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Abstract 

We prove the vanishing of a certain characteristic class of flat vector bundles 
when the structure groups of the bundles are contained in GL(N,Z). We 
do so by explicitly writing the characteristic class as an exact form on the 
base of the bundle. 

In this paper we consider certain characteristic classes of flat com­
plex vector bundles, which are known in algebraic K-theory as the Borel 
regulator classes. We prove that if the structure group of a rank-N vec­
tor bundle is contained in GL(N, Z) with N odd, then the Borel class of 
degree 2N — 1 vanishes. Our proof is analytic in nature and is a special, 
but interesting, case of a more general theorem concerning the direct 
images of flat vector bundles under smooth submersions [4]. 

The background to our result is the following. First, let N be a 
positive even integer and let E be a real oriented rank-N vector bundle 
over a connected manifold B. Then the rational Euler class XQ(E) is an 
element of H N(B; Q). Sullivan showed that if E is a flat vector bundle 
whose structure group is contained in SL(N,Z), then XQ(E) = 0 [12]. 
Let A be the integer lattice in E. Then M = E/A is the total space 
of a torus bundle over B. Sullivan's proof was by a simple topological 
argument involving this torus bundle. 

Bismut and Cheeger observed that Sullivan's result follows from the 
Atiyah-Singer families index theorem, applied to the vertical signature 
operators on the torus bundle [2]. They also showed that one can write 
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a certain differential-form representative of XQ(E) explicitly as an exact 
form, by means of the so-called eta-form of [1]. 

In [4] we proved a real analog of the Riemann-Roch-Grothendieck 
(RRG) theorem. The geometric setup of our theorem involved a smooth 
fiber bundle n : M —>• B with closed connected fibers Z. If F is a flat 
complex vector bundle on M , then it has a direct image H {Z;F\Z} 
which is an alternating sum of flat complex vector bundles on B, given 
by the cohomologies of the fibers Z (with value in F\Z). We defined 
certain characteristic classes of flat complex vector bundles and showed 
a relationship between the characteristic classes of F and H (Z;F\Z). 
We actually proved a more refined statement at the level of differential 
forms on B, which involved a so-called analytic torsion form on B. 

The motivation of the present paper was to see what the RRG-type 
theorem of [4] says in the case of the torus bundle described above. We 
now state the precise results. 

Let B b e a connected smooth manifold. Let E b e a complex rank-
N vector bundle over B with a flat connection r E. We define certain 
characteristic classes f n ( r ^ ) g , with n j { r E) G H 2 j - 1 B ; R ) . These 
classes are pulled back from universal classes 

n z N eH j - \ B G L { N , C ) 5 ; R ) , 

where 6 denotes the discrete topology on GL(N,C). The classes 

fn z C N g N-i can be characterized by the fact that the continuous real-

valued group cohomology of GL(N, C) is an exterior algebra 

A ^ n1)C N, n2C N , . . . , n N^C N J 

[5]. They are stable classes in the sense that they come from classes 
in H 2 j _ 1 (BGL(oo , C)^; R), and give rise to the Borel regulators on the 
algebraic K-theory of number fields. 

Our main result is the following : 

T h e o r e m 0.1 . Let N be a positive odd integer. Let E be a flat 
complex rank-N vector bundle over B whose structure group is contained 
in GL(N,Z). Then n z N(r E) vanishes in H 2 N - ^ B ; R ) . 

An equivalent formulation of the theorem is: 
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T h e o r e m 0.2. Let N be a positive odd integer. Let i : GL(N, Z) —> 

GL(N,C) be the natural inclusion. Then i* [n z NC N ) vanishes in the 

group cohomology H 2 N - 1 G L N , Z) ;R) . 

Borel showed that for j > 1, the classes i* ( n z C N 1 are nonzero if N 

is sufficiently large compared to j [5]. Ronnie Lee informs us that he 

showed many years ago in unpublished work that i* ( n z C N J is nonzero if 

1 < j < N. Furthermore, Jens Franke informs us that Theorem 0.2 is a 

special case of his general results on the group cohomology of arithmetic 

groups [8]; his method of proof seems to be completely different from 

ours. 

As shown in Section f, Theorem O.f follows fairly directly from the 
RRG-type theorem of [4], when applied to a torus bundle. However, in 
this special case of a torus bundle one can greatly simplify the arguments 
in [4]. Thus in this paper we give an alternative self-contained proof 
of Theorem 0.1. This parallels the corresponding proof of Sullivan's 
result in [2]. Given t > 0, in Section 2 we define a form 8t on the 
total space of E* with the property that if A is a flat section of E*, 
then \*öt is closed on B. Letting A* denote the dual lattice to A, we 
consider the closed form P « G i A4*̂  t on B- We show that its de Rham 

cohomology class PUGA* i*^ t is independent of t. Taking t —> 0, one 

can see that PUGA* A**̂  t is a nonzero constant times n z N(VE). We 
then define forms pt on the total space of E, which are again closed 
after being pulled back by flat sections, and which have the property 
that PueA* ß*&t is proportionate to P mGAm*/t- Taking t —> oo, one 
sees that P meAm*/t ""̂  0- This proves Theorem 0.1. By keeping 
track of the t-dependence, we find an explicit form on B, defined as a 
Dirichlet-type series, whose differential represents n z N(VE). 

The elementary proof of Theorem 0.1 given in Section 2 is in fact a 
transcription of the proof of the RRG-type theorem of [4], in the special 
case of a torus bundle. The transcription proceeds by Fourier analysis 
along the fibers. In Section 3 we assume a knowledge of [4] and make 
the relationship explicit. 

An open question is whether there is a simple topological proof of 
Theorem 0.1 along the lines of Sullivan's proof of his result. 

The paper is organized as follows. In Section 1 we define the rele­
vant characteristic classes of flat vector bundles by means of differential-
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form representatives. Given a complex vector bundle F with flat con­
nection r F, a Hermitian metric h F on F and a real invariant power 
series P on the space of (N x N)-complex matrices, we define a closed 
differential form P zÇr F,h F) G Qodd(B), whose de Rham cohomol-
ogy class P z ( r F) G H odd(B;R) is independent of h F. In the case 
of P{A) = Tr [A j ] , we obtain the above-mentioned cohomology class 
n z j(r F) G H 2 j _ 1 ( B ; R ) . We study the relationships between the classes 
and describe them in terms of the cohomology of the classifying space 
BGL(N,C)$. We then recall the RRG-type theorem of [4] and show 
how it implies Theorems 0.1 and 0.2. We also prove that Theorem 0.2 
is a special case of a general vanishing theorem for the group cohomol­
ogy of a discrete group which acts smoothly on a compact manifold. 

In Section 2 we start with a real oriented rank-N vector bundle V. 
We review Berezin integrals, the Thom form at G iìN(V) of Mathai-
Quillen and its transgressing form ßt G QN~1(V). If V is flat, we define 
the form 8t G Vt2N~l(V) by a slight modification of the definition of 
at, and also construct its transgressing form et G Q2N~2(V). We then 
define an auxiliary form pt G Çï2N~1(V) and its transgressing form at G 
Q2N~2(V). We give an elementary proof of Theorem 0.1 along the lines 
sketched above. 

In Section 3 we first consider the total space of a flat vector bundle 
V. Using the superconnection formalism of [4], we define a form e t G 
Q2N~l(V) and its transgressing form e t G Q2N~2(V). We then show 
that e t and e t are essentially the same as the forms 8t and et of Section 
2. Using Fourier analysis on the fibers of the torus bundle M, we prove 
that the closed form f (C t , h W) of [4] reduces to P«eA* M*̂  t? and that 
the transgressing form t fA (C't, h W) of [4] reduces to P ß e A , li*t This 
establishes the link between the results of Section 2 and those of [4]. 

We thank Christophe Soule and Toby Stafford for helpful discus­
sions. The first author thanks the Institut Universitaire de France for 
its support, and the second author thanks the NSF for its support. 

I. Character is t ic classes of flat vector bundles 

In this section we describe certain characteristic classes of flat vector 
bundles. 

