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DEFORMATIONS AND FOURIER-MUKAI
TRANSFORMS

Yukinobu Toda

Abstract

The aim of this paper is twofold. First we give an explicit con-
struction of the infinitesimal deformations of the category Coh(X)
of coherent sheaves on a smooth projective variety X. Secondly,
we show that any Fourier-Mukai transform Φ: Db(X) → Db(Y )
extends to an equivalence between the derived categories of the
deformed Abelian categories.

1. Introduction

Recent developments on derived categories, coming from Homological
mirror symmetry [11] or birational geometry [10], motivate the neces-
sity to establish a good deformation theory of derived categories. The
general deformation theory of Abelian categories was previously studied
in [13], and the A∞-deformations of triangulated categories were stud-
ied in [1]. However, these analysis in these papers does not address the
relationship between deformations and Fourier-Mukai transforms. So
the following question arises:

“How do deformations interact with Fourier-Mukai transforms?”
In this paper we concentrate on the first order deformations of Coh(X),

and answer the above question in this case. Here X is a smooth pro-
jective variety and Coh(X) is an Abelian category of coherent sheaves
on X. By the philosophy of Kontsevich [11], the Hochschild cohomol-
ogy HH∗(X) should parameterize deformations of derived categories.
The degree 2-part should consist of deformations of Coh(X), since
HH2(X) contains H1(X, TX) (deformations of complex structures) as
a direct summand. The famous HKR-isomorphism says that N -th
Hochschild cohomology is isomorphic to the direct sum HTN (X) :=
⊕p+q=NHp(X,∧qTX). So there should be C[ε]/(ε2)-linear Abelian cat-
egory Coh(X, u) for u ∈ HT 2(X). Roughly the goals of this paper can
be summarized as follows.

• Give an explicit construction of C[ε]/(ε2)-linear Abelian category
Coh(X, u).
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• Understand the behavior of the deformed triangulated category

Db(X, u) := Db(Coh(X, u))

under Fourier-Mukai transform Φ: Db(X) → Db(Y ).

Note that any u ∈ HT 2(X) can be written as a sum α + β + γ,
with α ∈ H2(X,OX), β ∈ H1(X,TX), and γ ∈ H0(X,∧2TX). Then β
corresponds to a deformation of X as a scheme, γ is a non-commutative
deformation. We will introduce “twisted” sheaves using α, and define
Coh(X,u) as a combination of these components.

Next we make the second goal more precise. Let X and Y be smooth
projective varieties such that there exists an equivalence Φ: Db(X) →
Db(Y ). Then we have an induced isomorphism of Hochschild cohomolo-
gies φ : HH∗(X) → HH∗(Y ). By combining φ with HKR isomorphisms,
we obtain the isomorphism φT : HT 2(X) → HT 2(Y ). Then the main
theorem of this paper is the following:

Theorem 1.1. For u ∈ HT 2(X), let v := φT (u) ∈ HT 2(Y ). Then
there exists an equivalence

Φ† : Db(X, u) → Db(Y, v),

such that the following diagram is 2-commutative:

Db(X) i∗−−−−→ Db(X, u) Li∗−−−−→ D−(X)

Φ

y
yΦ†

yΦ−

Db(Y ) i∗−−−−→ Db(Y, v) Li∗−−−−→ D−(Y ).

By the above theorem, we can compare deformation theories under
Fourier-Mukai transforms. One of the interesting points of Theorem 1.1
is that φT does not necessary preserve direct summands of HT 2(X).
This indicates Φ† may produce new interesting Fourier-Mukai dualities,
for example dualities between usual commutative schemes and non-
commutative schemes. Recently in the paper [3], the equivalence Φ†
of Theorem 1.1 has been extended to infinite order deformations, when
X is an Abelian variety, Y is its dual, and Φ is given by the Poincare line
bundle. This result is giving a new kind of dualities via deformations,
and it seems we will be able to find more examples of Fourier-Mukai
equivalences through deformation methods.

Acknowledgement. The author would like to express his profound
gratitude to Professor Yujiro Kawamata, for many valuable comments,
and warmful encouragement. The author also would like to thank
T. Bridgeland for informing the author on the paper [2].



DEFORMATIONS AND FOURIER-MUKAI TRANSFORMS 199

2. Hochschild cohomology and derived category

Let X be a smooth projective variety over C and ∆X ⊂ X × X
be a diagonal. We write ∆X as ∆ if it causes no confusion. In this
section we recall the definitions of Fourier-Mukai transform, Hochschild
cohomology and their properties.

Definition 2.1. Let X and Y be smooth projective varieties and
take P ∈ Db(X × Y ). Let pi be projections from X × Y onto the
corresponding factors. We define ΦPX→Y as the following functor:

ΦPX→Y := Rp2∗(p∗1(∗)
L⊗ P) : Db(X) → Db(Y ).

ΦPX→Y is called an integral transform with kernel P. If ΦPX→Y gives an
equivalence, then it is called a Fourier-Mukai transform.

The following theorem is fundamental in studying derived categories.

Theorem 2.2 (Orlov [15]). Let Φ: Db(X) → Db(Y ) be an exact
functor. Assume that Φ is fully faithful and has a right adjoint. Then
there exists an object P ∈ Db(X × Y ) such that Φ is isomorphic to the
functor ΦPX→Y . Moreover, P is uniquely determined up to isomorphism.

Next we recall the Hochschild cohomology of the structure sheaf,
given in [11].

Definition 2.3. We define HHN (X) and HTN (X) as follows:

HHN (X) := HomX×X(O∆,O∆[N ]),

HTN (X) :=
⊕

p+q=N

Hp(X,

q∧
TX).

Here Hom is a morphism in Db(X ×X). HH∗(X) is called Hochschild
cohomology.

Note that the object F ∈ Db(X×X) gives a functor ΦFX→X , and the
morphism F → G gives a natural transformation ΦFX→X → ΦGX→X . In
this sense, Hochschild cohomology is a natural transformation idX →
[N ]. But as in [6], we can not consider Db(X ×X) as the category of
functors precisely. (The map from the morphisms in Db(X ×X) to the
natural transformations is not injective in general.) However, we can
show the several properties of derived categories concerning Db(X×X),
for example categorical invariance of Hochschild cohomology, as if it is a
category of functors. Since the natural transformations are categorical,
Hochschild cohomology should be categorical invariant. In fact, we have
the following theorem in [6].
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Theorem 2.4 (Caldararu [6]). Let X and Y be smooth projective va-
rieties such that there exists an equivalence Φ: Db(X) → Db(Y ). Then
Φ induces an isomorphism φ : HH∗(X) → HH∗(Y ).

Outline of the proof. We will give the outline of the Caldararu’s
proof. Let P ∈ Db(X × Y ) be a kernel of Φ, and E ∈ Db(X × Y ) be
a kernel of Φ−1. Let pij : X × X × Y × Y → X × Y be projections
onto corresponding factors. Caldararu [6] showed that the functor with
kernel= p∗13P £ p∗24E ∈ Db(X ×X × Y × Y ),

Φp∗13P£p∗24E
X×X→Y×Y : Db(X ×X) → Db(Y × Y )

gives an equivalence which takes O∆X
to O∆Y

. This equivalence implies
the theorem immediately. q.e.d.

Next we can compare HH∗(X) and HT ∗(X). Hochschild cohomology
is useful since its definition is categorical. But it is difficult to write down
Hochschild cohomology classes explicitly. In calculating Hochschild co-
homology, we decompose it into direct sums of sheaf cohomologies of
tangent bundles. The following theorem is due to Hochschild-Kostant-
Rosenberg [8], Kontsevich [11], Swan [17], and Yekutieli [19].

Theorem 2.5. There exists an isomorphism,

IHKR : HT ∗(X) → HH∗(X).

Outline of the proof. Note that HHN (X) ∼= HomX(L∆∗O∆,OX [N ])
by adjunction. Let O⊗i

X ∈ Mod(OX) be the sheaf associated to the
following presheaf:

U ⊂ X 7−→ Γ(U,OX)⊗i.

