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DISCRETE CONFORMAL VARIATIONS AND
SCALAR CURVATURE ON PIECEWISE FLAT
TWO- AND THREE-DIMENSIONAL MANIFOLDS

DAvVID GLICKENSTEIN

Abstract

A piecewise flat manifold is a triangulated manifold given a
geometry by specifying edge lengths (lengths of 1-simplices) and
specifying that all simplices are Euclidean. We consider the varia-
tion of angles of piecewise flat manifolds as the geometry varies in a
particular way, which we call a conformal variation. This variation
generalizes variations within the class of circles with fixed intersec-
tion angles (such as circle packings) as well as other formulations
of conformal variation of piecewise flat manifolds previously sug-
gested. We describe the angle derivatives of the angles in two- and
three-dimensional piecewise flat manifolds, giving rise to formulas
for the derivatives of curvatures. The formulas for derivatives of
curvature resemble the formulas for the change of scalar curva-
ture under a conformal variation of Riemannian metric. They
allow us to explicitly describe the variation of certain curvature
functionals, including Regge’s formulation of the Einstein-Hilbert
functional (total scalar curvature), and to consider convexity of
these functionals. They also allow us to prove rigidity theorems
for certain analogues of constant curvature and Einstein manifolds
in the piecewise flat setting.

1. Introduction

Consider a manifold constructed by identifying the boundaries of Eu-
clidean triangles or Euclidean tetrahedra. When these form a closed
topological manifold, we call such spaces piecewise flat manifolds (see
Definition 1) as in [10]. Such spaces may be considered discrete ana-
logues of Riemannian manifolds, in that their geometry can be described
locally by a finite number of parameters, and the study of curvature on
such spaces goes back at least to Regge [37]. In this paper, we give a
definition of conformal variation of piecewise flat manifolds in order to
study the curvature of such spaces.

Conformal variations of Riemannian manifolds have been well stud-
ied. While the most general variation formulas for curvature quantities
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is often complicated, the same formulas under conformal variations often
take a simpler form. For this reason, it has even been suggested that an
approach to finding Einstein manifolds would be to first optimize within
a conformal class, finding a minimum of the Einstein-Hilbert functional
within that conformal class, and then maximize across conformal classes
to find a critical point of the functional in general [1]. Finding critical
points of the Einstein-Hilbert functional within a conformal class is a
well-studied problem dating back to Yamabe [50], and the proof that
there exists a constant scalar curvature metric in every conformal class
was completed by Trudinger [47], Aubin [2], and Schoen [42] (see also
[29] for an overview of the Yamabe problem).

Implicitly, there has been much work on conformal parametrization
of two-dimensional piecewise flat manifolds, many of which start with
a circle packing on a region in R? or a generalized circle packing on
a manifold. Thurston found a variational proof of Andreev’s theorem
([46, 31]) and conjectured that the Riemann mapping theorem could
be approximated by circle packing maps, which was soon proven to be
true [41] (see also [45] for an overview of the theory). Another direction
for conformal parametrization appears in [40, 30, 44]. These and other
works produce a rich theory of conformal geometries on surfaces and
have led to many beautiful results about circle packings and their gen-
eralizations. The theory developed in this paper unifies several of these
seemingly different notions of conformality to a more general notion. It
also allows an explicit computation of variations of angles which allows
one to glean geometric information. The geometric interpretation of the
variations of angles was known in some instances (e.g., [25, 19]), but the
proofs were explicit computations, which made them difficult to extend
to more general cases. One of the main contributions of this paper is to
show how these computations may be done in a more simple, geometric
way which easily generalizes.

Existing literature on conformal parametrization of three-dimensional
piecewise flat manifolds is much more sparse. A notion was given by
Cooper and Rivin [14] which takes a sphere-packing approach, and a
rigidity result was produced (see also [39] and [20]). However, this
theory requires that edge lengths come from a sphere packing, which is
a major restriction of the geometry even on a single tetrahedron. In [19],
the author was able to show by explicit computation that the variations
of angles are related to certain areas and lengths of the piecewise flat
manifold (in actuality, one needs the additional structure of a metric as
described below). The theory developed in this paper generalizes this
result to a general class of three-dimensional piecewise flat manifolds.
This generalization allows a geometric understanding of the variation of
angles in a three-dimensional piecewise flat manifold under conformal
variations, and the space of conformal variations is quite large and need
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not depend on the initial distribution of the edge lengths (unlike [19],
where one must assume that the metric comes form a sphere-packing
structure).

The variation formulas for the curvature allow one to introduce a
theory of functionals closely related to Riemannian functionals such
as the Einstein-Hilbert functional. In two dimensions, many of these
functionals are well studied, originally dating back to the work of Colin
de Verdiere [13]. In dimensions greater than 3, the generalization of the
Einstein-Hilbert functional was suggested by Regge [37] and has been
well studied both in the physics and mathematics communities (see
[24] for an overview). Recently, the functional was used to provide a
constructive proof of Alexandrov’s theorem that a surface with positive
curvature is the boundary of a polytope [4]. In this paper, we give
a general construction for two-dimensional functionals arising from a
conformal structure. We also consider variations of the Einstein-Hilbert-
Regge functional with respect to conformal variations. Variation of
this functional gives rise to notions of Ricci flat, Einstein, scalar zero,
and constant scalar curvature metrics on piecewise flat manifolds. Our
structure allows one to consider second variations of these functionals
around fixed points and give rigidity conditions near a Ricci flat or scalar
zero manifold. An eventual goal is to prove theorems about the space
of piecewise flat manifolds analogous to ones on Riemannian manifolds,
for instance [28, 33]. The Einstein-Hilbert-Regge functional has been
further studied in [7] and [8].

Certain curvatures considered here have been shown to converge in
measure to scalar curvature measure by Cheeger, Miiller, and Schrader
n [10]. The proof in the general case does not appear to give the best
convergence rate, and it is an open problem what this best convergence
rate may be. It would be desirable to have a more precise control of the
convergence and to prove a convergence of Ricci curvatures or of Einstein
manifolds on piecewise flat spaces to Riemannian Einstein manifolds.
Although the convergence result shows convergence to scalar curvature
measure, it has been suggested that these curvatures are analogous to
the curvature operator on a Riemannian manifold [9].

This paper is organized as follows. Section 2 gives definitions of geo-
metric structures on piecewise flat manifolds in analogy to Riemannian
manifolds and shows the main theorems on variations of curvature func-
tionals. Section 3 derives formulas for conformal variations of angles.
Section 4 translates these results to variations of curvatures and curva-
ture functionals. Section 5 discusses some of the conformal structures
already studied and shows how they fit into the framework developed
here. Finally, Section 6 discusses discrete Laplacians, when they are
negative semidefinite operators, and how this implies convexity results
for curvature functionals and rigidity of certain metrics. The main
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theorems in the paper are Theorems 29 and 31 on the variations of
angles, which could easily be applied to extend these results to the case
of manifolds with boundary, Theorems 32 and 34 on the variation of
curvature, which give analogues of the variation (11) of scalar curva-
ture under conformal deformation of a Riemannian metric, Theorems
23 and 24 on the variation of curvature functionals, Theorems 40 and
41 on convexity of curvature functionals, and Theorems 43 and 44 on
rigidity of zero scalar curvature and Ricci flat manifolds.

Acknowledgments. The author was partially supported by NSF grant
DMS 0748283. This work benefited from discussions with Mauro Car-
fora, Dan Champion, and Feng Luo.