The section is organized as follows. In a) we establish our conven-
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tions. Given a rank-N complex vector bundle F o n a base B, a fiat 
connection r F on F, a Hermitian metric h F on F and an invariant 
power series P on the space of complex (N x N)-matrices, in b) we 
define a closed form P z ( r F,h F) G Qodd(B). Its de Rham cohomology 
class P z ( r F) is independent of h F. We describe relationships between 
the forms P z ( r F \h F) for different choices of P and F. In c) we relate 
P z ( r F) to the Borel regulator classes. In d) we recall the RRG-type 
theorem of [4] and prove Theorems 0.1 and 0.2. 

a) Conventions 
Except where otherwise indicated, we will take all vector spaces in 

this paper to be over C. The covariant functor A sends a vector space 
V to its exterior algebra A(V), and a linear map T : V —> W to an 
algebra homomorphism A (T) : A (V) —> A (W). 

If A is an N x N complex matrix, put 

c{A) =det(I + A), 

ch(A) = Tr [e A] , 

(1.1) Td(A) = det 

n j(A) = Tr [A j , j e N . 

Let fc j(A)g j=1 be the symmetric functions of A, satisfying 

(1.2) c(XA) = 1 + \cl(A) + . . . + XN c N(A). 

Let B be a smooth connected manifold. If E is a smooth vector 
bundle over B, we let C°°(B; E) denote the smooth sections of E, and 
L2(B;E) the L2 measurable sections of E. We let A(T*B) denote 
the complexified exterior bundle of B, and O (B) the space of smooth 
sections of k{T*B). We put Q{B;E) = C°°{B;A{T*B) <g> E). We 
will say that a differential form is real if it can be written with real 
coefficients. 

b) Characteristic classes of flat vector bundles 
Let P(A) be an ad-invariant power series on the space of N x N 

complex matrices A. Then P can be expressed as a power series in the 
variables fn j(A)g j=1. We will say that P is real if P has real coefficients 
in these variables. 

A 
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Let F be a complex rank-N vector bundle on B, endowed with a 
flat connection r F. The antidual bundle F inherits a flat connection 
r F . Let h F be a Hermitian metric on F. We do not require that r F 
be compatible with h F. The metric h F induces a Hermitian metric h F 
on F and a C°°(B)-linear isometry 

(1.3) h F :Q(B;F) -^ÜB;F 

Then the adjoint flat connection ( r F) on F is given by 

(1.4) ( r F ) * = ( h F ) _ 1 r F * h F. 

Define to ( r F \ h F) G Q1(B;End(F)) by 

(1.5) u {r F,h F) = {r FY - r F = {h F - 1 {r F h F) . 

In the rest of this section, except where otherwise indicated, we 
will abbreviate to r F , h F) by to. With respect to a locally-defined 
covariantly-constant basis of F, h F is locally a Hermitian matrix-valued 
function on B, and we can write LO more simply as 

(1.6) L0={h F)~ldh F. 

Definit ion 1.1. The connection r F'u on F is given by 

(1.7) r F>u = r F + - . 

It is easy to see that r F'u is compatible with h F, and 

(1.8) r F'uw = 0. 

The curvature of r F'u is given by 

(1.9) ( r F'u)2 = - ^ . 

Definit ion 1.2. Define P ( r F , h F) G Üeven(B) by 

ti.io) P<r F,h F) = P(£). 
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L e m m a 1.3. We have 

11-11) P(VF,h F) = P(0). 

Proof. We can write P(A) as a power series in the variables 

{n j(A)}j=v Clearly if j = 0 then n j ( V F , h F) = 1. If j > 0 then 

[1.12) Tr[a;2j] = Tr [co • LÜ2^1] T r ^ - 1 ^ ] =-Tr[u;2j] = 0, 

and so n j ( V F , h F) = 0. The lemma follows. q.e.d. 

Let z be an odd Grassmann variable, so that z2 = 0. Given a G 
O (B) <g> C[z], we can write a in the form 

(1.13) a = «o + zÖ1 

with «o, « i G i i (B). Pu t 

(1.14) Tr z [ a ] = a i . 

Defini t ion 1.4. Define P z(VF,h F) G Qodd{B) by 

(1.15) P z (VF ,h F) = Tr z 

In particular, 

11-16) n j ^ , h ) = j •2-^-1)(2m)-j-1)Tr [ j-1) r^j-1] 

L e m m a 1.5. I f P and Q are two ad-invariant power series, then 

; i . l7) ( P Q ) z ( V F , h F) = P(0) • Q z (VF ,h F) + P z ( V F , h F) • Q(0). 

Proof. This follows from Lemma 1.3. q.e.d. 

L e m m a 1.6. The odd form P z(VF,h F) is closed, and its de Rham 
cohomology class is independent of h F. If P is real, then P z (VF,h F) is 
also real. 



t o r u s b u n d l e s a n d t h e g r o u p c o h o m o l o g y o f GL(N,Z) 203 

Proof. In the case P(A) = n j(A), j > 0, a simple proof of the 
statement of the lemma was given in [4, Theorems 1.8 and 1.11]. The 
general case follows from expressing P(A) as a power series in the vari­
ables {n j(A)}j=1 and using Lemma 1.5. q.e.d. 

L e m m a 1.7. We have 

(1.18) P z ( V F \ h F*) = - P z (VF,h F) . 

Proof. One has 

(1.19) u)(VF,h F) = -(h F)~1u)fo'F,h F*) h F. 

The lemma follows from (1.15). q.e.d. 

Definit ion 1.8. Let P z(VF) G H odd(B;R) denote the de Rham 
cohomology class of P z(VF, h F). 

R e m a r k 1.9. Given the polynomial P, there is a corresponding 
Cheeger-Chern-Simons class P ( V F ) G H odd(B;C/Z) of the flat bundle 
F [7]. If P(A) = n j(A) then, up to a multiplicative constant, P z(VF) 
is the same as the imaginary part of P ( V F ) [4, Proposition 1.14]. 

T h e o r e m 1.10. We have 

(1.20) co2N = 0. 

In particular, for j > N, 

(1.21) n z (VF ,h F ) = 0 . 

For j < N, 

(1.22) c z(VF, h F) = ( ~ 1 ) j n z(VF, h F). 
j j j 

Proof. Identity (1.20) appears in [11, Theorem 4.1]. We give 
a direct proof, which is essentially the same as that of [11]. By the 
Cayley-Hamilton theorem, 

2 N 2 

(1-23) (^-)N + E ( - 1 ) j c ( V F , h F) • ( £ - ) N - j = 0. 
8 m ^—' 8i7^ 
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By Lemma 1.3, for j > 0, 

(1.24) c j{r F,h F) = 0, 

which together with (1.23) implies (1.20) immediately. 

Equation (1.21) follows from (1.16) and (1.20). Finally, if j < N 
then Newton's formula gives an identity of polynomials: 

(1.25) n j - cn j-i + ... + {-lj-^ c j-in + (-ìj jc j = 0. 

Using Lemma 1.5 we thus obtain equation (1.22). q.e.d. 

Let E = E+ © E_ be a Z2-graded complex vector bundle on B. 
Let r E = r E+ © r E- be a flat connection on E which preserves the 
splitting E = E + © E _ . Let h E = h E+ © h E~ be a Hermitian metric on 
E such that E+ and E_ are orthogonal. Put 

E [1.26) P z(r E, h E) = P z(r E+, h E+) - P z(r E-, h 

Given the flat vector bundle F , the associated flat vector bundle 

A(F ) has a natural Z2-grading. If h F is a Hermitian metric on F , then 

there is an induced Hermitian metric hA(F ) on A(F ). 

T h e o r e m 1.11. We have 

(1.27) ch z ( r F h A ( F ) ) = N n z N(r F,h F). 

Proof. In general, 

(1.28) ch(A(A)) = de t ( I - e A) = (-1)N T d ( - A ) " 1 • det(A). 

Using (1.17), we get 

ch z ( r F h A F ) ) =(-l)N c z N (r F\h F^ 
(1.29) 1 

~N 

The theorem now follows from Lemma 1.7. q.e.d. 

Corollary 1.12. I n H odd(B;R), one has the equality 

(1.30) ch z (r F ) = 1 n z N(r F). 

^ n N r F , h F 
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In particular, ch z ( r A ( F > I is concentrated in degree 2N — 1. 

