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C O N V E X H U L L P R O P E R T I E S O F 
H A R M O N I C M A P S 

P E T E R LI k J IAPING WANG 

0. Introduct ion 

In 1975, Yau [18] proved, by way of a gradient estimate, tha t a com­
plete manifold M with non-negative Ricci curvature must satisfy the 
strong Liouville property for harmonic functions. The strong Liouville 
property (Liouville property) asserts that any positive (bounded) har­
monic function defined on M must be identically constant. In 1980, 
Cheng [4] generalized the gradient estimate to harmonic maps from a 
manifold M with non-negative Ricci curvature to a Cartan-Hadamard 
manifold N. In particular, the Liouville property for harmonic maps can 
be derived for this situation. The Liouville property for harmonic maps 
asserts that if the image of the harmonic map is contained in a bounded 
set, then the map must be identically constant. In fact, Cheng's gradi­
ent estimate actually yields a slightly stronger theorem. It implies that 
if a harmonic map from a manifold with non-negative Ricci curvature 
into a Cartan-Hadamard manifold is of sublinear growth, then the map 
must be constant. A map u : M —> N is of sublinear growth if there 
exist a point p £ M and a point o £ N such that the distance d(u(x), o) 
between the image of u to the point o satisfies 

d(u(x),o) = o(p(x)), 

with p(x) being the distance from x £ M to p. Later, Kendall [10] 
proved that if a stochastically complete manifold satisfies the Liouville 
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property for harmonic functions, then it must also satisfy the Liouville 
property for harmonic maps into a Cartan- Hadamard manifold. 

A few years ago, Grigor'yan [8] and Saloff-Coste [15] proved that if a 
manifold M satisfies a weak Poincare inequality (V) and a weak volume 
growth property (V) (see §3 for definition), then it must satisfy a Har-
nack inequality for harmonic functions. A consequence of the Harnack 
inequality is the strong Liouville property for harmonic functions. The 
Harnack inequality also implies that there exists a constant 0 < a < 1 
such that any harmonic function f, defined on M, satisfying the growth 
condition 

\f(x)\ = o(pa(x)) 

as x —T- oo, must be identically constant. Since it is known that a man­
ifold with non-negative Ricci curvature satisfies conditions (V) and (V) 
and also both of these conditions are invariant under quasi-isometries, 
this will include the class of manifolds which are quasi-isometric to a 
manifold with non-negative Ricci curvature. 

Two years ago, Shen [14] formulated a version of the strong Liouville 
property for harmonic maps into a Cartan-Hadamard manifold N with 
strictly negative curvature. A manifold is said to have strictly negative 
curvature if its sectional curvature K N is bounded from above by some 
negative constant — a < 0. Shen proved that if the image of a harmonic 
map from a manifold with non-negative Ricci curvature lies inside a 
horoball of N, then it must be a constant map. In a recent paper, 
Tam [16] generalized the result of Grigor'yan and Saloff-Coste and the 
result of Shen to harmonic maps from manifolds satisfying conditions 
(V) and (V). In particular, he proved that if M is a manifold satisfying 
conditions (V) and (V), then there exists a constant 0 < a < 1 such 
that any harmonic map u from M into a Cartan-Hadamard manifold 
satisfying 

d(u(x), o) = o(pa(x)), 

as x —» oo, must be the constant map. He also proved that if M 
is a manifold satisfying conditions (V) and (V), then any harmonic 
map whose image is in a horoball of a Cartan-Hadamard manifold with 
strictly negative curvature must be a constant map. 

In a different direction, a recent article of Han, Tam, Treibergs, and 
Wan [9] discussed the structure of the image sets of harmonic diffeo-
morphisms from the Euclidean plane R into the hyperbolic plane H2 . 
In this setting, they proved that if the Hopf differential is polynomial of 
degree £, then the image of the harmonic map must be an ideal polygon 
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with £ + 2 vertices. Conversely, if the image of the harmonic diffeo-
morphism u is an ideal polygon with £-\-2 vertices, and if, in addition, 
the conformal metric jj9ujj2jdzj2 is complete, then the Hopf differen­
tial must be polynomial of degree £. The arguments involved in proving 
these results utilized many key facts which are specific to dimension 2. 
The first fact is tha t one can realize such a harmonic diffeomorphism 
as Gauss map of some constant mean curvature, space like, complete, 
hypersurface in Minkowski space. Another purely 2-dimensional phe­
nomenon used in the proof is the Gauss-Bonnet theorem. It is evident 
that such a clean statement is not to be expected in higher dimensions. 
However, it is hopeful that some form of higher dimension statement 
which can be viewed as a partial generalization to this result would be 
valid. 

The purpose of this note is to study the image sets of harmonic maps 
u : M —T- N from a manifold, whose space of bounded harmonic function 
H ( M ) is finite dimensional, into a Cartan-Hadamard manifold. In view 
of the above discussion, a manifold with non-negative Ricci curvature 
has dim H ( M ) = 1. More generally, because of the results of Grigor'yan 
and Saloff-Coste, a manifold satisfying conditions (P) and (V) also has 
dim H ( M ) = 1. In fact, using a recent theorem of the first author [11], 
manifolds satisfying a mean value inequality (M) (see x3 for definition) 
and condition (V) will have dim H ( M ) < °o. The interested reader 
should refer to [11] and the survey paper [12] for a detail comparison of 
the various conditions. 

Let us denote S00(N) to be the geometric boundary of the Cartan-
Hadamard manifold N, and A = u(M) n S00(N) to be the image of 
u in the geometric boundary. Suppose fA n g is any monotonically de­
creasing sequence of closed subsets of S00(N) with the properties that 
A is properly contained in each A n and nnL1A n = A. We will show in 
Theorem 2.1 that there exists a set of k points fy i}k=1 in u(M) n N, 
with k < dim HQ (M), such that 

u(M)cnn=1C(fy i g 1 U A n)1 

where C(fy i} i= 1 UA n) denotes the convex hull over the set fy i}k=1 U n . 
In the event when A = 0, then u(M) C C(fy i g i=1)• When A / 0, it is 
tempting to conclude that u(M) C C(fy i} i= 1 U A). Unfortunately, we do 
not know if r\n=1C(fy i g k i=1 U A n) = C(fy i g k i=1 U A) is valid for arbitrary 
Cartan-Hadamard manifolds. However, if we assume that N satisfies 
a separation property (Definition 1.4), then we prove in Lemma 1.5 
that this is the case. It is easily verified that two-dimensional visibility 
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manifolds and hyperbolic spaces have separation property. On the other 
hand, for Cartan-Hadamard manifolds with strongly negative sectional 
curvature, i.e., K N is bounded between two negative constants, we show 
that the two sets nnL1C(fy i g k=1 U A n) and C(fy i g k i= l U A) are bounded 
distance away from each other. It turns out that this is sufficient for us 
to conclude that u(M) C C(fy i g k i= l U A). 

Observe that the convex hull theorem asserts that if dim HQ(M) = 1 
and u(M) is contained in a bounded set, then A = 0 and u(M) must lie 
in the convex hull of one point. This is precisely Kendall's theorem (also 
see [16]) without the assumption that M is stochastically complete. An­
other application of the convex hull theorem is given in Theorem 2.4, 
where we assume that N either is a two-dimensional visibility manifold 
or has strongly negative sectional curvature, and that all positive har­
monic functions on M are bounded with dimH(M) = k < °o. In 
this case, if the image at infinity A = u(M) n S00(N) of the harmonic 
map has at most 1 point, then A is in fact empty and u(M) must be 
contained in the convex hull of at most ko points in N. When ko = 1, 
this generalizes the horoball theorems of Shen and Tam (Corollary 2.5) 
for this special case of N. 

In x3, we consider harmonic maps from a manifold satisfying condi­
tion (M) and having polynomial volume growth, into a Cartan-Hada­
mard manifold satisfying the separation property at infinity (Definition 
1.7). We will prove that if the harmonic map is polynomial growth of at 
most degree £, then A = u(M) n S00(N) must have only finitely many 
points. Moreover, the number of points can be estimated by £. Combin­
ing with Theorem 2.1, we conclude that (Theorem 3.5) u(M) must lie 
in the convex hull over a finite set of interior vertices fy j g union a finite 
set of boundary vertices fag if the target manifold N is either a two-
dimensional visibility manifold or has strongly negative sectional curva­
ture. If we impose the stronger assumption that M satisfies condition 
(P) also, then the set of interior vertices fy j g must be empty unless u is 
a constant map. In particular, the image must lie in a convex hull over 
a finite number of boundary points, which we call vertices at infinity. 
Moreover, the number of vertices at infinity is bounded by a constant 
depending on £. This last result can be viewed as the partial higher 
dimensional generalization of the theorem of Han-Tam-Treibergs-Wan. 