2. Geometric structures and curvature

2.1. Metric structure. We will consider certain analogues of Rie-
mannian geometry. A Riemannian manifold (M™, g) is a smooth mani-
fold M together with a symmetric, positive definite 2-tensor g. A piece-
wise flat manifold is defined similarly to the definitions in [10].

Definition 1. A triangulated manifold (M, T) is a topological mani-
fold M together with a triangulation T of M. A (triangulated) piecewise
flat manifold (M, T,?) is a triangulated manifold (M, T') together with
a function ¢ on the edges of the triangulation such that each simplex
can be embedded in Euclidean space as a (nondegenerate) Euclidean
simplex with edge lengths determined by ¢.

Nondegeneracy can be expressed by the fact that all simplices have
positive volume. This condition can be realized as a function of the
edge lengths using the Cayley-Menger determinant formula for volumes
of Euclidean simplices.

In this paper we will consider only closed, triangulated manifolds,
although the definitions could be extended to more general spaces. We
will describe simplices as {1, j,...,k}, where i, j, k are natural numbers.
The length associated to an edge {4, j} will be denoted ¢;;, area associ-
ated to {4, j, k} will be denoted A;;j, and volume associated to {i, j, k, £}
will be denoted by Vji,. Note that once lengths are assigned, area and
volume can be computed using, for instance, the Cayley-Menger deter-
minant formula. We will also use the notation +; ;. to denote the angle
at vertex i in triangle {i,j, k} , sometimes dropping jk when it is clear
which triangle we are considering. A dihedral angle at edge {i,j} in
{i, 4, k, ¢} will be denoted f3;; ¢ and k¢ will be dropped when it is clear
which tetrahedron we are considering. In all of the following cases, the
indices after the comma will be dropped when the context is clear.

Definition 2. Let V (T') denote the vertices of T, let E (T') denote
the edges of T, and let E (T') denote the directed edges in T' (there are
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two directed edges (i,7) and (j,7) associated to each edge {i,j}). For
any of these vector spaces X, let X* space of functions h : X — R.

Note that, for instance, if d € E; (T)*, then d = Z(i’j)@E+ d (i, ]) ¢ij,
where ¢;; is the standard basis of E (V)" . We will use d;; (as in Defini-

tion 5) to denote either d (4, ) or the function d (7, j) ¢;;, and similarly
with elements of V (T')" and E (T)".

Remark 3. We are implicitly assuming that the list of vertices
determines the simplex uniquely. This is just to make the notation
more transparent. We could also have indexed by simplices, such as
ly2, Ays,Vs0c03, etc. This latter notation is much better if one wants to
allow multiple simplices which share the same vertices.

Remark 4. A piecewise flat manifold is a geometric manifold, in the
sense that it can be given a distance function in much the same way that
a Riemannian manifold is given a distance function, i.e., by minimizing
over lengths of curves.

The definition ensures that each simplex can be embedded isometri-
cally in Euclidean space. The image of vertex ¢ in Euclidean space will
be denoted v;, the image of edge {4, j} will be denoted v;v;, etc.

Piecewise flat manifolds are not exactly the analogue of a Riemannian
manifold we will consider.

Definition 5. Let (M,T) be a triangulated manifold. A piecewise
flat pre-metric is an element d € E (T)* such that (M, T, ) is a piece-
wise flat manifold for the assignment ¢;; = d;;+d;; for every edge {7, j} .
A piecewise flat pre-metric d is a metric if for every triangle {7, j, k} in T

(1) &+ &y + diy = &y + diy + d}.

A piecewise flat, metrized manifold (M, T,d) is a triangulated manifold
(M, T) with metric d.

For future use, we define the space of piecewise flat metrics on (M, T).

Definition 6. Define the space met (M, T) to be
met (M, T)={d € E+ (T)*: (M,T,d)
is a piecewise flat, metrized manifold}.

As shown in [21], condition (1) ensures that every simplex has a
geometric center and a geometric dual which intersects the simplex or-
thogonally at the center. This dual is constructed from centers. Given a
simplex embedded into space as {vy,vs,...,v,}, we have a center point
to the simplex given by cqo3...,. This point can be projected onto the
(n — 1)-dimensional simplices and successively projected onto all sim-
plices, giving centers c¢;;...,; for all subsets of {1,2,...,n}. The centers
can be constructed inductively by starting with centers of edges at a
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point ¢;; which is a (signed) distance d;; from vertex i and dj; from
vertex j. Then one considers orthogonal lines through the centers, and
condition (1) ensures that in each triangle there is a single point where
these three lines intersect, giving a center for the triangle. The con-
struction may be continued for all dimensions, as described in [21].

For simplicity, let’s restrict to n < 4. We will denote the signed dis-
tance between ci234, and c;;x by hijk ¢ and the signed distance between
ciji and cj; by hij . The sign is obtained by the following convention.
If 1234 is on the same side of the plane defined by v;v;vy, as the tetrahe-
dron vivovsvy, then hjj ¢ is positive; otherwise, it is negative (or zero if
the point is on that plane). Similarly, if ¢;;;, is on the same side of the
line defined by v;v; as v;vjv, within that plane, then h;; . is positive.
Since it is clear that h; ; = d;;, we will not use the former. The side
v;v; is divided into a segment containing v; of length d;; and a segment
containing v; of length d;; such that ¢;; = d;; + dj;. It is easy to deduce
that h;;x and h;j, ¢ can be computed by

di — dij cos Vi jik

Siny; jk

hijk =

and

hij,é - hij,k COS 52']'71%

sin B35 ke .
See [21] or [4] for a proof. Importantly, these quantities work for nega-
tive values of the d’s and h’s. We will also consider the dual area A;; 1/
of the edge {i,j} in tetrahedron {i,j, k, ¢} , which is the signed area of
the planar quadrilateral ci234¢;51¢i5¢i50, Where 4, j, k, £ are distinct. The
area is equal to

hijk,e =

1
3 (hijkhijie + Pijehijor) -

These definitions of centers within a simplex induce a definition of
geometric duals on a triangulation (see [21] for details). In particular,
we will need the lengths or areas of duals of edges, defined in two and
three dimensions as follows.

Ajjre =

Definition 7. Let (M 2T, d) be a piecewise flat, metrized manifold
of dimension 2. Then edge {i,j} is the boundary of two triangles, say,
{i,7,k} and {i,, ¢} . The dual length ¢;; is defined as

G = hijk + hije

Note that the two triangles can be embedded in the Euclidean plane
together and that Kfj is the signed distance between the centers of the
two triangles.

Definition 8. Let (M 3T, d) be a piecewise flat, metrized manifold
of dimension 3. Then the dual length £7; (which is technically an area)
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is defined as

G = Aijke
ol
1
=y 5 (hijnhigie + hijehige)
k.l

where the sum is over all tetrahedra containing the edge {i,j} .

Notation 9. Most sums in this paper will be with respect to sim-
plices, so a sum such as the one in Definition 8 means the sum over all
tetrahedra {1, j, k,¢} containing the edge {i,;j}, not the sum over all
values of k and ¢ (which would give twice the aforementioned sum).

The dual length is the area of a (generalized) polygon which intersects
the edges orthogonally at their centers.

Remark 10. We specifically did not use the word Riemannian, be-
cause it is not entirely clear what Riemannian should mean. Natural
guesses would be that d;; > 0 for all directed edges (4, j) or that all dual
volumes are positive. However, we chose not to make such a distinction
in this paper.