Here ⊗ is over C, and OX -module structure on O⊗i
X is given by

a · (x0 ⊗ x1 ⊗ · · · ⊗ xi) := ax0 ⊗ x1 ⊗ · · · ⊗ xi,

for a, xk ∈ OX . Let di : O⊗(i+1)
X → O⊗i

X be

di(x0 ⊗ · · · ⊗ xi) =
i−1∑

k=0

(−1)kx0 ⊗ · · · ⊗ xkxk+1 ⊗ · · · ⊗ xi

+ (−1)ix0xi ⊗ x1 ⊗ · · · ⊗ xi−1.

Then we have the complex of OX -modules:

CX := (→ O⊗(i+1)
X

di→ O⊗i
X → · · · → OX → 0).

By [19], we have an explicit quasi-isomorphism CX
∼−→ L∆∗O∆ in

D(Mod(OX)). Yekutieli [19] describes this isomorphism by building a
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resolution using the formal neighborhood X ⊂ X×X×· · ·×X. On the
other hand, we have the following quasi-isomorphism CX → ⊕p≥0Ω

p
X [p]:

−−−−→ O⊗(i+1)
X

di−−−−→ · · · d2−−−−→ OX ⊗C OX
0−−−−→ OX −−−−→ 0

Ii

y I1

y I0

y
−−−−→ Ωi

X
0−−−−→ · · · 0−−−−→ ΩX

0−−−−→ OX −−−−→ 0.

Here Ii : O⊗(i+1)
X → Ωi

X is given by

Ii(x0 ⊗ · · · ⊗ xi) = x0 · dx1 ∧ · · · ∧ dxi.

One can consult [12] for the detail. Consequently, we get the quasi-
isomorphism, I : L∆∗O∆

∼−→ ⊕p≥0Ω
p
X [p]. Therefore we have the fol-

lowing isomorphism:

HomX(⊕p≥0Ω
p
X [p],OX [N ]) I→ HomX(L∆∗O∆,OX [N ]).

The left hand side is HTN (X) and the right hand side is HHN (X).
q.e.d.

IHKR is called the HKR (Hochschild–Kostant–Rosenberg)-isomorph-
ism. In the rest of this paper we write IHKR as IX . Assume that X and
Y are related by some Fourier-Mukai transform Φ: Db(X) → Db(Y ).
By combining the isomorphisms IX , IY and φ, we have the isomorphism:

φT := I−1
Y ◦ φ ◦ IX : HT ∗(X) ∼−→ HT ∗(Y ).

In the following 2-sections, we will construct deformations of Coh(X)
for u ∈ HT 2(X).

3. Non-commutative deformations of affine schemes

Let R be a Noetherian commutative ring and X = SpecR. In this
section we will consider a sheaf A of (not necessary commutative) alge-
bras on X. Let UX be the category whose objects consist of Zariski open
subset of X, and let A be a sheaf of algebra on X. Recall that a sheaf
M of left A-modules is quasi-coherent if for each x ∈ X, there exists an
open neighborhood U of x and an exact sequence of left AU -modules,

(AU )J −→ (AU )I −→MU −→ 0.

M is coherent if the following conditions are satisfied:

• M is finitely generated, i.e., for every x ∈ X, there exists an open
neighborhood U of x and a surjection (AU )n ³ MU .

• For every U ∈ UX and every n ∈ Z>0, and an arbitrary morphism
of left AU -modules φ : (AU )n →MU , kerφ is finitely generated.
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We denote by Mod(A) the category of sheaves of left A-modules, by
QCoh(A) full-subcategory of quasi-coherent sheaves, and by Coh(A)
coherent sheaves. Of course, it is well-known that if A = OX , then a
quasi-coherent sheaf is written as M̃ for some R-module M , and a co-
herent sheaf is M̃ for a finitely generated R-module M . We generalize
these results to some non-commutative situations. Let γ be a bidiffer-
ential operator γ : R × R −→ R. Using γ we define a (not necessary
commutative) ring structure on R[ε]/(ε2) as follows:

(a + bε) ∗γ (c + dε) := ac + (γ(a, c) + ad + bc)ε,

and denote it by R(γ). Let M be a left R(γ)-module. Then the functor

UX 3 U 7−→ OX(U)(γ) ⊗R(γ) M ∈ (left OX(U)(γ)-modules)

determines a presheaf of sets on X. Let M̃ be the associated sheaf. We
have a sheaf of rings O(γ)

X := R̃(γ) and M̃ is a left O(γ)
X -module. Note

that since OX(U)(γ) is right R(γ)-left OX(U)(γ)-module, OX(U)(γ)⊗R(γ)

M has a left OX(U)(γ)-module structure.
As in the commutative case, we have the following lemma.

Lemma 3.1.

(1) For f ∈ R, M̃(Uf ) = R
(γ)
f ⊗R(γ) M . In particular, M̃(X) = M

and O(γ)
X (X) = R(γ).

(2) M̃ is a quasi-coherent O(γ)
X -module.

(3) The functor

(left R(γ)-mod) 3 M 7−→ M̃ ∈ QCoh(O(γ)
X )

gives an equivalence of categories.
(4) For F ∈ QCoh(O(γ)

X ), F is coherent if and only if M = F(X) is
a finitely generated left R(γ)-module.

Proof. Note that if we consider an R-module N as left R(γ)-module
by the surjection R(γ) ³ R, then the action of O(γ)

X on Ñ descends to
OX , and Ñ is a quasi-coherent OX -module.

(1) It suffices to show M̃(X) = M . By the construction of M̃ , we have
the natural morphism M → M̃(X). Applying ⊗R(γ)M to the surjection
R(γ) ³ R, we obtain the exact sequence

0 −→ ker(r) −→ M
r−→ R⊗R(γ) M −→ 0,

and the left action of R(γ) on ker(r) and R ⊗R(γ) M descends to R.

Therefore, k̃er(r) and ˜R⊗R(γ) M are quasi-coherent OX -modules. By
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applying M 7→ M̃ and taking global sections, we obtain the commuta-
tive diagram:

0 −−−−→ ker(r) −−−−→ M̃(X) −−−−→ R⊗R(γ) M −−−−→ 0∥∥∥
x

∥∥∥
0 −−−−→ ker(r) −−−−→ M −−−−→ R⊗R(γ) M −−−−→ 0.

It is easy to check that the multiplicative set S = {f∗γn}n≥0 ⊂ R(γ)

satisfies the right and left Ore localization conditions, and R
(γ)
f is a lo-

calization S−1R(γ). Therefore, the functor M 7→ M̃ is an exact functor.
Moreover, since H1(X, k̃er r) = 0, the top diagram is exact. By the
5-lemma, we have the isomorphism M → M̃(X).

(2) Since M 7→ M̃ is an exact functor, we have an exact sequence

R̃(γ)J −→ R̃(γ)I −→ M̃ −→ 0.

(3) Take F ∈ QCoh(O(γ)
X ). Applying ⊗O(γ)

X

F to the exact sequence

0 −→ εOX −→ O(γ)
X −→ OX −→ 0,

we can easily see that F is given as an extension of quasi-coherent OX -
modules. Therefore the problem is reduced to the following lemma:

Lemma 3.2. Let Db(R(γ)) be the bounded derived category of left
R(γ)-modules, and Mod(X, γ) := Mod(O(γ)

X ). The functor

Db(R(γ)) 3 M 7−→ M̃ ∈ Db(Mod(X, γ))

is fully faithful.

Proof. Take M, N ∈ Db(R(γ)) ⊂ D(R(γ)) and we will show that

HomD(R(γ))(M, N) −→ HomD(Mod(X,γ))(M̃, Ñ)

is an isomorphism. By taking a free resolution, we may assume M is
a bounded above complex of free R(γ)-modules. Let Mk := σ≥−kM .
Here σ≥−k denotes the stupid truncation. Now we have a sequence of
complexes → Mk → Mk+1 → · · · and if we take the homotopy colimit
(cf. [2])

⊕kMk
s−id−→ ⊕kMk −→ hocolim(Mk) −→ ⊕kMk[1],

then there exists a quasi-isomorphism hocolim(Mk) → M . Here s is
the shift map, whose coordinates are the natural maps Mk → Mk+1.
Therefore, we may assume M is a finite complex of free R(γ)-modules.
Again by taking stupid truncations, we may assume M = R(γ). Since
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N is bounded, we may assume N = N ′[k] for some left R(γ)-module N ′.
Now it suffices to show that the map

HomD(R(γ))(R
(γ), N ′[k]) −→ HomD(Mod(X,γ))(O(γ)

X , Ñ ′[k])

is an isomorphism. If k < 0, then both sides are zero. If k = 0, then
both sides are N ′. If k > 0, then the left hand side is zero, so it suffices
to show Hk(X, Ñ ′) = 0 for k > 0. But since Ñ ′ is an extension of
quasi-coherent OX -modules, Hk(X, Ñ ′) = 0 for k > 0. q.e.d.