The key ingredient in x3 is the notion of ^-massive sets (Definition 
3.1). In Grigor'yan's [7] work, he defined massive sets, which are the 
same as 0-massive sets, to study the space HQ(M). He showed that 
dim Ho (M) is given by the maximum number of disjoint massive sets in 
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M. If we define the space H ( M ) of harmonic functions with polynomial 
growth of at most degree £, it is not known that d i m H ( M ) is related 
to the maximum number of disjoint ^-massive sets. However, in [11] the 
first author estimated d i m H ( M ) on a manifold satisfying conditions 
(M) and (V). It turns out that by modifying that argument, one can 
also estimate the maximum number of disjoint ^-massive sets on M. This 
estimate allows us to bound the number of points in A = u(M)nS00(N). 

The authors would like to thank Rick Schoen for encouraging us 
to study the convex hull property of this problem. We would also like 
to thank Luen-fai Tam for his interest in this work and many helpful 
discussions relating to this paper. 

1. Proper t i e s of C o n v e x Hull 

Throughout this paper, we shall assume that N is a Cartan-Hadamard 
manifold, namely, N is simply connected and has nonpositive sectional 
curvature. It is well known that N can be compactified by adding a 
sphere at infinity S00(N). The resulting compact space N = NUS00(N) 
is homeomorphic to a closed Euclidean ball. Two geodesic rays 71 and 72 
in N are called equivalent if their Hausdorff distance is finite. Then the 
geometric boundary S00(N) is simply given by the equivalence classes 
of geodesic rays in N. A sequence of points fx n g in N converges to 
x G N if for some fixed point p G N, the sequence of geodesic rays 
fpx n g converges to a geodesic ray y £ x. In this case, we say 7 is the 
geodesic segment ~px joining p to x. Recall tha t a subset C in N is 
strictly convex if any geodesic segment between any two points in C 
is also contained in C. For a subset K in N, the convex hull of K, 
denoted by C(K), is defined to be the smallest strictly convex subset 
C in N containing K. The convex hull can also be obtained by taking 
the intersection of all convex sets C C N containing K. When N is a 
Cartan-Hadamard manifold, there is only one geodesic segment joining 
a pair of points in N. In this case, there is only one notion of convexity, 
and we will simply say a set is convex when it is a strictly convex set. 
For the purpose of this article, we will need a notion of convexity for N. 
Since a geodesic line is a geodesic segment joining the two end points in 
Soo(N), it still makes sense to talk about geodesics joining two points 
in N. However, it is not true in general that any two points in S00(N) 
can always be joined by a geodesic segment given by a geodesic line, as 
indicated by two non-antipodal points in S ̂  (^-n)- If every pair of points 
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in S00(N) can be joined by a geodesic line in N, then N is said to be 
a visibility manifold. This class of manifolds was extensively studied in 
[6]. A typical example of a visibility manifold is a Cartan-Hadamard 
manifold with sectional curvature bounded from above by a negative 
constant —a < 0. 

To remedy the situation when N is not a visibility manifold, we 
defined a generalized notion of geodesic segment joining two points at 
infinity. 

Definit ion 1.1. A geodesic segment 7 joining a pair of points x 
and y in N is the limiting set of a sequence of geodesic segments f n g 
in N with end points fx n g and fy n g such that x n —> x and y n —> y. We 
will denote 7 by ~xy. 

Observe that if ~xy n S00(N) = fx,yg, then ~xy must be a geodesic 
line in N and hence a geodesic segment in the traditional sense. For 
the case of two non-antipodal points in S00(R) , the shortest arc on 
S 1 = S00 ( R ) joining the two points will be the geodesic segment in the 
sense defined above. If the two points are antipodal in S 0 0 ( R ) , say the 
northpole and the southpole, then there are infinitely many geodesic 
segments joining them. Each vertical line is a geodesic segment in the 
genuine sense. Also, both arcs on S 1 joining the two poles are geodesic 
segments joining them. Using this definition, for a pair of points in 
Soo(N), it is possible to have more than one geodesic segments joining 
them. The convexity we will define will be in the sense of strictly convex. 

Definit ion 1.2. A subset C of N is a convex set if for every pair 
of points in C, any geodesic segment joining them is also in C. 

Definit ion 1.3. For a subset A in N, we define its convex hull 
C(A) to be the smallest convex subset of N containing A. 

In what follows, when we say that a subset is closed, we mean that it 
is closed in N unless otherwise noted. In general, we denote the closure 
for a subset A in N by A. For a given sequence of closed subsets fA n g 
decreasing to A, it is natural to ask whether the convex hull of A n in N 
decreases to the convex hull of A. For this purpose, we introduce the 
following definition. 

Definit ion 1.4. A Cartan-Hadamard manifold N is said to satisfy 
the separation property if for every closed convex subset A in N and 
every point p not in A, there exists a closed convex set C properly 
containing A and separating p from A, i.e., A C C, A n S00(N) is 
contained in the interior of C D S00(N) and p is not in C. 
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For a two-dimensional visibility manifold or a Cartan-Hadamard 
manifold with constant negative curvature, it is easy to check that the 
separation property holds. In fact, for a point p not in the closed con­
vex set A, pick up a point q £ A such that d(p,q) = d(p,A). Then 
the convexity of A and the first variation formula imply that for z G A, 
Z(~zq,qp) > 7T/2. Let x be the midpoint of the geodesic segment between 
p and q, and 

C = fy G ~N : Z(yx,xp) > K/2g. 

Then C is closed, convex as dC is evidently totally geodesic and C 
properly separates p from A. 

L e m m a 1.5. A Cartan Hadamard manifold N satisfies the sepa­
ration properly if and only if for every closed subset A and monotone 
decreasing sequence of closed subsets fA n g in N such that r)n=1A n = A, 
then 

n™=1C(A^ = C(A). 

Proof. Suppose that N satisfies the separation property. Let fA n g 
in N be a decreasing sequence of closed subsets with r)n=1A n = A. 
Obviously, 

C(A) c n ^ C A n 

from the definition of convex hull. Assume the contrary that 

n~=1C(A^C(A). 

Then there exists a point p G nn=1C(A n) but not in C(A). The sepa­
ration property asserts that there is a closed convex subset C properly 
separating p from C(A). Let 

C\ = fx G N : d(x,C) < eg 

be the e-neighborhood of C. For sufficiently small e > 0, Ct also properly 
separates p from C(A). Since A n S00(N) is contained in the interior of 
CnS00(N) and A n is decreasing to A, we conclude that for n sufficiently 
large, A n C Ce. Thus, C(A n) C Ce and p G Ce, which is a contradiction. 

Conversely, to show that N satisfies the separation property, let A 
be a closed convex subset and p a point not in A. We identify N with the 
closed unit ball of the Euclidean space endowed the canonical metric. 
Let A n be the tubular neighborhood of A of size 1/n. It is then clear 
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tha t A n is a decreasing sequence of closed subsets with r)n=1A n = A. 
Hence by the assumption, 

The fact that p ^ A implies that p ^ C(A n) for sufficiently large n. By 
choosing C = C(A n), it is clear that C properly separates p from A. 

q.e.d. 

The above Lemma indicates that the separation property is quite 
natural in the study of convex sets. We should point out that it is not 
known if a Cartan-Hadamard manifold with strictly negative curvature 
(or more generally a visibility manifold) satisfies the separation property. 
However, using the result in [1] (also see [2]) we show that every Cartan-
Hadamard manifold with sectional curvature satisfying 

-b < K N < -a < 0 

must satisfy the following statement. 