Proof. This is an immediate consequence of Theorem 1.11. q.e.d. 

c) Topological descr ipt ion of the characterist ic classes 
The classes n z j ( r F) are the characteristic classes (of flat vector bun­

dles) which are of interest to us. A more topological description of them 
can be given as follows. Let V be a finite-dimensional complex vector 
space. Let HC(GL(V); R) denote the continuous group cohomology of 
GL(V), meaning the cohomology of the complex of Eilenberg-Maclane 
cochains on GL(V) which are continous in their arguments. Let GL(V)g 
denote GL(V) with the discrete topology and let BGL(V)g denote its 
classifying space. The cohomology group H* (BGL(V)g; R) is isomorphic 
to the (discrete) group cohomology H ( G L ( V ) ; R ) . There is a forgetful 
map 

(1.31) ßV • H*(GL(V);R) ->• H*(BGL(V) S;R) . 

Fix a basepoint * G B. Put Y = iri(B, *) and let h : B —> BT be the 
classifying map for the universal cover of B, defined up to homotopy. 
Let V be the fiber of F above *. The holonomy of F is a homomor-
phism r : Y —> GL(V), and induces a map Br : BT —> BGL(V)g. 
Then the flat bundle F is classified by the homotopy class of maps 
v = Br o h : B —> BGL(V)$. One can show that there is a class 
n z V G H^^iGLV^R) such that n z j(r F) = v*{n z y ) , and a class 

N z V G H c j _ 1 ( G L ( V ) ; R ) such that n z V = ßV{N z V). For example, 
N z V is given by the homomorphism g —> ln|det(g)| from GL{V) to 
(R,'+). 

Put G = GL(V) and K = U(V). Denote the Lie algebras of G and 
K by 7 = gliV) and K = u(V), respectively. The quotient space 7/«; is 
isomorphic to the space of Hermitian endomorphisms of V, and carries 
an adjoint representation of K. One has that H*(GL(V);R) is iso­
morphic to H*(7, K;R), the cohomology of the complex C*(7, K ; R ) = 
HoiiK ( A * ( 7 / K ) , R ) [6, Chapter IX, §5]. In fact, the differential of this 
complex vanishes, and so H*c(GL(V);R) = C*(-y,K;R) [6, Chapter II, 
Corollary 3.2]. Thus the classes {n z j{r F)}f= 1 arise indirectly from K-
invariant forms on 7/«;. It is possible to see the relationship between 
n z j(r F) and C 2 j _ 1 (7 , K; R) more directly [4, §lg]. In particular, de­
fine a (2j — l)-form $ j on 7/«; by sending Hermitian endomorphisms 
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M l , . . . ,M 2 j _ i to 

$ j ( M i , . . . ,M 2 j _ i ) 

(1.32) = X ( - l ) s ign ( < j ) Tr[M ( j ( 1 ) . . .M ( j ( 2 j _ 1 ) ] 

adS-zj-i 

Then $ j is an element of C2j 1 (7 , K ;R) which, up to an overall multi­
plicative constant, corresponds to N jV. 

The compact dual of the symmetric space G/K is G d/K, where 

G d = U(V) x U{V). Let jd = u{V) ® u{V) be the Lie algebra of G d. 

Duality gives an isomorphism between H*(7, K; R) and H * ( d , K; R) = 

H*(U(V);R) = A.(xi,x3,...,x2dim(V)-i)- It follows that the classes 

fNiV g j=i are algebraically independent. 

If V is the complexification of a real vector space V R, then one 
can apply the same arguments with G = GL(V R , K = O ( V R) and 
G d = U(V). One obtains that if the flat complex vector bundle F is 
the complexification of a flat real vector bundle F R and j is even then 
n z j r F) vanishes. 

d) P r o o f of the m a i n t h e o r e m 
We first review the RRG-type theorem of [4]. Let Z —> M —>• B 

be a smooth fiber bundle with connected base B and connected closed 
fibers Z b = n~l(b). Let F be a flat complex vector bundle on M. Let 
H [Z\F\Z^ denote the Z-graded complex vector bundle on B whose 
fiber over b G B is isomorphic to the cohomology group H * ( Z , F | Z ). 

It has a canonical flat connection r 'Z which preserves the Z-
grading. Let TZ be the vertical tangent bundle of the fiber bundle and 
let o(TZ) be its orientation bundle, a flat real line bundle on M. Let 
e{TZ) e H dim(Z)(M;o(TZ)) be the Euler class of T Z . 

T h e o r e m 1.13 [4]. For any positive integer j , one has an equality 
i n H ^ - ^ R ) : 

(1.33) n j (r H(Z;F\Z)^ = Z e(TZ) . n z ( r F) . 

We now prove Theorem 0.1 of the introduction. 

T h e o r e m 0 . 1 . Let B be a connected smooth manifold. Let N be 
a positive odd integer. Let E be a flat complex rank-N vector bundle 
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over B whose structure group is contained in GL{NJZ). Then n z NÇr E) 
vanishes in H 2 N _ 1 ( B ; R). 

Proof. We may assume without loss of generality that E is real. Let 
* be a basepoint in B and put Y = ni(B, *). Let B denote the universal 
cover of B. The holonomy of E is a homomorphism p : T —> GL(N, Z) 
such that 

pR N. (1.34) E = B 

Put 

(1.35) A = BxpZ N 

and M = E/A. Then M is the total space of a fiber bundle over B with 
fiber Z = R N /Z N. 

Let F be the trivial flat complex line bundle on M. Then n z j ( r F) = 
0. As the fiber Z is an N-torus , one can easily say what the cohomology 
bundle H(Z;F\Z) is. Namely, as H*(T N;C) =* A (R N*) <g> C, we have 

(1.36) H(Z-,F\Z)=A(E*)®C 

Theorem 1.13 now implies that 

(1.37) n ( r * ) 

By Corollary 1.12, it follows that 

(1-38) ch z ( r A (E* ) ) = 1 n z N ( r E 

By the definition of ch z, the term of degree 2N — 1 of ch z r ( E * ) i is 

proportional to n N ( r 7 E * - 1 ) . The theorem now follows from combining 
(1.37), in the case j = N, and (1.38). q.e.d. 

Recall from Section lc that n z N€N denotes both an element of the 

(discrete) group cohomology H 2 N _ 1 (GL(N, C); R) and the correspond­

ing element of H 2 N- 1 (BGL(N,C) ( j ;R) . We now prove Theorem 0.2 of 

the introduction. 

T h e o r e m 0.2. Let N be a positive odd integer. Let i : GL(N, Z) —> 

GL(N,C) be the natural inclusion. Then i* (n z N „N J vanishes in the 

group cohomology H N - ^ G L ^ Z j j R ) . 
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Proof. It is known that there is a model for BGL(N,Z) which 
is a CW-complex with a finite number of cells in each degree. For 
K » 2N - 1, let BGL(N,Z)K be the K-skeleton of BGL(N,Z). Let 
B be a smooth connected manifold (possibly with boundary) which is 
homotopy equivalent to BGL(N,Z)K. Let h : B ->• BGL(N,Z) be the 
classifying map for e , defined up to homotopy. Let Bi : BGL(N,Z) —> 
BGL(NJC) be the map induced by i. Let E be the canonical C N-
bundle on BGL(N,C) and put E = (Bi o h)*E. Then the discussion in 

Section lc yields that n z N ( r E) = h*(Bi)* (n z NC N) . By Theorem 0.1, 

n z N ( r E ) = 0 . As h is highly connected, it follows that (Bi)* [n z NC N 

0, which is equivalent to the theorem. q.e.d. 

Theorem 0.2 is in fact a special case of the following theorem. 

T h e o r e m 1.14. Let F be a discrete group such that there is a CW-
complex BT which is a K(F, l)-space with a finite number of cells in each 
degree. Let Z be a connected closed smooth manifold and let F act on Z 
by a homomorphism p : F —> Diff(Z). For each integer p G [0, dim(Z)] ; 

there is an induced representation r p : F —> GL(H(Z;C)). If j is a 
positive integer, we can pullback the group cohomology class n z H p(-Z.C 

under r p to obtain r* ( ^ H p(Z-C) e H 2 j _ 1 ( r ; R ) . Then we have an 

equality in ^^(FìRì.-

(1-39) J2 ( - 1 )p r ( » j , H p(Z;C))=0-

The proof of Theorem 1.14 is similar to that of Theorem 0.2. The­
orem 0.2 is the special case of Theorem 1.14 when F = GL(N,Z) and 
Z = T N. 

