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LARGE ISOPERIMETRIC SURFACES

IN INITIAL DATA SETS

Michael Eichmair & Jan Metzger

Abstract

We study the isoperimetric structure of asymptotically flat Rie-
mannian 3-manifolds (M, g) that are C0-asymptotic to Schwarz-
schild of mass m > 0. Refining an argument due to H. Bray, we
obtain an effective volume comparison theorem in Schwarzschild.
We use it to show that isoperimetric regions exist in (M, g) for
all sufficiently large volumes, and that they are close to centered
coordinate spheres. This implies that the volume-preserving stable
constant mean curvature spheres constructed by G. Huisken and
S.-T. Yau as well as R. Ye as perturbations of large centered coor-
dinate spheres minimize area among all competing surfaces that
enclose the same volume. This confirms a conjecture of H. Bray.
Our results are consistent with the uniqueness results for volume-
preserving stable constant mean curvature surfaces in initial data
sets obtained by G. Huisken and S.-T. Yau and strengthened by
J. Qing and G. Tian. The additional hypotheses that the surfaces
be spherical and far out in the asymptotic region in their results
are not necessary in our work.

1. Introduction

In this paper we describe completely the large isoperimetric sur-
faces of asymptotically flat Riemannian 3-manifolds (M,g) that are
C0-asymptotic to the Schwarzschild metric of mass m > 0. Such Rie-
mannian manifolds arise naturally as initial data for the time-symmetric
Cauchy problem for the Einstein equations in general relativity. For
brevity we will refer to such (M,g) as initial data sets in the introduc-
tion.

A special case of the singularity theorem of Hawking and Penrose
asserts that the future spacetime development of time-symmetric initial
data for the Einstein equations that contains a closed minimal surface
is causally incomplete. As a trial for cosmic censorship, R. Penrose sug-
gested that the area of an outermost minimal surface in an initial data
set should provide a lower bound for the ADM-mass of the spacetime
development of the initial data set. The “Penrose inequality” has been
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established by H. Bray in [5] and by G. Huisken and T. Ilmanen in [26].
We emphasize that the outermost minimal surface is known to be outer
area-minimizing (in particular, it is strongly stable). This variational
feature is of essential importance in both available proofs of the Pen-
rose inequality. A deep relation between the existence of stable minimal
surfaces in initial data sets and their ADM-mass has been recognized
and exploited by R. Schoen and S.-T. Yau in [44] in their proof of the
positive energy theorem. Their work has made a profound connection
between the physical concept of mass and the geometry of manifolds
with non-negative scalar curvature.

It is natural to ask if other physical properties of the spacetime devel-
opment of an initial data set (M,g) are captured by its geometry. Maybe
they are witnessed by the existence and behavior of special surfaces in
(M,g), and their behavior? The variational properties associated with
constant mean curvature surfaces in (M,g) generalize the geometric
properties of the horizon in a natural way.

In [27], G. Huisken and S.-T. Yau showed that the asymptotic region
of an initial data set (M,g) that is C4-asymptotic to Schwarzschild of
mass m > 0 in the sense of Definition 2.2 is foliated by strictly volume-
preserving stable constant mean curvatures spheres that are perturba-
tions of large coordinate balls. Moreover, these spheres are unique among
volume-preserving stable constant mean curvature spheres in the asymp-
totic region that lie outside a coordinate ball of radius H−q, where H
denotes their constant mean curvature and where q ∈ (12 , 1]. They also
concluded that as the enclosed volume gets larger, these surfaces become
closer and closer to round spheres whose centers converge in the limit
as the volume tends to infinity to the Huisken–Yau “geometric center of
mass” of (M,g). See also the announcement [8, p. 14]. R. Ye [48] has an
alternative approach to proving existence of such foliations. In [40], J.
Qing and G. Tian strengthened the uniqueness result of [27] by showing
the following: every volume-preserving stable constant mean curvature
sphere in an initial data set that is C4-asymptotic to Schwarzschild of
mass m > 0 that contains a certain large coordinate ball (independent
of the mean curvature of the surface) belongs to this foliation.

The assumption m > 0 in the results described in the preceding para-
graph is necessary: the constant mean curvature surfaces of R3 are nei-
ther strictly volume-preserving stable nor unique. In view of the results
in [27, 40], and loosely speaking, positive mass has the property that it
centers large, outlying volume-preserving stable constant mean curva-
ture surfaces. Various extensions of these results that allow for weaker
asymptotic conditions have been proven in [34], [23], and [31, 30]. In
[22], L.-H. Huang has shown that the “geometric center of mass” of G.
Huisken and S.-T. Yau coincides with other invariantly defined notions
for the center of mass.
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In his thesis [4], H. Bray started a systematic investigation of isoperi-
metric surfaces in initial data sets and their relationship with mass,
quasi-local mass, and the Penrose inequality. He showed that the isoperi-
metric surfaces of Schwarzschild are exactly round centered spheres. He
deduced that the large isoperimetric surfaces in initial data sets that
are compact perturbations of the exact Schwarzschild metric are also
round centered spheres. Furthermore, he gave a proof of the Penrose
inequality under the additional assumption that there exist connected
isoperimetric surfaces enclosing any given volume in (M,g). This proof
builds on H. Bray’s important observation that his isoperimetric Hawk-
ing mass is monotone increasing with the volume in this case. (In fact,
H. Bray pointed out that the Hawking mass is monotone along folia-
tions through connected volume-preserving stable constant mean cur-
vature spheres whose area is increasing, such as those constructed in
[27, 48].) In [4, p. 44], H. Bray conjectured that the volume-preserving
stable constant mean curvatures surfaces of [27, 48] are isoperimetric
surfaces. The results in the present paper confirm this.

Theorem 1.1. Let (M,g) be an initial data set that is C0-asymptotic
to Schwarzschild of mass m > 0 in the sense of Definition 2.2. There
exists V0 > 0 such that for every V ≥ V0 the infimum in

Ag(V ) := inf{H2
g(∂

∗Ω) : Ω is a Borel set of volume V that contains

the horizon and has finite perimeter}
is achieved. Every minimizer has a smooth bounded representative whose
boundary consists of the horizon and a connected surface that is close
to a centered coordinate sphere.

In conjunction with [27], we immediately obtain the following
corollary.

Corollary 1.2. If the initial data set (M,g) is C4-asymptotic to
Schwarzschild of mass m > 0 in the sense of Definition 2.2, then the
boundaries of the large isoperimetric regions of Theorem 1.1 coincide
with the volume-preserving stable constant mean curvature surfaces con-
structed in [27]. In particular, for every sufficiently large volume there
exists a unique isoperimetric region in (M,g) of that volume. The bound-
aries of these regions foliate the complement of a bounded subset of
(M,g).

It follows that the isoperimetric profile Ag(V ) of (M,g) for large
volumes V is exactly determined. This mirrors the situation in compact
Riemannian manifolds whose scalar curvature assumes its maximum at
a unique point p. Under those assumptions, small isoperimetric regions
are known to be perturbations of geodesic balls centered at p. (This
follows from [11]. See also [36, Theorem 2.2] and [38, Corollary 3.12].)
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G. Huisken has initiated a program where the mass of an initial data
set and the quasi-local mass of subsets of initial data sets are studied
via isoperimetric deficits from Euclidean space. One great advantage of
this approach is that only very low regularity is required of the initial
data set. Theorem 1.1 identifies m as the only sensible candidate for any
notion of mass that is defined in terms of Ag(V ) when the initial data
set is C0-asymptotic to Schwarzschild of mass m > 0; cf. [4]. A result
of X.-Q. Fan, Y. Shi, and L.-T. Tam [15, Corollary 2.3] subsequent to
the work of G. Huisken shows that the ADM mass of an initial data
set that has integrable scalar curvature and which is C0-asymptotic to
Schwarzschild of mass m > 0 equals m.

In a sequel [13] to this paper, we generalize our main result Theorem
1.1 to arbitrary dimensions. We also show that in Corollary 1.2, it is
enough to assume that (M,g) is C2-asymptotic to Schwarzschild of mass
m > 0. In Appendix H of [13] we provide an extensive overview of
the portion of the literature on isoperimetric regions on Riemannian
manifolds related to our results.

