
(u1u1,0 − u1u1,0)

=

∫

M
|u1,1|2 +

λ21u
2

4
+
u20
4

− λ1|∂u|2 +R11|u1|2 +
1

2

√
−1[A11u

2
1
−A11u

2
1]

−
∫

M
(u0)

2 −
∫

M

√
−1(A11u

2
1
−A11u

2
1)

=

∫

M
|u1,1|2 −

λ1
2
|∂u|2 +R11|u1|2 −

1

2

√
−1[A11u

2
1
−A11u

2
1]−

3

4

∫

M
(u0)

2

=

∫

M
|u1,1|2 −

λ1
2
|∂u|2 +R11|u1|2 −

1

2

√
−1[A11u

2
1
−A11u

2
1]

− 3

4

∫

M
[2λ1|∂u|2 − 2

√
−1[A11u

2
1
−A11u

2
1]−

1

2
uP0u]

=

∫

M
|u1,1|2 +

3

2
uP0u+

∫

M
[−2λ1|∂u|2 +R11|u1|2 +

√
−1[A11u

2
1
−A11u

2
1]

≥
∫

M
[−2λ1|∂u|2 + |∂u|2]

This implies that λ1 ≥ 1
2 . If equality holds, we must have

(6.2) u1,1 = 0, u1,1 = −u
4
+

√
−1

2
u0

(6.3) R11|u1|2 +
√
−1(A11u

2
1
−A11u

2
1) = |u1|2.

Writing A11 = e
√
−1θ1 |A11|, u21 = e

√
−1θ2 |u1|2 and X = e

√
−1θ|X|, by

(6.1), we have
(6.4)

R11|X|2 +
√
−1|A11||X|2(e

√
−1(θ1+θ2+θ) − e−

√
−1(θ1+θ2+θ))| ≥ |X|2,

for all θ ∈ [0, 2π). Choosing θ = −θ1 + π
2 , we have

(6.5) R11|X|2 − 2|A11||X|2 ≥ |X|2.
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Therefore, by comparing (6.3) and (6.5) with X = u1T1,

√
−1(A11u

2
1
−A11u

2
1) = −2|A11||u1|2, A11 =

√
−1|A11|

u21
|u1|2

.

Notice that

R11|u1 + tX|2 − 2|A11||u1 + tX|2 − |u1 + tX|2 ≥ 0, on M,

and equality holds at t = 0. Therefore we obtain, by differentiating at
t = 0,

R11u1 + 2
√
−1A11u1 = u1.

Using the 7th formula of Proposition 3, we have

−u1
4

+

√
−1

2
u0,1 = u1,11 − u1,11

= −
√
−1u1,0 −R11u1

= −
√
−1u0,1 +

√
−1A11u1 −R11u1

= −
√
−1u0,1 + 3

√
−1A11u1 − u1

Therefore,

1

2
u1 +

√
−1u0,1 = 2

√
−1A11u1, u0,1 =

√
−1

2
u1 + 2A11u1.

Applying Theorem 9, the proof of Theorem 10 is complete.
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