L e m m a 1.6. Let N be a Cartan-Hadamard manifold. Suppose 
that its sectional curvature satisfies —b< Â'N < — a for some positive 
constants a and b. Suppose d H (A ,B) denotes the Hausdorjf distance 
between the two sets A and B in N. For every closed subset A and 
monotone decreasing sequence of closed subsets fA n g in N such that 

n=iA n = A, then 

H(nn=1C0A n,C0Aj)<œ. 

Proof. For a point q G N, let v G T q(N) be a tangent vector at q. 
We denote 

T(v,0) = fx e N : Z(v,qx) < 9g 

to be the cone of angle 9 around v. The truncated cone is given by 

T(v, 9,r) = fx G N : Z(v, q~x) < 9, d(x, q) > rg. 

According to [1], for any given 0 < « < / 3 < 7 r , q £ N and nonzero 
tangent vector v at point q, there exists a constant Ro(a, ß, a, b) > 0 
independent of q and v such that one can construct a closed convex set 
C in N satisfying 

B q(R0)cC, 
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T(-v, K - ß) n Soo(N) c C n Soo(N), 
and 

T(v,a,R0 + ii)r\C = ® 

for all T] > 0. Let us fix 0 < a < ß < ir/2 and the corresponding Ro. 
For a given closed convex set B and point p not in B with d(p, B) > Ro, 
we claim that there exists a closed convex set C properly separating p 
from B. In fact, choose q £ B such that d(p,q) = d(p,B). Let 7 be 
the geodesic segment qp with 7(0) = q. Let v = 7'(0). Then we have a 
closed convex set C such that B q (Ro) C C and 

T(v,a,R0 + r])nC = 9 

for all 77 > 0. In particular, p is not in C. We now claim that B C C 
and BnS00(N) is contained in the interior of C f]S00(N). Note that by 
the choice of q and the first variation formula, we have Z(yq, —v)< ir/2 
for y G B. Since ß < 7T/2, one concludes that the point at infinity 
given by the geodesic ray emanating from q and passing through y is in 
T( — v, IT — ß) n S00 (N). In particular, it is in the set C l~l S00 (N). Since 
q G C and C is convex, the whole geodesic ray must lie in C. Thus, 
y G C, and B C C. This argument also implies that B (~) S00(N) is 
contained in T( — v,ir — ß) fi Soo(N), which is evidently in the interior 
of C Pi S00(N). In conclusion, C properly separates p from B and the 
claim follows. We now apply the claim to the case B = C(A). If there 
exists a point p G nnL1C(A n) such that d(p,C(A)) > Ro, then there 
exists a closed convex set C properly separating p from C(A). Since 
r\cn=lA n = A, we have A n C C for sufficiently large n. In particular, 
C(A n) C C and p £ C. This is a contradiction. So we conclude that 
d(p,C(A)) < Ro for p G nn°=1C(A n). It is clear that C{A) C n™=1C(A n). 
Hence, we have 

d H(nn=1C{Ar),C{A)) < R0. 

This completes our proof. q.e.d. 

According to our definition of convex hull, it is possible that C(K) l~l 
Soo (N) is a much bigger set than K n Soo(N). In fact, if we consider 
K to be the y-axis in R , then K n S00 ( R ) consists of the two poles in 
S1 . However, C(K) = R because every line given by x = constant is a 
geodesic joining the two poles of S1 . Hence, C{K) n S00(R) = S1 . On 
the other hand, if we assume in addition that N satisfies the following 
separation property at infinity, then 

C(K)nSco(N) = KnSco(N). 
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Definit ion 1.7. Let N b e a Cartan- Hadamard manifold. N is said 
to satisfy the separation property at infinity if for any closed subset A 
of S00(N) and any point p G S00(N) n A, there exists a closed convex 
subset C in N such that A is contained in the interior of C D S00(N) 
and p not in C. 

It is easy to check that a two-dimensional visibility manifold alway 
satisfies separation property at infinity. On the other hand, upon im­
proving a result of M. Anderson [1], A. Borbely [2] has shown that 
Cartan-Hadamard manifold N has separation property at infinity pro­
vided that its sectional curvature satisfies — CeXd(x> < K N{x) < — 1 for 
some constant C > 0 and 0 < A < 1/3, where d(x) is the distance from 
point x to a fixed point o £ N. We have the following simple lemma. 

L e m m a 1.8. Let N be a Cartan-Hadamard manifold. Then for 
every closed set K in N, 

C{K) n Soo(N) = K n Soo(N) 

if and only if N satisfies the separation property at infinity. 

Proof. Assume that N satisfies the separation property at infinity. 
For a given closed subset K, let A = K n SO0(N). If A = SO0(N)1 then 
there is nothing to prove. So we may assume this is not the case. The 
closeness of K implies that A is closed. Given p G S00(N) n A, there 
is a closed convex subset C such that A is contained in the interior of 
C Pi Soo{N) and p is not in C. In particular, we conclude that 

sup d(x, C) = R < oo. 
xEK 

Let us consider the R-neighborhood, 

C R = {x G N :d{x,C) < R}, 

of C. Then C R is a closed convex subset and K C C R . Moreover, 

CnS00{N) = C R~nS00{N). 

Therefore, C(K) C C R and p is not in C R . In particular, p is not in 
C(K) n Soo (N). This shows that C(K) n S ̂  (N) = A. 

Conversely, to show that N satisfies the separation property at infin­
ity, let A be a closed subset of S00(N) and point p G S00(N) n A. Then 
there exists a closed subset K C S00(N) such that A is in the interior of 
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K and p ^ K. Let C = C(K) and by the assumption, C l~l Soo(N) = K . 
Thus, p $. C and A is contained in the interior of C l~l Soo(N). Hence, 
N satisfies the separation property at infinity and the lemma is proved. 

q.e.d. 

2 General harmonic maps 

We are now ready to prove a general structural result concerning 
harmonic maps into a Cartan-Hadamard manifold. 

T h e o r e m 2 .1 . Let M be a complete Riemannian manifold such that 
the dimension of the space of bounded harmonic functions H ( M ) is ko-
Let u : M —» N be a harmonic map from M into a Cartan-Hadamard 
manifold N. Denote A = u(M)nS00(N), where S00(N) is the geometric 
boundary of N. Then there exists a set of points fy i g k i=1 C u(M) n N 
with k < ko, such that, 

u(M)cnE>oC(A£ufyg k , 

where Ae is the e-neighborhood of A. If in addition we assume that either 
u is bounded (A = %), or N is a two-dimensional visibility manifold, or 
N has strongly negative sectional curvature, then 

u M ) C C(AUfy i}k=1). 

Proof. A domain Q in M is said to be massive if there exists a 
bounded, nonnegative, nontrivial, subharmonic function f on Q such 
that f = 0 on d£l. Such a function f is called a potential function of Q. 
Note that by setting f = 0 on M n Ci, f is a bounded subharmonic on 
M. A result in [7] implies that d i m H ( M ) = k if and only if M has 
exactly ko disjoint massive subsets Qi,..., Çlk0-

Let M be the Stone-Cech compactification of M. Then every bounded 
continuous function on M can be continuously extended to M. For each 
i G f 1 , . . . , kog, let us define the set 

S i = nfxeMjf(x) = supfg, 

where the intersection is taken over all the potential functions f of Qi. 
The fact that f is subharmonic together with the maximum principle 
implies that S i C M n M. We claim that S i / 0. In fact, for each 
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potential function f of Qi, the set {x \ f(x) = s u p f g is a closed subset 
of M n M. By the compactness of M n M, we need only to show that 
for any finitely many potential functions fi,..., f; of Qi, 

nl j=1{x\f j(x) = s u p f g / 0 . 

We will argue by induction on l. It is trivially true for one potential 
function. Let us assume that it is true for l potential functions that 

nl j=1{x\f j(x) = s u p f g / 0 . 

If we define the function f = fi-\- • • • -\- f l, then we have 

{x | f(x) = s u p f g = n l = 1 { x | f j(x) = s u p f j g. 