(4) First we check that a submodule of a finitely generated R(γ)-
module is also finitely generated. In fact, let M be a finitely generated
R(γ)-module, and N ⊂ M be a submodule. Then we have the natural
morphism g : N → R ⊗R(γ) M . It is enough to check that ker(g) and
im(g) are finitely generated R(γ)-modules. Note that we have ker(g) ⊂
εM and im(g) ⊂ R⊗R(γ) M . Since R is Noetherian and εM , R⊗R(γ) M
are both finitely generated R-modules, it follows that ker(g) and im(g)
are both finitely generated R-modules. Thus, in particular, these are
finitely generated R(γ)-modules via the surjection R(γ) ³ R.

Using this fact, we can see that M̃ for a finitely generated left R(γ)-
module M is coherent. On the other hand, take F ∈ Coh(O(γ)

X ). Then
by (3), F can be written as F = M̃ for some left R(γ)-module M . Since
F is given by an extension of coherent OX -modules, M is a finitely
generated left R(γ)-module. q.e.d.

For a full subcategory C ⊂ Mod(X, γ), let Db
C(Mod(X, γ)) denote

the full subcategory of Db(Mod(X, γ)) whose objects have cohomologies
contained in C. As a corollary, we obtain the following:

Corollary 3.3. There exist equivalences,

Db(R(γ)) ∼−→ Db
QCoh(Mod(X, γ)), Db

f (R(γ)) ∼−→ Db
Coh(Mod(X, γ)).

Here Db
f (R(γ)) is a derived category of finitely generated left R(γ)-

modules.

Proof. We have proved the full faithfulness in Lemma 3.2. Since an
object of QCoh(O(γ)

X ) is written as M̃ for a left R(γ)-module M , the
image from the left hand side generates the right hand side. q.e.d.

Remark 3.4. In general, we can show the unbounded case of the
above corollary as in [2]. Here we gave a proof of the bounded case for
the sake of simplicity. For details, the reader should refer to [2].

4. Infinitesimal deformations of Coh(X)

From this section on, we will assume that X is a smooth projective
variety over C. The aim of this section is to construct the first order
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deformations of Coh(X). First we begin with the general situation. Let
us take an affine open cover X = ∪N

i=1Ui, and denote by U this open
cover. Let Ui0···ip := Ui0 ∩ · · · ∩ Uip , and ji0···ip : Ui0···ip ↪→ X be open
immersions. For a sheaf F on X, let Cp(U,F), Cp(U,F) be

Cp(U,F) :=
∏

i0···ip
ji0···ip∗j

∗
i0···ipF , Cp(U,F) :=

∏

i0···ip
Γ(Ui0···ip ,F).

Let us consider a sheaf of algebras A on X and its center Z(A). Take
τ ∈ H2(X,Z(A)×). Then τ is represented by a Čech cocycle τ =
{τi0i1i2} ∈ C2(U, Z(A)×). We define the category Mod(A, τ) as follows:

Definition 4.1. We define Mod(A, τ) as an Abelian category of τ -
twisted left A-modules. Namely objects of Mod(A, τ) are collections

F = ({Fi}1≤i≤N , φi0i1),

where Fi ∈ Mod(A|Ui) and φi0i1 are isomorphisms

φi0i1 : Fi0 |Ui0i1

∼=−→ Fi1 |Ui0i1

as left A|Ui-modules. These data must satisfy the equality

φi2i0 ◦ φi1i2 ◦ φi0i1 = τi0i1i2 · idF0 .

We say F ∈ Mod(A, τ) is quasi-coherent if Fi ∈ QCoh(A|Ui), and
coherent if Fi ∈ Coh(A|Ui). We denote by QCoh(A, τ) the category
of quasi-coherent τ -twisted left A-modules, and by Coh(A, τ) coherent
twisted sheaves.

Lemma 4.2.
Up to equivalence, the categories Mod(A, τ), QCoh(A, τ), Coh(A, τ)

are independent of choices of U and Čech representative of α.

Proof. The proof is easy and left to the reader. q.e.d.

Fundamental properties and operations on Mod(A, τ).
• j∗, j∗, j! for an open immersion j : U ↪→ X

Let j : U ↪→ X be an open immersion. We have the obvious functors:

j∗ : Mod(A, τ) −→ Mod(A|U , τ |U ),

j∗, j! : Mod(A|U , τ |U ) −→ Mod(A, τ).

j∗ is right adjoint of j∗, and j! is left adjoint of j∗. For F = ({Fi0}, φi0i1)
∈ Mod(A|U , τU ), with Fi0 ∈ Mod(A|U∩Ui0

), j∗F and j!F are given by

j∗(F)i0 := (j|U∩Ui0
)∗Fi0 , j!(F)i0 := (j|U∩Ui0

)!Fi0 .

Here
(j|U∩Ui0

)! : Mod(A|U∩Ui0
) −→ Mod(A|Ui0

)
is extension by zero.

• Tensor product
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Let us take F ∈ Mod(Aop, τ). Assume that the right action of the
subalgebra B ⊂ A on F is centralized. Then we have the functor

F ⊗ ∗ : Mod(A, τ ′) −→ Mod(B, τ · τ ′).
In particular, if B is contained in the center of A, then we have the
functor,

⊗ : Mod(Aop, τ)×Mod(A, τ ′) −→ Mod(B, τ · τ ′).
• Pull-back

Let f : Y → X be a morphism of varieties, and A, B be sheaves of
algebra on X and Y . If there exists a morphism of algebras f−1A → B
which preserves their centers, then we have the pullback

f∗ : Mod(A, τ) −→ Mod(B, f∗τ),

which takes ({Fi}, φi0i1) to ({B ⊗A f−1Fi}, 1⊗ φi0i1).
• Push-forward

In the same situation as above, we have a morphism of algebrasA → f∗B
which preserves their centers. We have the push-forward:

f∗ : Mod(B, f∗τ) −→ Mod(A, τ).

Clearly f∗ is a right adjoint of f∗.
• Enough injectives and flats

Lemma 4.3.
(i) Mod(A, τ) has enough injectives.
(ii) For every A ∈ Mod(A, τ), there exists a flat object P ∈ Mod(A, τ)

and a surjection P ³ A. Here we say F = ({Fi}, φi0i1) is flat if
each Fi is a flat AUi-module.

Proof.
(i) Take A ∈ Mod(A, τ). Since Mod(A|Ui) has enough injective, there

exists an injection j∗A ↪→ Ii for an injective object Ii ∈ Mod(A|Ui). Let
Ĩi := j∗Ii. Then the composition

A −→ j∗j∗A −→
∏

i

Ĩi

is an injection. Since j∗ is a right adjoint of j∗,
∏

i Ĩi is an injective
object of Mod(A, τ).

(ii) Take A ∈ Mod(A, τ). We can take a surjection Pi ³ j∗A for flat
O(γ)

Ui
-module Pi. Let P̄i := j!Pi. Then the composition

⊕

i

P̄i −→ j!j
∗A −→ A

is surjective and
⊕

i P̄i is flat. q.e.d.
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Let us take an element

u = (α, β, γ) ∈ HT 2(X) = H2(OX)⊕H1(TX)⊕H0(∧2TX).

First we construct a sheaf O(β,γ)
X of C[ε]/(ε2)-algebras on X. Note that

we can consider γ as a bidifferential operator OX×OX → OX , and βi0i1

as a differential operator OUi0i1
→ OUi0i1

. As a sheaf O(β,γ)
X is O(βi0i1

)

X ,
the kernel of the following morphism:

OX ⊕ C0(U,OX) 3 (a, {bi}) δ
(βi0i1

)

7−→ −βi0i1(a) + δ{bi} ∈ C1(U,OX).

We define the product on OX ⊕ C0(U,OX) by the formula:

(a, {bi}) ∗γ (c, {di}) := (ac, {adi + cbi + γ(a, c)}i).