2.2. Curvature. In this section we define curvatures of piecewise flat
metrized manifolds, many of which are the same as those for piece-
wise flat manifolds described by Regge [37] and Cheeger, Miiller, and
Schrader [10]. Generally, curvature on a piecewise flat manifold of di-
mension n is considered to be concentrated on codimension 2 simplices,
and the curvature at o is equal to the dihedral angle deficit from 27
multiplied by the volume of o, possibly with a normalization. Cheeger,
Miiller, and Schrader [10] show that, under appropriate convergence of
the triangulations, such a curvature converges in measure to scalar cur-
vature measure RdV. (In fact, Cheeger, Miiller, and Schrader prove a
much more general result for all Lipschitz-Killing curvatures, but we will
only consider scalar curvature.) We first define curvature for piecewise
flat manifolds in dimension 2, which is concentrated at vertices.

Definition 11. Let (M,T,¢) be a two-dimensional piecewise flat
manifold. Then the curvature K; at a vertex ¢ is equal to

K; =2m — Z%’,jk,
.k

where ~; are the interior angles of the triangles at vertex i.

Angles can be calculated from edge lengths using the law of cosines.
Note that in two dimensions, curvature satisfies a discrete Gauss-Bonnet
equation,

ZK = 2my (M),
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where x is the Euler characteristic.
In dimension 3, the curvature is concentrated at edges.

Definition 12. Let (M,T,¢) be a three-dimensional piecewise flat
manifold. Then the edge curvature Kj; is

Kij = | 27 — Z/Bij,kf j.
Tt

The dihedral angles can be computed as a function of edge lengths
using the Euclidean cosine law to get the face angles and then using the
spherical cosine law to related the face angles to a dihedral angle.

There is an interpretation of Kj;;/¢;; in terms of deficits of parallel
translations around the “bone” {i,j}. (See [37] for details.) For this
reason, one may think of Kj;//;; as some sort of analogue of sectional
curvature or curvature operator (see [9]).

The fact that curvature is concentrated at edges often makes it diffi-
cult to compare curvatures with functions, which are naturally defined
at vertices. For this reason, we will try move these curvatures to curva-
ture functions based at vertices.

In the smooth case, the scalar curvature has interesting variation
formulas. For instance, we may consider the Einstein-Hilbert functional,

EH (M,g):/ RydVy,
M

where R, is the scalar curvature and dV, is the Riemannian volume
measure. Note that if n = 2, then the Gauss-Bonnet theorem says
that EH (M, g) = 2rmx (M), but otherwise this functional is an interest-
ing one geometrically. A well-known calculation (see, for instance, [3])
shows that if we consider variations of the Riemannian metric g = h
on M™, then

(2) SEH (M, g) [h] = /Mgw, By v,

where £ = R;; — %Rgij is the Einstein tensor. It follows that critical
points of this functional satisfy

1
(3) Rij — §Rgij =0.

Taking the trace of this equation with respect to the metric, we see that,
if n # 2, this implies that

(4) Ri; =0,

which is the Einstein or Ricci-flat equation. It also makes sense to
consider either the constrained problem where volume is equal to 1, or
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to consider the normalized functional
EH(M",g)
V(M g)n A

)

where V is the volume. In both cases we find that critical points under
a conformal variation correspond to metrics satisfying

(5) Rij = Agij

for a constant \. Taking the trace and integrating, we see that
1EH(M™

(6) \ = _M'
n V(M",g)

We now consider Regge’s analogue to the Einstein-Hilbert functional
on three-dimensional piecewise flat manifolds.

Definition 13. If (M 3T, E) is a three-dimensional piecewise flat
manifold, the Einstein-Hilbert-Regge functional EHR is

(7) EHR (M,T,0) ZKW,

where the sum is over all edges {i,j} € E(T).

The analogue of the first variation formula (2) is

(M,T,0) =2m — Z Bijiee-

(8)
6&-]- ™)

This was proven by Regge [37] and follows immediately from the Schléfli
formula (see [32]). By analogy with the smooth case, we define the
following.

Definition 14. A piecewise flat manifold (M 3T, E) is Ricci flat if
K;; =0

for all edges {i,j}. It is Finstein with Einstein constant A € R if

oy
9) Kij = M=,
T

for all edges {i,j}, where

V(M,T,0)=>" Vije
,5,k,L

is the total volume.



210 D. GLICKENSTEIN

The term on the left of (9) can be made more explicit. Note that

d

a®V (M, T,?0)

a=1

V(M,T,a )

SO

_ EHR(M,T,?)

O3V(M,T, )
analogous to the smooth formula (6). Furthermore, we can explicitly
compute for any tetrahedron {i, j, k, ¢} that
OVijke _ 1
oli; 6
For brevity, we omit the proof of (10) since we will not use it. However,
it can be proven by a direct computation of the derivatives of volume
and of the dihedral angle.

As in the smooth case, studying the Einstein equation is quite dif-
ficult. Progress can be made by considering only certain variations of
the metric. If one takes dg = fg for a function f, we have a conformal
variation. Under conformal variations, the scalar curvature satisfies

(11) OR[fg] = (1 —n)Af - Rf.

Since, under this variation, 6dV = 7 fdV, the variation of £H under a
conformal variation is

SEM (M, g) [£4] :/[(1_n)Af+ (5 1) Ry]av

- (g—1>/Rfdv.

In particular, (% — 1) R is the gradient of &H with respect to the
Ly (M, dV) inner product. We see that critical points of the functional
under conformal variations correspond to when the scalar curvature is
zero. Note that if we either (a) restrict to metrics with volume 1 or (b)
normalize the functional, then we get constant scalar curvature metrics

as critical points. The second variation of £H can be calculated from
(11) to be

Fen ) o fol = (5-1) [ [a=mras+ (5-1) R av

=(3-1) /M (=) VI + (5 —1) Bf?] av.

(10) liile cot Breij-
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The second variation can be used to check to see if critical points are
rigid, i.e., if there is a family of deformations of critical metrics.

The discrete formulation is motivated by the work of Cooper and
Rivin [14], who looked at the sphere-packing case. The goal is to for-
mulate a conformal theory in the piecewise flat setting which allows
simple variation formulas as in the smooth setting. First, we define the
scalar curvature.

Definition 15. The scalar curvature K of a three-dimensional piece-
wise flat, metrized manifold (M 3T, d) is the function on the vertices
defined by

K; = Z 2m — Zﬁijm dij.-
j .

This definition is much more general than the one in [14], but restricts
to almost the same definition in the case of sphere packing (see Section 5
for the details). This curvature is in many ways analogous to the scalar
curvature measure RdV on a Riemannian manifold. Note that, unlike
the edge curvatures K;, this curvature depends on the metric, not only
the piecewise flat manifold. We also note the following important fact.

Proposition 16. If (M 3T, d) is a three-dimensional piecewise flat,
metrized manifold, then the FEinstein-Hilbert-Regge functional can be
written

EHR (M,T,L(d)) =D K.

Proof. Simply do the sum and recall that d;; + dj; = £;;. g.e.d.

Now let us define conformal structure. The motivation for the defini-
tion will be seen in Theorems 23 and 24, and we will see some examples
in Section 5. The reader may want to recall Definition 6.

Definition 17. A conformal structure C (M,T,U) on a triangulated
manifold (M, T) on an open set U C V (T)* is a smooth map

C(M,T,U): U — met(M,T)
such that if d =C (M, T,U) [f], then for each (i,j) € E4 and k € V,

of; di
and iy
i _
O fk

if k#iand k # j.