R e m a r k 1.15. One can give a more direct proof of Theorem 1.14 
in the case j = 1. If j = 1, equation (1.39) says that for all 7 G T, 

dim(Z) 

(1.40) J2 (-!)p lnjdetr p(7)|H p(Z;C)j =° -

Let T p denote the torsion subgroup of H ( Z ; Z ) . Then H ( Z ; C ) ^ 
(Kp(Z; Z)/T p)®C As ^(7) is a diffeomorphism of Z, it acts as an auto­
morphism of the lattice H ( Z ; Z)/T p C H ( Z ; C ) . Thus d e t r p(7)|H p(ZC) 

= ± 1 , and equation (1.39) follows. 
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II. E l e m e n t a r y proof of t h e m a i n t h e o r e m 

In this section we use Berezin integrals to define certain forms 8t 
and pt on the total space of a flat vector bundle, which are closed when 
pulled back to the base by a flat section. We also define transgressing 
forms et and at- We use these forms to prove Theorem 0.1. 

The section is organized as follows. In a) we briefly review the 
Berezin integral. In b) we review the construction of Mathai-Quillen of 
the Thom form at of a real rank-N vector bundle V. If V is flat, we 
then define the forms St G Q2N_ 1(V) and et G Ü2N~2(V), and establish 
their basic properties. In c) we construct useful auxiliary forms pt G 
Q2N~l(V) and at G Q2N~2(V). In d) we use these forms, along with the 
Poisson summation formula, to prove Theorem 0.1. 

a) Berez in integrals 
Let V now be a real oriented inner-product space of dimension N. 

Let fVk g N i be an oriented orthonormal basis of V. We can identify 
A(V) with A0/>i , . . . ,ipN)- The Berezin integral R B : A (V) ->• R is 
defined to be the linear functional which vanishes on Ak(V) unless k = 
N, in which case it is given by 

(2.1) Z tßlip2...tßN = l. 

If A is a graded-commutative superalgebra over R, there is an extension 
of the Berezin integral to a linear map 

(2.2) Z :A®A(V)^A 

such that for a G A and a G A (V), 

Z B Z B 
(2.3) a • a = a a. 

Let V be another copy of V. The exterior algebra 

(2.4) A ( V © V ) = A ( ^ I , . . . ,II>N,$I,... ,$N) 

has a bigrading as 

N 

(2.5) AV®V = 0 Ak{V) ê Al(V). 

k,l=l 
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Then the Berezin integral R : A V © V —> R vanishes on 

Ak(V) b Al(V) 

unless k = l = N, in which case it is given by 

(2.6) Vi ...ipN b - - - b N = I-

The Berezin integral on A V © V is independent of the orientation of 

V. 

If W is an (N x N)-matrix, we write 

(2.7) DiP,W E = X ^W i b -
i,j 

Lemma 2.1. If V is an antisymmetric (N x N)-matrix with even 
entries, and W is a symmetric (N x N)-matrix with odd entries, then 

BD ,W E e^VV-->h V i 

(2-8) r ,V 
nN-lTr det — + zW 

iir 

Proof. Equation (2.8) can be checked by putting V into normal 
form. q.e.d. 

Let A G End(V) be antisymmetric. Then we can identify A with an 
element of A2(V) by 

(2.9) A ^ 1 - hi/>,Ail>i. 

b) Thom-like forms 
Let V be a real rank-N oriented vector bundle over a connected 

smooth manifold B, with projection map n : V —> B. Let hv be a 
metric on V and let r v be a compatible connection. The connection 
r v gives a splitting 

(2.10) TV = n*TB © n*V. 
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There is an induced connection r ( V ) on A (V). Pu t E = A (ir*V), a 
Z-graded vector bundle on V with connection VE = 7r*VA(V). We first 
define the Thom-form of Mathai-Quillen [10], following the notation of 
[3, Section 1.6]. 

The Berezin integral gives a map R B : fì(V;E) - > f i ( V ) . There are 
certain elements of Q (V; E) of interest, namely: 

1. the tautological section x G 0°(V; A1(7r*V)); 

2. the element jxj2 G 0°(V; A°(TT*V)); 

3. the element r E x G fiV; A ^ V ) ) ; 

4. the curvature i V = n* V r V) . Using (2.9), we can think of R as 

an element of 0 2 (V; TT*A 2 (V)) . 

Let i x : np{V; Aq(TT*V)) ->• fp(V; A ^ f r - V ) ) be interior multiplica­
tion by the tautological section. For any t > 0 and a G $1 (V;E), one 
has 

(2.11) d a= (r E + 2p t a. 

Definit ion 2.2. For t > 0, define A t e ü (V;E) by 

(2.12) A t = — + p t r E x + t jxj2. 

Definit ion 2 .3 . For t > 0, the Mathai-Quillen form at G N(V) 
is given by 

N( + 1) 

(2.13) at = ( - I J - N - V N Z e"A t-

The form / t G 57 (V) is given by 

Z B 
x A 
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T h e o r e m 2.4 ([10, T h m . 7.6], [3, P r o p . 1.53]). 

a. The form at is closed. 

b. In addition, 

(2.15) t = dßt. 

Proof, a. One can check that 

(2.16) ( r + 2p ti x) A t = 0. 

Using (2.11) and (2.13), part a. of the theorem follows. 

Part b. of the theorem can be easily checked directly, but we will give 
a more general construction which will be of use later. Pu t B' = B x R + 

and V = V x R+. Define IT' : V ->• B' by TT'(f ,s) = (TT(f ) , s ) . Let 

PB '• B' —>• B and V : V' —>• V be the projection maps. Then V' = p*B V. 
Using the product structure on V', we can write exterior differentiation 
on fi(V') as 

(2.17) d' = d + dsds. 

Let h V be the metric on V' which restricts to s • h V on V x fsg. 
Then 

(2.18) r V ' = B r V + ds 

is a connection on V' which is compatible with h V . Furthermore, 

V ' ) 2 = B ( r V)2. 

We now apply the preceding formalism to the vector bundle V' with 
metric h V and connection r V . Using an obvious notation, A\ G 
iì(V';E') is given by 

(2.19) A l = — + p s [VE x + ds A — ) + s j x j 2 = A s + ds A 
2 2s j j 2 p s 

Then 

(2.20) «i = Z B e"Aî = C Z B e~A s - d s A B p e"A. 
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From part a. of the theorem, 

(2.21) d'a[ = 0. 

Part b. of the theorem now follows from (2.17), (2.20) and (2.21). 
q.e.d. 

R e m a r k 2.5. The closed form at is a Thom form in the sense 
that it is rapidly decreasing at infinity and the fiberwise integral n^at 
is identically 1 on B. 

We now assume that V has a flat connection r V. Let h V be a metric 
on V. Define w G ̂ ( ^ E n d f V ) ) as in (1.5) and r V'u as in (1.7). 

L e m m a 2 .6 . The j-form u>j takes value in the symmetric endo-
morphisms of V if j = 0,1 (mod 4), and in the antisymmetric endo-
morphisms ofV if j = 2,3 (mod 4). 

Proof. One sees from (1.5) that LO takes value in the symmetric 
T Î ( Î l ì 

endomorphisms of V. Then (wj) = (—1) 2 OJj q.e.d. 

Let V be another copy of V. Put E = A vr*V. Following (2.6), the 

Berezin integral gives a map R : Q ( V; E b E ) —> Q, (V). 