Then it is easy to see that O(βi0i1
)

X is a subalgebra of OX ⊕ C0(U,OX),
and denote by O(β,γ)

X this sheaf of algebras. It is also easy to check that
O(β,γ)

X doesn’t depend on the choices of U and Čech representative of β.
Note that O(β,γ)

X |Ui
∼= O(γ)

Ui
as a sheaf of algebra. Since (1− αi0i1i2ε) is

contained in the center of O(γ)
Ui0i1i2

, we have an element

α̃ := {(1− αi0i1i2ε)}i0i1i2 ∈ C2(X,Z(O(β,γ)
X )),

which is a cocycle. Let Mod (X, u) := Mod (O(β, γ)
X , α̃), and define

QCoh(X,u) and Coh(X,u) as above.
Now we can define D∗(X, u) for ∗ = b,±, ∅ as follows.

Definition 4.4. We define C [ε] / (ε2)–linear triangulated category
D∗(X, u) as

D∗(X, u) := D∗(Coh(X,u)), (∗ = b,±, ∅).
As in [2], we have the following proposition:

Proposition 4.5. There exist natural equivalences:

D∗(QCoh(X, u)) ∼−→ D∗
QCoh(Mod(X,u)),

D∗(X, u) ∼−→ D∗
Coh(Mod(X, u)),

for ∗ = b,±, ∅.
Proof. The proof is the same as in [2]. Take an affine open cover

X = ∪N
i=1Ui. We use the induction on N to prove the proposition, and

the case of N = 1 and ∗ = b has been proved in the previous section.
q.e.d.

Now we can construct transformations between derived categories.
Take two smooth projective varieties X and Y , and u = (α, β, γ) ∈
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HT 2(X), v = (α′, β′, γ′) ∈ HT 2(Y ). For a perfect object (i.e., lo-
cally quasi-isomorphic to bounded complexes of free modules) P† ∈
Db

perf(X × Y,−p∗1ǔ + p∗2v), we will construct a functor,

Φ† : Db(X,u) −→ Db(Y, v).

Here ǔ := (α,−β, γ). First take F ∈ Db(X,u). Since we have a mor-
phism of algebras

p−1
1 O(β,γ)

X −→ O(p∗1β+p∗2β′,p∗1γ−p∗2γ′)
X×Y ,

we obtain the object

p∗1F ∈ Db(Coh(O(p∗1β+p∗2β′,p∗1γ−p∗2γ′)
X×Y , p∗1α̃))

' Db(Coh(O(p∗1β+p∗2β′,−p∗1γ+p∗2γ′),op
X×Y , p∗1α̃)).

Now, by Lemma 4.3, we can define
L⊗ P†. Since the right action of

p−1
2 O(β′,γ′)

Y on each term of p∗1F is centralized, we obtain the object,

p∗1F
L⊗ P† ∈ Db(Mod(p−1

2 O(β′,γ′)
Y , p∗2α̃

′)).

(Since P† is perfect,
L⊗ P† preserves boundedness.) Applying Rp2∗, we

obtain the object,

Rp2∗(p∗1F
L⊗ P†) ∈ Db(Mod(O(β′,γ′)

Y , α̃′)).

If all the cohomologies Rip2∗(p∗1F
L⊗ P†) are coherent, we can define Φ†

as

Φ†(F) := Rp2∗(p∗1F
L⊗ P†) ∈ Db

Coh(Mod(O(β′,γ′)
Y , α′)) ' Db(Y, v),

by Lemma 4.5. In fact we have the following:

Lemma 4.6. For each i, the object Rip2∗(p∗1F
L⊗ P†) is coherent.

Proof. Since there exists a distinguished triangle,

p∗1F
L⊗ OX×Y

L⊗ P† −→ p∗1F
L⊗ P† −→ p∗1F

L⊗ OX×Y

L⊗ P†

in Db(Mod(p−1
2 O(β′,γ′)

Y , p∗2α
′)), it suffices to show that Rip2∗(p∗1F

L⊗
OX×Y

L⊗ P†) is coherent. But since Hq(p∗1F
L⊗ OX×Y

L⊗ P†) are coher-
ent OX×Y -modules, the existence of a first quadrant spectral sequence

Ep,q
2 := Rpp2∗Hq(p∗1F

L⊗ OX×Y

L⊗ P†) ⇒ Rp+qp2∗(p∗1F
L⊗ OX×Y

L⊗ P†)

shows Rip2∗(p∗1F
L⊗ OX×Y

L⊗ P†) is coherent. q.e.d.
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Since we have a morphism of algebras i : O(β,γ)
X → OX , we have func-

tors:

i∗ : Coh(X) → Coh(X,u), i∗ : Coh(X,u) → Coh(X).

Passing to derived categories and using Proposition 4.5, we obtain the
derived functors:

i∗ : Db(X) → Db(X, u), Li∗ : Db(X, u) → D−(X).

Note that an equivalence Φ: Db(X) → Db(Y ) extends to an equivalence
Φ− : D−(X) → D−(Y ), using the same kernel with Φ. Now we can state
our main theorem.

Theorem 4.7. Let X and Y be smooth projective varieties such that
there exists an equivalence of derived categories Φ: Db(X) → Db(Y ).
Take u ∈ HT 2(X) and v := φT (u) ∈ HT 2(Y ). Then there exists an
object P† ∈ Db

perf(X × Y,−p∗1ǔ + p∗2v) such that the associated functor

Φ† : Db(X, u) −→ Db(Y, v)

gives an equivalence. Moreover, the following diagram is 2-commutative:

Db(X) i∗−−−−→ Db(X, u) Li∗−−−−→ D−(X)

Φ

y
yΦ†

yΦ−

Db(Y ) i∗−−−−→ Db(Y, v) Li∗−−−−→ D−(Y ).

5. Atiyah classes and FM-transforms

In this section we will analyze Atiyah classes of kernels of Fourier-
Mukai transforms, and give the preparation for the proof of the main
theorem. Firstly, let us recall the universal Atiyah class. Let X be a
smooth projective variety and ∆ be a diagonal or diagonal embedding.
We write ∆ as ∆X when needed. Let I∆ ⊂ OX×X be an ideal sheaf of
∆. Consider the exact sequence

(?) 0 −→ I∆/I2
∆ −→ OX×X/I2

∆ −→ O∆ −→ 0.

Definition 5.1. The universal Atiyah class

aX : O∆ −→ ∆∗ΩX [1]

is the extension class of the exact sequence (?).

Consider the composition

O∆
aX−→ ∆∗ΩX [1]

aX⊗p∗2ΩX−→ ∆∗Ω⊗2
X [2] −→ · · · −→ ∆∗Ω⊗i

X [i].

By composing anti-symmetrization ε : Ω⊗i
X → Ωi

X , we get a morphism

aX,i : O∆ −→ ∆∗Ωi
X [i].
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Definition 5.2. The exponential universal Atiyah class is a mor-
phism

exp(a)X :=
⊕

i≥0

aX,i : O∆ −→
⊕

i≥0

∆∗Ωi
X [i].

Here aX,0 = id.

Caldararu [5] showed the following:

Proposition 5.3 (Caldararu [5]). exp(a)X is equal to the composi-
tion

O∆ −→ ∆∗L∆∗O∆
∆∗I−→

⊕

i≥0

∆∗Ωi
X [i].

Here O∆ → ∆∗L∆∗O∆ is an adjunction, and I is a morphism which
appeared in the proof of Theorem 2.5

By the above proposition, HKR-isomorphism is nothing but the fol-
lowing morphism

HT ∗(X) 3 u 7−→ ∆∗u ◦ exp(a)X ∈ HH∗(X).

Next, let us recall the Atiyah class and exponential Atiyah class for an

object P ∈ Db(X). By applying Rp2∗(p∗1P
L⊗ ∗) to the exact sequence

(?), we obtain the distinguished triangle,

(?P) P ⊗ ΩX −→ Rp2∗

(
p∗1P

L⊗ OX×X/I2
∆

)
−→ P −→ P ⊗ ΩX [1].

Definition 5.4. The Atiyah class a(P) ∈ Ext1X(P,P ⊗ ΩX) is a
morphism

a(P) : P −→ P ⊗ ΩX [1]
in the distinguished triangle (?P).

As in the exponential universal Atiyah class, let us take the compo-
sition

a(P) ◦ · · · a(P) : P −→ P ⊗ ΩX [1] −→ · · · −→ P ⊗ Ω⊗i
X [i].