Notation 18. Often we will suppress the U and simply refer to the
domain of the conformal structure C (M, T).
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We can also define a conformal variation.

Definition 19. A conformal variation of a piecewise flat, metrized
manifold (M, T,d) is a smooth curve f : (—e,&) — V (T)* such that
there exists a conformal structure C (M,T,U) with f(—e,e) C U and
f(0) = d. We call such a conformal structure an extension of the con-
formal variation.

An important point is that if we have a conformal structure or con-

.. oy ol; .
formal variation, quantities such as 3 f’? make sense. We will usually
J

try to make statements in terms of % in order to reveal the appearance
of discrete Laplacians, but sometimes it will be more convenient to ex-
press terms as partial derivatives. We note that a conformal variation
is essentially independent of the extension in the following sense.

Proposition 20. Under a conformal variation f (t) of (M, T, CD, we
have at t = 0 that
d - dfy - df;
E&j = dm’% + dﬂ£
In particular, at t = 0, for a given % (0), the variation of the length is
independent of the extension.

Proof. From the definition of conformal structure, we have
d 0li; df; ~ 04;; dfj
a9 T dt T af dt

dfi, df

Y dt Yt

=d —l—dj

q.e.d.

Notation 21. In the sequel, when we suppose a conformal variation
it will be understood that quantities such as % are evaluated at ¢t = 0,

though not stated.

There is often more than one extension to a conformal variation. For
instance, for a triangle {1,2,3}, we may extend the metric defined by
d;; = 3 for all (i,7) € Ey to several families where f; (£) = tz;, such as

1
dij (t) = 3 exp (tz;),

which corresponds to a circle packing conformal structure (see Section
5.1), and

s (0= 3o (5 2).

which corresponds to a perpendicular bisector conformal structure (see
Section 5.3).
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Remark 22. Often a conformal structure will be generated from a
base metric, much the same way a conformal class on a Riemannian
manifolds can be described as the equivalence class of metrics ef go,
where f is a function on the manifold and gy is the base Riemannian
metric. However, we have not defined it thus, and, in general, one must
be careful how the structures are defined if one wishes to partition all
piecewise flat manifolds into conformal classes. We do not attempt this
here, though there is a straightforward way to do this for perpendicular
bisector conformal structures seen in Section 5.3.

In two dimensions, the fact that curvatures arise from conformal vari-
ations of a functional is not obvious but can be proven.

Theorem 23. Fix a conformal structure C(M2,T, U) on a two-
dimensional triangulated manifold and suppose that U is simply con-
nected. Then there is a functional F': U — R such that

oF

ofi
for each i € V (T). Furthermore, the second variation of the functional
under a conformal variation f (t) can be expressed as

@2F 1 df;  dfi\> a2
12 - = = 2 K,—=.
(12) d? 2%:6 (dt dt> e

= K;

This sort of formulation of the prescribed curvature problem in a vari-
ational framework has been studied by many people. See, for instance,
[15, 38, 13, 11, 5, 43, 23]. However, no source to date has unified the
theorem in the way of Theorem 23.

In three dimensions, the Einstein-Hilbert-Regge functional is a natu-
ral one to consider.

Theorem 24. For any conformal variation f (t) of a three-dimensional,
piecewise flat, metrized manifold (M T, CZ) , we have

(13) digHR(MTe Zdez
(14)
d TEHR (M. T, 0 (f Z%:(__ Gj g > <%_%>2
i i
v | (5) 5]
where oi, _%

RN/
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Thus a critical point of EHR corresponds to when K; = 0 for all i, and
at a critical metric,
(15)

@’ @i oo\ (i dfi)
TEEHR (M. T L(f ( gj;(—— > <%—%> :

Furthermore, at a critical point for the general EHR (M, T, L), we must
have K;; =0 (see (8)), and hence here we have

2

d G(df dfi\
T EHR (M, T, L (f Zijz J<d—;—a>

Theorem 24 motivates the definition of constant scalar curvature met-
rics, as seen from the following.

(16)

Corollary 25. For any conformal structure of (M,T), we have

0

O_fZEHR(M TU(f)) = K,
0
a—fZV(MTﬁ(f)):Vi,

where

1
Vi= 3 Z hiji e Asj-

J.k,e

The proof will be given in Section 4.2. Corollary 25 motivates the
following definition.

Definition 26. A three-dimensional piecewise flat, metrized mani-
fold (M 3T, d) has constant scalar curvature X\ if

K; =\V;
for all vertices 1.

It is not hard to see that
> Vi=3v.

Summing both sides of the constant scalar curvature equation, we see
that

N ESHR(M,T,K)
3 V(M,T,?0)
Note that
v, — o )%

Zr —d;;,
0fi < 0ty ’
and so on an Einstein manifold, which would satisfy

0 K 192%
EHR =" — )
0l;j i 0l;j
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’
V3

C123

Figure 1. Variation of a triangle.

for each edge, we have that
K;; oV
K; = —d;; = —d;j = \V;.
> =% s =

We have just proved the following.

Proposition 27. If (M3,T, d) 18 a three-dimensional piecewise flat,
metrized manifold which is Finstein, then it has constant scalar curva-
ture.

There is a second variation formula for conformal variations of EHR /V1/3

at Einstein manifolds, but for brevity we omit it since it requires the

calculation of g}?. With the results from this paper, it is straightforward

to calculate these derivatives.

3. Variations of angles

In the rest of this paper, we will use § to denote the differential.

3.1. Two dimensions. In this section we will compute the derivative
of an angle under a certain variation of lengths. Consider the Euclidean
triangle determined by lengths ({19, /13, ¢23) with vertices {v1,ve,vs}
and also the triangle determined by lengths ({12, f13 + 0¢13, o3 + df23),



216 D. GLICKENSTEIN

V3 Y

C123

C13

Vi V2
Figure 2. Variation of a triangle where cy23 is outside

the triangle.

say, with vertices {v1,v2,v4}, under the following important assump-
tions:

(17) 501 = 0,
(18) 013 = d316 f3,
(19) dlaz = d326 f3,

where d is a metric on {1,2,3} inducing lengths £.

Draw the arc representing f14 07124, which goes through vertex wvs
and intersects the segment vjv4. Call this edge E. It has endpoints v3
and w. See Figure 1 for the case when the center cio3 is inside vivous
and Figure 2 for when it is outside v1v9vs3.

Proposition 28. The points c123, v, and vy lie on a line. That is,
dvs 1is parallel to vs — c193.

Proof. Notice that
0 (@3) =6 [(v3 —v1) - (v3 —v1)] =2 (vg —v1) - Gu3

but also
§ (633) = 2013d310 3,
SO
dvg - 036_ L d310 f3.
13
Similarly,
Svg - Us— v _ d326 f5.

la3
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Similarly, the vector v — c103 satisfies

(v3 — c123) - 7— = dau,
{13
V3 — V2
(v3 —c123) - 7 = d32,
23
and so we see that dvg = (v3 — c123) 6 f3. q.e.d.

This is essentially the same proof given by Thurston [46] and Marden-
Rodin [31].

Consider the triangle vswuvss. This is a right triangle with right angle
at w since viw is a radius of the circle containing FE. Since the angle
of F with vjvs is also a right angle, together with Proposition 28, it
follows that vgwwvs is similar to the right triangle ci93c13v3. Using the
similar triangles, we get that

013 (071,23) hize
20 ’ = =,
(20) 0013 dz1
So
071,23 _ hi3,2
0f3 re

This leads to the following theorem.