Structure of this paper. In Section 2 we introduce the precise de-
cay assumptions for initial data sets that we use in this paper, and we
define what exactly we mean by isoperimetric and locally isoperimetric
regions. In Section 3 we prove an effective volume comparison theo-
rem for regions in initial data sets that are C0-asymptotic to Schwarz-
schild. In Section 4 we review the classical results on the regularity
of isoperimetric regions and behavior of minimizing sequences for the
isoperimetric problem that we need in this paper. The effective volume
comparison theorem is applied in Section 5 to show that isoperimetric
regions exist for every sufficiently large volume in initial data sets that
are C0-asymptotic to Schwarzschild, and that these regions become close
to large centered coordinate balls as their volume increases. In Section
6 we present our most general result on the behavior of isoperimetric
regions in asymptotically flat initial data sets that are not assumed to
be close to Schwarzschild: either such regions slide away entirely into
the asymptotically flat end of the initial data set as their volume grows
large, or they begin to fill up the whole initial data set. The results in
this section are largely independent of the remainder of the paper. In
Appendix A we collect several useful lemmas regarding integrals of poly-
nomially decaying quantities over surfaces with quadratic area growth.
In Appendix B we summarize some steps and results from H. Bray’s the-
sis. Appendix C contains a “friendly” proof that limits of isoperimetric
regions with divergent volumes in initial data sets have area-minimizing
boundaries. This fact is used in the proof of Theorem 6.1.
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2. Definitions and notation

Definition 2.1. Let m > 0. We denote by (Mm, gm) the complete

Riemannian manifold (R3\{0}, φ4
m

∑3
i=1 dx

2
i ), where φm = φm(x) := 1+

m
2r , r = r(x) :=

√

x21 + x22 + x23, and where (x1, x2, x3) are the coordinate

functions on R
3. (Mm, gm) is a totally geodesic spacelike slice of the

Schwarzschild spacetime of mass m > 0. We refer to (Mm, gm) as the
Schwarzschild metric of mass m > 0 for brevity, to the coordinates
(x1, x2, x3) as isotropic coordinates on (Mm, gm), and to r(x) as the
isotropic radius of x ∈ Mm.

The conformal factor φm is harmonic on R
3 \ {0}. It follows that

the scalar curvature of gm vanishes. The coordinate spheres {x ∈ Mm :
r(x) = r} ⊂ Mm will be denoted by Sr. Note that Sm

2
is a minimal sur-

face. It is called the horizon of (Mm, gm). The inversion x →
(

m
2

)2 x
r(x)2

induces a reflection symmetry of (Mm, gm) across the horizon. The area
of the isotropic coordinate sphere Sr is equal to φ4

m4πr2. Its mean cur-
vature with respect to the unit normal φ−2

m ∂r equals φ−3
m (1− m

2r )
2
r . The

Hawking mass m(Σ) := (16π)−3/2
√

H2
gm(Σ)

(

16π −
∫

ΣH2
ΣdH2

gm

)

which

is defined on closed surfaces Σ ⊂ Mm is equal to m when Σ = Sr.

Definition 2.2. An initial data set (M,g) is a connected complete
Riemannian 3-manifold, possibly with compact boundary, such that
there exists a bounded open set U ⊂ M with M \ U ∼=x R

3 \ B(0, 12 )
and such that in the coordinates induced by x = (x1, x2, x3),

r|gij − δij |+ r2|∂kgij |+ r3|∂2
klgij | ≤ C where r :=

√

x21 + x22 + x23.

If ∂M 6= ∅, we assume that ∂M is a minimal surface, and that there
are no compact minimal surfaces in M besides the components of ∂M .
The boundary of M is called the horizon of (M,g). Given m > 0 and
an integer k ≥ 0, we say that an initial data set is Ck-asymptotic to
Schwarzschild of mass m > 0 if

k
∑

l=0

r2+l|∂l(g − gm)ij | ≤ C where (gm)ij = (1 +
m

2r
)4δij .(1)

A few remarks are in order. The decay assumptions for initial data
sets here are quite weak. In particular, the ADM-mass is not defined for
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such initial data sets unless a further condition—namely, the integrabil-
ity of the scalar curvature—is imposed.

We extend r as a smooth regular function to the entire initial data
set (M,g) such that r(U) ⊂ [0, 1), except for the case of exact Schwarz-
schild (Mm, gm), where we retain the convention that r(x) denotes the
the isotropic radius introduced just below Definition 2.1. We use Sr to
denote the surface {x ∈ M : |x| = r}, and Br to denote the region
{x ∈ M : |x| ≤ r}. We will refer to Sr as the centered coordinate sphere
of radius r. We will not distinguish between the end M \ U of M and
its image R

3 \ B(0, 12) under x. By the work of W. Meeks, L. Simon,
and S.-T. Yau [33] (see also the discussion in [26, Section 4]), M is
diffeomorphic to R

3 minus a finite number of open balls whose closures
are disjoint.

Given an initial data set (M,g), we fix a complete Riemannian man-

ifold (M̂, ĝ) diffeomorphic to R
3 that contains (M,g) isometrically. We

say that a Borel set U ⊂ M̂ contains the horizon if M̂ \M ⊂ U . If such
a set U has locally finite perimeter, we denote its reduced boundary in
(M̂, ĝ) by ∂∗U . Note that ∂∗U is supported in M , and that H2

g(∂
∗U) =

H2
ĝ(∂

∗U). To lighten the notation, we write L3
g(U) := L3

ĝ(U ∩ M) for
short.

Definition 2.3. The isoperimetric area function Ag : [0,∞) → [0,∞)
is defined by

Ag(V ) := inf{H2
g(∂

∗U) : U ⊂ M̂ is a Borel containing the horizon

and of finite perimeter with L3
g(U) = V }.

A Borel set Ω ⊂ M̂ containing the horizon and of finite perimeter such
that L3

g(Ω) = V and Ag(V ) = H2
g(∂

∗Ω) is called an isoperimetric region

of (M,g) of volume V . A Borel set Ω ⊂ M̂ containing the horizon
and of locally finite perimeter is called locally isoperimetric if H2

g(B ∩
∂∗Ω) ≤ H2

g(B ∩ ∂∗U) whenever B ⊂ M̂ is a bounded open subset of M̂

and U ⊂ M̂ is a Borel set containing the horizon and of locally finite
perimeter such that L3

ĝ(Ω ∩B) = L3
ĝ(U ∩B) and Ω∆U ⋐ B.

The definition of Ag, as well as that of isoperimetric and locally

isoperimetric regions, is independent of the particular extension (M̂, ĝ)
of (M,g). Note that Ag(0) = H2

g(∂M) and that Ag(V ) > H2
g(∂M) for

every V > 0. The latter assertion follows from the assumption that the
boundary of M is an outermost minimal surface. Locally isoperimetric
regions arise naturally as limits of isoperimetric regions whose volumes
diverge. A good example to keep in mind is a half-space in R

3. Stan-
dard results in geometric measure theory imply that the boundary of
a (locally) isoperimetric region Ω is smooth, that Ω ∩ ∂M = ∅ unless
the enclosed volume L3

g(Ω) = L3
ĝ(Ω ∩ M) is 0, and that isoperimetric
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regions are compact. Indications of the proofs of these facts with precise
references to the literature to assist the reader are given in Section 4,
below.

The inequalities in the following lemma are well-known, and we recall
them for convenient reference.

Lemma 2.4. Let (M,g) be an initial data set. There exists a constant
γ > 0 such that

(
∫

M
|f | 32 dL3

g

)
2
3

≤ γ

∫

M
|∇f |dL3

g for every f ∈ C1
c(M).(2)

If the boundary of M is empty, the constant γ > 0 can be chosen such
that for any bounded Borel set Ω ⊂ M with finite perimeter one has that

L3
g(Ω)

2
3 ≤ γH2

g(∂
∗Ω).

Proof. The Sobolev inequality stated here can be obtained exactly
as in [44, Lemma 3.1] by combining, in a contradiction argument, the
Euclidean Sobolev inequality in the form

(

∫

R3\B(0,1)
|f | 32dL3

δ

)
2
3

≤ γ0

∫

R3\B(0,1)
|∇f |dL3

δ for all f ∈ C1
c(R

3)

and Poincaré-type inequalities (see [29, §8.12] for the appropriate ver-
sion with critical exponent) on precompact coordinate charts. We recall
(cf. [7, Theorem II.2.1]) that the isoperimetric estimate for smoothly
bounded compact regions Ω follows from applying this Sobolev inequal-
ity to approximations of the indicator function χΩ by Lipschitz functions
that are one on Ω and that drop off to 0 linearly in the distance from
Ω. The isoperimetric inequality for sets of finite perimeter is obtained
by approximation through smooth sets. q.e.d.