By composing ε : Ω⊗i
X → Ωi

X , we get the morphism

a(P)i : P −→ P ⊗ Ωi
X [i].

Definition 5.5. The exponential Atiyah class of P is a morphism

exp a(P) :=
⊕

i≥0

a(P)i : P −→
⊕

i≥0

P ⊗ Ωi
X [i].

Here a(P)0 = id.

Now let us consider two smooth projective varieties X and Y , and
an equivalence of derived categories Φ: Db(X) → Db(Y ). Let P ∈
Db(X×Y ) be a kernel of Φ. By Theorem 2.4, Φ induces the isomorphism
φ : HH∗(X) → HH∗(Y ). We have the following proposition:
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Proposition 5.6. φ factors into the isomorphisms:

HH∗(X) ∼−→ Ext∗X×Y (P,P) ∼−→ HH∗(Y ).

Proof. Let pij be projections from X × Y × Z onto corresponding
factors. For a ∈ Db(X × Y ) and b ∈ Db(Y × Z), let b ◦ a ∈ Db(X × Z)
be

b ◦ a := Rp13∗(p∗12(a)
L⊗ p∗23(b)).

It is easy to see Φb
Y→Z ◦Φa

X→Y
∼= Φb◦a

X→Z . We have the following functor:

P◦ : Db(X ×X) 3 a 7−→ P ◦ a ∈ Db(X × Y ).

The above functor is an equivalence, since the functor Db(X × Y ) 3
b 7→ E ◦ b ∈ Db(X × X) gives a quasi-inverse. Here E is a kernel of
Φ−1. Similarly, we have an equivalence ◦P : Db(Y × Y ) 3 a 7→ a ◦ P ∈
Db(X × Y ). Consider the following diagrams:
(♠)
Db(X ×X) P◦−−−−→ Db(X × Y )

∆X∗

x
xp∗1(∗)L⊗P

Db(X) Db(X),

Db(Y × Y ) ◦P−−−−→ Db(X × Y )

∆Y ∗

x
xp∗2(∗)L⊗P

Db(Y ) Db(Y ).

The above diagrams are 2-commutative. Let us check that the left
diagram commutes. Take a ∈ Db(X). Then

P ◦ (∆X∗a) ∼= Rp13∗

(
p∗12∆X∗a

L⊗ p∗23P
)

∼= Rp13∗

(
(∆X × id)∗p∗1a

L⊗ p∗23P
)

∼= Rp13∗(∆X × id)∗

(
p∗1a

L⊗ (∆X × id)∗p∗23P
)

∼= p∗1a
L⊗ P.

The second isomorphism follows from flat base change of the diagram
below

X × Y
∆X×idY−−−−−→ X ×X × Y

p1

y
yp12

X
∆X−−−−→ X ×X,

and the third isomorphism is the projection formula. By the above
commutative diagram, we have P ◦O∆X

∼= P, O∆Y
◦P ∼= P. Therefore,

we have the isomorphisms:

HH∗(X) ∼−→ Ext∗X×Y (P,P) ∼−→ HH∗(Y ).
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Since the equivalence Φp∗13P£p∗24E
X×X→Y×Y given in Theorem 2.4 is nothing but

the following functor:

P ◦ (∗) ◦ E : Db(X ×X) −→ Db(Y × Y ),

the composition of the above isomorphisms is equal to φ. q.e.d.

Now let us take the exponential Atiyah class of P
exp a(P) : P −→

⊕

i≥0

P ⊗ Ωi
X×Y [i],

and take direct summands,

exp a(P)X : P −→
⊕

i≥0

P⊗p∗1Ω
i
X [i], exp a(P)Y : P −→

⊕

i≥0

P⊗p∗2Ω
i
Y [i].

By the commutative diagram (♠) in the proof of Lemma 5.6, we have
two morphisms

exp(a)+X : O∆X
−→

⊕

i≥0

∆∗Ωi
X [i], exp(a)+Y : O∆Y

−→
⊕

i≥0

∆∗Ωi
Y [i],

such that P ◦ exp(a)+X = exp a(P)X , exp(a)+Y ◦ P = exp a(P)Y . We will
investigate the relationship between exp(a)+X , exp(a)+Y , and the univer-
sal exponential Atiyah classes of X and Y . Let σ : X ×X → X ×X be
the involution σ(x, x′) = (x′, x).

Lemma 5.7. We have the following equalities:

exp(a)+X = σ∗ ◦ exp(a)X , exp(a)+Y = exp(a)Y .

Proof. We show exp(a)+X = σ∗ ◦ exp(a)X . Let

a+
X,i : O∆X

−→ ∆∗Ωi
X [i], a(P)X,i : P −→ P ⊗ p∗1Ω

i
X [i]

be direct summands of exp(a)+X and exp a(P)X respectively. For i = 1,
we write ∗1 = ∗ for ∗ = a+

X or a(P)X . We will show a+
X,i = σ∗aX,i. This

is equivalent to a(P)X,i = P ◦ (σ∗aX,i). First we treat the case of i = 1.
Let pij and qij be projections from X ×X × Y , X × Y ×X × Y onto

corresponding factors. Let

∆X × id : X × Y ↪→ X ×X × Y,

id×∆Y : X ×X × Y ↪→ X × Y ×X × Y

be (∆X × id)(x, y) = (x, x, y), (id × ∆Y )(x, x′, y) = (x, y, x′, y). Let
I∆

X(2),Y
be the kernel of the composition

OX×Y×X×Y −→ (id×∆Y )∗OX×X×Y −→ (id×∆Y )∗OX×X×Y /p∗12I
2
∆X

.
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Then we have a morphism of distinguished triangles (in fact, morphism
of exact sequence)

(♦)

OX×Y×X×Y /I2
∆X×Y

−−−−→ O∆X×Y
−−−−→ ∆X×Y ∗ΩX×Y [1]y

∥∥∥
y

OX×Y×X×Y /I∆
X(2),Y

−−−−→ O∆X×Y
−−−−→ ∆X×Y ∗p∗1ΩX [1].

Note that since

∆X×Y ∗p∗1ΩX
∼= (id×∆Y )∗(∆X × id)∗p∗1ΩX

∼= (id×∆Y )∗p∗12∆X∗ΩX ,

and
OX×Y×X×Y /I∆

X(2),Y

∼= (id×∆Y )∗p∗12OX×X/I2
∆X

,

the bottom sequence of (♦) is obtained by applying (id × ∆Y )∗p∗12 to
the distinguished triangle,

∆X∗ΩX −→ OX×X/I2
∆X

−→ O∆X

aX−→ ∆X∗ΩX [1].

Let Φ̃ : Db(X×Y ×X×Y ) → Db(X×Y ) be the functor Φ̃ := Rq34∗(∗
L⊗

q∗12P). Then we have the isomorphisms of functors,

Φ̃ ◦ (id×∆Y )∗ ◦ p∗12(∗)

= Rq34∗

(
(id×∆Y )∗p∗12(∗)

L⊗ q∗12P
)

∼= Rq34∗(id×∆Y )∗

(
p∗12(∗)

L⊗ (id×∆Y )∗q∗12P
)

∼= Rp23∗(p∗12(∗)
L⊗ p∗13P)

∼= Rp23∗(σ × id)∗

(
(σ × id)∗p∗12(∗)

L⊗ (σ × id)∗p∗13P
)

∼= Rp13∗(p∗12σ∗(∗)
L⊗ p∗13P)

= P ◦ σ∗(∗).
Therefore, if we apply Φ̃ to the diagram (♦), we obtain the morphism
of distinguished triangles,

P̃ −−−−→ P a(P)−−−−→ P ⊗ ΩX×Y [1]y
y

y

P ◦
(
σ∗OX×X/I2

∆X

)
−−−−→ P ◦ (O∆X

)
P◦(σ∗aX)−−−−−−→ P ◦ (∆X∗ΩX [1]).
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Here P̃ := Φ̃
(
OX×Y×X×Y /I2

∆X×Y

)
. Since the morphism P → P ◦

(O∆X
), P ⊗ ΩX×Y → P ◦ (∆X∗ΩX) of the above diagram are equal to

idP , and direct summand P⊗ΩX×Y → P⊗p∗1ΩX under the isomorphism

P ◦ ∆∗ ∼= P L⊗ p∗1(∗) of the diagram in Lemma 5.6, we can conclude
a(P)X = P ◦ (σ∗aX).

