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1. Introduct ion 

Compact complex manifolds X2n with holonomy group Sp(n) can 
algebraically be characterized as simply connected compact Kahler man­
ifolds with a unique (up to scalars) holomorphic symplectic two-form 
([2]). These manifolds, which are higher-dimensional analogues of K3 
surfaces, are called irreducible symplectic. 

Beauville was able to generalize the local Torelli theorem, one of 
the fundamental results in the theory of K3 surfaces, to all irreducible 
symplectic manifolds. His results show that there exists a (coarse) mod­
uli space M of marked irreducible symplectic manifolds and that the 
period map 

P:M ^ P ( r ® C ) 

is etale over Q C P(T <8> C) - an open subset of a quadric defined by 
q[x) = 0 and q(x + x) > 0. By definition, a marking is an isomorphism 
of lattices a : H2{X, Z) = T, where H2{X, Z) is endowed with the 
quadratic form defined in [2] and T is a fixed lattice. 

For K3 surfaces the moduli space M consists of two connected com­
ponents which can be identified by (X, a) \—> (X, —o). The global Torelli 
theorem for K3 surfaces asserts that the period map P restricted to 
either of the two components, say M , is surjective and 'almost injec-
tive'. More precisely, if (X,a) and (X', a') are two points in PQ~ (x) , 
then (X, a), (X',a') G M o are non-separated and the underlying X 
and X' are isomorphic K3 surfaces containing at least one ( —2)-curve. 
Furthermore, for x G Q in the complement of the union of countably 
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many proper closed subsets the fibre P0~ (x) is a single point. In short, 
the failure of the injectivity of the period map Po is due to the non-
separatedness of .Mo and two non-separated points are given by one 
K3 surface equipped with two different markings related by reflections 
orthogonal to ( —2)-curves. 

In the higher-dimensional situation, the global Torelli theorem does 
not hold, i.e., an isomorphism of Hodge structures H2(X, Z) = H2(X', Z) 
compatible with the quadratic forms does not imply X = X'. In fact, 
for any two birational irreducible symplectic manifolds X and X' one 
finds markings a and a' such that P(X, a) = P(X', a1). Due to an ex­
ample of Debarre, birational X and X' need not be isomorphic in higher 
dimensions. 

Although, only little evidence can be provided, we cannot resist to 
formulate the following (cf. [19]): 

Speculat ion (Global Torelli theorem). The period map PQ is almost 
injective, i.e., two points (X,a) and ( X V ) in the same fibre of Po are 
non-separated in A^o- In particular, X and X' are birational. 

The birationality of X and X' follows from [16], [6], [8]. 

As the known counterexamples to the global Torelli theorem use 
birational manifolds X and X', the following conjecture can be regarded 
as a weaker version of this speculation: 

Conjecture . Two irreducible symplectic manifolds X and X' are 
birational if and only if they correspond to non-separated points in the 
moduli space. 

This paper proves the conjecture in two fairly general cases. 

T h e o r e m 4.7. If X and X' are projective irreducible symplectic 
manifolds which are birational and isomorphic in codimension two (cf. 
2.2), then the corresponding points in the moduli space of symplectic 
manifolds are non-separated. 

Dropping the assumption on the codimension and the projectivity, 
but restricting to Mukai's elementary transformation, the most explicit 
birational correspondence, one can prove 

T h e o r e m 3.4 . If X1 is the elementary transformation of an irre­
ducible symplectic manifold X along a smooth F'N-bundle of codimen­
sion N, then X and X' correspond to non-separated points in the moduli 

space. 
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Both results combined will be used in Section 5 to deduce the con­
jecture for projective X and X' and birational correspondences which 
in codimension two are given by elementary transformations (cf. 5.5). 

Unfortunately, only few examples of irreducible symplectic mani­
folds are known. Higher-dimensional examples were first described by 
Beauville and Fujiki. Starting with a K3 surface S, Beauville showed 
that the Hilbert schemes Hilb n(S) of zero-dimensional subschemes are 
irreducible symplectic. 

As shown by Mukai [17], moduli spaces of stable sheaves on a K3 
surface also admit a (holomorphic) symplectic structure. That these 
spaces are irreducible symplectic, provided they are compact, was shown 
in [11] for the rank-two case and in [20] in general. The idea in both 
approaches is to deform the underlying K3 surface S to a special K3 
surface So, such that the moduli space of sheaves on So is birational to 
the Hilbert scheme Hilb n(So). As the moduli space of sheaves on So 
is a deformation of the moduli space of sheaves on S, this shows that 
any smooth moduli space is deformation equivalent to a manifold which 
is birational to an irreducible symplectic manifold. This is enough to 
conclude that the moduli spaces of higher rank sheaves are irreducible 
symplectic. 