Note that both f and f ;+ i are potential functions of Qi. If 

{x | f(x) = s u p f g n {x | f l+i(x) = sup f / + i g = 0, 

then for sufficiently small e, the sets 

D1 = {x e M\ f(x) > s u p f - eg 

and 
D2 = {x e M I f l+1 (x) > sup f l+1 - eg 

are disjoint. Clearly both D\ and D% are subsets of Çti with the prop­
erties that dDi n dQi = 0 and dD2 C\ dQi = 0 because f = f;+1 = 0 on 
d£li. Also, the functions 

gi = f - s u p f + e 

and 

g2 = f l+i - sup f/+i + e 

are potential functions of D\ and D2, respectively. In particular, this 
implies that M has ko + 1 disjoint massive sets given by 

{S7i , . . . , f2i_i, D i , D2l fii+i, • • •, ^ k gi 

which is a contradiction. Therefore, 

rjt\{x\f j(x)=supf j g 

= {x I f (^) = s u p f g n {x I f l+i(x) = sup f / + i g 

/0, 
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and the claim that S i is nonempty follows. 
We now show that for each i there exists a potential function h i of 

Çli such that 
{x | h i{x) = sup h i g = S i. 

The function h i will be called a minimal potential function of Çti. For 
an arbitrary open set U in M such that S i C U, note that 

M n U c M n S i 

= U{x e M \ f ( x ) < sup fg , 

where the union is over all potential functions f of Çti. The compactness 
of M n U implies there exist finitely many potential functions f \ , . . . , f; 
of Çti such that 

M n U cuj=1{x\f j(x)< sup f j g. 

Let us define g = fi + • • • + f l, which has the property that {x \ g(x) = 
supgg C U. One may assume by scaling g tha t 0 < g < 1 on M and 
sup g = 1. Now choose a sequence of open sets U n C M , n = 1, 2 , . . . , 
such that U n C U n+\ and nnL 1 fn = S i. For each U n, there exists a 
potential function g n of f i such that 0 < g n < 1, supg n = 1 and 

{ x | g n(x) = supg n g C U n. 

By defining 
oo 

h i = J2^~n g n, 
n=l 

it is clear that h i is a minimal potential function of Çli satisfying 

{x | h- (x) = sup h i g = S i. 

From now on, we will denote h i to be a minimal potential function of 
ÎÎi . 

For a bounded subharmonic function v on M , consider the set 

S = {x \ v(x) = supvg. 

We claim that S must contain some S i. Moreover, for each j , either 
S Pi S j = 0 or S j C S. In fact, let us first argue that S fi S i / 0 for some 
i. If this is not the case, then for e > 0 sufficiently small the sets 

Çl = {x G M I v(x) > sup v — eg 
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and 
Cli = fx G M j h i(x) > sup h i — eg 

must satisfy Ci (~) Qi = 0. Clearly Qi C fii, and each f i is a massive set 
with potential function h i — sup h i + e. Also, S7 is a massive set with 
potential function v — sup v + e. Therefore 

fS7, S 7 i , . . . , S7k g 

are k + 1 disjoint massive sets of M, which is impossible. Therefore, 
S Pi S i ^ 0 for some i. To see that S i C S, let us consider the function 
w = h i -\- v. Note that 

fx jw(x) = sup wg = S i H S C S i. 

Thus, for sufficiently small e > 0, we have the set 

W = fx j w(x) > sup w — eg C fii, 

and f = w — sup w + e is a potential function of this massive set W. 
In particular, by extending f to be zero outside W, f is a potential 
function of Qi with 

fx j f(x) = sup fg = fx j w(x) = sup wg 

= S i n S. 

The minimality of S i implies that S i C S i fi S, hence S i C S. The 
preceding argument also shows that for any j , either S D S j = 0 or 
S j C S. 

We are now ready for the proof of the theorem. Let us pick a point 

yo e uMj - If 
u{M) c n e > o C ( A e U f y o g ) , 

then we are done. Hence we may assume that there exists an e-neighborhood 
Ae of A in S00(N) such that the set 

u ( M ) n C ( A e U f y o g ) / 0 . 

One can easily check that it is bounded in N. Since u is a harmonic map 
and the function d(y,C(Ae U fyog)) is convex, the composition function 

f{x) = d{u{x),C{AtUfy0g)) 

is a bounded nonconstant subharmonic function on M. Thus, f attains 
its maximum at every point of some S i, say S i . In particular, for x\ G 
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Si and a net fxag in M converging to x\ in M, a subnet of fu(xa)g 
converges to yi £ N . Again, if 

u{M) c n £ > 0 C ( A £ U f y i g ) , 

then the theorem is true, otherwise by choosing a smaller e if necessary, 
the function 

g(x) = d(u(x),C(AeUfy1g)) 

is a bounded nonconstant subharmonic function on M. If g achieves its 
maximum on Si , then g(x) = sup g for x G S i . In particular, 

supg = g(x1) = d(yllC(AU fyig)) = 0, 

which is impossible. Hence, we may assume g achieves its maximum on 
S 2 . 

For a net fxag in M converging to a point xi in S2, there exists 
a subnet of fu(xa)g tha t converges to yi £ N. Suppose that we have 
chosen l points y i , . . . , y\ described in the above procedure. If 

u ( M ) c n £ > 0 C ( A £ U f y i g-= 1) , 

then we are done, otherwise by choosing a smaller e if necessary, we 
define the function 

h(x) = d(u(x),C(AeUfy i g i=1)), 

which is a bounded nonconstant subharmonic function on M. We claim 
that h cannot achieve its maximum on u ' = 1 S i. Indeed, if it does, then 
h must achieve its maximum at every point on S i for some 1 < i < l. 
Thus using a similar argument as before, 

h(x i) = d y - , C ( A £ U f y i g-=1)) = 0, 

which is a contradiction. Hence, h achieves its maximum on some S j 
with j > l. We may assume that j = l + 1. 

Let us pick a point x ; + i G S/+i and a net fxag converging to x/+i. 
Suppose y;_|_i is an accumulation point of the net fu(xa)g. It is clear 
that this process must stop after at most ko steps since there are only ko 
massive sets. In particular, there exist k points f y i , . . . , y^g with k < ko 
such that 

u(M) C n £ >oC(A £ Ufy i g = 1 ) . 
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Moreover, y i G u(M), and the proof of the first statement is completed. 
If u is bounded, then the preceding argument readily implies that 

u M ) C C(fy i g k i = 1 ) . 

If N is a two-dimensional visibility manifold, then N has separation 
property and Lemma 1.5 implies that 

a > o C ( A £ U f y i}k=1) = C ( A U f y i}k=1), 

hence u (M) C C(AU fy i}k=1). 
If N has strongly negative sectional curvature bounded by 

-b < K N < -a < 0, 

then by scaling the metric we may assume a = 1. Lemma 1.6 and the 
fact that 

u(M) c n E > o C ( A £ U f y g = 1 ) 

imply that the function 

w(x) = d(u(x),C(Aufy i g k=1)) 

is bounded. If w is identically zero, then the proof is done. If not, let 
us denote 

n = C(Aufy i g 1 ) 

and t = supw(x). The convexity of Ci asserts that w is a non-trivial, 
non-negative, bounded subharmonic function on M. Moreover, for any 
S > 0, there exists a point x$ £ M such that w(x$) > t — S. If the 
sequence fu(x$)g has an interior accumulation point y k+i G N, then 
obviously there exists S k+i with w(S k+i) = t and hence u(S k+i) = y k+i-
This creates a new interior vertex. By repeating the above argument 
for the convex hull 

C(Aufy i g ) , 

either this process must stop after we pick up at most ko — k interior 
vertices or that the sequence fu(x$)g has no interior accumulation point. 

To remedy the situation when fu(x$)g has no interior accumulation 
point, we will modify the function w to yield a new subharmonic func­
tion with an interior accumulation point. For convenience sake, let us 
denote 

r(y) = d2(y,n). 
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The fact that K N < — 1 and the comparison theorem assert tha t there 
exists a constant C\ > 0 depending only on t such that the Hessian of 
T must satisfy 

H(T)(y)>C\ 

on the set {y G N j t2/4 < r(y) < 9t2/4}. Let (f> be a smooth function on 
[0, oc) such that 4> = 1 on [0, t/8] and ç!> = 0 on [t/4, oc) with 0 < 4> < 1 
and j<̂ >'j < C2, j(f>"j < C2 for some constant C2 depending only on t. Also, 
for any point p G N, the bounds — b < K N < — 1 and the comparison 
theorem yield that the Hessian of the distance function d p to the point 
p satisfies 

jD2d p(x)j < bcoth(bd p(x)). 