Theorem 29. For variations of the lengths of a Euclidean triangle
of the type 17-19 (where 0 f5 is arbitrary), we have

O3 _ hige
ofs g’
2,13 _ haza
Ofs  laz’
312 . iz hasa
ofs b3 o3

Proof. We have already proven the first two equalities. The last fol-
lows from the fact that in a Euclidean triangle, v1 23 +v2,13 + 73,12 = 7.

q.e.d.

Remark 30. Special cases of this theorem appear in [25, 19, 20, 21]
and less refined versions (where only signs and not explicit values are

computed for the derivatives) appear in many other places, including
[46, 41, 31, 45].
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vz
Figure 3. Variation of a tetrahedron.

3.2. Three dimensions. Now consider a tetrahedron {1,2,3,4}. Sim-
ilarly, we will need variations of the form

21) 5015 = 0,
22 5l15 = 0,
23 b5 = 0,

0l1g = dg16 fa,
Oloy = dy26 fu,
26) 0€34 = dy30 f1,

where d is a metric on {1,2,3,4}. For convenience, we embed the ver-
tices of the tetrahedron as {v1, ve, v3,v4} so that it has the correct edge
lengths and such that v is at the origin, vy is along the positive z-axis,
vs is in the xy-plane, and vy is above the zy-plane. We will need some
additional points. We let v be the new vertex 4 obtained by taking
lengths ¢;; +¢;; (remembering that, for instance, §¢12 = 0) and embed-
ding this tetrahedron as vivav3v), with v} above the zy-plane. We also
need v} 5 which is the point on the plane vivev) Which makes v1vav) 15
a triangle congruent to vivovs. Also, we have the point fuﬁl,l, which is
the point on the line v;v) which is a distance ¢14 from v;. See Figure 3.

We first observe that the right tetrahedron wyvj ;5v) ;vj is similar
to the tetrahedron cjag4ci24¢14v4. This is because c1234, v4, and v} are



DISCRETE CONFORMAL VARIATIONS AND SCALAR CURVATURE 219

V2 p

Figure 4. Angle variation setup for a tetrahedron.

colinear (the proof is exactly analogous to the proof of Proposition 28
and is thus omitted). This implies that

(8014)* B 2 (€14671,24) (L1480 71 24 (6P12,34))

3 Thisohioas
We conclude that

hi24,3h14,2 _ 571,24£1 <5ﬁ12,34>
d3;sinyi by 0l1a 014

_ hia,2 <5512,34>
da1 0l14

using Theorem 29. We thus get

hi243 012,34
27 — = —,
27) d41 sinyy 24014 0l14

Furthermore, if 7 is the solid angle at vertex v, then we get that
(3,61 is approximately the sum of the areas of two triangles on the
sphere centered at v; of radius £14. One triangle has vertices vﬁu, V4,
and a point on the xz-axis which we will call b. See Figure 4. This triangle
can be divided into two spherical triangles, v} ;v} 1504 and v} 15v4b. Each
of these triangles has a right angle at 1121712. Note that the first triangle
has area which vanishes to higher order, so up to first order, the area is
the area of the second triangle. This triangle has a right angle at Uﬁl,l%
has angle 0312 34 at b, and some other angle at vy, say, 5 —y, where 7 is
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small. It is easy to see that the side v} j,b in the spherical triangle has
length £140y1,24 and the side 1)27121)4 has length £14 sin 1 240312 34 to first

order (the error is like (6812,31)°). We may compute 7 since we know
by spherical trigonometry that

) _ tan (012,34 sin 1 24)

<7T
COS | — — 7%
tan V1,24

2
We look at this asymptotically where §/312 34 is small and see that

_ 6P12,348In 71,24

= 0/312,34 COS V1,24,
tan V1,24

and thus that the area of the triangle is
T m
— + N —

o <5512,34 + )

= (3,0B12.31 (1 — cosy1.24) .

0/312,34 COS V1,24 — 77)

Hence we have that

day = 6B12,34 + 513,24 + 0314,23
implies that

0B12,34 (1 — cosy1,24) +6P13,24 (1 — cos v1,34) = 6B12,34 +P13,24 + 014,23

or

0B14,23 = — €08 Y1,240/312,34 — €08 V1,340 313,24
hi124.3

hi34,2
ﬁfwm —cosY 340014
41 SN 7Y1,24€14

= —COS871,24 ;
m dyq1 sinyy 3414

1
= — (cot 1.24h124.3 + cot 1 3ah1342) 6414
dg1l14

1
 dygdalra

dighi2az d13h134,2> 5014

<h14,2h124,3 + h1a3h13a,2 — — :
Sin ’71,24 Sin ’71734

Recalling that

hi243 _ 0312,34
da1 sinyy 24014 0014
we get
da1 (d140P14,23 + d120P12,34 + d136513,24)
1
= (h1a2h124,3 + h1a3h134.2) 8014
A A
(28) =85y, =220 g 51,

14 14
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That is,

A
d140B14,23 + d120512,34 + d130B13,24 = 2%5,}04-

Furthermore, the Schlafli formula implies that in the tetrahedron,
012612 + €136 813 + (140814 + €230 B3 + 240824 + £340834 = 0,
and so
0 = (d140B14 + d126B12 + d136/13) + (d210S12 + d236B23 + d246324)
+ (d310813 + d320 23 + d340334) + (da16B14 + d126 24 + da30534) -

The first three terms are all of the form (28) and the last is different
(because the lengths of edges around vertex 4 are changing). Thus,

A A
(d416B14 + d426 P24 + d436P34) = —2 28 65014 — 222218 50,

dy1lia daalos
Asy 12
-2 250
dyglss
A A A
_ | o pAas sz g
U1y loy l34

We have just proven the following theorem.

Theorem 31. Under variations of the form (21)-(26), we have

A
14014 + d120Bra + d130Brz = 2225 f,,

014

A
d240B24 + d230823 + d210512 = 2 Z:g O fa,

A
d340/334 + d320823 + d310013 = 2 Z‘f 0 fa,

A A A
41014 + duadfos + duzdfsy = | —2—22 922013 9 9L | 5
014 on l34

We actually derived a finer result, with explicit computation of the
variations of individual dihedral angles. However, the result in this
form is more compactly stated and all we will use in the remainder of
this paper. Also, this result was derived in [19] for the specific case
of sphere-packing configurations of a tetrahedron. Less precise results
along these lines were examined in the sphere-packing case in [14, 39]
as well. We will go into more detail later.

4. Curvature variations

4.1. Two dimensions. Discrete curvature in two dimensions has been
well studied, with curvature as in Definition 11. Theorem 29 has the
following implication.
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Theorem 32. Let f (t) be a conformal variation of (MQ, T, d). Then
fort =0,

dKi o dfj dfz
(29) dt ijé (dt dt)'
Proof. We compute
dK; d
T 27T—Z%,jk

_Z af}/l,jk dfz 8’Yi,jk%+af}/i7jk%
of; dt ~ 9f; dt ' Ofy dt

B ik (dfy  dfi higj (dfy  dfs
__Z[ z]j <d_t]_%>+ eikj (E_Eﬂ’

which implies the result. q.e.d.