3. Effective refinement of H. Bray’s characterization of

isoperimetric surfaces in Schwarzschild

In his thesis [4], H. Bray proved that large isoperimetric surfaces of
compact perturbations of the Schwarzschild metric with mass m > 0 are
centered coordinate spheres in isotropic coordinates. In this section, we
refine H. Bray’s work to derive an effective lower bound for the isoperi-
metric defect of off-centered surfaces in Schwarzschild. This bound gives
us enough quantitative information to characterize large isoperimetric
surfaces in manifolds that are C0-asymptotic to Schwarzschild of mass
m > 0, as we will see in Section 5.

We begin with a description of the “volume-preserving” charts used
by H. Bray. We refer the reader to Appendix B for an overview of related
results from H. Bray’s thesis that should be noted in this context.
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Let α > 0. Consider the metric cone α−2ds2 +αs2gS2 on (0,∞)× S
2.

The sphere {c} × S
2 has area α4πc2 and mean curvature 2α

c . One can
choose c > 0 and α > 0 so that the intrinsic geometry and (constant,
outward) mean curvature of the sphere {c}×S

2 with respect to this cone
coincide with that of the centered sphere Sr (with r > m

2 ) in (Mm, gm).
Using the remarks below Definition 2.1, we see that this requires that

c3 = r3
φ7
m

1−m/(2r)
= r3(1 +

4m

r
+O(

1

r2
)),

α = φ
− 2

3
m (1− m

2r
)
2
3 = 1− 2m

3r
+O(

1

r2
).

Note that α ∈ (0, 1) and that α ր 1 as r → ∞. We emphasize that α
and c are uniquely determined by r. The scalar curvature of this conical

metric equals 21−α3

αs2
. In particular, it is positive for α ∈ (0, 1).

The volume between the sphere Sr of (isotropic) radius r and the

horizon Sm
2

in Schwarzschild is 4π
∫ r

m
2
(1 + m

2r )
6r2dr = 4πr3

3 (1 + 9m
2r +

O( 1
r2
)). The volume of the (punctured) disk (0, c]×S

2 in the cone metric

above equals 4πc3

3 = 4πr3

3 (1 + 4m
r + O( 1

r2
)). We denote the difference

between the Schwarzschild volume and the cone volume by V0. Note

that V0 =
4πr3

3
m
2r +O(r) = 4πc3

3
m
2c +O(c).

Following H. Bray, we represent the part of the Schwarzschild metric
(Mm, gm) that lies outside the centered sphere of isotropic radius r in
the form u−2

c ds2+ucs
2gS2 on [c,∞)×S

2 for some radial function uc. This
requires that uc(c) = α and ∂uc|c = 0, and that uc satisfies a certain
second-order ordinary differential equation (to make the scalar curvature
vanish). We remark that by Birkhoff’s theorem and the constancy of the
Hawking mass along centered spheres in Schwarzschild there is a first
integral for uc.

Finally, let gcm := u−2
c ds2+ucs

2gS2 be the metric on (0,∞)× S
2 with

uc(s) = α for s ≤ c and uc(s) is equal to uc = uc(s) from the preceding
paragraph when s ≥ c. To summarize, we have that uc is C1,1, is radial,
and is such that the set [c,∞)× S

2 in the gcm metric is isometric to the
exterior of a round sphere Sr of isotropic radius r in the Schwarzschild
manifold of mass m, and such that uc(s) = α for s ≤ c for some constant
α, such that the boundaries {c} × S

2 and Sc correspond and such that
the mean curvature of {c}×S

2 from the inside (the conical part) matches
that from the outside (in Schwarzschild).

A key feature of this construction used by H. Bray is that the volume
element s2ds ∧ dgS2 of gcm is independent of c. By definition of V0, the
Schwarzschild volume between the horizon and a centered Schwarzschild
sphere isometric to the sphere {s}×S

2 (with s ≥ c) in ((0,∞)×S
2, gcm)

equals 4πs3

3 + V0. Thus its area equals Am(4πs
3

3 + V0), where Am is the
function that assigns to every volume (measured relative to the horizon)



LARGE ISOPERIMETRIC SURFACES CENTER 167

the area of a centered sphere in Schwarzschild that encloses that volume.
On the other hand, the area of {s}×S

2 is given explicitly by uc(s)4πs
2.

In combination this yields the following explicit expression for uc:

uc(s) :=
Am(V + V0)

(36π)
1
3V

2
3

for all s ≥ c, where V :=
4πs3

3
; cf. [4, p. 34].

It is known (and easy to verify) that

H2
gm(∂B(0, r))

(36π)
1
3L3

gm(B(0, r) \B(0, m2 ))
2
3

= 1− m

r
+O

(

1

r2

)

,

and from this that

(3) Am(V ) = 4πR2

(

1− m

R
+O

(

1

R2

))

where R :=

(

3V

4π

)
1
3

.

By assumption we have that uc(c) = α = 1 − 2m
3c + O( 1

c2
). For a fixed

τ ∈ (1,∞), we are interested in estimating uc(τc)− uc(c). Note that

uc(τc) =
Am

(

4π(τc)3

3

(

1 + m
2τ3c

+O( 1
c2
)
)

)

4π(τc)2

=

(

1 +
m

2τ3c
+O

(

1

c2

))
2
3
(

1− m

τc
+O

(

1

c2

))

= 1− 2m

3c

(

3

2τ
− 1

2τ3

)

+O

(

1

c2

)

.

This means that for τ0 ∈ (1,∞) fixed and τ ≥ τ0 we have that

uc(τc)− uc(c) = uc(τc)− α ≥ 1

2

(τ + 1
2 )(τ − 1)2

τ3
2m

3c
(4)

provided that c is sufficiently large (depending only on m and τ0). This
quantifies the fact from [4] that uc(s) is increasing for s ≥ c; see Ap-
pendix B.

In the proof of the following lemma, we supply some additional details
and in fact make a slightly different claim than [4, p. 37]:

Lemma 3.1 (Cf. [4, p. 37]). Consider the conical part of the metric
gcm given by α−2ds2 + αs2gS2 on (0, c) × S

2 where α and c are such
that the outward mean curvature of {c} × S

2 with respect to gcm is the
same as that of a centered sphere Sr of area α4πc2 in Schwarzschild
with mass m. Then there exists s0 ≥ 0 and a smooth radial function
wc : (s0, c] → [1,∞) such that w4

cg
c
m is isometric to the Schwarzschild

metric interior to the mean-convex sphere Sr, and such that wc(c) = 1
and ∂swc|c = 0.
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Proof. The scalar curvature Rgcm = 21−α3

αs2
of the conical part of the

metric gcm is strictly positive. For the conformal metric w4
cg

c
m to be

isometric to (part) of a Schwarzschild metric, it is necessary that its
scalar curvature vanishes and hence that wc is a solution of the el-
liptic (Yamabe) equation −8∆gcmwc + Rgcm wc = 0. This equation re-
duces to a second-order ordinary differential equation if we are solving
for radial functions. Hence we can solve this equation for s close to c
with initial data wc(c) = 1 and ∂swc|c = 0. By Birkhoff’s theorem,
w4
cg

c
m is isometric to (part of) a Schwarzschild metric. To determine

the mass m̂ of this metric, we evaluate its Hawking mass on the sphere
{c} × S

2. Since the initial data are chosen so that the area and mean
curvature of this sphere coincide with that of an umbilic constant mean
curvature sphere of a Schwarzschild metric of mass m, we obtain that
m̂ = m. On every connected open sub-interval of (0, c] that contains c
and on which the solution wc exists and is non-negative, we have that
∆gcmwc =

1
s2
∂s(s

2α2∂swc) =
1
8Rgcmwc ≥ 0. Integrating up and using that

∂swc|c = 0, it follows that ∂swc ≤ 0 on any such interval. Moreover, we
see that wc(s) is a decreasing function of s. In particular, wc ≥ 1 on
any such interval. The constancy of the Hawking mass is equivalent to
the existence of a first integral for the ordinary differential equation
satisfied by wc. We let (s0, c] be the maximally left-extended interval
of existence of the solution wc. Since the metric w4

cg
c
m on (s0, c]× S

2 is
isometric to (part) of a Schwarzschild metric, it follows that wc ր ∞ as
s ց s0 and that we actually obtain an isometric copy of the full spatial
Schwarzschild metric that lies to the mean-concave side of Sr. q.e.d.