Proving this result [11], we observed the following phenomenon. Let 
S be a K3 surface and let H and H' be two different generic polar­
izations. Then the moduli spaces X := M H and X' := M Hi of H ­
stable, respectively H'-stable, sheaves, which in general are not iso­
morphic, can be realized as the special fibres of the same family, i.e., 
equipped with appropriate markings they correspond to non-separated 
points in the moduli space A4. This observation motivated the study 
of the general question explained above. Moreover, since the birational 
correspondence between M H and M Hi looks quite similar to the one be­
tween moduli space and Hilbert scheme on the special K3 surface So, we 
conjectured that moduli spaces of higher rank sheaves are deformation 
equivalent to Hilbert schemes Hilb n(S). 

The general results 4.7 and 3.4 do not cover this case, since the 
birational correspondence of moduli space and Hilbert scheme is not an 
isomorphism in codimension two. But using the result of Section 5 one 
can at least prove the rank-two case. 

T h e o r e m 6.3. If S is a K3 surface, Q G Pic(S) indivisible, 2n := 
4c2 — c\(Q) — 6 > 10 and H a generic polarization, then the moduli 
space M H(Q,c2) of H-stable rank-two sheaves E with de t (E) = Q and 
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c2(E) = c2 is deformation equivalent to Hilb n(S). 
The assumption 2n > 10 is a technical condition, whereas the as­

sumption on the determinant and the polarization is needed to guar­
antee the smoothness of the moduli space. We believe that the same 
result can be proved for the moduli spaces of sheaves of rank > 2, as 
well. As there is evidence that our conjecture holds in general and that 
the higher rank case is an immediate consequence of it, we developed 
the necessary modification only in the rank-two case. 

Due to this result it seems that all known examples of irreducible 
symplectic manifolds are either deformation equivalent to some Hilbert 
scheme Hilb n(S), where S is a K3 surface, or to a generalized Kummer 
variety K n(A), where A is a two-dimensional torus. 

2. Preparat ions 

2 .1 . Symplec t i c manifolds. A complex manifold X is called 
symplectic (in this paper!) if there exists a holomorphic two-form UJ G 
H°(X, Çl2X) which is non-degenerate at every point. Note that the 
existence of UJ implies that the canonical bundle K X is trivial. If 
X is compact, then the symplectic structure is unique if and only if 
h°(X,QX) = 1. A simply connected compact Kahler manifold with a 
unique symplectic structure is called irreducible symplectic. By [2] X2n 
is irreduible symplectic if and only if its holonomy is Sp(n), i.e., it is 
irreducible hyperkahler. 

For a compact irreducible symplectic Kahler manifold Beauville in­
troduced a quadratic form on H2(X, C) by 

a ^ - Z(uü)n~1a2 + (1 - n) Z n " ^ n a • Z v 1 « , 

where UJ G H°(X, ÇiX) = H2'0 is the symplectic form. Using Hodge 
decomposition a = auj + <p + bu> with cp G Hl,l(X) and assuming 
R(ujuj)n = 1 this form can be written as a \—> ab + (n/2) R(UJUJ)n-1 <p2. 
It turns out that this form is non-degenerate of index (3, b2 — 3). More­
over, a positive multiple of it is integral (cf. [2], [9]). The unique positive 
multiple making it to a primitive integral form is called the canonical 
form q on H2(X, C). Using the weight-two Hodge structure endowed 
with this quadratic form Beauville's local Torelli theorem says that 
X t ^ [H2>°(X t)} G P(H2(X, C)) induces a local isomorphism of the 
Kuranishi space Def(X) with the quadric in P(H2(X, C)) defined by 
q(a) = 0. 
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2.2 . Birat ional symplec t i c manifolds. Let f : X —> X' be 
a birational map between two compact symplectic manifolds, and as­
sume that the symplectic structure on X is unique. Then the largest 
open subset U C X where f is regular satisfies codim(X n U) > 2. 
Moreover, one shows fj U is an embedding: Since UJX is unique and 
C = H°(X,QX) = H°(U,nU), the pull-back f*X, is a non-trivial 
multiple of LUX- Thus f is quasi-finite on U. Since it is generically one-
to-one, it is an embedding. Note that , as a consequence, the symplectic 
structure on X' is unique, too. Thus, if U C X and U' C X' denote 
the maximal open subsets where f and f_1, respectively, are regular, 
then U =U' and codim(X n U), codim ( X ' n U') > 2. A birational cor­
respondence is by definition an isomorphism in codimension two if and 
only if codim ( X n U ) , codim ( X ' n U ' ) > 3. Recall, tha t a birational map 
between two K3 surfaces can always be extended to an isomorphism. 