Remark 33. We will express many of the variation results as in
Theorem 32 instead of in terms of %If(? in order to emphasize the presence
J

of the Laplacian. Notice that the formula (29) has the form
dK,- < df )
dt dt
for an appropriate definition of the Laplacian AA. We will comment more
on this in Section 6.

The formulas from Theorem 29 also imply that the curvatures are
variational, giving the proof of Theorem 23.

Proof of Theorem 23. F will be defined as

F(f)z/ofw

To ensure that the integral is independent of path, we need that w is
closed. Since we are in a simply connected domain, we need only check
that

for the 1-form

0K; 0K;
of;  0fi
for i # j. We can compute these derivative explicitly, and they are
oK, U 0K,
ofi by Ofi

if 7 and j share an edge and zero otherwise. q.e.d.
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This formulation of the prescribed curvature problem in a varia-
tional framework has been studied by many people. See, for instance,
[15, 38, 13, 11, 43, 23|, many of which derive the functional in precisely
the same way. Certain conformal variations in the discrete setting have
been proposed by Roc¢ek and Williams in the context of Regge calculus
[40], Thurston in the setting of circle patterns [46] (see also other work
on circle packing, e.g., [45]), and Luo [30] (see also [44]). Our cur-
rent setting takes each of these definitions and proofs as special cases
(see Section 5). In many of these papers it is shown that the largest
“reasonable” domain for the f’s is simply connected. The advantage of
Theorem 23 is that it works for a more general class of conformal vari-
ations. In addition, we have a geometric description of the derivatives

%[iji which is absent from most of these previous works.

4.2. Three dimensions and the Einstein-Hilbert-Regge func-
tional. We could follow a similar method to that in Theorem 23 to prove
that there are three-dimensional curvatures which are variational. How-
ever, we will present this fact in a different way by using the Einstein-
Hilbert-Regge functional from Definition 13.

Recall Definition 15 for scalar curvatures in dimension 3. The defi-
nition is first motivated by seeing how the Schlafli formula decomposes
as sums around vertices. The Schlafli formula on a tetrahedron is

Z 4;;08;; = 0,
,J

where the sum is over all edges {i,j} in the tetrahedron. It can be
written as

0 = (d12 + do1) 612 + (d13 + d31) 613 + (d1a + da1) 0814
+ (do3 + d32) 6823 + (d24 + da2) 624 + (d3a + da3) 5334
= (d126P12 + d136413 + d140B14) + (d210B12 + d23 P23 + d246324)
+ (d31613 + d320323 + d346334) + (416 P14 + da2624 + d130334)

giving the vertex breakdown motivating the curvature formula. The
Schléfli formula allows an easy computation of first derivatives of the
Einstein-Hilbert-Regge functional on a triangulation of a closed mani-
fold, giving

0 0
8—fi£HR(T,€(f)):a—ﬁ Z]: 2#—%&]-“ lij

—~
w
(=)

—

I

Z 2 — Zﬁij,ké d;j
j I,
K;.
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To compute the second variation, we need the variation of K;. Using
Theorem 31, we can express the derivatives of curvature.

Theorem 34. Let f (t) be a conformal variation of (Mg, T, d) . Then

Gy (df;  dfi d
_ 3 J .
(31) == Z <% - %) + ; 2m — Zﬁw ke adw
zy qU df] dfz) fz
:—Z KZ]) <——— +Ki—,
oy lij dt dt dt

where

g = 0% _ 9dji

Yaf;  ofi

We note that the first term in (31) is the Laplacian operator studied
by the author in [21].

Proof We compute
dfy  dfi
” A
2772 i 2,2 <dt dt>

d d d
- Ekz </82] kfdtdm +/82k,ﬂdt zk+/825,jkdt z£>
s

=23 () (2 S s
J#i
Furthermore, if there is a conformal structure, then
adi; i(‘)&j B i(‘%ij _0dj;
of;  0f;0fi  0fiof;  Ofi

Thus
Yof;  Ofi 0fi0f;
is symmetric, i.e., ¢;; = ¢j;. This also implies that

8dij . 8€ij adji

of;  ofi  0fi

= d;j — qij-
Thus J of of.
Edij = (dij — qij) d_; + qij dtj
The result follows. g.e.d.

We can compute the variations of the Einstein-Hilbert-Regge func-
tional.
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Proof of Theorem 24. Using (30), we see immediately that

d
ZEHR (M, T, L (f ZK -
eV
Using Theorem 34, we compute that
d? dK; dfz dzfi
— M, T t))) = — 4+ K,—=
— -3 (2 ﬂ_qﬂK.. dfy _ dfi\ dfi
Y)\dt  dt) dt

i jFi
dfl d2fz
+ZK [( > + =5
gy df;  dfi\?
TR (E-3m) (&%)

i j#i
df; d* f;
+ZK [<f> -+ dté

The rest of the theorem follows immediately from (30) and Regge’s
variation formula (8). q.e.d.

In order to get better control of ¢;;, we will look at special conformal
structures in Section 5.
Finally we can complete the proof of Corollary 25.

Proof of Corollary 25. We see from Figure 3 that we must have that if
we fix f1, fo, f3 and let f; vary, then

0Vi234 = éA124514 siny1,240312,34 + éA134514 sin 1,340 313,24
+ éA234534 sin y3,240/323 14
= é (A124hi1243 + A13ahiza2 + Azzahoza 1)
by (27), which implies that
0

a_fZV(T () =Vi

1
=3 > hijraAiji

gkt

where

and the sum is over all tetrahedra containing ¢ and all faces in those
tetrahedra containing 4. q.e.d.
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5. Examples of conformal structures

In this section we place previously studied geometric structures into
the framework of conformal structures.

5.1. Circle and sphere packing. The case of circle packing and sphere
packing is when edge lengths arise from spheres centered at the vertices
which are externally tangent to each other. In this case, there are posi-
tive weights r; corresponding to the radii and ¢;; = r; + ;. In two di-
mensions, circle packings have been considered in a number of contexts;
see Stephenson’s monograph [45] for an overview. In three dimensions,
this case was considered by Cooper-Rivin [14]. They noticed, in partic-
ular, that for a sphere packing, one can rewrite the Schlafli formula in
the following way:

0= (r1+7r2)0012+ (r1 +r3) 6013 + (r1 +74) 814
+ (rg +173) P23 + (12 +14) 024 + (13 + 74) B34
=71 (0812 + 0513 + 0f14) + 2 (0S12 + 023 + 6 24)

+ 73 (0513 + 6PB23 + 0034) + 74 (0514 + P24 + 6 P34)
=ridaq + rodag + r3dag + radoy,

where «; is the solid angle at vertex i, and thus da; = 0(B12 + P13+
P14 — ) = 6812+ 0P13 + d514. They used this to motivate the definition
of scalar curvature as 47 — ) «; where the sum is over all tetrahedra
containing i as a vertex. From our setting, we would define the scalar
curvature measure instead as

Ki = | 4r — Z Oy ke | T = Z 2m — Zﬂij,ké )
k,l

k€ J
where in the right side the first sum is over all edges incident on ¢ and the
second sum is the sum over all tetrahedra containing {i,j} as an edge.
The second equality can be easily derived using the Euler characteristic
and area formula of the sphere centered at vertex i.
To match this to our setting, we see that we must take f; = logr;
and d;; = r;, since
&'j =71+ T
8—7"2-” =7y
Thus we have the following conformal structure.

Definition 35. The circle/sphere-packing conformal structure,
CP (M,T), is the map defining

dij = efi
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for every oriented edge in E, (T) restricted to an appropriate domain
of feV*(T).