Fix an isotropic sphere Sr in (Mm, gm), let gcm be the metric on
(0,∞)×S

2 constructed above, and let wc be as in Lemma 3.1, extended
by 1 to s ≥ c, so that ((s0,∞)×S

2, w4
cg

c
m) is isometric to (Mm, gm). We

will refer to it as the volume-preserving chart associated with Sr. Recall
that the isotropic sphere Sr corresponds to the coordinate sphere {c}×S

2

in ((s0,∞)×S
2, w4

cg
c
m). Finally, let Σ be a surface in ((s0,∞)×S

2, w4
cg

c
m)

homologous to the horizon that encloses the same (relative) volume as
{c} × S

2. The reader should keep in mind that Σ might consist of the
horizon itself (enclosing volume zero) and another surface that is the
boundary of a compact set that is disjoint from the horizon. In this case
the area of the horizon is counted as part of the area of Σ.

Since wc ≥ 1 it follows that the volume enclosed by Σ with respect to
the gcm metric (and relative to the horizon of the Schwarzschild metric
w4
cg

c
m in the same coordinate chart) is at least that enclosed by {c}×S

2.
Note that as quadratic forms, α2gcm ≤ δ := ds2 + s2gS2 ≤ u−1

c gcm, since
α ≤ uc ≤ 1. As in [4], but meticulously recording the error terms in the
computation, we obtain that
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H2

g(Σ \Bτr) ≥ ηH2

g(Sr)

Σ

Σ0

Sr

Sτr

Figure 1. A large portion of the area of Σ lies outside of Bτr.

H2
gm(Σ) = H2

w4
cg

c
m
(Σ) ≥ H2

gcm
(Σ) =

∫

Σ
dH2

gcm

≥
∫

Σ
ucdH2

δ =

∫

Σ
(uc − α)dH2

δ + α

∫

Σ
dH2

δ

≥
∫

Σ
(uc − α)dH2

δ + αH2
δ({c} × S

2)

=

∫

Σ
(uc − α)dH2

δ +H2
gm(Sr)

≥ α2

∫

Σ
(uc − α)dH2

gcm
+H2

gm(Sr)(5)

The third inequality follows from the Euclidean isoperimetric inequal-
ity. The definition below is natural in view of this estimate and the
expansion of uc for s ≥ c.

Definition 3.2 (see figure 1). Let (M,g) be an initial data set that
is C0-asymptotic to Schwarzschild of mass m > 0. Let Ω be a bounded
Borel set with finite perimeter in (M,g) that contains the horizon. Given
parameters τ > 1 and η ∈ (0, 1), we say that such a set Ω is (τ, η)-off-
center if

1) L3
g(Ω) is so large that there exists a coordinate sphere Sr = ∂Br

with L3
g(Ω) = L3

g(Br) and r ≥ 1, and if

2) H2
g(∂

∗Ω \Bτr) ≥ ηH2
g(Sr).

Let Σ be a surface in Schwarzschild containing the horizon and en-
closing volume V with it, and let r ≥ m

2 be such that L3
gm(Br\Bm

2
) = V .

Assume that r is large and that Σ is (τ, η)-off-center. It is easy to see
that as c → ∞, the isotropic sphere Sτr corresponds to {(τ+o(1))c}×S

2

in the volume-preserving chart. It follows that for r sufficiently large, a
portion ηH2

gm(Sr) of the area of Σ lies in the region (1+τ
2 c,∞) × S

2 of
the volume-preserving chart. We can use this information together with
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(4), replacing τ by (1 + τ)/2, to continue the estimate (5). We obtain
that

H2
gm(Σ) ≥ H2

gm(Sr) +
ηm

96

(

1− 1

τ

)2 H2
gm(Sr)

r

≥ H2
gm(Sr) +

ηmπ

24

(

1− 1

τ

)2

r

for all r sufficiently large, depending only onm and τ . We have used that
2α ≥ 1 and 2r ≥ c for r sufficiently large here, and thatH2

gm(Sr) ≥ 4πr2.
The arguments leading to this estimate also apply if Σ = ∂∗Ω is

the reduced boundary of a finite-perimeter Borel set Ω containing the
horizon.

Proposition 3.3 (Effective volume comparison in Schwarzschild).
For m > 0 and (τ, η) ∈ (1,∞) × (0, 1) there exists V0 > 0 with the
following property: Let V ≥ V0 and r ≥ m

2 such that V = L3
gm(Br \Bm

2
),

and let Ω ⊂ R
3 be a bounded finite-perimeter Borel set such that Bm

2
⊂ Ω

and L3
gm(Ω\Bm

2
) = V . If Ω is (τ, η)-off-center, i.e., if H2

gm(∂
∗Ω\Bτr) ≥

ηHgm(Sr), then

(6) H2
gm(∂

∗Ω) ≥ H2
gm(Sr) +

ηmπ

24

(

1− 1

τ

)2

r.

This is our effective refinement of H. Bray’s argument in exact Schwarz-
schild. The study of effective isoperimetric inequalities is classical with
much recent activity; see, e.g., [18, 16, 9]. The effective volume compar-
ison in Proposition 3.3 is not obtained from lifting an effective isoperi-
metric inequality from the Euclidean background. It depends on the
particular form of the Schwarzschild metric in an essential way.

In the proof of the theorem below, we will appreciate that we can
quantify how much an off-center surface in Schwarzschild falls short
of being isoperimetric. The defect is large enough for us to carry out
the comparison on arbitrary initial data sets that are C0-asymptotic to
Schwarzschild of mass m > 0:

Theorem 3.4. Let (M,g) be an initial data set that is C0-asymptotic
to Schwarzschild of mass m > 0. For every tuple (τ, η) ∈ (1,∞)× (0, 1)
and constant Θ > 0, there exists a constant V0 > 0 with the follow-
ing property: Let Ω be a bounded finite-perimeter Borel set contain-
ing the horizon with L3

g(Ω) ≥ V0 that is (τ, η)-off-center and such that

H2
g(∂

∗Ω)
1
2L3

g(Ω)
− 1

3 ≤ Θ and H2
g(Bσ ∩ ∂∗Ω) ≤ Θσ2 for all σ ≥ 1. Then

H2
g(Sr) +

ηmπ

300

(

1− 1

τ

)2

r ≤ H2
g(∂

∗Ω).(7)

Here, Sr ⊂ M is the centered coordinate sphere that encloses g-volume
L3
g(Ω) with the horizon.
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Remark: The form of the constant that multiplies r in (7) is immate-
rial. The explicit expression is given to indicate the dependence on the
parameters.

Proof. For ease of exposition, we only consider smooth regions Ω. The
result for sets of finite perimeter follows by approximation. By Lemma

2.4, H2
g(∂Ω) → ∞ as L3

g(Ω) → ∞. Note also that L3
g(Ω) =

4πr3

3 +O(r2).
We break the argument into several steps:

(a) Let Ω̃ := Ω ∪ B1 ⊂ M . Let Ω̃m := (x(Ω \B1) ∪B(0, 1)) \ B(0, m2 )
be the corresponding region in Schwarzschild.

(b) Note that L3
g(Ω̃) = L3

g(Ω) + O(1) and H2
g(∂Ω̃) = H2

g(∂Ω) + O(1).

Moreover, Ω̃ satisfies H2
g(Bσ ∩ ∂Ω̃) ≤ Θ̃σ2 for all σ ≥ 1 where Θ̃

depends only on Θ and (M,g).
(c) By Corollary A.2 with β = 1

2 ,

H2
gm(∂Ω̃m) ≤ H2

g(∂Ω̃) +O(H2
g(∂Ω̃)

1
4 ) ≤ H2

g(∂Ω) +O(H2
g(∂Ω)

1
4 ).

(d) By Lemma A.3 with α = 3
2 , L3

gm(Ω̃m) = L3
g(Ω) +O(L3

g(Ω)
1
2 ).

(e) By Lemma A.3 with α = 3
2 and choice of r, L3

gm(Br \ Bm
2
) =

L3
gm(Br \B1) +O(1) = L3

g(Br \B1) +O(L3
g(Br \B1)

1
2 ) = L3

g(Ω) +

O(L3
g(Ω)

1
2 ).

(f) By (d) and (e) and choice of r, we have that L3
gm(Ω̃m) = L3

gm(Br \
Bm

2
) +O(r

3
2 ). Let r̃ be such that L3

gm(Ω̃m) = L3
gm(Br̃ \Bm

2
). Then

r̃ = r +O(r−
1
2 ).

(g) The Schwarzschild region Ω̃m ⊂ Mm is (1+τ
2 , η2 )-off-center provided

that L3
g(Ω) is sufficiently large. Hence

Am(L3
gm(Ω̃m)) +

ηmπ

192

(

1− 1

τ

)2

r̃ ≤ H2
gm(∂Ω̃m)

by (6).

(h) H2
gm(Sr) = Am(L3

gm(Br\Bm
2
)) ≤ Am(L3

gm(Ω̃m))+O(L3
g(Ω)

1
6 ) where

the inequality follows by explicit computation (using (3)) from

L3
gm(Br \Bm

2
) = L3

g(Ω) +O(L3
g(Ω)

1
2 ).