Secondly, we show a(P)X,i = P ◦ (σ∗aX,i) for all i. Since

P ◦ σ∗(aX ⊗ p∗2Ω
⊗i
X ) = P ◦ (σ∗aX ⊗ p∗1Ω

⊗i
X )

= Rp13∗(p∗12σ∗aX ⊗ p∗12p
∗
1Ω

⊗i
X

L⊗ p∗23P)

= Rp13∗(p∗12σ∗aX ⊗ p∗13p
∗
1Ω

⊗i
X

L⊗ p∗23P)

= Rp13∗(p∗12σ∗aX

L⊗ p∗23P)⊗ p∗1Ω
⊗i
X

= (P ◦ σ∗aX)⊗ p∗1Ω
⊗i
X

= a(P)X ⊗ p∗1Ω
⊗i
X ,

we have a(P)X,i = P ◦ (σ∗aX,i). q.e.d.

Using the above proposition, we can find the relationship between
HKR–isomorphism, the isomorphism HH∗ (X) → Ext∗X ×Y (P, P) of
Lemma 5.6 and the exponential Atiyah-classes. In fact, we have the
following lemma:

Lemma 5.8. The following diagrams commute:

HT ∗(X × Y )
× exp a(P)−−−−−−→ Ext∗X×Y (P,P)

p∗1

x
xP◦

HT ∗(X) −−−−→
σ∗IX

HH∗(X),

HT ∗(X × Y )
× exp a(P)−−−−−−→ Ext∗X×Y (P,P)

p∗2

x
x◦P

HT ∗(Y ) −−−−→
IY

HH∗(Y ).

Here × exp a(P) means multiplying by exp a(P) and taking Ext∗(P,P)-
component.

Proof.
We show that the top diagram commutes. Take u ∈ Hp(X,∧qTX).

By Lemma 5.7, we have σ∗aX,q = a+
X,q. So by Proposition 5.3, σ∗IX(u)
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is the composition:

O∆

a+
X,q−→ ∆∗Ω

q
X [q] ∆∗u−→ ∆∗OX [p + q].

Therefore P ◦ σ∗IX(u) is the composition

P a(P)X,q−→ P ⊗ p∗1Ω
q
X [q]

×p∗1u−→ P[p + q].

But this is equal to the composition

P a(P)q−→ P ⊗ Ωq
X×Y [q]

×p∗1u−→ P[p + q].

Therefore the diagram commutes. q.e.d.

6. Proof of the main theorem

In this section we will prove Theorem 4.7. Let X,Y and Φ, P be as in
the previous sections. We want to extend P to P† ∈ Db

perf(X×Y,−p∗1ǔ+
p∗2v). For this purpose we have to investigate the relationship between
u, v, and the exponential Atiyah-class of P. For u ∈ Hp(X,∧qTX), let
ǔ := (−1)qu, and extend the operation to HT ∗(X) linearly. Then it is
clear that σ∗IX(u) = IX(ǔ). Take u ∈ HT ∗(X) and v = φT (u). By
Lemma 5.8 and the above remark, we have

(−p∗1ǔ + p∗2v) · exp a(P) = −P ◦ σ∗IX(ǔ) + IY (v) ◦ P
= −P ◦ IX(u) + (φ ◦ IX(u)) ◦ P
= −P ◦ IX(u) + P ◦ IX(u) ◦ E ◦ P
= 0,

in Ext2X×Y (P,P). Therefore, to extend P to P†, it suffices to show the
following proposition.

Proposition 6.1. Take P ∈ Db(X) and u ∈ HT 2(X). Assume
that u · exp a(P) = 0 in Ext2X(P,P). Then there exists an object P† ∈
Db

perf(X, u) such that Li∗P† ∼= P.

Proof. Let P• be a complex of locally free sheaves on X, which rep-
resents P. Since Pn is locally free, we have

P̃ i := Rp2∗

(
p∗1Pn

L⊗ OX×X/I2
∆X

)
= p2∗

(
p∗1Pn ⊗OX×X/I2

∆

)
,

and the distinguished triangle

P ⊗ ΩX −→ Rp2∗

(
p∗1P

L⊗ OX×X/I2
∆X

)
−→ P −→ P ⊗ ΩX [1]

is represented by the exact sequence of complexes,

0 −→ P• ⊗ ΩX −→ P̃• ψ•−→ P• −→ 0.
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But ψn : P̃n → Pn has a C-linear section λn : Pn → P̃n,

λn(Ui) : Pn(Ui) 3 x 7−→ x⊗ 1 ∈ P̃n(Ui) = Pn(Ui)⊗OUi
OUi×Ui/I2

∆

and λ• : P• → P̃• gives a C-linear splitting of ψ• : P̃• → P•. Therefore
the Atiyah class a(P) becomes the zero map after applying the forgetful
functor Db(X) → Db(Mod(X,C)). Here Mod(X,C) is a category of
sheaves of C-vector spaces on X.

On the other hand, in the derived category of quasi-coherent sheaves,
the Atiyah class is represented by some morphism of complexes of quasi-
coherent sheaves, denoted by the same symbol a(P):

a(P) : P• −→ TC•(U,P• ⊗ ΩX).

Here T is a translation functor T (X•) = X•+1, T (dX) = −dX . By
the above remark, a(P) is homotopic to zero as complexes of C-vector
spaces, and we are now going to construct a homotopy. Let us choose
connections

∇(n)
i : Pn|Ui −→ Pn|Ui ⊗ ΩX

on Ui for all i. Then it is easy to check that a homotopy between
a(P) and zero as morphisms of complexes of C-vector spaces is given by
∇ : P• → C•(U,P• ⊗ ΩX), defined as follows:

∇n : Pn 3 x 7−→ {∇(n)
i (x)}i ∈ C0(U,Pn ⊗ ΩX) ⊂ Cn(U,P• ⊗ ΩX).

Namely a(P) = ∇◦ dP + T (dC) ◦∇. (cf. [9]). Also a(P)2 is represented
by a morphism of complexes of quasi-coherent sheaves,

a(P)2 : P• −→ T 2C•(U,P• ⊗ Ω2
X) = C•+2(U,P• ⊗ Ω2

X),

which is homotopic to zero as complexes of C-vector spaces. In fact, we
can calculate a(P)2 as follows:

a(P)2 = ε ◦ T (a(P)⊗ 1) ◦ a(P)

= −ε(∇ ◦ dC ◦ ∇) ◦ dP − dC ◦ ε(∇ ◦ dC ◦ ∇).

Hence, the homotopy is given by

−ε(∇ ◦ dC ◦ ∇) : P• −→ TC•(U,P• ⊗ Ω2
X).

Here dP and dC are differentials of P• and C•(U,P•) respectively. There-
fore, if we take a Čech representative of β and consider the morphism
of complexes of quasi-coherent sheaves

β · a(P) + γ · a(P)2 : P• −→ C•+2(U,P•),
then this is homotopic to zero as morphisms of complexes of C-vector
spaces. The homotopy is given by

∇† := β ◦ ∇ − γ ◦ ε(∇ ◦ dC ◦ ∇) : P• −→ TC•(U,P•).
By the assumption,

α⊗ idP + β · a(P) + γ · a(P)2 : P• −→ C•+2(U,P•)



DEFORMATIONS AND FOURIER-MUKAI TRANSFORMS 217

is homotopic to zero as a map of complexes of quasi-coherent sheaves,
and let h• : P• −→ TC•(U,P•) be such a homotopy. Note that hn is a
OX -module homomorphism. Combining these, we can conclude α⊗ idP
is homotopic to zero as complexes of C-vector spaces and the homotopy
is given by h† := h−∇†.

Now we are going to construct the complex (P†)• whose terms are
objects in QCoh(X,u) by using h†. First define (P†)n

i to be

(P†)n
i := Pn|Ui ⊕ Cn(U,P•)|Ui .

We introduce a left O(β,γ)
Ui

-module structure on (P†)n
i . For a ∈ OUi , let

γa ∈ TUi be a differential operator γa := γ(a, ∗). Then for

(a, b) ∈ OUi ⊕ C0(U,OX)|Ui , (x, y) ∈ Pn|Ui ⊕ Cn(U,P•)|Ui ,

define (a, b) ∗γ (x, y) to be

(a, b) ∗γ (x, y) := (ax, bx + ay + {γa ◦ ∇(n)
i0

(x|Ui0
)}i0) ∈ (P†)n

i .