In two dimensions, the triangle inequality is automatically satisfied,
and so the domain is all of V* (T') . In three dimensions, there is an addi-
tional condition that the square volumes of three-dimensional simplices
(as defined by the Cayley-Menger determinant formula) are positive.
This is discussed in some detail in [19, 20].

We see that the formulas in Section 3.2 correspond to

OJay A3
——Tr4 = 2——.
Ory b1y

This is the same formula derived by the author in [19].

5.2. Fixed intersection angles/inversive distance. There is a more
general case of circles or spheres with fixed intersection angles, originally
considered by Thurston [46]. Here we parametrize lengths by two pa-
rameters, radii 7; and inversive distances 7;;. The inversive distance
(see, for instance, [23]) is like the cosine of the supplement of the inter-
section angle, defined so that
E?j = 7’2-2 + 7’]2- + 27”,'7‘]'7]2']'.

We will use this formula to parametrize the lengths by the radii r; with
inversive distances fixed. It essentially corresponds to having circles at
the vertices of radius r; and intersecting at angle arccos (—n;;) . If n;;
is not between —1 and 1, then the circles may not intersect, but this
is not a problem for the theory. There is always a circle orthogonal to
these circles, and we take the center of the triangle to be the center of
this orthocircle. (Note, it is possible that this circle does not have real
radius, but the center is still well defined using the algebra of circles
given in [34].) We then find that

(32) dyy = THTET),

For a path in the r variables, we compute
d dr; dr;
bij o lij = (i +75m55) d_tz + (5 + 1imij) d—tj’
d 1 d?"i 1 dr;
—l =d.. = i N
at™ Yy dt + Ty dt

Thus we see that f; = logr;, giving the fixed inversive distance confor-
mal class.

Definition 36. For a given n € E (T)", the fized inversive distance
conformal structure, C*'1 (M, T,n), is the conformal structure described
by the map

tij (f) ’

dij =
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where

El] (f) f— \/e2fi + e2fj + 2€f’iefj77ij
is the length, when restricted to a proper domain in V (T)*

Note that there are some restrictions on the domain which may be
quite complicated, including the triangle inequality. However, it has
been found that in two dimensions, if n;; > 0 for all n € E(T)*, then
the domain is simply connected. This was initially shown for 0 < n;; <1
by Thurston ([46, 31]) and the additional cases were proven recently
by Guo [23].

We see that

We finally get

2,.2 2
dK; e vy (L= af;  df; df;
o :_E 2%—MKij (ﬁ_i>+Kid_€7
j#i " i

dt dt

and the second variation of the Einstein-Hilbert-Regge functional is

d? SHR(TE ZZ G M[%

2
dt? ralewy 20;;
dy _dfi\?
dt  dt
df 7 d2f A
K; .
- Z [( dt> T
Note that in the case that 7;; = 1, corresponding to sphere packing, the
second term is zero. In general, for spheres with intersection we have

n;; < 1 and for spheres which do not intersect we have 7;; > 1 and so
in each case the term with edge curvatures has a particular sign.

5.3. Perpendicular bisectors. Here we give the conformal structure
proposed by Roc¢ek-Williams [40], Luo [30], and Pinkall, Schroeder, and
Springborn [44]. This structure has also been found in the numerical
analysis literature on approximations of the Laplacian in the context of
the box method (see, e.g., [27] and [36]). Take

_ Juituj
fij =e" JLZ'j
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where L;; are fixed lengths. We see that, given a path in the space of u

variables,
d du;  du;
v =t (E i E) :
If we take
du - 77
fi = 2’[},2',
then
d, o i g d
Eé” = d”E + Ji gy

We notice that the duals to the edges intersect the edges at their mid-
points, which is why we call this the perpendicular bisector conformal
structure following [27]. It can be proven inductively that the center of
any simplex is the center of the sphere circumscribing that simplex.

Definition 37. Let L € E(T) be such that (M,T,L) is a piece-
wise flat manifold. The perpendicular bisector conformal structure,
CPB(M,T, L), is the conformal structure determined by

exthp,

dij =

NI)—t

when restricted to an appropriate domain.

Since (M ,T.d (6)) is a piecewise flat, metrized manifold, this con-
formal structure exists for f; close to 0. However, the largest possible
domain must satisfy a number of inequalities.

We see that

8(12']' 1

qij = 3—f] = Zfij.

Thus, in three dimensions the variation of curvature is

dK; AP | df;  df; df;
b 2 _ K. A K.
dt §< b 4 J> (dt dt>+ dt

We get that

j EHR (T, L (f ZZ( ><%—%>2

1 jFi

dfz d2fz
+ZK [(dt) T
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6. The discrete Laplacian and the second variation

6.1. Laplacians. The relationship between the second variation of the
functionals presented here and the Laplacian is the main reason we de-
scribe these variations as conformal. The standard Laplacian is defined
as follows.

Definition 38. Let (M, T,d) be a piecewise flat, metrized manifold.
The discrete Laplacian A\ is an operator V (T')" — V (T))* defined by

Z e“ ~ %)

for each vertex ¢, where Kfj is the dual length defined appropriately (see
Definitions 7 and 8 and [21] for the general case).

These can be con81dered Laplacians on the graph of the 1-skeleton
with edges weighted by z . (For more on Laplacians on graphs, see [12].)

This is a very natural ch01ce of Laplacian, arising, for instance, by con-
sidering another function i on the vertices and defining the Laplacian
weakly as

> Soubi = ——z‘bz Uiy,
tij
for all choices Of Y, where Vj; is the volume associated to an edge,
defined by

1,
Vz‘j = Egijgija

where n is the dimension. This is an analogue of the definition of the
smooth Laplacian on a closed manifold as the operator such that

/A¢¢dvz—/v¢-v¢dv

for all smooth functions . Another interesting observation about the
Laplacian is that the weights %j are very much like conductances, in

that they are inversely proportional to length and directly proportional
to cross-sectional area if one considers current through wires located at
the edges of the triangulation.

Laplacians of this geometric form have been studied for some time.
The most well-known is the “cotan formula” for a Laplacian on a pla-
nar triangulation. If one considers the perpendicular bisector formu-
lation of Section 5.3 on a planar domain or surface, one finds that
G = by (cot Ygij + cotye,j) . It turns out that this is precisely the
finite element approximation of the Laplacian, as first computed by
Duffin [18]. The cotan formula has been well-studied both in regards
to approximation of the Laplacian on domains and approximation of
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the Laplacian on surfaces for computing minimal surfaces and bend-
ing energies. See, e.g., [35, 27, 26, 48, 6]. In addition, Laplacians
have appeared in the study of circle packings. In fact, to our knowl-
edge, the first observation that variations of angles are related to dual
lengths dates to Z. He [25] in the circle-packing setting, where it was
used for constructing a Laplacian. Further work in two dimensions in
the setting of circle packings and circle diagrams with fixed inversive
distance which connects angle variations with Laplacians can be found
n [17, 11, 22, 23]. An interesting study of possible Laplacians from a
axiomatic development can be found in [49].

6.2. Properties of the Laplacian. There are two properties of the
smooth Laplacian which are desirable to have in a discrete Laplacian:

1) A is a negative semidefinite operator with zero eigenspace corre-
sponding exactly to constant functions (¢ is a constant function if
there exists ¢ € R such that ¢; = c for all i € V).