(i) H2
g(Sr) ≤ H2

gm(Sr) +O(1). This is obvious.

(j) H2
g(Sr) ≤ H2

g(∂Ω)− ηmπ
200

(

1− 1
τ

)2
r +O(L3

g(Ω)
1
6 ) +O(H2

g(∂Ω)
1
4 ).

The conclusion follows from this since H2
g(∂Ω)

1
2L3

g(Ω)
− 1

3 ≤ Θ. q.e.d.

4. Regularity of isoperimetric regions and the behavior of

minimizing sequences

In this section, we review the regularity theory for minimizers of area
under a volume constraint in the presence of a smooth obstacle. The



172 M EICHMAIR & J. METZGER

results discussed here are well known and can be deduced from classical
sources. For completeness and clarity, and because we have not been
able to find a reference that includes our set up here completely, we
supply a detailed outline of the argument along with further references,
where more details on specific parts of the argument can be found.

We consider an initial data set (M,g) and its extension (M̂, ĝ) to a
complete boundaryless Riemannian 3-manifold, as in Section 2. Recall
that the horizon ∂M , if non-empty, is the outermost minimal surface
of M̂ .

Proposition 4.1. An isoperimetric region containing the horizon has
smooth, compact boundary. If this boundary intersects the horizon, then
they coincide.

Proof. We first discuss the regularity of the reduced boundary ∂∗Ω
away from the coincidence set supp(∂∗Ω) ∩ ∂M .

A complete proof that ∂∗Ω has constant mean curvature away from
the coincidence set is given in [12, Proposition 2.1]. This puts the mono-
tonicity formula at one’s disposal, and standard regularity analysis (see,
e.g., [12, Theorem 2.5], which eventually refers to the classical paper
[20]) applies. The key points here are that there is no mass loss in the
convergence (as sets of locally finite perimeter) of blow-up sequences
of ∂∗Ω at a point x ∈ supp(∂∗Ω) \ ∂M , implying in conjunction with
the monotonicity formula that the limiting objects are tangent cones,
and that these tangent cones are area-minimizing boundaries and thus
planes. In other words, the volume constraint scales away in the blow-up
limit. The proof of both these points proceeds as in the case of area-
minimizing boundaries (cf. [45]), applying, for example, the argument
in [19, Lemma 2.1] to make effective use of the isoperimetric property
of ∂∗Ω. The regularity of ∂∗Ω near x then follows at once from Allard’s
theorem. See also, e.g., [1, 20, 35] for alternative ways of arguing this
step.

That ∂∗Ω is compact follows in a standard way from the monotonicity
formula (see, e.g., [6, Lemma 10]) and an explicit bound on H2

g(∂
∗Ω)

that can be obtained from comparison; cf. [12, Corollary 2.4].
The regularity of ∂∗Ω along the horizon ∂M follows from [19], [47],

and [20]; see also [26, Theorem 1.3] and the references provided there.
Again, we outline the key points. We may assume that L3

g(Ω∩M) > 0.
Using that ∂∗Ω contains regular points, one concludes that ∂∗Ω is almost
minimizing in M̂ (i.e., across the horizon) without volume constraint. It
follows as above that the mean curvature of ∂∗Ω is defined and bounded
along the coincidence set, that there is no mass loss in the convergence
of tangent blow-up sequences at points in the coincidence set, that the
limits are cones, and finally that these cones are area minimizing and
thus planes. Hence ∂∗Ω is a C1,α surface near ∂M .
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The next step is to argue that the constant mean curvature of ∂∗Ω
away from the coincidence set, H, is non-negative. If H < 0, then one
could take the minimal area enclosure of Ω in M and use the same
argument as above to show that it is a smooth minimal surface away
from the coincidence set of ∂∗Ω with the horizon, where it is a priori
only C1,α; cf. [26, Theorem 1.3 (ii)]. The minimal area enclosure of Ω is
weakly mean-convex. The Harnack inequality shows that its components
either coincide with components of the horizon, or are disjoint from
the horizon. The latter scenario (for any component) contradicts our
assumption that the horizon is the outermost minimal surface in M .
We see that H > 0 unless ∂Ω = ∂M . A first variation argument shows
that ∂∗Ω is weakly mean-convex along the coincidence set. Again, we
can conclude from the Harnack inequality that the coincidence set is
either empty or that ∂∗Ω = ∂M . q.e.d.

We also want to understand the behavior of general minimizing se-
quences in initial data sets. The following proposition is a slight ex-
tension of a special case of [41, Theorem 2.1]; see also [12, 4] and the
remarks below.

Proposition 4.2. Given V > 0, there exists an isoperimetric region
Ω ⊂ M̂ containing the horizon and a radius r ∈ [0,∞) such that L3

g(Ω)+
4πr3

3 = V and such that H2
g(∂Ω)+4πr2 = Ag(V ). If r > 0 and L3

g(Ω) >

0, then the mean curvature of ∂Ω equals 2
r .

Proof. By [41, Theorem 2.1] and a simple rescaling argument, there
exists an isoperimetric region Ω containing the horizon and a sequence of
finite-perimeter Borel sets Ωi diverging to infinity such that Ω∩Ωi = ∅,
L3
g(Ω) + L3

g(Ωi) = V , and H2
g(∂Ω) + limi→∞H2

g(∂
∗Ωi) = Ag(V ). Ap-

plying the Euclidean isoperimetric inequality with a small fudge factor
that tends to 1 as i → ∞ to the sets Ωi, we see that the sets Ωi can be
replaced by coordinate balls B(pi, ri) of the same volume and such that
pi → ∞. The observation about the mean curvature of the sphere that
represents the runaway volume follows from a first variation argument.

q.e.d.

Proposition 4.2 leaves the possibility that part of the volume of a
minimizing sequence for the isoperimetric problem slides to infinity. If
this happens, the leftover isoperimetric limit is not a solution of the
original problem. In Euclidean space, the situation is well understood:
for example, in [12], it is shown that to every closed curve in R

3 and
volume V there exists a mass-minimizing integer multiplicity current
that bounds the curve while enclosing oriented volume V relative to
a fixed filling of the curve. A key ingredient in the proof is the exact
isoperimetric inequality for R3. It is used to argue that runaway volume
can be clipped off and kept at fixed finite distance as a ball of the same
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volume, not increasing the area. A delicate cut and paste argument is
developed in [4, Sections 2.7 and 2.9] to show existence of isoperimetric
regions on compact perturbations of Schwarzschild. In the proof, H.
Bray uses an additional assumption (“Condition 1”) in a subtle way to
ensure that his isoperimetric Hawking mass is a monotone function of
the volume.

For later use, we state the following simple lemma. It follows readily
from explicit comparison either with small geodesic balls or with large
coordinate balls:

Lemma 4.3. Let (M,g) be an initial data set. There exists a con-
stant Θ > 0 so that for every isoperimetric region Ω containing the
horizon one has that H2

g(Br ∩ ∂Ω) ≤ Θr2 for all r ≥ 1, and that

H2
g(∂Ω)

1
2L3

g(Ω)
− 1

3 ≤ Θ provided L3
g(Ω) ≥ 1.

5. Large isoperimetric regions center

Theorem 5.1. Let (M,g) be an initial data set that is C0-asymptotic
to Schwarzschild of mass m > 0. There exists a large constant V0 > 0
with the following property: Let Ω be an isoperimetric region containing
the horizon such that L3

g(Ω) = V ≥ V0. Let r ≥ 1 be such that L3
g(Br) =

V . Then ∂Ω is a smooth connected hypersurface close to the centered
coordinate sphere Sr. The scale invariant C2-norms of functions that
describe such large isoperimetric surfaces as normal graphs above the
corresponding centered coordinate spheres tend to zero as the enclosed
volume diverges to infinity.

Proof. Let {Ωi}∞i=1 be a sequence of isoperimetric regions containing
the horizon and with L3

g(Ωi) → ∞. In view of Lemma 4.3, fixing param-
eters (τ, η) ∈ (1,∞) × (0, 1), we can apply Theorem 3.4 to Ωi provided
i is sufficiently large.