If X is a projective manifold and U C X is an open subset with 
codim(XnU) > 2, then the restriction defines an isomorphism Pic(X) = 
Pic(U). In particular, for two birational projective manifolds X and 
X' with unique symplectic structures one has Pic(X) = Pic(U) = 
Pic(U') = Pic(X' ) . The corresponding line bundles on X and X' will 
usually be denoted by L and L , or M and M'. In particular, the Picard 
numbers p(X) and p(X') are equal. 

Frequently, we will use the following result due to Scheja [23]. If 
E is a locally free sheaf on X and U C X is an open subset, then the 
restriction map H i(X, E) —» H i(U, Ej U) is 

injective for i < codim (X n U) — 1 and 
bijective for i < codim(X nU) — 2. 

In particular, this can be applied to the line bundles L and L . Thus, 
H°(X, L) = H°(U, Lj U) = H°(U', L'j U,) = H°(X', L ) and if codim(X'n 
U') > 3 we get HX{X, L) C HX{X', L ) . 

If X and X ' are birational irreducible symplectic manifolds, then 
there exists an isomorphism between their weight-two Hodge structures 
compatible with the canonical forms q X and q X' ([19], [20]). 

2.3 . Deformat ions . Any compact Kahler manifold X with trivial 
canonical bundle K X has unobstructed deformations, i.e., the base space 
of the Kuranishi family Def(X) is smooth. This is originally due to 
Bogomolov, Tian and Todorov ([5], [24], [25]). For an algebraic proof 
see [21] and [13]. 

If L is a line bundle on X , such that the cup-product c\(L) : 
H 1 ( X , T X) ^ H2(X,O X) is surjective, then the deformations of the 
pair (X, L) are unobstructed as well. This follows from the fact that the 
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infinitesimal deformations of (X,L) are parametrized by H1(X,D(L)) 
and the obstructions are contained in H2(X,D(L)). Here D(L) is the 
sheaf of differential operators of order < 1 on L. The symbol map 
induces an exact sequence 

0 —> O X —> D{L) —> T X —> 0 

whose boundary map Hl(X, T X) —> H2(X, O X) is the cup-product with 
ci{L). In particular, H2(X,D(L)) -> H2(X,T X) is injective. Since X 
is unobstructed, all obstructions of (X, L) vanish. 

All this can be applied to irreducible symplectic manifolds. Using 
Hl{X,T X) = Hl{X, QX) one finds that Def(X) is smooth of positive 
dimension. Any small deformation of X is again Kahler (cf. [14]) and ir­
reducible symplectic. In fact, any Kahler deformation of X is irreducible 
symplectic [2]. Under the isomorphism Hl(X,T X) — Hl(X, QX) the 
kernel of c l(L) : H^X^T) -> H2(X,O X) = C is identified with the 
kernel of q{cx{L), ) : ^ ( X , ^ ) - • C (cf. [2]). In particular, if L is 
non-trivial, then c\(L) : H 1 ( X , T X) ^ H2(X,O X) is surjective, and 
thus Def(X,L) is a smooth hypersurface of Def(X). For the tangent 
space of Def(X, L) we have 

T0Def(X, L) - H^X, D(L)) - k e r ^ ^ X , T X) ^ H2(X, O X)) 

9* k e r ^ X , T ) = H^X^ X) q{ci{L)'Ì C). 

If ci(L) and c\(M) are linearly independent, then the deformation 
spaces Def(X, L) and Def(X, M) intersect transversely. 

2.4. Modul i spaces . Due to Beauville's local Torelli theorem one 
can easily construct a moduli space M of marked irreducible symplectic 
manifolds. Here a marking consists of an isomorphism of H2(X, Z) with 
a fixed lattice compatible with the quadratic form q. As for K3 surfaces 
the space of marked irreducible symplectic Kahler manifolds is smooth 
but non-separated. In contrast to the K3 surface case, the moduli space 
M is in general not fine; this is due to the fact that higher-dimensional 
irreducible symplectic manifolds permit automorphisms inducing the 
identity on H 2 ( X , Z ) (cf. [3]). 

The quotient of M by the orthogonal group of (H2, q) is the moduli 
space of unmarked manifolds, but this space is not expected to have any 
reasonable analytic structure. The theme of this paper is to prove state­
ments like: X and X ' correspond to non-separated points in the moduli 
space. Here, we usually refer to the moduli space of marked manifolds, 
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though this distinction does not really matter for our purposes. Explic­
itly, this means that there are two one-dimensional deformations X —> S 
and X' —> S (S is smooth), which are isomorphic over S n f0g and the 
special fibres are XQ = X and XQ = X'. 