If we choose p to satisfy 3t/4 < d(p, Ci) < 5t/4, then it is easy to see 
that for sufficiently small e depending only on t and b, the Hessian of 
the function h(y) = r(y) + ecj)(d p(y)) is nonnegative everywhere . In 
particular, the function h o u is a non-negative subharmonic function 
on M. The fact that w(x) = d(u(x), Ci) is bounded implies that h o u is 
bounded. Moreover, hou = w2 on u _ 1 ( N n B p( t /4)) . For any 5 < e/2t, 
by choosing p = u(x,$), we have 

h o u(x,$) = r(u(x15)) + e 

> (t - 5)2 + e 

> t2 + 52. 

Hence the maximum value of h o u must be larger than t2, and for those 
points such that h o u(x) > t2 we must have u(x) G -u(x i 5)(t/4). This 
creats an interior accumulation point y k+i for any sequence {u(x i)} 
providing that the sequence {h o u(x i)} tends to the maximum value 
of the function h 0 u. We are now back to the situation where we have 
produced an interior vertex y k+i- This completes the proof. q.e.d. 

Corollary 2 .2 . If dim HQ(M) = 1, then every bounded harmonic 
map from M into a Cartan-Hadamard manifold must be constant. 

Recall tha t an open set Q in M is D-massive if there exists a non-
negative, bounded, nonconstant subharmonic function u on Q such that 
u = 0 on d£l and Rü jVuj2(x)dx < 00. It has been shown by Grigor'yan 
[7] that the space H>(M) of bounded harmonic functions with finite 
Dirichlet integral on M has dimension k D if and only if M has exactly 
k D disjoint D-massive sets. The next theorem follows from the same 
argument as in Theorem 2.1. 
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T h e o r e m 2.3 . Let u : M —» N be a harmonic map into a Cartan-
Hadamard manifold with finite total energy. Suppose that dim H , (M) = 
k D . Then there exists a set of k points fy i}k=1 C u(M)C\N with k < k D , 
such that, 

u(M)cne>0C(AeUfy i g 1 ) , 

where A = u(M) n S00(N), and Ae is the e-neighborhood of A. In 
particular, 

u{M) C C ( A U f y i}k=1) 

if either u is bounded, or N is a two-dimensional visibility manifold, or 
N has strongly negative sectional curvature. 

We conclude this section with the following result which may be 
viewed as a generalized version of Liouville property for harmonic maps. 
Before we state the theorem, let us denote H + (M) to be the linear space 
spanned by the set of positive harmonic functions on M. 

T h e o r e m 2.4. Suppose M is a complete manifold satisfying 

d i m H ( M ) = dimH+(M) = k0 < oc. 

Assume that u : M —» N is a harmonic map from M into a Cartan-
Hadamard manifold N which either is a two-dimensional visibility man­
ifold or has strongly negative sectional curvature, and that 

A = ujM) n Soo(N) 

consists of at most one point. Then the set A is necessarily empty, and 
there exists a set of k points fy i}k=1 C u(M) n N with k < ko such that 

u M ) C C(fy i g k i = 1 ) . 

In particular, if M has no nonconstant positive harmonic functions, 
then every such harmonic map must be a constant map. 

Proof. Theorem 2.1 implies that 

u(M) C C ( A U f y i}k=1) 

for some set of k points fy i}k=1 in N with k < ko. If A contains 
exactly one point a, let 7 be a geodesic line on ( — 00, +00) such that its 
restriction to (0,+00) represents a. For each y i, there exists a unique 
point j(t i) such that d(y i,j) = d(y i,j(t i)). Choose a point p = 7 ( t ) 
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with to < t i for i = 1 ,2 , . . . , k. Let S be the geodesic ray given by 
the restriction of 7 onto ( t , + O O ) , and denote the Busemann function 
associated to S by ß. Recall tha t if S is parametrized by arclength, then 

/ y ) = lim (t-d(y, 5(t))). 
t—>oo 

We claim that there exists a constant c such that 

d(y,p) < ß(y) + c 

for y G C(fag U fy i}k=1)- In fact, by the convexity of the function d(y, 7) 
and the choice of p, one easily checks that 

d(y, 5) = d(y, 7) < max d(y i, 7) = c 

for y G C(fag U fy i}k=1)- Therefore, if we let y G 5 be the point such 
that d(y, S) = d(y, y), then 

d y , p ) < d(y,S) + d(y,p) 

<c + ß(y) 
<2c + ß(y). 

This justifies the claim that 

d(u(x),p) < ß(u(x)) + c 

for all x G M . Since u is a harmonic map and N is a Cartan-Hadamard 
manifold, the function d(u(x),p) is subharmonic and ß(u(x)) + c super-
harmonic. The sub-super solution method yields a harmonic function 
f(x) on M such that 

d(u(x),p) < f(x) < ß(u(x)) + c. 

Therefore, f is an unbounded positive harmonic function on M, contra­
dicting to our assumption that there is no such function. In conclusion, 
A must be empty and 

C{u{M)) = C{fy g i=l). 

This proves our first statement. The second part of the theorem follows 
from the first part by taking ko = 1. q.e.d. 
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Notice that the horoball of a visibility manifold intersects the ge­
ometric boundary at exactly one point (see [3]). Thus, we obtain the 
following Liouville type theorem which partially generalizes the results 
in [14] and [16]. 

Corollary 2.5. Suppose M satisfies dim H + (M) = 1. Assume that 
N either is a two-dimensional visibility manifold or has strongly negative 
sectional curvature. Then every harmonic map from M into a horoball 
of N must be constant. 

Recall tha t a manifold is parabolic if it does not admit a positive 
Green's function. It is well-known that a parabolic manifold has no 
massive subsets and every positive harmonic function must be constant. 
Applying Theorem 2.1 to this case, we have the following corollary. 

Corollary 2.6. Let u be a harmonic map from a parabolic man­
ifold M into a Cartan-Hadamard manifold N. If N either is a two-
dimensional visibility manifold or has strongly negative sectional curva­
ture, then u(M) C C(A), where A = u(M) n S œ ( N ) . 

Proof. In this case, we have d i m H ( M ) = 1> hence Theorem 2.1 
implies that u(M) C C(AU fyg) for some y G u(M)f]N. Let us assume 
the contrary that u(M) is not contained in C(A). In particular, the 
parabolicity of M implies that the function d(u(x),C(A)) is unbounded. 
Lemma 1.6 then asserts that u(M) nC(W) is non-empty for some open 
set W C S00(N) which properly contains A. Let us consider the function 

f(x) = d(u(x),C(WJ), 

which is a non-constant, non-negative, bounded subharmonic function 
on M. However, the parabolicity assumption on M implies that such 
function does not exist. This completes our proof. q.e.d. 

3 Po lynomia l growth harmonic maps 

In this section, we will study the class of polynomial growth har­
monic maps into a Cartan-Hadamard manifold with separation property 
at infinity. When the domain manifold satisfies a type of mean value 
inequality for positive subharmonic functions and a volume growth prop­
erty, we will show that the image of a polynomial growth harmonic map 
of fixed degree must be contained in a convex hull over finitely many 
vertices. Moreover, the number of vertices can be estimated in terms of 
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the degree. This result may be viewed as a higher dimensional general­
ization of the results in [9] which deals with harmonic diffeomorphisms 
from R into a Hadamard surface. Throughout this section, we will 
assume N is a Cartan-Hadamard manifold. 

Let us first introduce a more general notion of massive sets. 

Definit ion 3 .1 . An open subset Ci of M is said to be ^-massive if 
there exists a nonconstant nonnegative subharmonic function f on Ci 
satisfying f = 0 on dQ and f(x) = O(p (x)) as x —> oo, where p(x) 
is the distance to a fixed point p G M. Such a function f is called an 
^-potential function of Ci. 

Note that a massive set is 0-massive and, in general, an ^-massive 
set is ^'-massive if £ < £'. 