We consider the parts of the regions Ωi that lie in M \ B1
∼=x R

3 \
B(0, 1). We use homotheties hλ : x → λ·x in the Euclidean chart to scale

down by a factor λi =
(

3L3
g(Ωi \B1)/(4π)

)
1
3 to obtain sets Ω̂i ⊂ R

3 \
B(0, λ−1

i ) that are locally isoperimetric with respect to the metric gi :=

λ−2
i h∗λi

g and such that L3
gi(Ω̂i) =

4π
3 . Note that (R3 \ B(0, λ−1

i ), gi) →
(R3 \ {0},∑3

j=1 dx
2
j ) in C2

loc and that L3
gi(B(0, 1) \ B(0, λ−1

i )) → 4π
3 .

Passing to a subsequence if necessary, we can assume that Ω̂i converges
locally as a set of finite perimeter to Ω in R

3.
We claim that lim supi→∞L3

gi(Ω̂i \ B(0, τ)) = 0 for every τ > 1.
Suppose that not. Passing to a subsequence if necessary, it follows that
for some τ > 1 and ε > 0 we have that L3

gi(Ω̂i \ B(0, τ)) ≥ ε for all
i. The relative isoperimetric inequality, an appropriate version of which
follows from (2) in a standard way, gives that H2

gi(∂Ω̂i \ B(0, τ)) &
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B(0, 1)
Ω

B(0, τ )

0

R
3 \ {0}

Figure 2. If the blow-down limit Ω has volume outside
of B(0, τ), then the original sets Ωi are (

1+τ
2 , η)-off-center

for some η > 0.

L3
gi(Ω̂i \ B(0, τ))

2
3 . In particular, H2

gi(∂Ω̂i \ B(0, τ)) ≥ 2ηH2
gi(∂B(0, 1))

for some η > 0 and for all i. This implies that each Ωi is (1+τ
2 , η)-off-

center. (The reason we are passing from τ to 1+τ
2 and from 2η to η is

that we have to adjust for the volume by L3
g(Ωi \ B1) + L3

g(B1).) See
Figure 2. Theorem 3.4 shows that Ωi is not isoperimetric, contradicting
our assumption. Thus lim supi→∞L3

gi(Ω̂i \B(0, τ)) = 0 for every τ > 1,
as desired. It follows that Ω = B(0, 1).

For isoperimetric regions, convergence as sets of locally finite perime-
ter is equivalent to locally smooth convergence so long as the volume
does not shrink away. (See, e.g., [42, Proposition 5].) It follows that,
for i large, the boundary of Ωi contains a component Σi that is close
to the centered coordinate sphere Sri whose radius ri is such that
L3
g(Bri) = L3

g(Ωi).

Let Ω̃i be the bounded component of M \Σi. We claim that Ωi = Ω̃i.

To see that Ωi ⊂ Ω̃i, note first that the components of ∂Ωi all have
the same constant mean curvature ∼ 2/ri. Assume that, after pass-
ing to a subsequence if necessary, every Ωi has at least one component
that is disjoint from Ω̃i. The preceding analysis shows that such com-
ponents have to slide off to infinity in the preceding blow-down limit.
The monotonicity formula shows that the area of these components sub-
converges to a positive number in the blow-down limit. It follows that
lim supi→∞H2

g(Ωi)L3
g(Ωi)

−2/3 > (4π)(4π/3)−2/3 . On the other hand, a

comparison with large coordinate balls gives that lim supi→∞H2
g(Ωi)L3

g

(Ωi)
−2/3 ≤ (4π)(4π/3)−2/3 . This contradiction shows that Ωi ⊂ Ω̃i.

Assume that Ωi is properly contained in Ω̃i. The blow-down argument
shows that Ωi ∩ Bµi

= Ω̃i ∩ Bµi
where µi ≥ 1 are such that µi/ri → 0

as i → ∞. Consider the region obtained from Ω̃i by pushing its outer
boundary Σi, which is close to a large coordinate sphere, inward until
the resulting region has volume L3

g(Ωi). The boundary area of this new
region is strictly less than that of Ωi. This contradicts the assumption
that Ωi is an isoperimetric region. Thus Ωi = Ω̃i. q.e.d.
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Theorem 5.2. Let (M,g) be an initial data set that is C0-asymptotic
to Schwarzschild of mass m > 0. There exists V0 > 0 so that for every
volume V ≥ V0 there is an isoperimetric region Ω containing the horizon
with L3

g(Ω) = V .

Proof. Let Vi → ∞ be a divergent sequence of volumes. Let ri ≥ 0
be radii and Ωi be isoperimetric regions containing the horizon as in
Proposition 4.2. Using (3), we see that L3

g(Ωi) → ∞. From Theorem
5.1 we know that for i large, Ωi is close to a large centered coordinate
ball in (M,g). If ri > 0, then the mean curvature of ∂Ωi and hence
the radius of the coordinate sphere that it is close to correspond to
that of B(0, ri) ⊂ R

3, by Proposition 4.2. A configuration of two large
disjoint coordinate balls in (M,g) of essentially the same radius is not
isoperimetric, and far from it. Hence ri = 0 for i sufficiently large, and
the theorem follows. q.e.d.

6. Isoperimetric regions in initial data sets with general

asymptotics

Let (M,g) be an initial data set with non-negative scalar curvature.
Let {Ωi}∞i=1 be a sequence of isoperimetric regions containing the horizon
such that L3

g(Ωi) → ∞. The argument in Proposition [42, Proposition
5] shows that the Ωi subconverge to a locally isoperimetric region Ω. In
Theorem 6.1, below, we show that the unbounded components of ∂Ω are
totally geodesic and that the scalar curvature of M vanishes on them.

If we assume that the scalar curvature of M is everywhere positive,
this result puts a strong limitation on the possible behavior of large
isoperimetric regions; cf. Corollary 6.2.

Theorem 6.1 is the precursor of our more subtle result in [14], which
applies to regions whose boundaries are only assumed to be volume-
preserving stable constant mean curvature surfaces. The proofs of both
results are based on ideas of R. Schoen and S.-T. Yau in [44]. On a
technical level, the proof of Theorem 6.1 is quite different from that in
[14], so we include it.

Theorem 6.1 (Cf. Theorem 1.5 in [14]). Assumptions as in the
first paragraph. Then ∂Ω has at most one unbounded component, and
this component is a totally geodesic area-minimizing hypersurface. The
scalar curvature of M vanishes on any unbounded component of ∂Ω.

Proof. By [14, Corollary 5.6], the mean curvature of ∂Ωi tends to
zero as i → ∞. It follows that ∂Ω is a minimal surface. Let Σ be an
unbounded component of ∂Ω. We employ an argument of R. Schoen
and S.-T. Yau from [44] to show that Σ is totally geodesic. We follow
the main steps of [44] very closely and highlight our minor adaptations
to the present context. The important difference with [44] is that we
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don’t a priori know that Σ is strongly stable. That this is nevertheless
the case follows from the result presented in Appendix C.

(a) By Appendix C, Σ is an area-minimizing boundary. Hence Σ is
stable with respect to compactly supported variations:

(8)

∫

Σ

(

|h|2 +Rcg(ν, ν)
)

φ2dH2
g ≤

∫

Σ
|∇Σφ|2dH2

g for all φ ∈ C1
c(M).

(b) This step and the next one differ slightly from [44]. The homothetic
rescalings λ−1 (Σ \B1) ⊂ R

3 \ B(0, λ−1) subconverge as λ → ∞ to
area-minimizing boundaries in R

3\{0} (with the Euclidean metric).
Such boundaries are hyperplanes. It follows from (iterations of) this
argument that Σ intersects any sufficiently large coordinate sphere
Sr ⊂ M in a circle. It follows that Σ is planar outside a compact
subset of (M,g). In particular, Σ is of finite topological type.

(c) Σ is a mass-minimizing integral current in (M,g). The argument
is indirect. Consider a large coordinate ball Br with mean-convex
boundary Sr. From the preceding step, we know that Sr intersects
Σ transversely in a smooth connected curve. By the maximum prin-
ciple argument of [46], the mass-minimizing current in (M,g) span-
ning Σ ∩ Sr lies inside of Br and is disjoint from the horizon. By
[21], this mass-minimizing integral current is a smooth, embedded,
multiplicity 1 hypersurface. Its area must be H2

g(Σ∩Br). It follows
that Σ is mass-minimizing with respect to current deformations,
and not just among boundaries. We are grateful to Leo Rosales and
to Brian White for helping us with this point.

(d) Σ has quadratic area growth: there exists a constant Θ > 0 de-
pending only on (M,g) such that H2

g(Σ ∩ Br) ≤ Θr2 for all r ≥ 1
sufficiently large. This follows from the mass-minimizing property
of Σ and comparison with large coordinate spheres.