There are certain elements of Q V; E b E of interest, namely: 

1. the tautological section x G fi°(V; A ^ ) b A°(TT*V)); 

2. the tautological section b G 0°(V; A°(TT*V b b A b V)); 

3. the element jxj2 = |b | 2 G 0°(V; V°(TT*V) V A°(TT*V)V; 

4. the element D E G fi°(V; A ^ T T ' V ) b A^TT-V) ) ; 

5. the element r E§E'u x G fì^V; A ^ V ) b A°(TT*V)); 

6. the element r E§E'u x G fì^V; A°(TT*V) b A ^ V ) ) ; 

7. the curvature R V'u = (TT*r V 'u) 2 = - b . We will think of 

iV'u as an element of 0 2(V; A2(vr*V) b A°(TT*V)), namely iV'u = 

D the element Q G QX(V; A ^ v r V ) b A ^ V ) ) given by 

9. the element w2 G 0 2(V; A°(TT*V) b A2(TT*V)) given by 

^ = D , ( T T * U , 2 ) ^ E . 
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As in (2.11), for any t > 0 and a G Q V; E b b , one has 

(2.22) d Z a= Z r£®e>u + 2p ti x) a. 

Definition 2.7. For t > 0, define B t G SìV; E b E by 

(2.23) B t = R—- + p t r £ ( ^ ' u x + t jxj2 + - c . 
2 8 

Definition 2.8. For t > 0, define ôt G ft2N_1(V) by 

(2.24) ^ = Z Q t D - N t x ^ e-B t 

and et G ft2N"2(V) by 

(2.25) et = -Z B(lD,ME + ix t ( i 3 - p î ) ) e - B t 

Theorem 2.9. 

a. Let U be an open subset of B and let A : U —>• V be a /Zat section 
of V over U. Then for t > 0, 

(2.26) d(A*^) = 0. 

b. In addition, 

(2.27) ^ t = d(A*et). 

Proof, a. As in (2.16), we have 

(2.28) ( r ^ ' u + 2 p i xJ I R—- + p t rm£>u x + t jxj2 j = 0. 

From (1.8) it follows that 

(2.29) (r£m,u + 2p1 i\ 5̂ = 0. 
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Furthermore, 

(2.30) ( r g f ' u + 2p ti x) (^-Û-p tx\=-p t r ê ê > u x + p i xQ. 

Using (2.28), (2.29) and (2.30), we obtain 

(2.31) dôt = B i-p t r ' u x + ^ i x \ e~B t 

As elements of Ql(U; A°(V) <g> Al(V)), there is an equality 

(2.32) A* ( r § ^ ' u x) = - X* (i xQ). 

Equation (2.26) follows. 

To prove b., we continue with the setup of the proof of Theorem 
2.4.b. Let r V' now be the flat connection B r V. Then A' = p*B\ is a 
flat section. Since 

(2.33) ( V ' ) * = B r V)* + ds 

and 

ds 
(2.34) u)' = p*Bu) + —, 

s 

we have 

(2.35) (u/)2 = p*Bu? 

and 

(2.36) cD' = p*VQ + (y, ds =V*vQ-ds D , E • 

The unitary connection on V' is given by 

(2.37) r V''u = B r V'u + —. 
Zis 

Using an obvious notation, we can then write B[ G Q, ( V'; E'&E') as 

(2.38) B[ = B s + ds A x 
2p 
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Thus 

ô[= \û>-pSîe-B' 

(2.39) =Z Q û - p x e-B s 

B 1 D E x 
ds A —•ip,b + p - û - p sxb e 

B s 

4s 2p~s 4 

From part a. of the theorem, 

(2.40) d' (A'**;) = 0. 

Part b. of the theorem now follows from (2.17), (2.39) and (2.40). 
q.e.d. 

Remark 2.10. If N is odd then at = ßt = 0. If N is even then 
St = et = 0. 

Remark 2.11. There is an evident analogy between the properties 
of (at,ßt) and (ôt, et). However, the important difference is that at can 
be pulled-back by an arbitrary section of V to get a closed form on B, 
whereas 8t can only be pulled-back by a flat section of V if one wants 
to get a closed form on B. 

c) Some auxiliary forms 

We use the notation of Section 2b. Suppose that the holonomy of 
the flat connection r v preserves a volume form r\ on the fibers. We will 
assume that the metric hv is such that the volume form on the fibers 
induced by hv equals r\. The holonomy of the adjoint flat connection 
( r v ) * also preserves 77. 

Definition 2.12. Define Vol G ̂  N(V) to be the extension of r\ to 
V, using ( r v ) * . 

More precisely, if U is a contractible open set in B and U x R N is a 
trivialization of V which is covariantly-constant with respect to ( r v ) * , 
let (f) : U x R N ->• R N be projection onto the fiber. Then on U x R N, 
one has Vol = (p*r). Clearly Vol is closed. Consider the Berezin integral 
R B :f i(V;E)->fì(V). 

Theorem 2.13. We have 

(2.41) Vol={-l)-Lì-L Z e(v ) x. 



t o r u s b u n d l e s a n d t h e g r o u p c o h o m o l o g y o f GL(N,Z) 217 

If A : U —>• V is a section of V which is flat with respect to r v then 

(2.42) A*Vol = (wA)i A . . . A(LO\)N. 

Proof. In terms of the trivialization U x R N above, we can write 
(VE)*x = (d</>,ip). Then 

Z B B N 

eWM =(-1)-^ Y dtj-fj 
j=l 

(2.43) = # i A . . . Ad4>N. 

Equation (2.41) follows. As elements of Çïl(U;V), we have 

(2.44) A*((r E)*x) = (VE + LÜ) \ = oo\. 

Equation (2.42) follows. q.e.d. 

Now consider the Berezin integral R : Q I V; b ) —> £1 (V). 

Definition 2.14. For t > 0, define pt G ft2N_1(V) by 

(2.45) pt = e-^j t N Vol- Z -xb= e " ^ 

and at G ft2N"2(V) by 

(2.46) at = -e~^j t~N~1 i x Vol • Z -bx= e " ^ . 

Theorem 2.15. 

a. Let U be an open subset of B and let A : U —>• V be a /?at section 
of V over U. Then for t > 0, 

(2.47) d(X*pt) = 0. 

b. In addition, 

(2.48) ^ t = d(X*at). 
at 

Proof. If N is even, then pt = o~t = 0 and the theorem is trivially 
true. Thus we may assume that N is odd. 
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a. We have 

d t = _ e - ¥ t - N V o l . i ( r x) Z B x - * 3 
2t p~t 

( 2 - 4 9 ) B r x 
+ Z — e * 

Furthermore, 

(2.50) 

and 

(2.51) 

A* ( r ' u x) = r V>uA = ( r V + | ) A = 

A* ( i x ( r ^ x)) = - \ <A,u,A>. 

U> 

Equation (2.47) now follows from the explicit representation of A*Vol 
as an N-form in (2.42). 

b. We continue with the notation of the proof of Theorem 2.4.b, 
except that we now take h V to be the metric on V' which restricts to 
- • V o n V x {s}. Let r V' be the flat connection p*B r V. Then 

(2-52) ( V ' ) * = B ( r V ) * - d s . 

Using (2.41) and (2.52), we have 

(2.53) Vol' = ( - 1 ^ B e(vv)*x-f x = Vol - ds A i x Vol. 

Thus 

p s 

(2.54) - ds A e- j j s N " 1 i x Vol • Z 4 = e~^. 
p s 

From part a. of the theorem, 

(2.55) d! (A'Vi) = 0. 

Part b. of the theorem now follows from (2.17), (2.54) and (2.55). 
q.e.d. 
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d) Proof of the main theorem 

Let N be a positive odd integer, and B be a connected smooth 
manifold. Let B be the universal cover of B and put Y = -KI(B). Let 
p : r —> SL(N,Z) be a homomorphism. When convenient, we will 
consider SL(N,Z) to be a subgroup of SL(N,R) or SL(N,C). Define 
a flat real rank-N vector bundle on B: 

(2.56) E = B N 

Let A c E b e the lattice 

(2.57) A = BxpZ N. 

Let E* be the dual vector bundle to E and let A* C E* be the dual 
lattice: 

(2.58) A* = {fj, G E* : VA G A, (p, A) G 2TTZ} . 

Let r E be the canonical flat connection on E. Then r E preserves the 
lattice A, and the dual flat connection r E preserves A*. 

From (2.56), there are volume forms on the fibers of E coming from 
the standard volume form on R N. Let Vol(E/A) denote the com­
mon volume of the quotients of the fibers by A. Choose an inner 
product h E on E which is compatible with these volume forms. We 
write CUE for u) (r E,h E) G Q1(B;End(E)) and wE* for u) (r E\h E*) G 
Q^B-EndiE*)). 