L e m m a 3.2 . Let M be a complete manifold such that the maximum 
number of disjoint i-massive sets of M is ki. Suppose u : M —» N is a 
harmonic map from M into N, and N satisfies the separation property 
at infinity. Assume that there exists a point o £ N such that d(u(x), o) = 
O(pi(x)) as x —T- oo. Then 

A = uM)nS00(N) = fa i g'iL1 

with k' < ki — ko, where ko is the maximum number of disjoint mas­
sive sets of M. If, in addition, N either is a two-dimensional visibility 
manifold or has strongly negative sectional curvature, then there exist k 
points fy j g k j - 1 C u(M) Pi N with k' + k < ki such that 

uM) c C f a g U u f y g ) -

Proof. Let ko be the maximum number of disjoint massive sets in 
M. Since a massive set is always ^-massive, we have ko < ki. Theorem 
2.1 implies that there exist k points fy j g j = 1 C u(M) n N with k < ko, 
such that 

u{M) C n £ > 0 C ( A £ U f y j}k = 1 ) . 

If A contains at least k' points, then there exist disjoint open sets f£A}k=1 

in N such that f i fi A / (3 for i = 1, 2 , . . . , k'. Since N is assumed to 

satisfy the separation property at infinity, Lemma 1.8 yields that u(M) 

is not a subset of C((Nn U i U fy j g j = 1 ) . In particular, the function 

f i(x) = d(u(x),C((NnU i)Ufy j}k=1)) 
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is not identically zero on u 1(U i) and s u p f = oo. Clearly, f i = 0 on 
the boundary of u~l(U i) and 

f i(x) = O(/(x)). 

This implies that each set u~l(U i) is ^-massive but not massive. In 
particular, since they are disjoint, k' < ki — ko. Thus A has at most 
ki — ko points, and the first conclusion follows. If, in addition, N either is 
a two-dimensional visibility manifold or has strongly negative sectional 
curvature, then Theorem 2.1 yields that 

and the estimate k'-\-k < ki follows from the argument. This completes 
our proof. q.e.d. 

In the following, we shall adopt the argument utilized in [11] to 
show that for a manifold satisfying a mean value inequality and a weak 
volume growth property, then the number of disjoint ^-massive sets can 
be explicitly bounded. Let us begin by recalling some definitions from 

[H]-
A complete manifold M is said to satisfy the following properties if 

the corresponding statement holds: 

(V) Weak volume growth condition: if there exist constants Co > 0 
and v > 0 such that 

V x(r')<C0(r) V x(r) 

for all x £ M and 0 < r < r' < oo, where V x(r) denotes the 
volume of the geodesic ball centered at x £ M of radius r. 

(Ai) Mean value inequality: if there exists a constant A > 0, such that , 
for x G M and r > 0, any non-negative subharmonic function f 
defined on B x(r) must satisfy 

V x(r)f(x)<\ Z f. 
B x(r) 

(V) Weak Poincare inequality: if there exists a constant C > 0, such 
that for all x £ M and r > 0, 

Z u2 <C'r2 Z \Vu\2 

B x(r) R B x(2r) 

for any u G Hlt2(B x(2r)) satisfying B x r u = 0. 
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It is known that these conditions are valid on manifolds with non-
negative Ricci curvature with v being the dimension of the manifold. 
We refer to [11] for more comments regarding those properties and their 
relations with each other. Our purpose here is to show that for a man­
ifold with property (M) and having polynomial volume growth, the 
number of disjoint ^-massive sets must be finite and can be bounded. 
To do this, we first recall a result of the first author in [11]. 

L e m m a 3.3[11]. Let K be a k-dimensional linear space of functions 
defined on M. Suppose each function u G K is polynomial growth of at 
most degree i. Suppose that the volume growth of M satisfies V p(r) = 
O(rv) for some point p G M. Then for any ß > 1, S > 0, and r$ > 0, 
there exists r > r$ such that if fu{\k=l is an orthonormal basis of K 
with respect to the inner product Aßr(u, v) = R B ,„ ^ uv, we have 

u2i>kß-^l+v+s) 
i B p(r) 

T h e o r e m 3.4 . Let M be a complete manifold satisfying condition 
(M). Suppose that the volume growth of M satisfies V p(r) = O(rv) for 
some point p G M. Then M has only finitely many disjoint i-massive 
sets and the number of disjoint i-massive sets is bounded from above by 
A 3(2*+i/). If M is further assumed to have property (V), then there exists 
a constant C > 0 depending only on Co and v such that the number of 
disjoint i-massive sets is bounded from above by C \iv~l. 

Proof. Let Qi,... ,Çlke be kt disjoint ^-massive sets in M, and 
u i , . . . , u ke be the corresponding potential functions. Extend each Ui to 
be 0 on M n Çli. Then Ui is a nonnegative subharmonic function on M 
and each Ui is of polynomial growth of degree at most i. Since CIi are 
disjoint, the support of the functions Ui are disjoint also. In particular, 
by taking r§ to be sufficiently large such that R B , -, u i > 0 for each 

i, the set fu i g i k : 1 forms an orthogonal basis with respect to A r for all 
r > r . Applying Lemma 3.3 to 

Aßr(u i,u i) ji=1 ' 

we conclude that there exists r > r$ with 
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(3.1) X R u > k i ß - { 2 l + v + 8 ) . 
i=l B p(ßr) i 

On the other hand, the fact that the set of functions fug have disjoint 
support implies that for each x G M there exists some j G f 1 , . . . , kig 

such that 

X «i(x) «j(x) 

1 B p(ßr) u i B p(ßr) u 

Since the function P i=i R u i 2 is subharmonic, the maximum princi-
B p(ßr) u i 

ple implies that there exists a point q G dB p(r) such that 

X »i(x) < ^ »i(q) u j q) 

for all x G B p(r). Applying the mean value inequality and noting that 

B p(r) C B q(2r) C B p(Sr), we get 

V p(r)u j(q) < V q(2r)u j (q) < A u j < A u j . 

Thus, 

B q(2r) B p(3r) 

^ Bpir) u" < V (r) u j q) < AR Bp(3r) «j 

i = l ßp(/3r) u B p(ßr) u j B p(ßr) Uj 

Choose ß = 3. Then from (3.1) we conclude that 

Hence, ki < A3^2 +IJ' as S is arbitrary. This completes the proof for the 
case that M has polynomial volume growth. 

If M has property (V), we can use the argument in [11] to improve 
the estimate. Using the same notation as before, for 0 < e < 1/2, if we 
denote the distance from p to x by p(x), then the mean value inequality 
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(A4) implies that 

u? 

< A V ( ( l + £ )r -p(x) )sup B « i ± u . 

However, condition (V) and the fact that p(x) < r yield that 

V x((l + 6)r - p(x)) > Co"1 ( l ^ - x y ) " V ( ( l + 6)r + p(x)) 

- C ^ 2(l + e)r J V p( j-

Hence, substituting into (3.2) and integrating over B p(r) leads to 

R B p(r)u CX kt R B p((l + e)r)u X RDp(r) i . C ^ k 

(3.3) i=lB p(ßr)u i V p\r) i=l B p(ßr)u i 

X Z ((1 + e) -r~l p(x))-v dx. 
B p(r) 

On the other hand, we have (see [11]) 

(3.4) Z (( l + e ) - r " 1 p(x))~'y dx < CV p(r) e^1. 
B p(r) 

Combining this with (3.3), we conclude that 

(3.5) X R ̂ r J i 2 < C A 6 - ( ' - - i ) s u p 
7l B p(ßr)u i i = 1 B u" 

Setting /3 = 1 + e, we obtain from (3.1) and (3.5) that 

^ ( l + e ) - ( 2 ^ + ^ ) K C A e - f " " 1 ) . 

Now the estimate on ki follows by choosing e = (2i)~l and observing 
that the quantity (1 + (2£)~1)~^+u+ ' is bounded from below. q.e.d. 

By combining Lemma 3.2 with Theorem 3.4, we hence deduce the 
main structural result on polynomial growth harmonic maps. 
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T h e o r e m 3.5 . Let M be a complete manifold satisfying condition 
(M) and its volume growth V p(r) = O(rv) for some point p G M. 
Suppose N is a Cartan-Hadamard manifold satisfying either one of the 
following conditions: 

(1) it has strongly negative sectional curvature; 

(2) it is a two-dimensional visibility manifold. 