Here {γa◦∇(n)
i0

(x|Ui0
)}i0 ∈ C0(U,Pn)|Ui . We have to check the following:

Lemma 6.2.
∗γ defines the left action of O(β,γ)

Ui
⊂ OX |Ui ⊕C0(U,OX)|Ui on (P†)n

i .

Proof. Take (a, b), (c, d) ∈ O(β,γ)
X (Ui) and (x, y) ∈ (P†)n

i . Then

(a, b) ∗γ {(c, d) ∗γ (x, y)}
= (a, b) ∗γ (cx, cy + dx + {γc ◦ ∇(n)

i0
(x|Ui0

)}i0)

= (acx, acy + adx + bcx + {aγc ◦ ∇(n)
i0

(x|Ui0
) + γa ◦ ∇(n)

i0
(cx|Ui0

)}i0),

and

{(a, b) ∗γ (c, d)} ∗γ (x, y)

= (ac, γ(a, c) + ad + bc) ∗γ (x, y)

= (acx, acy + adx + bcx + γ(a, c) · x + {γac ◦ ∇(n)
i0

(x|Ui0
)}i0).

Since ∇(n)
i0

is a connection, we have

aγc ◦ ∇(n)
i0

(x|Ui0
) + γa ◦ ∇(n)

i0
(cx|Ui0

)

= aγc ◦ ∇(n)
i0

(x|Ui0
) + γa ◦ {dc⊗ (x|Ui0

) + c · ∇(n)
i0

(x|Ui0
)}

= γ(a, c) · (x|Ui0
) + (cγa + aγc) ◦ ∇(n)

i0
(x|Ui0

)

= γ(a, c) · (x|Ui0
) + γac ◦ ∇(n)

i0
(x|Ui0

).

Therefore, the lemma follows. q.e.d.
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By Lemma 6.2, we have obtained the object,

(P†)n
i ∈ Mod(O(γ)

Ui
).

If we regard Pn|Ui and Cn(U,P•)|Ui as O(γ)
Ui

-modules by the surjection,

O(γ)
Ui

³ OUi , then we have the exact sequence in Mod(O(γ)
Ui

),

0 −→ Cn(U,P•)|Ui −→ (P†)n
i −→ Pn|Ui −→ 0.

Since Pn|Ui , Cn(U,P•)|Ui are objects in QCoh(O(γ)
Ui

), we have

(P†)n
i ∈ QCoh(O(γ)

Ui
),

by Lemma 3.1(3) and Corollary 3.3. Next define φn
i0i1

: (P†)n
i0
|Ui0i1

→
(P†)n

i1
|Ui0i1

to be

φn
i0i1(x, y) := (x,−{αi0i1j · x}j + y).

Here −{αi0i1j ·x}j ∈ C0(U,Pn)|Ui0i1
. Then φn

i0i1
is clearly O(β,γ)

Ui0i1
-module

homomorphism, and the cocycle condition of α implies the following:

(P†)n := ((P†)n
i , φn

i0i1) ∈ QCoh(X, u).

Now we will construct a differential dn : (P†)n → (P†)n+1. On Ui, we
define dn

i as

dn
i (x, y) := (dPx, dCy + h†(x)−{αikl · x}kl) ∈ Pn+1|Ui ⊕Cn+1(U,P•)|Ui ,

for (x, y) ∈ Pn|Ui ⊕Cn(U,P•)|Ui . Here {αikl ·x}kl ∈ C1(U,Pn)|Ui . Then

dn+1
i ◦ dn

i (x, y)

= (0, dC(dCy + h†(x)− {αikl · x}kl) + h†(dPx)− {αikl · dPx}kl)

= (0, dCh†(x) + h†dP(x)− {αi0i1i2 · x}i0i1i2)

= (0, 0).

The second equality comes from the cocycle condition of α. We can
check φn+1

i0i1
◦ dn

i0
= dn

i1
◦ φn

i0i1
similarly. We have to check the following:

Lemma 6.3. dn
i is O(β,γ)

Ui
-module homomorphism.

Proof.
Take (a, b) ∈ O(β,γ)

Ui
⊂ OUi ⊕ C0(U,OX)|Ui , i.e., δb = {βi0i1(a)}i0i1 ,

and (x, y) ∈ Pn|Ui ⊕ Cn(U,P•)|Ui . Then

(a, b) ∗γ dn
i (x, y)

=(a, b) ∗γ (dPx, dCy + h†(x)− {αijk · x}jk)

=(adPx, adCy + ah†(x)− a{αijk · x}jk + bdPx+ {γa ◦ ∇(n+1)
i0

(dPx)}i0),
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and

dn
i {(a, b) ∗γ (x, y)}
= dn

i (ax, ay + bx + {γa ◦ ∇(n)
i0

(x)}i0)

= (dP(ax), dC(ay + bx + {γa ◦ ∇(n)
i0

(x)}i0) + h†(ax)− {αijk · ax}jk).

Therefore it suffices to check the following:

−a∇†(x) + {γa ◦∇(n+1)
i0

(dPx)}i0 = δ(bx) + dC{γa ◦∇(n)
i0

(x)}i0 −∇†(ax).

We calculate ∇†(ax)− a∇†(x). Since

∇(ax)− a∇(x) = da⊗ x

and

∇ ◦ dC ◦ ∇(ax)− a∇ ◦ dC ◦ ∇(x)

= ∇ ◦ dC ◦ (da⊗ x + a∇(x))− a∇ ◦ dC ◦ ∇(x)

= ∇ ◦ (da⊗ dPx + adC ◦ ∇(x))− a∇ ◦ dC ◦ ∇(x)

= da⊗∇ ◦ dPx + dC ◦ ∇(x)⊗ da,

we have

∇†(ax)− a∇†(x)

= {βi0i1(a)}i0i1 · x− γa ◦ ∇ ◦ dP(x) + γa ◦ dC ◦ ∇(x)

= δ(b)x− γa ◦ ∇ ◦ dP(x) + γa ◦ dC ◦ ∇(x).

So the lemma follows. q.e.d.

We have constructed an unbounded complex of QCoh(X, u):

P† := · · · −→ (P†)n dn−→ (P†)n+1 −→ · · · ,

with dn|Ui = dn
i . The next lemma finishes the proof of Proposition 6.1.

q.e.d.

Lemma 6.4. P† is locally quasi-isomorphic to a bounded complex of
free O(β,γ)

X -modules of finite rank, and Li∗P† ∼= P.

Proof. Let

pn
i : Cn(U,P•)|Ui −→ C0(U,Pn)|Ui −→ Pn|Ui

be a projection and h̃n
i be the composition,

h̃n
i := pn+1

i ◦ (h†)n
i : Pn|Ui −→ Cn+1(U,P•)|Ui −→ Pn+1|Ui .

Let P̃n
i := Pn|Ui [ε]/(ε2) be a free left O(γ)

Ui
-module, the left action given

by for a + bε ∈ O(γ)
Ui

, x + yε ∈ P̃n
i ,

(a + bε) ∗γ (x + yε) := ax + (ay + bx + γa ◦ ∇(n)
i (x))ε.
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Then define the complex P̃•i whose differential is given by

P̃n
i 3 x + yε 7−→ dP(x) + (dCy + h̃n

i (x))ε ∈ P̃n+1
i .

We will show that the natural map

(P†)n
i 3 (x, y) 7−→ x + pn

i (y)ε ∈ P̃n
i

gives a quasi-isomorphism between P†|Ui and P̃•i . It is clear that the
above map is a morphism of complexes of O(β,γ)

Ui
-modules. Note that p•i

gives a splitting of the Čech resolution on Ui, so we have the decompo-
sition,

C•(U,P•)|Ui
∼= P•|Ui ⊕Q•i ,

for some complex Q•i with H•(Q•i ) = 0. We have the following diagram:

TQ•iy

P•|Ui

h†−{αijk}jk−−−−−−−−→ TC•(U,P•)|Ui −−−−→ T (P†)•i∥∥∥
yTp•i

P•|Ui

h̃−−−−→ TP•|Ui −−−−→ T P̃•i .