We now apply the formalism of Section 2b to the case V = E*. De­
fine St G nN-^E*) as in (2.24) and et G n2N~2(E*) as in (2.25). If 
U is a contractible open subset of B, then over U the lattice A con­
sists of a countable number of disjoint copies of U. Thus the forms 
P A * ß*8t and UGA* ̂ *et are well-defined on U, and we obtain global 
forms P e A * P n2N-HB) and P A * / /et G 02N"2(B). 

Theorem 2.16. We have 

(2.59) d X »*St = ° 
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and 

(2.60) ^ X t = d X t 

Proof. This is a consequence of Theorem 2.9. q.e.d. 

Theorem 2.17. If K is a compact subset of B, then there is a 
constant c > 0 such that on K, as t —>• oo; 

(2.61) X t = \ N _ 1 N ( r E E) + O (e_ct) • 

IfN>l then 

(2.62) 

and if N = 

(2.63) 

1 then 

X S t = O {e~ct) , 
ß£A* 

X 

Proof. It is enough to consider only the contribution of /z = 0, 
as the other terms will be exponentially damped in t. From (2.24) it 
follows that 

(2.64) 0*St = - D , U E * E e&h E**i-Tëhi;E.i. 

LO2 

Using Lemma 2.1 with V = E- and W = E-, we obtain 

(2.65) 0*ot = -±nN-1c?N(r E\h E'). 

Equation (2.61) now follows from Lemma 1.7. 
By (2.25) we get 

(2.66) 0*et = - — Z D ̂ , ^ E erah^E*^ i - i 3 h ^ E ' ^ i . 
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! B 

Lemma 1.3 now gives 

(2-67) o*et = - - b , 

from which (2.62) and (2.63) follow. q.e.d. 

Applying the results of Section 2c to the case V = E, we define 
pt G fi2N-1E) as in (2.45) and at G n2N~2(E) as in (2.46). 

Theorem 2.18. The forms P meAm*pt G fi2N_1(B) and 
2N-2 P meAm*(Tt e n2N~2(B) satisfy 

(2.68) 

and 

(2.69) 

m X 

- X m t = d X 
meA m£A 

m at. 

Proof. This is a consequence of (2.47) and (2.48). q.e.d. 

Theorem 2.19. We have 

(2.70) X V*ôt = 2-3N_ 1 7T"N Vol(E/A) X mVt 
/LIGA* meA 

and 

(2.71) X ^*et = 2"3N-1 7T-N Vol(E/A) X m*at. 

Proof. From (2.23) it follows that 

" B = 16 
-(t/),UE.ll)) + p t -(VE^,tß 

+ t j/ij2 + — D b,U)E*b 

(2.72) = ^ j E»Vj2 + p t Ì ^ E 

+ t j ^ j 2 + 16 b E 

t 
^ p t E + Î6 b E ^* b ' 
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Furthermore, 

(2.73) ß* Q Üb- p tSn =-p t (U + p= LUE* A ujE*iß , b -

Let z be an auxiliary odd variable, satisfying z2 = 0. Define Tr z as 
in (1.14). Then by equation (2.72), in terms of the Berezin integral 

B 
B :nB;A(E*) b A(E*) -+Çi(B), we have 

(2.74) fòt = Tr z " + p ï E * ^ + p t ^ Mb*E.i 

Using the Poisson summation formula, in general one has that if 
be E* then 

(2.75) X e~t '"+br = (47rt)~N Vol(E/A) X e" « e t |M+b|2 

ß£A* 

Applying this to (2.74) yields 

X p*Ôt = 2~N 7T-N t~N Vol(E/A) 

m | z 

i(m,b) 

m£A 

jUGA* 

(2.76) 

•Tr 
m£A 

N N 2 - N " i TT"" Z~ i Vol(E/A) 

m X p t 

Define new Grassmann variables by r] = (h E ) ip and b = ( h E) b 

By (1.19) we obtain 

(2.77) hm,wE»(/)i = - hm,ioErii 

and 

(2.78) buo2E E = (rb,uü2Erb . 
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From (2.76), (2.77) and (2.78), in terms of the Berezin integral 

:Q(B;A(E)bA(E)\->Q(B), 

it follows that 

t 
ß£A* 

\m\ 
2-3N-i ^-N Vol(E/A) X e" « t 

2 

N 

m e A 
Z B -^ 

NIN-1) i \ 171, 1 — 2 i 
( - 1 ) 2 e(m,UEV) b e - T e h ^ E»?) 

2-3N-i ^-N Vol(E/A) X m*pt. 

m e A 

This proves (2.70). In view of the constructions of the proofs of Theo­
rems 2.9.b and 2.15.b, equation (2.71) follows automatically from (2.70). 

q.e.d. 

Corollary 2.20. If K is a compact subset of B, then there is a 
constant c > 0 such that on K, as t —>• 0; 

(2.80) X ^*5t = ° (e~ 
ß£A* 

and 

(2.81) X e t = o ( e - c ) . 
ß£A* 

Proof. As the sums in (2.70) and (2.71) can be taken over nonzero 
m, the theorem follows. q.e.d. 

We now reprove Theorem 0.1 of the introduction. 

Theorem 0.1. Let B be a smooth connected manifold. Let N be 
a positive odd integer and let E be a flat complex rank-N vector bundle 
over B with structure group contained in GL{NJZ). Then n z NÇVE) 
vanishes in H2N~l(B; R). 
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Proof. Without loss of generality, we can assume that E is real. 
Suppose first that the structure group is contained in SL(N,Z). By 
(2.60), the de Rham cohomology class of PueA* ß*^ t is independent of 
t. The theorem follows from combining (2.61), (2.70) and (2.80). One 
can check that the arguments still go through if E is not orientable. 
q.e.d. 

We now write c z N(VE, h E) explicitly as an exact form on B. 

Definition 2.21. If N > 1 and s G C, define <p(s) G iì2N~2(B) by 

oo 

(2.82) (f)(s) = - t s V n*et dt. 

Using (2.62) and (2.81), we see that (p(s) is well-defined and is a 
holomorphic function on C. 

Theorem 2.22. For dt(s) « 0, 

4>(s) = 2~N~2s 7I--T r (N + 1 - s) Vol{E/A) 

(2.83) • J2 (m) 2 s~ 2 N _ 1 m* fi x Vol- Z x e - X Ì . 
meA 

Proof. This follows from (2.46) and (2.71). q.e.d. 

Hence the right-hand side of (2.83) must also have a holomorphic 
continuation to C. 

Theorem 2.23. If N > 1 then 

(2.84) dm = \*N-1c z N{VEih E). 

Proof. This follows from (2.60), (2.61), (2.80) and (2.82). q.e.d. 

III. Fourier analysis on torus bundles 

In this section we describe how in the special case of a flat torus 
bundle, the results of [4] become equivalent to the results of Section 2. 
We assume a familiarity with [4]. 
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The section is organized as follows. In a) we review the relation­
ship between supertraces and the Berezin integral. Given a flat rank-N 
vector bundle V, in b) we define its leafwise topology V F and use the 
formalism of [4] to define a closed form t G Ü2N~1(V F). We also con­
struct the transgressing form e t G Q2N~2(V F), and give the relationship 
between (e t ,e t) and the forms (ôt, et) of Section 2. In c) we use Fourier 
analysis on the fibers of a torus bundle to show how the results of [4] 
become equivalent to those of Section 2. 

a) Supertraces and the Berezin integral 
Let V be a Hermitian vector space of dimension N with orthonormal 

basis {e k g k?=i- Given X G V, define operators on A (V) by 

(3.1) 

Then for X, Y G V, 

c(X) = (X A)-i(X), 

c(X) = {X A)+i(X). 

c(X)c(Y) + c(Y)c(X) = -2{X,Y), 

(3.2) c{X)c{Y) + c(Y)c{X) = 2 (X, Y) , 

c{X)c(Y) + c(Y)c(X) = 0 . 