3. E lementary transformat ions 

An explicit birational correspondence between two symplectic man­
ifolds was introduced by Mukai [17]. We briefly want to recall the con­
struction. 

Let X be a complex manifold of dimension 2n admitting a holomor-
phic everywhere non-degenerate two-form UJ G H°(X, ClX). Further­
more, let P C X be a closed submanifold which itself is a projective 

bundle P = P(F) A Y. Here, F is a rank-(N + 1) vector bundle 
on the manifold Y. Using the symplectic structure one can define the 
elementary transformation X' of X along P as follows. 

Since a projective space P N does not admit any regular two-form, 
the restriction of UJ to any fibre of (f> is trivial. More is true, the relative 
tangent bundle Tf, of (f> is orthogonal to T P with respect to the restriction 
of a;, i.e., UJj P : Tf, X T P —> O P vanishes. Indeed, this follows from the 
isomorphism H°(Y,QY) — H ° ( P > ^ P)> i.e., wj is the pull-back of a two-
form on Y. Thus the composition of T P C T X j with the isomorphism 
T X j — &X j and the projection £iX j — ^ ^ P — ^ Q<f> vanishes. 
Hence UJ induces a vector bundle homomorphism N i X — T X j / T P —> 

Now let codimP = N. Then both vector bundles N i X and Q<f> are of 
rank N and, since UJ is non-degenerate, the homomorphism N i X ^ ^4> 
is an isomorphism. 

Let X —> X denote the blow-up of X along P C X and let D C X 
be the exceptional divisor. The projection D —> P is isomorphic to the 
projective bundle P(AP/X) = P(tl<f,) -> P-

The natural isomorphism of the incidence variety f(x,H)jx G Hg C 
P N X P ̂  N as a projective bundle over P N with the projective bundle 
P(f2P N) —T- P N can be generalized to the relative situation, i.e., there 
is a canonical embedding D = P f ^ ) C P ( F ) XY P(F*) compatible 
with the projection to P ( F ) . The other projection D —> P(F*) is a 
projective bundle as well. If O X(D) restricts to O(-l) on every fibre 
of D —>• P(F*) , then there exists a blow-down X —> X' to a smooth 
manifold X' such that D C X is the exceptional divisor and D —> X' 
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is the projection D —> P(F*) C X' (cf. [10]). Adjunction formula shows 
that O X ̂ (D) indeed satisfies this condition. 

Definit ion 3 .1 . X' = elm P X is called the elementary transfor­
mation of the symplectic manifold X along the projective bundle P. 

Mukai also shows that an elementary transformation elm P X of a 
symplectic manifold X is again symplectic. 

E x a m p l e 3 .2 . In the case of a K3 surface S, which is a two-
dimensional symplectic manifold, and a ( —2)-curve P = P i C S one 
obviously has elm P S = S. The Hilbert scheme X := Hilb n(S), which is 
irreducible symplectic, then contains the projective space P n = S n(P) = 
Hilb n(P). The elementary transformation of Hilb n(S) along this pro­
jective space is in general not isomorphic to Hilb n(S). This is due to 
an example of Debarre [7]. Though in his example the K3 surface S, 
and hence X = Hilb n(S), is only Kahler, it is expected that one can 
also find examples X ^ elm P X, where X is projective. Also note that 
there are examples where an elementary transformation of Hilb n(S) is 
isomorphic to Hilb n(S) ([3]). 

The following question was raised in [19]. 

Quest ion 3 .3 . Are the symplectic manifolds X and X' = elm P X 
deformation equivalent? 

We want to give an affirmative answer to this question in the case 
of compact Kahler manifolds. 

T h e o r e m 3.4 . Let X be a compact symplectic Kahler manifold 
and let P C X be a smooth FN-bundle of codimension N. Then there 
exist two smooth proper families X —> S and X' —> S over a smooth 
and one-dimensional base S, such that X and X' are isomorphic as 
families over S n f0g, and the fibres over 0 £ S satisfy XQ = X and 
X'Q ^X'^elm P X. 

Note that the theorem is in fact stronger than what the original 
question suggests. The theorem shows that X and X' correspond to 
non-separated points in the moduli space of symplectic manifolds. In 
particular, one has 

Corollary 3 .5 . The higher-weight Hodge structures of X and elm P X 
are isomorphic. 
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The following lemma is needed for the proof of the theorem. Con­
sider a deformation X —> S of X and assume that S is smooth and one-
dimensional. Let v G H1(X,T X) be its Kodaira-Spencer class, i.e., C-v 
is the image of the Kodaira-Spencer map ToS —> Hl(X,T X)- Further­
more, denote by v G Hl{X, QX) the image of v under the isomorphism 
Hl(X,T X) — Hl(X, QX) induced by the symplectic structure. 