(e) We have that
∫

Σ |Rcg |dH2
g < ∞. This follows from Lemma A.1 and

because |Rcg | = O(r−3).
(f) Because Σ has quadratic area growth, we can use the “logarithmic

cut-off trick” in (8) to obtain that
∫

Σ

(

|h|2 +Rcg(ν, ν)
)

dH2
g < ∞.

It follows from the Gauss equation that
∫

Σ |κ|dH2
g < ∞, where κ is

the Gauss curvature of Σ.
(g) From the Gauss equation and the Cohn–Vossen inequality [10], one

sees that

(9) 0 ≤
∫

Σ

(

Rg +|h|2
)

dH2
g ≤ 2

∫

Σ
κdH2

g ≤ 4πχ(Σ).

(The Cohn–Vossen inequality applies because Σ is complete, has
absolutely integrable Gauss curvature, and is of finite topological
type. See also [39, p. 86] and [17, p. 1]). The theorem will follow if
we can show that

∫

Σ κdH2
g = 0. We will assume for a contradiction
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that
∫

Σ κdH2
g > 0. Note that in this case (9) implies that Σ is

homeomorphic to the plane C.
(h) Since

∫

Σ |κ|dH2
g < ∞ and Σ ∼= C, a theorem of A. Huber’s [24] gives

that there exists a conformal diffeomorphism F : C → Σ. (We refer
the reader to [28] for a comprehensive discussion of the topological
type and the conformal structure of complete surfaces the negative
part of whose Gaussian curvature is integrable.) By results of R.
Finn’s [17] and A. Huber’s [25], one has that 4

∫

Σ κdH2 = 4π −
limk→∞A−1

k L2
k (the existence of the limit is part of the conclusion)

where Lk = H1
g(F ({z ∈ C : |z| = k})) and Ak := H2

g(F ({z ∈
C : |z| ≤ k})). The goal is to show that

∫

Σ κdH2
g = 0. Since we

already know that 0 ≤
∫

Σ κdH2
g, this boils down to showing that

4π ≤ limk→∞A−1
k L2

k.
(i) Since F is proper, F ({z ∈ C : |z| = k}) will lie outside every given

compact subset of Σ (and hence ofM) provided i is sufficiently large.
Hence we can view F ({z ∈ C : |z| = k}) as a curve in Euclidean
space (R3, δij) by using the coordinate system in the asymptotically

flat end of (M,g). Let Σ̃k be the least (Euclidean) area integer
multiplicity current spanning F ({z ∈ C : |z| = k}) ⊂ R

3. There are

two cases: either Σ̃k leaves every compact subset of R3 as k → ∞, in
which case Mg(Σ̃k) = (1 + o(1))Mδ(Σ̃k) (where Mg and Mδ denote
the current mass with respect to g and δ, respectively), or there

exists a radius r1 ≥ 1 such that Σ̃k′ ∩Br1 6= ∅ for a subsequence Σ̃k′ .
Either way, the argument in [44, p. 56–57] can be followed verbatim
to conclude that 4π ≤ limk→∞A−1

k L2
k and hence that

∫

Σ κdH2
g = 0.

This contradicts our assumption and finishes the proof that Σ is
totally geodesic (and that ∂Ω cannot have unbounded components
if Rg > 0).

It follows from the isoperimetric property and Lemma 6.3, below, that
∂Ω can only have one unbounded totally geodesic component. q.e.d.

Corollary 6.2. Let (M,g) be an initial data set whose scalar cur-
vature is everywhere positive. If the horizon ∂M is empty, we also as-
sume that there are no closed minimal surfaces in M . Let Ωi ⊂ M be a
sequence of isoperimetric regions enclosing the horizon whose volumes
tend to infinity. Then lim supi→∞Ωi :=

⋂∞
j=1

⋃∞
i=j Ωi equals either ∂M

or M .

Lemma 6.3 (Essentially [2, Proposition 3.1]). Let (M,g) be an initial
data set that satisfies the decay assumptions (10). There exist a radius
r0 ≥ 1 and a constant C ≥ 1 with the following property: If Σ is a
complete unbounded properly embedded totally geodesic surface in M ,
then Σ\Br0 consists of finitely many components Σ1, . . . ,Σm. Moreover,
there exists a coordinate plane P = {(x1, x2, x3) ∈ R

3 \ B(0, 1) : ax1 +
bx2 + cx3 = 0} and functions fk : P \ Br0 → R such that the graph of
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fk above P \Br0 is contained in Σk and such that

(log r)−1|fk|+ r|∂fk|+ r2|∂2fk| ≤ C for every k = 1, . . . ,m.

Appendix A. Integral decay estimates

Our computations in this appendix take place on the part of an initial
data set (M,g) that is diffeomorphic to R

3 \B(0, 1) and such that

r|gij − δij | ≤ C for all r := |x| ≥ 1.(10)

For Corollary A.3 we require in addition that

r2|gij −
(

1 +
m

2r

)4
δij | ≤ C for all r := |x| ≥ 1,(11)

i.e., that (M,g) is C0-asymptotic to Schwarzschild of mass m > 0.

Lemma A.1. Let (M,g) be an initial data set. Let r0 ≥ 1. For every
closed hypersurface Σ ⊂ M such that H2

g(Σ ∩Br \Br0) ≤ Θr2 holds for
all r ≥ r0, one has that

∫

Σ\Br0

r−γdH2
g ≤ γ

γ − 2
Θr0

2−γ

for every γ > 2.

Proof. The proof uses the co-area formula exactly as in [44, p. 52].
q.e.d.

Corollary A.2. Let (M,g) be an initial data set. Let r0 ≥ 1. For
every closed hypersurface Σ ⊂ M such that H2

g(Σ ∩ Br \ Br0) ≤ Θr2

holds for all r ≥ r0, one has that
∫

Σ\Br0

r−2dH2
g ≤ r−β

0 H2
g(Σ \Br0)

β

2

(

2Θ

β

)
2−β

2

for every β ∈ (0, 2).

Lemma A.3. Let (M,g) be an initial data set satisfying (11). There
is a constant C ′ ≥ 1 depending only on C such that for every r0 ≥ 1
and every bounded measurable subset Ω ⊂ M one has that

|L3
g(Ω \Br0)− L3

gm(Ω \Br0)| ≤ C ′

(

3− α

α− 1

)
3−α
3

L3
g(Ω \Br0)

α
3 r1−α

0

for every α ∈ (1, 3).

Proof. The volume elements differ by terms O(r−2). The estimate
follows from the Hölder inequality and the fact that

∫

R3\B(0,r0)
r

−2α
3−α dL3

δ =
3− α

3(α− 1)
r

3(1−α)
3−α

0

for α ∈ (1, 3). q.e.d.
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Appendix B. Further results in H. Bray’s thesis

B.1. uc(s) is increasing. For the convenience of the reader, we repro-
duce H. Bray’s proof that the function uc(s) in Section 3 is increasing,
using our notation. This fact is all that H. Bray needed to show that
the isoperimetric surfaces in Schwarzschild are the centered spheres.

Lemma B.1 ([4, Lemma 2]). Let c > 0 and let gcm = uc(s)
−2ds2 +

uc(s)s
2gS2 be a smooth metric on [c,∞) × S

2 with uc(c) = α < 1 and
∂suc|c = 0. Assume that ([c,∞) × S

2, gcm) is isometric to the mean
concave exterior region that lies beyond an umbilic constant mean cur-
vature sphere of area α4πc2 in Schwarzschild of mass m > 0. Then
uc(s) ∈ (α, 1) for s > c and uc is increasing in s.

Proof. The Hawking mass is a first integral for the second-order or-
dinary differential equation that uc is required to satisfy so that the
metric gcm = u−2

c ds2+ucs
2gS2 is scalar flat. Up to a positive multiplica-

tive constant, the Hawking mass of {s}× S
2 with respect to gcm is given

by

(12) y(s)

(

1− y(s)4y′(s)2

s4

)

.

Here, y(s) :=
√

uc(s)s2 and the prime denotes differentiation with re-

spect to s. It follows that (s3 − y3)′ ≥ 0 and hence 1−
(

c
s

)3
(1− α

3
2 ) ≥

uc(s)
3
2 . We see that uc(s) < 1 for all s ≥ c. Assume that there is an

s ∈ [c,∞) such that u′c(s) = 0. For such s, we have that y′(s) =
√

uc(s)
and y′′(s) = s

2
√

uc(s)
u′′c (s). Differentiating the constant Hawking mass

(12), we obtain that

y′′(s) =
(1− uc(s)

3)s
3
2

2uc(s)
5
2

.

Since we already know that uc(s) < 1, we obtain that y′′(s) > 0 and
hence u′′c (s) > 0 for every s ≥ c such that u′c(s) = 0. This implies that
uc(s) is increasing. q.e.d.