Thus c and c" generate two graded-commuting Clifford algebras. Put 
i = c(e i) and c~i = c(e i). Among the monomials in the cj's and c i's 

with less than or equal to N factors of each, the only nonzero supertrace 
occurs as 

NIN + l) 

(3.3) Tr s [ci . . . cwc! . . . c N] = ( - 1 ) — 5 " 2 N . 

We now relate the above supertrace to the Berezin integral of (2.6). 
Let V be another copy of V. Let M G End(V © V) be a skew-
symmetric endomorphism. Let det1 '2 ( sinM- ' G C be the square-root 

of det ( sin!M ' ) which extends to a holomorphic function on the space of M 

skew-symmetric endomorphisms, with value 1 at M = 0. As notation, 

we write C and \I/ for the (2n)-vectors I ̂  and I -~- ], respectively. Let 

A be a graded-commutative superalgebra. Let J = 1 j1 be a (2N)-

vector of odd elements of A. 
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The next theorem is a consequence of [10, (2.13)]. 

Theorem 3.1. One has an identity in A : 

Tr s e±hC,MCi+hJ,Ci 

D ^ S N det1/2 sin(M) Z B eih9,M9i+hJ,9i (3-4) _ M 

One can extend (3.4) to allow M to have entries which are even 
elements of A, provided that the entries are nilpotent or that A is a 
Banach algebra. 

b) Thom-like forms II 
Let V be a complex rank-N vector bundle over a smooth connected 

manifold B. Suppose that V has a flat connection r V. Let r ^V> be 
the induced flat connection on the Z-graded vector bundle A(V). The 
tangent vectors of V which are horizontal for r V define an integrable 
distribution on V, and hence a foliation F which is transverse to the 
fibers of V. Let V F denote the total space of V with the leaf topology, 
a basis of which is given by the connected components of intersections 
S n L of open sets S in V with leaves L of [9, p. 2]. The connected 
components of V F are exactly the leaves of F . For example, if B is a 
point then V F is C N with the discrete topology. In particular, if U is 
a contractible open set in B and A : U —> V F is a continuous section 
of V F over U, then A is automatically a flat section. Note that V F is a 
non-second-countable manifold whose dimension is that of B. 

Let 7T : V F —>• B be the projection map. Put 

E = A(TT*V), 

a Z-graded vector bundle on V F. It is equipped with the flat connection 
VE=7T*rA (V). 

Definition 3.2. The operator (x A) G C°°(V; H o m ( ^ , ^ + 1 ) ) 
acts at x G V F as exterior multiplication by x on F x = A Er*V)x = 
A(Vw(x)). 

Definition 3.3. The superconnection A' on E is given by 

(3.5) A'= p ^ î (x A) + VE. 
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(3-7) 

Clearly A' has total degree 1. 

Theorem 3.4. The superconnection A' is flat. 

Proof. Clearly (x A)2 = (VE)2 = 0. Given b G B, let U b e a 
contractible neighborhood of b. We can trivialize the vector bundle V 
over U so that if a : U —> C N is a section of V\U, then r V(a) = da. Now 
7T_1(U) = U x C N, and the topology on U x C N which is induced from 
V F is the product of the topology of U with the discrete topology on 
C N. The operator d onQ (7r_1(U)) is effectively exterior differentiation 
in the U-direction on U x C N, and we can write it as d U- Thus 

(3.6) A(n*V)\w_1{U) = (UxC N)xA(C N). 

Writing a local section s : U x C N —> A (C N) of E as s(u, x), we have 

(x A s)(u,x) = x A s(u,x), 

Çr s)(u,x) = d U s(u,x). 

It is now clear that 

(3.8) r E , ( x A ) ] = 0 , 

so that the theorem follows. q.e.d. 

Remark 3.5. Theorem 3.4 would not be true if we used the ordinary 
topology on V. This can be seen in the case where B is a point. 

Let h V be a Hermitian metric on V. Then there is an induced Her-
mitian metric h on E. 

Definition 3.6. Let i x G C°°(V F; Hom(E ,,E*-1)) be the operator 
which acts at x G V F as interior multiplication by x on E x = A (n*V)x = 
A(Vw(x)). 

Define to(r V,h V) G ^(B-EndiV)) as in (1.5). In the rest of 
this section we will abbreviate w ( V , h V) by to. We can lift to to 
an operator it*u) G ül(V F; End(-7r*V r ) , and extend it to an operator 
A(TT*U;) G Q1(V F;End(A(7T*V))). 

Let A'* be the adjoint superconnection to A' with respect to h E. 

Theorem 3.7. One has 

/* 
(3.9) A' = - V - l i x + r E +A(TT*U;) 
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Proof. Clearly (x A)* = i x. In terms of the local trivializations of 
the proof of Theorem 3.4, on U we have 

(3.10) co= (h V)~l(dh V). 

Since on U x C N 

(3.11) (r E)* = d U + (h E) 1(d U h E)=r E + A(TT 

the theorem is proved. q.e.d. 

Following [4, Definition 2.10], for t > 0 put 

C't = p = ï p t (x A ) + r E, 

a; 

(3.12) 
Cl' = -p^î p ti x + VE + A (TT* w 

Then the D t of [4, (2.29)] is given by 

(3.13) D t = -^p^îp tc(x) + ̂ A(TT*Lu). 

Let f(z) = z exp(z2). 

Definition 3.8. Using the notation of [4, Section 2c], for t > 0, 
define e t G Oodd(V F) and e t G Oeven(V F) by 

(3.14) e t = f{C't,h E), e t = ^ fAC t,h E). 

As a consequence of [4, Theorems 1.8 and 2.11], t is closed and 

(3.15) e = dèt. 

Definition 3.9. Define ?/> G Qeven(V F) to be the right-hand-side 
of [4, (2.74)]. 

Let s : B —>• V F be the zero-section. 

Theorem 3.10. On V F nImage(s); the differential form f (VE, h E) 
is exact and 

(3.16) f(r E,h E)=dil>. 
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In addition, 

(3.17) s*f(vEih E)=fhA^V\hAV. 

Proof. In our case, the complex [4, (2.61)] becomes 

O * xAv 1 

(3.18) 
( J , x A ) : 0 ^ AU(TT*V) - ^ A ^ T T - V ) 

xA 

xA 
An(TT*V) 0. 

It is acyclic on V F \ Image ( s ) , and so we obtain (3.16) by [4, Theorem 
2.22]. Equation (3.17) follows from the naturality of the constructions. 

q.e.d. 

We now relate e t and e t to the forms 8t and et of Definition 2.8. 

T h e o r e m 3 .11 . Let I : V F —y V be the identity map. Then 

(3.19) e t = ( - 1 ) ^ 2 T T N - 1 ) I*8t_ 

and 

(3.20) e t = ( - 1 ) ^ 1 ^ ( N - 1 ) I ^ . 

Proof. Let z be an auxiliary odd variable, satisfying z2 = 0. Define 
Tr z as in (1.14). From [4, Definition 1.7], it follows that 

(3.21) 
f{C,h E) = (2m)1/2<pTr s 

= (2i7r) 1 / VTr z 

D t e D' 

Tr e t 

As w is a symmetric one-form, we have 

AM 

(3.22) 

^2^ kl (e k A) i(e l) 
kl 

-, ^2 ^ kl ̂ k + cfc) ( l ~~ c ) 

•^y^Ukl c k c l = Tj^c k ̂  kl c l = - (c,UJc) . 
k,l k,l 
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For simplicity, in the rest of the proof we write to in place of TT*LV. Thus 
we can write the D t of (3.13) as 

(3.23) D 

One can check that 

(3.24) D t + zD t = 

By (3.4) we obtain 

i p t /^ i 
2 ' 2p t 

LOc 

i i 
x H toc H •= zc 

2/t p t 

+ — (c,w c) . 

Tr Tr e t 4 ) ^ ± i ) 2N 

(3.25) 
Tr 

d e t l / 2 sin(M) B _ t 
4 e x + p ï w ^ + p î ^ +èh^2^ i 

where the matrix M is given by 

(3.26) M = I 
ÜJ zÜJ 

8 42 
zU) U£ 
4 8 

Due to the nature of the operator Tr z, we can consider it to be acting 
on either the first or second factor of the term in brackets in the right-
hand-side of (3.25). As the z in M occurs in the off-diagonal entries, 

(3.27) 

Thus 

(3.28) 

Tr 
1 / 2 sin^M) 

M 
0. 