L e m m a 3.6. Assume that v G Hl(X, QX) is a Kahler class. Then 
the normal bundle N i X is isomorphic to <f)*F* <g> O0 ( — 1). 

Proof. We certainly can assume that Y is connected and hence 
H^P^ P/X) =* H ( P , ^ ) =* H°(Y,O Y) = C (use the Leray Spectral 
Sequence for (f> : P —> Y). 

By construction, the isomorphism N i X — ^4> commutes with the 
projections T X —> N P/Xi ^ X ^ ^4> and the symplectic structure T X — 
QX- In particular, the image £ of v under Hl(X,T X) —> Hl(P,AP/X) is 
non-zero if and only if v maps to a non-zero class under Hl(X, QX) ~> 
H1(P, Q^). Since v is Kahler and so its restriction to the fibres of <f> non-
trivial, one concludes that £ is isomorphic to the unique (up to scalars) 
non-trivial extension of O P by N i X — ^4>- Thus it is isomorphic to 
the relative Euler sequence 

o — • ^ — • <t>*F* ® O 4 - 1 ) — • O P — • 0. 

Therefore, it suffices to show that £ is also the extension class of the 
canonical sequence 

0 — • N / X — • N / X — • N X/X j P — • 0, 

where we use N i X — X- This follows easily from the definition of 
the Kodaira-Spencer class v as the extension class of 

0 — • T X — • T X\X — • N i X —> 0. 

q.e.d. 
Proof of 3.4. By 2.3 there exists a one-dimensional deformation 

X —T- S of X such that v is Kahler. Denote the blow-up of X along P 
by X —T- X . By Lemma 3.6 the exceptional divisor D —> P is isomorphic 
to the projective bundle P(cj)*F*) —> P . Obviously, 

P(<fF*) ^ P ( F ) XY P ( F ) . 

Now consider the second projection D = P((j)*F*) -> P(F*) . As be­
fore one checks that O X(D) restricts to O(-l) on every fibre of this 
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projection, i.e., the condition of the Nakano-Fujiki criterion is satisfied. 
Thus X can be blown-down to a smooth manifold X' such that the ex­
ceptional divisor D is contracted to P(F*). By the very construction 
X' <— X —T- X is compatible with X' <— X —> X, i.e., X' —> S is a 
smooth proper family, isomorphic to X over S n f0g, and its special 
fibre XQ is isomorphic to X'. q.e.d. 

Note that the two families X and X' are not isomorphic. In partic­
ular, one gets the well-known 

Corollary 3.7. If X is a K3 surface with a ( — 2)-curve P C X, then 
there exist non-isomorphic families X, X' —> S which are isomorphic 
over S nf0g and X0 ^ X'ü ^ X. 

4. Non-separated points in the modul i space 

In this section we discuss other situations where birational symplec-
tic manifolds present non-separated points in their moduli space. 

Elementary transformations, dealt with previously, define very ex­
plicit birational correspondences between symplectic manifolds. But bi-
rational correspondences encountered in the examples are usually more 
complicated. This section is devoted to general birational correspon­
dences. The result is analogous to 3.4, though we restrict to projective 
manifolds and birational correspondences which are isomorphisms in 
codimension two. Later (cf. Section 5) the result will be generalized 
to the case where in codimension two the birational correspondence is 
given by an elementary transformation. 

We first (Proposition 4.1) prove a result generalizing some of the 
arguments in the previous section. It is shown that if birational defor­
mations of X and X' in a Kahler direction can be constructed, then the 
conjecture holds true. This proposition is not strictly needed for the 
main Theorem 4.7. Proposition 4.3 then shows how to construct bira-
tional deformations for projective X and X'. Unfortunately, the defor­
mations constructed there are deformations in non-Kahler directions. 
Hence, Proposition 4.1 cannot be applied directly. A modification of 
it is given in Corollary 4.4. The extra assumptions there are met in 
many cases, e.g. for elementary transformations, but cannot be ensured 
in general. Theorem 4.7 is the main result of this section. It makes use 
only of Proposition 4.3 and Lemma 4.6. 

Let us fix the following notation: X and X' denote irreducible sym-
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plectic manifolds which are isomorphic on the open sets U C X and 
U' C X' (cf. 2.2). If v is a class in Hl(X, T X), then the symplectic 
structure T X — &X induces a class v G H1(X, QX)- The following 
proposition does not make any assumptions on either the projectivity 
of X or the codimension of X n U. It is not needed for the proof of the 
main theorem, but shows how and to what extent the idea of Section 3 
works in the general context. 