Therefore we obtain the distinguished triangle

Q•i −→ (P†)•i −→ P̃•i −→ TQ•i .
Since Q•i is acyclic, the first part of the lemma follows. For the second
part, we have a morphism of complexes (P†)• → i∗P• by construction.
By taking adjoint, we have a morphism Li∗P† → P in Db(X). This
morphism is quasi-isomorphic on Ui, and hence quasi-isomorphic. q.e.d.

Now let us return to the situation of the first part of this section. By
Proposition 6.1, we obtain the object P† ∈ Db

perf(X × Y,−p∗1ǔ + p∗2v).
Therefore we can construct a functor Φ† : Db(X, u) → Db(Y, v). Next
we will show Φ† fits some commutative diagram.

Lemma 6.5. The following diagram is 2-commutative,

Db(X) i∗−−−−→ Db(X, u) Li∗−−−−→ D−(X)

Φ

y
yΦ†

yΦ−

Db(Y ) i∗−−−−→ Db(Y, v) Li∗−−−−→ D−(Y ).

Proof. To distinguish the notation, let

Rp†2∗ : Db(Mod(p−1
2 O(β′,γ′)

Y , p∗2α̃
′)) −→ Db(Mod(O(β′,γ′)

Y ), α̃′),

p†∗1 : Db(X, u) −→ Db(X × Y, p∗1u + p∗2(0, β′, γ′)),
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be derived push-forward and pull-back. Let us take a ∈ Db(X). Then

Φ† ◦ i∗(a) = Rp†2∗(p
†∗
1 i∗a

L⊗ P†)
∼= Rp†2∗(i∗p

∗
1a

L⊗ P†)
∼= Rp†2∗i∗(p

∗
1a

L⊗ Li∗P†)
∼= i∗Rp2∗(p∗1a

L⊗ P)
∼= i∗ ◦ Φ(a).

The second isomorphism follows from flat base change, and the third
from projection formula. These properties are verified in our case as in
the commutative case. We have proved that the left diagram commutes.
The right diagram commutes similarly. q.e.d.

Proof of Theorem 4.7. It remains to show Φ† gives an equivalence. Take
a ∈ Db(X, u) and b ∈ D−(X). Then we have

Hom(Φ†(a),Φ†i∗(b)) ∼= Hom(Φ†(a), i∗Φ(b))
∼= Hom(Li∗Φ†(a), Φ(b))
∼= Hom(Φ−Li∗a,Φ(b))
∼= Hom(Li∗a, b)
∼= Hom(a, i∗b).

Therefore the map Hom(a, i∗b)
Φ†−→ Hom(Φ†(a), Φ†(i∗b)) is an isomor-

phism. Next take a, b ∈ Db(X,u). Since we have the distinguished
triangle,

i∗Li∗b −→ b −→ i∗Li∗b −→ i∗Li∗b[1],
we have the following morphism of exact sequences, (b′ := Li∗b)

Hom(a, i∗b′) −−−−→ Hom(a, b) −−−−→ Hom(a, i∗b′)y
y

y
Hom(Φ†(a),Φ†(i∗b′)) −−−−→ Hom(Φ†(a),Φ†(b)) −−−−→ Hom(Φ†(a),Φ†(i∗b′)).

Therefore, the morphism Hom(a, b) −→ Hom(Φ†(a), Φ†(b)) is an iso-
morphism by 5-lemma. Now we have proved Φ† is fully-faithful. Finally,
we show Φ† is essentially surjective. Take F ∈ Db(Y, v). Again we have
the distinguished triangle,

i∗Li∗F −→ F −→ i∗Li∗F tF−→ i∗Li∗F [1].

Let F ′ := Li∗F . Since we have

i∗F ′ ∼= i∗Φ ◦Ψ(F ′)
∼= Φ† ◦ i∗Ψ(F ′),
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the morphism tF : i∗F ′ → i∗F ′[1] is obtained by applying Φ† to some
morphism, sF : i∗Ψ(F ′) → i∗Ψ(F ′)[1]. Let G := Cone(sF ). Then F is
isomorphic to Φ†(G). It remains to show G is bounded. Note that by
the definition of Φ†, there exists N > 0 such that if H i(A) = 0 for i ≥ l
and some l, then H i(Φ†(A)) = 0 for i ≥ l+N . Let us take an intelligent
truncation of G:

τ≤l−1G −→ G −→ τ≥lG.

Then by the above remark, H i(Φ†(τ≤l−1G)) = 0 for i ≥ l+N . Therefore
Φ†(τ≤l−1G) → Φ†(G) = F is zero-map for sufficiently small l. Since
Φ† is fully-faithful, this implies τ≤l−1G → G is zero-map. Therefore
τ≤l−1G = 0. q.e.d.

7. Examples

Abelian varieties. We give an example in which φT does not preserve
direct summands of HT 2(X). Let A be an Abelian variety, and Â be its
dual Abelian variety. Let U ∈ Pic(A× Â) be the Poincare line bundle.
Then the functor

ΦU
Â→A

: D(Â) −→ D(A)

gives an equivalence (cf. [14]). In this particular example, φT takes some
α ∈ H2(OÂ) to γ ∈ H0(∧2TA). Hence Φ† give equivalences between
gerby deformations and non-commutative deformations of Abelian vari-
eties first orderly. This phenomenon has been extended to infinite order
deformations in [3].

Birational geometry. In this example, we discuss the situation in
which φT preserves some direct summands of HT 2(X). This exam-
ple comes from the equivalences under some birational transforms, e.g.,
flops. Recently the relationship between derived categories and bira-
tional geometry has been developed. For example, see [4], [7], and [10].
Two smooth projective varieties X, Y are called K-equivalent if and
only if there is a common resolution p : Z → X, q : Z → Y such that
p∗KX = q∗KY . Kawamata [10] conjectured that derived categories are
equivalent under K-equivalence. On the other hand, Wang [18] conjec-
tured that the deformation theories of complex structures are invariant
under K-equivalence. Since derived category contains much informa-
tion, it is reasonable to guess that Kawamata’s conjecture is stronger
than Wang’s conjecture. We will see the relationship between two con-
jectures using Theorem 4.7. Recall that X

f→ W
g← Y is called a flop

if
• f and g are isomorphisms in codimension one.
• Relative Picard numbers of f , g are one.
• KX = f∗KW , KY = g∗KW .
• Birational map g−1 ◦ f : X 99K Y is not an isomorphism.
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If X and Y are connected by flops, then X and Y are K-equivalent. We
denote by Def(X) the Kuranishi deformation spaces, and by T0 Def(X)
its tangent space at the origin . Let X → Def(X), Y → Def(Y ) be Ku-
ranishi families. For β ∈ T0 Def(X), let Xβ be a scheme over C[ε]/(ε2),
the infinitesimal deformation of X corresponding to β.

Theorem 7.1. Let X and Y be smooth projective varieties, which are
connected by a flop, X

f→ W
g← Y . Assume that there exists an object

P ∈ Db(X × Y ), which is supported on X ×W Y , such that the functor
ΦPX→Y : Db(X) → Db(Y ) gives an equivalence. Then there exists an
isomorphism φD : T0 Def(X) → T0 Def(Y ) such that Φ extends to an
equivalence,

Φ† : Db(Coh(Xβ)) −→ Db(Coh(YφD(β))).

Proof. Let φT : HT 2(X) → HT 2(Y ) be the isomorphism induced by
Φ. It suffices to show φT takes (0, β, 0) to (0, β′, 0). Let U ⊂ W be the
maximum open subset on which f and g are isomorphic. Then, since
codim(X \ U) ≥ 2, codim(Y \ U) ≥ 2, and f |X\U , g|Y \U has positive
dimensional fibers, it follows that codim(W \U) ≥ 3. On the other hand,
since P is supported on X ×W Y , the following diagram commutes:

HT 2(X)
φT−−−−→ HT 2(Y )y

y
HT 2(U) HT 2(U).

Here the vertical arrows are restrictions. Let (α′, β′, γ′) := φT (0, β, 0).
By the above diagram, we have α′|U = 0, γ′|U = 0. It is clear that
γ′ = 0. On the other hand, since Rg∗OY = OW , we have H2(Y,OY ) ∼=
H2(W,OW ). Since codim(W \ U) ≥ 3, the restriction H2(W,OW ) →
H2(U,OU ) is injective by [16]. Therefore, α′ = 0. q.e.d.
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