Tr Tr e D2t+zD t 

Tr 

l ) " ^ 2N det1 / 
1/2 sin(M0 

4 

e 
x + p + p 

M0 

where the matrix MQ is given by 

(3.29) M 0 = ( 
0 H-
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By Lemma 1.3, det1 /2 s-M^ 1. Hence 

Tr Tr e D't+zD t 

N(N+1) N 1)—2— 2N Tr 
B 

(3.30) 

N ( N - l ) N l ) ^ - * - ^ 2N Tr 
B 

x + p t ^ + p t ̂  

^ p t ^ + p t ^ 

i h > i 

ì h > i 

On the other hand, (2.74) implies that 

(3.31) I*8t = Tr z 
4 

B _ t 
4 e x+ i7 t^+p ^ i h ' i 

Equation (3.19) follows from combining (3.21), (3.30) and (3.31). Equa­
tion (3.20) follows similarly. q.e.d. 

R e m a r k 3 .12. It would have been more natural to express the 
results of Section 2b in terms of the forms I* St and I*et- This is be­
cause it is only the flat structure of V which counts, not its topological 
structure. 

c) Fourier d e c o m p o s i t i o n 
We follow the geometric setup of Section 2d. Pu t M E/A. Then 

M is the total space of a fiber bundle over B with fiber Z = T N. There 

is a horizontal distribution T H M on M given by pushing forward the 

horizontal vectors for r E under the quotient map E —> M. Let F be the 

trivial complex line bundle on M, with the standard Hermitian metric 

h F. Let h E be an inner-product on E. We assume that the induced 

volume forms on the fibers are preserved by r E. Hereafter, we write 

LUE* for u) ( r E , h E J. The metric h E also induces a Riemannian metric 

g TZ on the vertical tangent bundle TZ. 

Let W be the Z-graded Hilbert bundle on B, whose fiber over b G B 
is isomorphic to L2(Z b; A (T*Z b)). As the torus Z b has trivial tangent 
bundle, we have isomorphisms 

(3.32) 
C°°(Z b;A(T*Z b)) 

L2(Z b;A(T*Z b)) 

A(E*b) C°°(Z b), 

L\Z b). 
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Given lib in the lattice Ab, there is a well-defined function e p _ 1 b ' • > g 
C°°(Z b). By Fourier analysis, for each b G B there is an orthogonal 
decomposition 

(3.33) W 0 = 0 A ( E ; ) 0 C e p b 
beb* 

If U is a contractible open subset of B, then the orthogonal decompo­
sitions of fW b g beU piece together to give an orthogonal decomposition 

(3.34) L2(U;W\U)= 0 L2(U; A(E*|U)) ® Ce p < " ' - > . 

/j£C°°(U;A*) 

T h e o r e m 3.13 . With respect to the orthogonal decomposition 
(3.33), the superconnection d M splits as 

(3.35) d M= 0 ( p ï G u A H r E ^ W . 

Proof. This follows from [4, Proposition 3.4], but we will give a 
direct proof. We can trivialize E over U as E = U x C N so that if 
a : U —> C N is a section of E U, then r E (a) = da. Wi th respect to this 
trivialization, M\ = U x T N. There is an isomorphism 

(3.36) a:Q{U) § A ((C N)*) g> C°°(T N) -+Ü(U) § 0 {T N) . 

Acting on Q{U) § Q (T N), we have d M = (I ê d T N) + {d U § I). Then 
in terms of our trivializations, the superconnection d M can be written 
as a - 1 ( ( I g> (T^) + {d U ® I0) a. 

Given f G C 0 0 U ) , s G A {{C N)*) and /* G C°°(U; A*), we have 

(3.37) a (f <g> s (g) e p 1 ^ ' - ^ = f (g) se p 1 ^ , 

(3.38) ( I § d T N) (f g> se p " ' ^ ) = f <g> p ^ î \i A s e p ^ ' A 

and 

(3.39) (d § I) (f (g) se p 1 ^ ) = d U f (g se p 1 ^ . 
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Thus, acting on C°°(U) 0 A ((C N)*) <g> Ce p</«.-> gives 

(3.40) d M = ( I ® p ^ l ( ß A)(g)I) + (d U ê I® I). 

Using the isomorphism 

(3.41) C°°(U; A(E* \U)) ~ C°°(U) <g> A ((C N)*) , 

we see that acting on C°°(U; A(E* \U)) <g> Ce p O v ^ one has 

(3.42) d M = {pIl{ß A)+d U) ® I . 

However, in terms of our trivializations, r \U> = d U. The theorem 
follows. q.e.d. 

Theorem 3.14. With respect to the orthogonal decomposition 
(3.33), the superconnection (d M) splits as 

(3.43) 

(d MY= © (-p=ï M + r<E U> + A ( E , ) W 

Proof. Let h be the standard Hermitian metric on C. The re­

striction of h W to L2(U; A(E*|U)) <g> Ce p O v } is hA(E*U) (g) h . Thus 

it is enough to compute the adjoint of p—Î (ß A) + r IU , acting on 

L2(U; A(E* | )), with respect to the Hermitian metric h \U>. Clearly 

the adjoint of (ß A) is i(ß). The adjoint of r \U> is 

i / i \ - 1 / i i 
HE*\ ) , I A(E*\ ) \ / A ( E * )A(E*\ ) 

r V \U' + h y \UJ r V \U'h U> 

(3-44) = r ( E l U ) + W A ( E | U ) 

E*\ 

The theorem follows. q.e.d. 

We can now remove the restriction to the open set U, and work 
globally on B. Put 

(3.45) c{ß) = (ß A)+i{ß). 
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For t > 0 and fj, G A*, let 

(3.46) D,„ = -

By defining D t as in [4, (3.50)], Theorems 3.13 and 3.14 give that 

(3.47) 

1 -p c{ti + \ A ( E ) . 

D = 0 D,„ ® I• 

Then defining f {C t,h W) as in [4, (3.83)] and fh{C tJh W) as in 
[4, (3.103)], we have 

(3.48) 

(C t,h W)= Y,(^)1/2<PTr s[f(D t,ß) 
ß£A* 

C t,h W = *£ <pTr s 
ß£A* 

(D t,ß) 

where the supertraces on the right-hand side of (3.48) are finite-dimensional 
supertraces on A (E*). Applying the results of the previous section with 
V = E*, from (3.48) and Definition 3.8 we see that 

{C tih W) = Y, re 
(3.49) 

/iGA* 

7 f A ( ^ W = E t -
/iGA* 

Theorem 3.15. One has 

(3.50) f ( C t h W) = t df(C t,h W). 

Proof. This follows from [4, Theorem 3.20], or more directly from 
equation (3.15). q.e.d. 

Theorem 3.16. If K is a compact subset of B, then there is a 
constant c > 0 such that on K, as t —>• oo; 

f(Clh W ) = f ( r \ h E ) )+O{e-c t 

1 
(3.51) fAC t ,h W 2+O(e-ct) if dim(E) = l, 

O(e~ct) if dim(E) > 1. 
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Proof. The contribution of the terms in (3.49) with fi 7̂  0 is 
exponentially small in t. Thus it suffices to look at the ß = 0 term. As 

(3.52) (2i7r)1/VTr s [ f (D tfi) 
r { E * ) hA(E*) 

the first line of (3.51) follows. Now 

(3.53) ^ T r s 
N 
yf ' (D,o) ipTr s N * A < E 

By Lemma 1.3, this is the same as 

(3.54) Tr 
N 

"(0) 
p=0 p 

from which the rest of Theorem 3.16 follows. q.e.d. 

Remark 3.17. Theorem 3.16 is the same as Theorem 2.17, which 
was proved in terms of Berezin integrals. 

Combining Theorem 3.11 and (3.49), we see that the form PueA M*̂  t 
of Section 2d is essentially the same as the form f (C t, h W), and the form 
P A II* et of Section 2d is essentially the same as the form t fA (C't, h W). 
Thus the analysis of Section 2d simply consists of explicitly verifying the 
general properties of the forms f (C'tJ h W) and fA (C t, h W) in the special 
case of a torus fibration. 
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