Propos i t ion 4 .1 . Let S be smooth and one-dimensional and let 
X —> S and X' —?- S be deformations of XQ = X and X'Q = X', re­
spectively. If X and X' are S-birational, and the Kodaira- Spencer class 
v of X —T- S induces a class v G Hl(X, QX) which is non-trivial on 
all rational curves in X nU, then Xj S \ {o} —S X'j SUo} (possibly after 
shrinking S to an open neighbourhood ofO). 

R e m a r k s 4 .2 . i) v non-trivial on a rational curve means that the 
pull-back of v G H2(X, C) evaluated on the fundamental class of such a 
curve is non-trivial. 

ii) The condition on v is satisfied if v is contained in the cone spanned 
(over R) by classes which are ample on X n U, e.g. if v is ample. Note 
that the rational curves could be singular and reducible. 

iii) Whenever X is projective there are deformations with Kodaira-
Spencer class v such that v is ample. The problem is to construct 
X' —7- S simultaneously. If the codimensions of X n U and X' n U' 
are at least three, then the isomorphisms Hl(X,T X) — Hl{U,T U) — 
Hl(U',T U) — Hl(X',T X') suggest that deformations of X can be re­
lated to deformations of X' via the big open subsets U and U'. I do 
not know how to make this rigorous. In particular, it is not clear to me 
what deformations of U should really mean. 

iv) In the proof of 3.4 the family X' —> S was constructed explicitly 
from X —T- S as a blow-up followed by a blow-down. For the general 
situation this approach seems to fail. 

Proof of Jhl. If the S-birational map X —> X' does not extend 
to an isomorphism X t = X t for generic t, then there exists a surface C 

together with a flat morphism C —> S such that : 
i) C is smooth and irreducible, 

ii) for generic t the fibre C t is a disjoint union of smooth rational 
curves, 

iii) there exists a finite S-morphism a : C —> X tha t maps Co to 
XnU. 
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This follows from resolution of singularities: By shrinking S we can 
assume that there is a sequence of monoidal transformations Z n —> 
Z n_i —T- ... —7- Z\ —> X' with smooth centers, which either dominate 
S or are contained in the fibre over 0 G S, and such that there exists 
a morphism Z n —> X which resolves the birational map X —> X'. If 
X t —>- X t does not extend to an isomorphism for generic t, then at 
least one monoidal transformation Z i —> Z i_\ with smooth center T i 
dominating S occurs. Let i be maximal with this property. Next one 
finds a morphism S' —> T i from a smooth, irreducible curve S' such that 
the composition S' —> T i —> S is finite and smooth over S n f0g. Then 
Z i XZt_x S' —> S' is a projective bundle. Since i is maximal, we have 
( - i XZ i_! S') XS S nf0g C Z n XS S'. Now pick a P r b u n d l e contained 
in Z i XZt_i S' —T- S' such that its restriction to S' XS S n f0g maps 
generically finite to X under Z n —> X. The resolution of the closure of 
it in Z n gives the surface C. 

We want to use the existence of C to derive a contradiction. We 
claim that the composition 

T t S -* H\X t T X t) <=* H\X t QX t) ^ H\C t QC t) 

vanishes for generic t (Here, the first map is the Kodaira-Spencer map, 
and the isomorphism is induced by the symplectic structure on X t). 
This is a generalization of an argument explained in the proof of 3.6. 
One can either use deformation theory to show that the existence of 
C —> S implies the vanishing of the obstruction to deform C^o —> X^o, 
which in turn gives the desired vanishing, or one makes this explicit 
by the following argument: First note, tha t we can assume C^o = P i . 
Then, let N t be the generalized normal sheaf of at, i.e., the cokernel 
of the injection T C t —> a*T X t- Since for t / 0 we have T C t — T P and 
H o m ( T 1 , f i P ) = 0, the pull-back of the symplectic structure on X t to 
C t induces for t / O a commutative diagram 

a*T X t — » N t 

I I 
a*ÇlX t - • QC t 

Thus, in order to show that T t S —> Hl(C t, &C t) is trivial, it is enough to 
prove that T t S -> Hl{X t, T X t) -> Hl{P, a*t T X t) -> H ( P ^ N t) vanishes. 
The image of this map is spanned by the extension class of 

0 — • N — • <x*t(T X j X t)/T C t - ^ a*t(T X j X t/T X t) - ^ 0 
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(cf. proof of 3.6). Since N tjC together with the natural inclusion 
N Ct/C C a*(T X j Xt)/Ct induced by T C —> oi*T X splits this sequence, 
we conclude that T t S - • H1P, N t) is trivial. Hence T t S - • H1C, fiC t) 
is trivial as well. 