B.2. Isoperimetric surfaces in compact perturbations of

Schwarzschild. In [4, Section 2.6], H. Bray shows that in an initial
data set (M,g) that is identically Schwarzschild outside a compact set,
the large umbilic constant mean curvature spheres are isoperimetric
surfaces for the volume they enclose with the horizon of (M,g). We
briefly outline H. Bray’s argument:

Fix a large centered coordinate sphere Sr that lies in the Schwarz-
schild part of the manifold. As explained in Section 3, one can construct
a manifold ((0,∞) × S

2, gcm) by gluing the tip of a cone to the sphere
Sr in Schwarzschild in such a way that both the metric and the mean



LARGE ISOPERIMETRIC SURFACES CENTER 181

curvature match. H. Bray then constructs an area non-increasing map
φ : (M,g) → ((0,∞)×S

2, gcm) so that the sphere Sr in (M,g) is mapped
isometrically onto {c} × S

2 in ((0,∞) × S
2, gcm) and such that φ is an

isometry outside of Sr (respectively {c} × S
2). The construction of φ

on the remainder of M starts at Sr and proceeds inward incrementally.
In the spherically symmetric part of (M,g), one chooses φ to be also
spherically symmetric and such that φ decreases area as little as possi-
ble. This requirement leads to an ordinary differential equation for the
stretching of the spheres that lie inside of Sr. The analysis of this or-
dinary differential equation then yields that if r is sufficiently large, a
certain sphere that is still outside the compact perturbation and hence
in the spherically symmetric part of (M,g) gets mapped to the tip of
the cone. In particular, all of the non-Schwarzschild part of (M,g) is
mapped to the vertex of the cone.

Since φ is area non-increasing inside of Sr, it is also volume non-in-
creasing. This implies that any other surface Σ in (M,g) which contains
at least as much volume as Sr has larger area: use φ to map Sr and Σ to
((0,∞) × S

2, gcm), and use that Sr is (outer) isoperimetric in ((0,∞) ×
S
2, gcm).
H. Bray’s technique to identify the isoperimetric surfaces of Schwarz-

schild has been generalized to a certain class of rotationally symmetric
manifolds in [3], and further in [32]. See also the comment before the
statement of Theorem 2.6 in [32] for a clarification of the hypotheses in
[3].

Appendix C. Remark on locally isoperimetric surfaces

In this appendix we show that an unbounded minimal surface is area-
minimizing if it is the smooth limit of isoperimetric surfaces. This ob-
servation is used in Section 6.

The proof follows from the same (classical) techniques that establish
the regularity of isoperimetric surfaces. We include details for complete-
ness and clarity. We deliberately phrase the proof in non-technical terms
to help those readers who are not experts in geometric measure theory.

The regularity of rectifiable boundaries that minimize area with re-
spect to a volume constraint was established in [19] and [20]. Implicitly,
this result is already contained in [1]; cf. the remarks in the introduc-
tion of [35]. The papers [19, 20] both rely on De Giorgi’s method. The
ways they go about dealing with the volume constraint are very differ-
ent, however. In [19], a perturbation vector field is used to adjust the
volume of a region by a small given amount while changing the area
of its boundary in a controlled way. Morally, we follow the approach of
[19] closely in this appendix. In [20], it is shown that there exist open
balls in an isoperimetric region as well as its complement, so that small
volume can be added or deleted in a controlled way.
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We refer the reader to [35], in particular to Proposition 3.1 therein,
for the development of the regularity theory for isoperimetric surfaces
in Riemannian manifolds. There, further important references to the
literature can be found. We also refer the reader to the paper [37], which
contains useful observations regarding locally isoperimetric regions and
additional references.

Let (M,g) be an initial data set as in Definition 2.2. In particular,
(M,g) is homogeneously regular, i.e., its curvature tensor is bounded
and its injectivity radius is bounded below, cf. [43, remarks below The-
orem 3].

Let Ω ⊂ M be a smooth region that minimizes area with respect
to compactly supported volume-preserving deformations, i.e., for every
region Ω′ ⊂ M such that Ω∆Ω′ ⋐ B where B is bounded and open in
M and such that L3

g(B ∩ Ω) = L3
g(B ∩ Ω′) one has that H2

g(B ∩ ∂Ω) ≤
H2

g(B∩∂Ω′). In addition, we assume that ∂Ω is minimal and unbounded.
Using the monotonicity formula in the form [43, Section 5] and ele-

mentary comparison arguments, one obtains that

H2
g(∂Ω) = ∞,

lim sup
s→∞

s−2H2
g(Bs ∩ ∂Ω) < ∞,

lim inf
s→∞

H2
g(Bs+1 ∩ ∂Ω)

H2
g(Bs ∩ ∂Ω)

= 1.(13)

Given s, r ≥ 1 with s ≥ r, we let Ar,s := Bs \Br.

Proposition C.1. Let (M,g) and Ω ⊂ M be as above. Then ∂Ω is
area minimizing.

Proof. Let ν be the outward unit normal field of ∂Ω. Let exp denote
the exponential map of (M,g). A variation of the proof of [42, Proposi-
tion 5] shows that the curvature of ∂Ω is bounded and that there exists
ε ∈ (0, 12 ) small such that the map E : ∂Ω × (−ε, ε) → M defined by
E(σ, t) = expσ(tν(σ)) is a diffeomorphism with its image. The constant
ε ∈ (0, 12) can be chosen so that for some C ≥ 1, the following holds:

Let f ∈ C1
c(∂Ω) be such that 0 ≤ f ≤ ε/2. Let Ωf be the com-

pact region bounded by {expσ f(σ) : σ ∈ ∂Ω}. Let Wf := {x ∈ M :
distg(x, supp(f)) < 1}. Then

CH2
g(Wf ∩ ∂Ω) sup

σ∈∂Ω
f(σ) ≥ L3

g(Wf ∩ Ωf )− L3
g(Wf ∩ Ω)

≥ 1

C
H2

g(U ∩ ∂Ω) inf
σ∈U∩∂Ω

f(σ) for every open U ⊂ supp(f).(14)

Using also that ∂Ω is minimal,

|H2
g(Wf ∩ ∂Ωf )−H2

g(Wf ∩ ∂Ω)| ≤ C

∫

∂Ω
(f2 + |∇f |2).(15)
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Let Ω′ ⊂ M be a region with Ω′∆Ω ⋐ M . Let r ≥ 1 be such that
Ω′∆Ω ⊂ Br. Let

∆V := L3
g(Ω ∩Br)− L3

g(Ω
′ ∩Br).

Assume that ∆V > 0. (The discussion when ∆V < 0 is analogous.)
Since H2

g(∂Ω) = ∞, we have that ε
3CH2

g(Ar+2,s−1 ∩ ∂Ω) ≥ ∆V if s is
sufficiently large. By (13), there exists a sequence si → ∞ such that the
quotients of H2

g(Ar,si+1 ∩ ∂Ω) and H2
g(Ar+2,si−1 ∩ ∂Ω) are close to 1.

Given δi ∈ (0, ε/2), let f ∈ C2
c(∂Ω) with supp(f) ⊂ Ar+1,si be such

that 0 ≤ f ≤ δi and |∇f | ≤ 2δi, and such that f = δi on Ar+2,si−1. Using
(14) with U = Ar+2,si−1, we see that L3

g(Ωf∩Ar,si+1)−L3
g(Ω∩Ar,si+1) =

∆V for a choice of δi ∼ ∆V
H2

g(Ar+1,si
∩∂Ω)

. From (15), we obtain that

|H2
g(Bsi+1 ∩ ∂Ωf )−H2

g(Bsi+1 ∩ ∂Ω)| = O

(

(∆V )2

H2
g(Ar+1,si ∩ ∂Ω)

)

.

Let Ω̃ ⊂ M be the region such that Ω̃ \ Br = Ωf \ Br and such that

Ω̃ ∩Br = Ω′ ∩Br. Then L3
g(Bsi+1 ∩ Ω̃) = L3

g(Bsi+1 ∩ Ω). Then

H2
g(Bsi+1 ∩ ∂Ω) ≤ H2

g(Bsi+1 ∩ ∂Ω̃)

= H2
g(Bsi+1 ∩ ∂Ω′) +O

(

(∆V )2

H2
g(Ar+1,si ∩ ∂Ω)

)

.

The last term tends to zero as i → ∞. Since Ω \ Br = Ω′ \ Br, we see
that H2

g(Br ∩ ∂Ω) ≤ H2
g(Br ∩ ∂Ω′). q.e.d.
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