Let u : M —» N be a harmonic map and suppose that there exists a point 

o G N such that d(u(x), o) = O(p (x)) as x —» oo. Then there exist sets 

ofk' points fa i g = u(M)nS00(N) and k points fy j}k=l C u(M)f]N 

with k' + k < A3^+ i y ) such that 

u M ) cC(fa i g U u f y j g k j=i)-

If M is further assumed to have property (V), then we have k' + k < 

Ce-1. 
Let us point out that manifolds that are quasi-isometric to a mani­

fold with non-negative Ricci curvature satisfy conditions (V) and (M). 
A manifold with Ricci curvature bounded from below and is roughly 
isometric to a manifold with non-negative Ricci curvature also satisfies 
conditions (V) and (M). A minimal submanifold in Euclidean space 
with Euclidean volume growth satisfies conditions (V) and (M). We 
refer the reader to [11] and [12] for more detailed discussions. 

Under more restricted assumptions on the domain manifold, it is 
possible to show that the image of a polynomial growth harmonic map 
is contained in the convex hull of its points at infinity. It is still an open 
question whether the same conclusion is valid without restricting the 
map to be of polynomial growth. Let us first prove the following lemma 
concerning ^-massive sets. 

L e m m a 3.6. Let M be a complete manifold satisfying conditions 
(V ) and (P). Suppose Q is a massive set of M. Then MnQ does not 
contain any i-massive sets. 

Proof. From the definition of massive set, there exists a non-
negative bounded subharmonic function f whose support is in Ci. Since 
M satisfies conditions (V) and (P), a lemma in [16] asserts that 

lim V~l(r) Z f = supf . 
r^°° B p{r) M 
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In particular, for any e > 0, there exists r® such that for all r > ro, we 
have 

( l - e ) s u p f < V p-1(r) Z f 
M B p(r) 

< V p - 1 ( r ) V ( O n B p ( r ) ) s u p f . 
M 

This implies that 

(3.6) eV p{r)>V{B p{r)nQ) 

for r > r . 

Suppose g is a non-negative subharmonic function supported on 
M n Q. If we define 

s(2r) = sup g, 
B p(2r) 

then 

Z g<s(2r)V(B p(2r)nQ). 
B p(2r) 

On the other hand, the mean value inequality implies that there exists 
a constant C > 0, such that 

C Z g>s(r)V p(2r). 
B p(2r) 

Therefore, we conclude that 

Cs(2r) V{B p(2r) n Q) > s(r) V p{2r). 

Combining with (3.6), we have 

Ces{2r) > s(r) 

for all r > ro- Setting r = ro and iterating this inequality k times, we 
arrive at the inequality 

(3.7) (C,)k s(2k r0)>s(r0). 

If g is polynomial growth of at most degree £, then it follows that 

s(r) <C\re. 
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Hence 
s(2k r0)<C\2kere

0. 

This contradicts (3.7) if we choose 2 C e < 1, and the lemma is proved. 
q.e.d. 

T h e o r e m 3.7. Let M be a complete manifold satisfying conditions 
(V) and (P). Then any nonconstant, polynomial growth, harmonic map 
u : M —T- N into a Cartan-Hadamard manifold N which either is a two-
dimensional visibility manifold or has strongly negative sectional curva­
ture must satisfy u(M) C C(fa i g k'=l), with fa i g k'=1 = u(M) l~l Soo(N). 

Proof. Due to the fact that condition (M) is a consequence of 
conditions (P) and (V), Theorem 3.5 applies to this case and A = 
fa i g i=i- Let us assume the contrary that u is nonconstant and u(M) is 
not a subset of C(A). Then Lemma 1.6 implies that either d(u(x),C(A)) 
is bounded or there exists a tubular neighborhood Ae of A in N with 
e > 0 and u(M) is not contained in C(Af). Since M satisfies (V) and 
(P), the parabolic Harnack inequality holds on M by [8] and [15]. In 
particular, 

(3.6) dim H ( M ) = dim H+(M) = I. 

Therefore, Theorem 2.1 yields that u(M) C C(AU fyg) for some y G 
u(M). It is then easy to see that the function d(u(x),C(Ae)) is bounded. 
In either case, we conclude that there exists a closed subset W in N such 
that the function 

f(x) = d(u(x),CW)) 

is a bounded, nonnegative, non-constant, subharmonic function on M. 
Moreover, the set C = u(M) nC(W) is a non-empty bounded set in N. 
Its convex hull C(C) is also bounded, and u(M) nC(C) is non-empty 
because u is non-constant. The distance function 

g(x) = d(u(x),C(C)) 

is a non-negative, non-constant, subharmonic function of polynomial 
growth. Also the support of f is in u~l(C) and the support of g is 
on M n u~l(C(C)). This is impossible because of Lemma 3.6, and the 
theorem is proved. q.e.d. 

Corollary 3.8 . Let u : M —» N be a non-constant harmonic 
map of polynomial growth with at most degree I. Suppose N is either 
a two-dimensional visibility manifold or a Cartan-Hadamard manifold 
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with strongly negative sectional curvature. Assume that M n is an n ­
dimensional manifold quasi-isometric to a manifold with non-negative 
Ricci curvature. Then there exists a set of k' points 

with k' < CHSn~x> such that u(M) C C{fa i g = 1 ) , where the constant 
C > 0 depends only on the dimension of M and the quasi-isometric 
constant. 

In [5], the authors showed that if a manifold M has Ricci curvature 
bounded from below and it is roughly isometric to a manifold with non-
negative Ricci curvature, then M must also satisfy condition (V) and 
(P). In particular, Theorem 3.7 can be applied to this case. Let us first 
recall the definition of rough isometry. 

Definit ion 3.9 . A map f : X —> Y between two metric spaces X 
and Y is a rough isometry if there exist constants a > 1, b > 0, and 
c > 0, such that , for all y G Y there exists x G X with the property 
that 

d Yiyfix)) < c, 

and for any x\, xi G X 

a - 1 d X(xi, x2) - b < d Y(f(xi),f(x2)) < ad X(xi,x2) + b. 

Definit ion 3 .10. A map f : M —> M' between two manifolds M 
and M' is an isometry at infinity if it is a rough isometry and there 
exists a constant C > 0 such that 

C-lV x{i)<Vî{x){i)<CV x{i) 

for all x G M. In this case, the manifold M is said to be isometric at 
infinity to M'. 

Corollary 3 .11 . Let u : M —» N be a non-constant harmonic 
map of polynomial growth with at most degree I. Suppose N is either 
a two-dimensional visibility manifold or a Cartan-Hadamard manifold 
with strongly negative sectional curvature. Assume that M n is an n-
dimensional manifold which has Ricci curvature bounded from below 
and it is isometric at infinity to a manifold with non-negative Ricci 
curvature. Then there exists a set of k' points 
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with k' < Cuyn-1* such that u(M) C C{fa i)k'=1), where the constant 
C > 0 depends only on the dimension of M and the rough-isometric 
constants. 

4 Equivariant harmonic maps 

In this section, we will apply the convex hull property to study equiv­
ariant harmonic maps which are of polynomial growth. An example of 
this situation comes from lifting a harmonic map between two compact 
manifolds to their universal coverings. In this case, if the universal cov­
ering of the domain manifold M has polynomial volume growth, and the 
target manifold N has negative curvature, then we can conclude that 
the harmonic map is either constant or its image lies on a geodesic. This 
allows us to conclude that any homomorphism from 7Ti(M) to TTI(N) 

must either be trivial or its image is an infinite cyclic group. 

T h e o r e m 4 .1 . Let M be a complete manifold satisfying condition 
(M) and the volume growth V p(r) = O{rv) for some point p G M, and 
N is either a two-dimensional visibility manifold or a Cartan-Hadamard 
manifold with strongly negative sectional curvature. Let u : M —» N be 
a non-constant harmonic map of polynomial growth of degree at most 
degree I. Suppose G and H are groups of isometries of M and N, 
respectively, such that u is equivariant with respect to G and H. In 
particular, for each g G G, there exists h g G H, such that 

u{g{x)) = h g(u(x)). 

We assume that for all h G H, h = h g for some g £ G. Then any 
isometry in H must be either elliptic or hyperbolic. If there exists a 
hyperbolic isometry in H, then u(M) must be a geodesic line y C N. 
Any non-trivial isometry of H must act on y as translation, and H is 
an infinite cyclic group. If all isometries in H are elliptic, then any 
h G H must act on the set of vertices fa{\k=l at infinity and the set of 
interior vertices fy j g j = 1 as permutations. In particular, H has at most 
k'lkl elements, where k + k' < A3^2i+IJ>. If M is further assumed to 
have property (V), then k + k' < Ci"-1 as given by Theorem 3.5. 