The Kodaira-Spencer map T S —> Rl^*T XiS composed with the iso­
morphism Rl^*T X/S — R1K*^ X/S provides a global section of 
Rlir*ÇtXiS ® ^ S- Trivializing T S we can think of it as an element in 
H°(S,RlTT*ÇlXiS) or) using Hodge decomposition, as a C°°-section of 
R2ir*C X <8> O 5 . Moreover, making S small enough we have R27r*C X = 
H2(X,C). Thus T S - • R1ir*T X/S induces a C°°-map t H+ vf G H 2 (X, C). 
Restricting to C we get w t G H2(C,C). The vanishing we just proved 
implies hwt,[C t i = 0 for t / 0. Since t H+ [C t G H2(C,C) is conti-
nous, we can conclude h w , [Co]i = 0. This contradicts the assumption 
on v\X\Ui since Co as a degeneration of rational curves is still rational, 
though singular, reducible or even non-reduced [22]. q.e.d. 

If we in addition assume that X' is projective, then birational defor­
mations of X and X' can be produced using the following proposition. 

Propos i t ion 4 .2 . Suppose L G Pic(X') is very ample, and the 
corresponding line bundle L G Pic(X) satisfies Hl(X,L n) = 0 for n > 
0. Let X —T- S be a deformation of X = XQ over a smooth and one-
dimensional base S, and assume that there exists a line bundle L on X 
such that L := Lj X — L. Then, replacing S by an open neighbourhood 
of 0 G S if necessary, there exists a deformation X' —> S of XQ = X' 
which is S -birational to X. 

Proof. First, shrink S to the open subset of points t G S such that 
Hl(X t,L t) = 0. Since Hl(X,L) = 0, this is an open neighbourhood 
of t = 0. By base change theorem (cf. [12, III. 12.11]) h°(X t,L t) is 
constant on S, since it can only jump at a point t if Hl(X t,L t) / 0. 
Hence 7r*L is locally free on S with fibre (iT*L)(t) = H°(X t, Ct). 

By the very ampleness of L the base locus Bs(L) of L is contained 
in X n U and therefore of codimension at least 2. The set UteS Bs(L t) 
is a closed subset of X and hence codim X t Bs (L t) > 2 for t in an open 
neighbourhood of t = 0 (semicontinuity of the fibre dimension). Since 
Bs(C't) C Bs(L t) we can assume that codim X t Bs(L) > 2 for all n > 0 
and t G S. 

The rational maps <f>\ct\ '• X t > P{H°(X t, L t)*), defined by the 
complete linear system jL t j-, glue to a rational S-map (f> : X —> 
P((TI%L)*). Then cf) is regular at all points of X t n Bs(L t) (t G S). Let Z 
be the scheme-theoretic closure of the graph T^ of (f> in X XS P((7r*L)*), 
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i.e., the closure of T^ with the reduced induced structure. 
The projection ip : Z —> X is an isomorphism over every point of 

X t n Bs(L t), t G S. Note that a fibre Z t of Z over t G S does not 
necessarily coincide with the closure of the graph of (fjL t j- However, 
since X has irreducible fibres and hence T^, the generic fibre of Z —> S 
is irreducible as well. Thus, shrinking to an open neighbourhood of 
t = 0, we can assume that Z t is irreducible for t / 0. In particular, 
Z t^o equals the closure of the graph of <fjL t j in X t X P(H°(X t, £t)*) at 
least set-theoretically. Since Z is integral, i.e., irreducible and reduced, 
and S is smooth and one-dimensional, the dominant morphism Z —> S 
is flat ([12, III. 9.7]). 

Now consider the other projection tp : Z —> P((7r*L)*) and denote its 
image by X' C P((7r*L)*). Strictly speaking, X' is the scheme-theoretic 
image of tp, and since Z is reduced, this is the image with the reduced 
induced structure. Since X' then is integral and X' —> S is dominant, 
X' is flat over S. 

Obviously, X' is contained in XQ. To conclude that X' = XQ it 
is enough to show that h0(X',O(n)\X>) > h°(X^O(n)j X,) for n > 
0, where O(1) is the tautological ample line bundle on P ( H ° ( X Q , L ) * ) . 
Since O(1) IX/ = L and h°(X',L'n) = h°(X,L n), this is equivalent 
to h°(X, L n) > h°(X^O(n)j X,) for n > 0. For any n there exists 
an open neighbourhood S n C S of 0 G S, such that H 1 (A' t ,£n) = 0 
for t G S n. This follows from the vanishing of Hl(X,L n) for all n. 
On the intersection nS n C S, which is the complement of countably 
many points, all the cohomology groups H1(A't, £n) vanish and therefore 
h°(X t,Cn) = h°(X,L n). Using this and the flatness of X' -> S, the 
inequality h°(X,L n) > h0(X^,O(n)j X,) is equivalent to h°(X t,L) > 
h0(X t ,O(n)j Xi) for n ^ 0. But the latter can be derived using the 
composition 

H0(X t ,O(n)j X , ) ^ H ° ( Z t,rO(n)) 

i H°(X t nBs(L t),jCn) * H°(X t,jCn). 