2) A satisfies the weak maximum principle, i.e., for any ¢ € V (T)*,
if ¢, = min; ¢; and ¢ = max; ¢; then A¢,, > 0 and Ay < 0.

Note that the definition of the Laplacian ensures that the constant

functions are in the nullspace. The second property is implied by E* >0
for all edges {1, j} . Furthermore, we shall show that the strict mequahty
K;-kj > 0 implies the property 1. The Laplacian is a symmetric opera-
tor, and so it has a full set of eigenvalues. If A is an eigenvalue with

A¢Z E ] ¢’l N
e

We see that
SR _-z; o).

and so we see immedlately that if Efj > 0, then A < 0. Furthermore, if
the inequality is strict, then A = 0 implies that ¢; = ¢; for every edge.
On a connected manifold, this implies that ¢ is constant. This type of
Laplacian has good numerical properties and for this reason numerical
analysts are often interested in using such a Laplacian for numerical
approximation of PDE. (For instance, see [27].)

In two dimensions, the property £;; > 0 is a weighted Delaunay condi-
tion [21]. Note that the argument in the previous paragraph shows that
this condition implies that the Laplacian is negative semidefinite, but it
may have a larger nullspace than just the constant functions. Often in
triangulations of the plane, one gets around the fact that the inequality
is not strict by removing edges with the property that E;‘j = 0 and re-
placing the triangulation with a polygonalization. In the manifold case,
this could potentially introduce curvature to the inside of the polygons,
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so we do not pursue this direction. It is not known whether a given
piecewise flat, metrized manifold (M 2T, d) can be transformed to an-
other piecewise flat, metrized manifold (M?,T",d’) which is weighted
Delaunay such that the two induced piecewise flat manifolds are iso-
metric in a reasonable sense. This is true for the perpendicular bisector
conformal structure, which corresponds to finding Delaunay triangula-
tions (see [38] and [6]). In three dimensions, the property £}, > 0 is not
equivalent to a weighted Delaunay condition, and much less is known
about the existence of such metrics. However, the geometric description
of the Laplacian ensures that if all the centers of the highest dimensional
simplices are inside those simplices, then the second property is satisfied
(some call this property “well-centered,” see [16]).

The first property is certainly weaker. There are a number of in-
stances when one can prove the first property without the second prop-
erty being true. For instance, for a metric in a two-dimensional perpen-
dicular bisector conformal structure, we see that the induced Laplacian
is precisely the finite element Laplacian. This Laplacian always satis-
fies the first property, but it only satisfies the second if it is Delaunay
(see [38] for a proof). We state a proposition summarizing the known
conditions which ensure the first property. The following proposition is
an amalgam of known results.

Proposition 39. Let (M™,T,d) be a piecewise flat, metrized man-
ifold. The discrete Laplacian is a megative semidefinite operator with
zero eigenspace corresponding exactly to constant functions if any of the
following are satisfied:

1) t;; >0 for all edges {i,j} € E(T).

2) n = 2 and the triangulation is in CF'1 (M, T,n), a fived inversive

distance conformal structure, with n;; > 0 for all {i,j} € E(T).

3) n=2and d;; >0 for all (i,j) € E, (T).

4)n = 2 and (M,T,d) is CPP (M, T,L), a perpendicular bisector

conformal structure, for some L.
5) n =2 and for each triangle isometrically embedded in the plane as
VvV, the center c;ji is contained within the circumcircle.

6) n =3 and (M,T,d) is in C* (M, T), the sphere packing conformal

structure.

Proof. The proofs follow from a number of results from the literature.
The fact that (1) implies definiteness is well-known in the numerical
analysis community and proven in the discussion before the statement
of the proposition. The fact that (2) implies definiteness was proven for
0 < m;; <1 by Thurston [46] and Marden-Rodin [31], and the general
case of (2) was proven by Guo [23]. In fact, using (32), one easily sees
that (2) implies (3), and the fact that (3) implies definiteness is in [21].
We believe (3) implies (5), though we have not verified the proof, since
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there is a direct proof for (3). (4) implies definiteness was shown by
Rivin [38]. Also, for (4), the center is the circumcenter and thus (4)
implies (5). The fact that (5) implies definiteness is in [22]. The fact
that (5) implies definiteness follows easily from the definiteness of the
related matrix in the Appendix from [20] (also in [14] and [39]). q.e.d.

Note that Proposition 39 only covers a small subset of the cases one
might be interested in. It is of interest that (2)—(6) are all proven by
proving the definiteness on a single simplex and then extrapolating to
the entire complex, though (1) takes the global structure into account.
In light of (4) and (5), it may be surprising that the same are not true,
in general, for n = 3 (one can consider tetrahedra which are close to
flat). It would be of interest to know a condition similar to (6) which
implies definiteness for n = 3.

6.3. Convexity and rigidity of curvature functionals. We can use
our analysis of the Laplacian to attack two questions about curvature
functionals:

Q1. Are the functionals convex?
Q2. Are critical points rigid?
The first question is more difficult, but if we take first-order variations

d2 f;

= 0), then we have the following

of f; in two dimensions (i.e.,
theorem.

Theorem 40 ([46, 31, 23, 30]). The function F described in Theo-
rem 23 is convex on the image of following conformal structures:

1) ¢ (M?,T,n), with n;j >0 for all {i,j} € E(T)

2) cP'B (M2,T, L), for some L

Proof. The proof follows immediately from Theorem 23 and Propo-
sition 39. This theorem was previously proven by combining theorems
of the articles listed. q.e.d.

In three dimensions, this question is far more complex, much like in
the smooth case, due to the presence of a reaction term. However, we
do have the following result.

Theorem 41. The FEinstein-Hilbert-Regge functional is conver on
the following sets:
1) Metrics in the image of the conformal structure CT (M3,T) with
K; >0 forallieV (T)
2) Metrics in the image of any conformal structure of (M3, T) which
satisfy £7; — %qinij > 0 for each {i,j} € E(T) and K; > 0 for all
ieV(T)

We note that (1) is not a special case of (2). In case (1) we have that
¢i; = 0 but do not require K;-kj > 0. We also note that a special case of
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(2) is a metric in the image of Cf'! (MQ,T, 77) with 1 < ;; and K;; >0
for all {i,j} € E(T).

Proof. Recall the variation formula from Theorem 24. As already
remarked, in case (1) we have ¢;; = 0. Together with case (6) in Propo-
sition 39, the case is proven. Case (2) can be proven by essentially the
same argument used to prove Proposition 39, part (1). q.e.d.

The second question above asks about rigidity, which we can define
thus.

Definition 42. A piecewise flat, metrized manifold (M, T, d) is rigid
with respect to conformal variations if there is no conformal variation
f(t) such that (M, T,d(f (t))) is fixed other than the trivial variation
which scales the edge lengths uniformly (in Riemannian geometry, this
is called a homothety).

Since we have functionals of (M, T, d) in two and three dimensions,
we have the following immediate consequences of Theorems 23 and 24
together with Proposition 39.

Theorem 43. A two-dimensional piecewise flat, metrized manifold
(M?,T,d) with curvature zero (i.e., K; =0 for alli € V (T)) is rigid
with respect to any conformal variations if it satisfies (1)-(5) in Propo-
sition 39.

Theorem 44. A three-dimensional piecewise flat, metrized manifold
(M 3T, d) which is Ricci flat is rigid with respect to any conformal
variations if it satisfies (1) or (6) in Proposition 39.

Note that these statements are analogous to a theorem of Obata [33]
in the smooth category.
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