Proof. According to Theorem 3.5, we have 

u M ) C C f a g U f y j g ) , 

where fa i}k=1 C u(M) n S00{N) is a set of vertices at infinity, and 
fy j g k i C u(M) f i N i s a set of interior vertices with k + k' < X3^i+1J'> 
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in general, and k' + k < Clv 1 if M has property (V). For simplicity, 
let us denote 

B = C{fa i g 1 U f y j}k=1). 

The equivariant assumption of u with respect to G and H implies that 
H acts invariantly on u(M). It follows that H acts invariantly on B. In 
particular, one deduces that the action of H also leaves the sets fa i}k=1 

and fìj g k j - 1 invariant. 
We will first show that there are no parabolic isometries in H . To 

see this, assume h £ H is a parabolic isometry. In this case, h has 
precisely one fixed point y G S00(N). Since there are only finitely many 
interior vertices and they form an invariant set under H, unless it is an 
empty set, there must exist an integer t such that h t fixes at least one 
interior vertex. On the other hand, h t must also be parabolic and this 
is impossible. Hence B must not have any interior vertex, in which case, 
B must have at least two vertices at infinity. Using the same argument, 
we see that for some integer s, the isometry h s will have at least 2 fixed 
exterior vertices. Again, this is a contradiction. 

If h is a hyperbolic isometry, then h must have precisely two fixed 
points in S00(N). Using a similar argument as above, we conclude that 
B = C(fai , a2g)) and that fa\, a2g is the fixed point set of h. If we denote 
the geodesic line joining a\ and a ̂  by 7, then the action of h on 7 must be 
a translation. In particular, h is of infinite order and the connectedness 
of u(M) implies that u(M) = 7. In particular, 7 is invariant under all 
isometries in H. Hence all elements in H are hyperbolic which act on 7 
as translations. It is now clear that H must be an infinite cyclic group. 

Finally, we may assume that all isometries in H are elliptic. In 
this case, there must be an interior fixed point for any isometry in 
H. We claim that if the sets fa i}k=1 and fy j g j = 1 are contained in the 
fixed point set of h G H, then B must be in the fixed point set of h, 
and hence the action of h is trivial on u(M). To see this, we define 
C i ( f a i g i=i U fy j g j=i) to be the union of all geodesic segments joining 
any two points in fa i]k=l U fy j g j=i- The uniqueness of geodesic implies 
that C i ( f a i} i = 1 U fy j g j-i) is in the fixed point set of h. Inductively, we 
define 

C f a g U U fy j}k=1) = Cr{C d-r{fa i g U fy j}k=1)) 

to be the union of all geodesic segments joining any two points in 
C d-ifag^Ufy j g ) . Similarly, we conclude t h a t C d(fa i g : 1 U f y j}k= 1) 
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must be in the fixed point set of h. The claim now follows by observing 
that 

B = Ud=iC d(fa i g 1 U f y j g ) -

Since H acts as permutations on the sets fa i}k=1 and fy j g j = 1 , the order 
of H must be bounded by the product of the orders of the permutation 
groups of k' and k elements, and the theorem is proved. q.e.d. 

Corollary 4 .2 . Let M be a compact manifold whose universal cov­
ering M has polynomial volume growth. Suppose N is a compact mani­
fold with negative sectional curvature. If u : M —» N is a harmonic map 
from M into N, then either u is a constant map or u(M) is contained 
in a geodesic of N. 

Proof. Let M and N be the universal coverings of M and N, re­
spectively. By lifting u to a harmonic map u : M —» N , the compactness 
of M asserts that u must have bounded energy density, and hence is of 
at most linear growth. 

The volume growth assumption on M together with Milnor's ar­
gument [13] implies that TT\(M) is at most of polynomial growth. An 
argument of Varopoulos [17] then asserts that the Sobolev inequality, 
hence the mean value inequality (M), is valid on M. Applying Theorem 
4.1, with G = iri(M) and H = u*(TTI(M)), we conclude that H is either 
finite or infinite cyclic with u(M) = 7, a geodesic line in N. The latter 
yields that u(M) is a geodesic and we only need to show that when H 
is finite then u must be constant. 

To see this, observe that the finiteness of u*(TTI(M)) gives that there 
exists a finite cover M' of M such that u can be lifted to a harmonic map 
u : M' —T- N . The compactness of M implies that M' is also compact. 
Since N is a Cartan-Hadamard manifold, u' must be constant. Hence 
u must be constant to begin with, and the corollary is proved. q.e.d. 

The next two corollaries are obvious consequences. 

Corollary 4 .3 . Let M be a compact Kahler manifold whose univer­
sal covering M has polynomial volume growth. Suppose N is a compact 
Kahler manifold with negative sectional curvature. If u : M —» N is a 
holomorphic map from M into N, then u must be a constant map. 

Corollary 4 .4 . Let M be a compact manifold with its universal 
covering M having polynomial volume growth. Suppose N is a compact 
manifold with negative sectional curvature. Let a : TT\(M) —> TTI(N) 
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be a homomorphism from TÏ\ (M) to TÏ\ (N) . Then a is either the trivial 
homomorphism or its image a(iri(M)) is infinite cyclic. 

Proof. Since N has negative sectional curvature, the existence theo­
rem of Eells-Sampson asserts that there is a harmonic map 
u : M —T- N such that u* = a. Corollary 4.2 now applies to u and we 
conclude that either a is trivial or a(iri(M)) is infinite cyclic. q.e.d. 

References 

M. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, 

J. Differential Geom. 18 (1983) 701-721. 

A. Borbely, A note on the Dirichlet problem at infinity for manifolds of negative 

curvature, P roc . Amer. Ma th . Soc 114 (1992) 865-872. 

W. Ballmann, M. Gromov & V. Schroeder, Manifolds of nonpositive curvature, 

Progr. Math . , Birkhäuser, Vol. 61, 1985. 

S. Y. Cheng, Liouville theorem for harmonic maps, P roc . Sympos. Pure Math . Vol. 
36, 1980, 147-151. 

Th . Coulhon & L. Saloff-Coste, Variétés riemanniennes isométriques a l'infini, Rev. 
Mat . Iberramericana 11 (1995) 687-726. 

P. Eberlein & B. O'Neill, Visibility manifolds, Pacific J. Ma th . 46 (1973) 45-110. 

A. Grigor 'yan, Dimension of spaces of harmonic functions, Mat . Zametki . 4 8 
(1990) 55-61 . 

, The heat equation on noncompact Riemannian manifolds, Ma th . USSR-Sb. 

[s; 

72 (1992) 47-77. 

Z. Han, L. F . Tam, A. Treibergs & T. Wan, Harmonic maps from the complex plane 
into surfaces with nonpositive curvature, Comm. Anal. Geom., to appear . 

[10] W. Kendall, Probability, convexity, and harmonic maps with small image I: unique­
ness and fine existence, P roc . London Math . Soc. 6 1 (1990) 371-406. 

[11] P. Li, Harmonic sections of polynomial growth, Ma th . Res. Let ters 4 (1997) 35-44. 

[12] , Curvature and function theory on Riemannian manifolds, Survey in Dif­
ferential Geometry, to appear . 

[13] J. Milnor, A note on curvature and fundamental group, J. Differential Geom. 2 
(1968) 1-7. 

[14] Y. Shen, A Liouville theorem for harmonic maps, Amer. J. Ma th . 117 (1995) 
773-785. 



530 p e t e r l i & j i a p i n g w a n g 

[15] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differ­
ential Geom. 36 (1992) 417 - 450. 

[16] L. F . Tam, Liouville properties of harmonic maps, Ma th . Res. Let ters 2 (1995) 
719-735. 

[17] N. Varopoulos, L. Saloff-Coste & T. Coulhon, Analysis and geometry on groups, 

Cambridge University Press, Cambridge, 1992. 

[18] S. T . Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure 

Appl. Ma th . 28 (1975) 201-228. 

University of California, Irvine 
Corne l l University 