Indeed, tp* is injective since Z t —> X t is surjective, and i* is injective, 
since it is induced by the dense open embedding X t nBs{L t) C Z t (t / 0). 
The last isomorphism is a consequence of codim(At nBs(L t)) > 2. This 
shows that XQ = X ' . Shrinking S further we can also assume that 
X' -> S is smooth ([12, III. Ex. 10.2]). 

It remains to show the assertion on the birationality. Let Z* and 
X'* denote the fibre products Z xS (S n f0g) and X' xS (S n f0g), 
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respectively. Stein factorization decomposes tp : Z* —> X'* into a finite 
morphism f : Y —> X'* and a morphism Z* —> Y with connected fibres. 
One first shows that f : Y —> X'* is in fact an isomorphism. Since 
f t : Y —» X t is finite, the line bundle f*O(l) is ample. Thus f*O(n) is 
very ample for n >> 0. In order to prove that f is an isomorphism, it is 
therefore enough to show that f : H0(X t ,O(n)) -> H°(Y t, f*O(n)) is 
surjective. We argue as above: Consider 

H0(X t ,O(n)j X,) ^ H0(Y t,f t O(n)) ^ H°(Z t,rO(n)) ^ H°(X t,Cn) 

and use h°(X t , O(n)j X;) = h°(X>, O(n)j X,) = h°(X', L'n) = h°(X, L n) = 
h°(X t, C't) for all t G C\S n. Hence f* is bijective for t in the comple­
ment of countably many points and therefore Y = X'* after shrink­
ing S. Thus Z* —T- X'* has connected fibres. On the other hand 
dim Z t = dim X t = dim X t . Hence Z t —> X t is birational for t / 0. 

q.e.d. 
Note that the condition Hl(X,L n) = 0 is automatically satisfied if 

codim(X'nU / ) > 3, i.e., if X' and X are isomorphic in codimension two. 
Indeed, Hx{X,L n) C H^U,^U) = H^U',L,) = H1(X',L'n) = 0 
by Kodaira vanishing and [23]. It is at this point that the assumption 
on the codimension of X n U enters. 

Also note that the existence of L implies q(ci(L),v) = 0, where 
v G H1(X, QX) is induced by the Kodaira-Spencer class v G H1(X, T X) 
of X ^ S (cf. 2.3). 

Next, combining 4.1 and 4.3 we get 

Corollary 4 .3 . Let X and X' be birational projective irreducible 
symplectic manifolds isomorphic in codimension two. Assume there ex­
ist a line bundle L G Pic(X) and a class v G H1(X, QX) such that: 

- the induced line bundle L G Pic(X') is ample, 
- the restriction of v to any rational curve in X nU is non-trivial, 
-q(cl(L),v)=0. 
Then X and X' correspond to non-separated points in the moduli 

space. 

Proof. By taking a high power of L we can assume that L is very 
ample. Furthermore, Hx(X,L n) = H1(X',L'n) = 0 for n > 0. The de­
formation space Def(X, L) of the pair (X, L) is a smooth hypersurface 
ofDef(X). Since q(cl(L),v) = 0 and T0Def(X,L) ^ ker (H 1 (X, Tc) = 

H^X^ X) q{ci{L),i C) (cf. 2.3), the class v G H 1 (X, Tc) is tangent to 
Def(X, L). Therefore, there exist a deformation X —> S over a smooth 
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and one-dimensional base S with Kodaira-Spencer class v and a line 
bundle L on X such that LQ = L. Thus Proposition 4.3 shows that 
there exists a deformation X' —> S of X' which is S-birational to X, 
and we conclude our proof by Proposition 4.1. q.e.d. 

R e m a r k s 4 .5 . i) If P n = P C X is of codimension n, then X 
and X ' := elm P X satisfy the assumptions of the corollary provided 
they are projective. Indeed, if L G Pic(X') is ample, then either there 
exists an element v G Hl(X, QX) orthogonal to c\(L) or X and X' are 
isomorphic. The restriction ±ü |P is either ample, hence non-trivial on 
any rational curve in P, or zero. In the latter case, change v and L 
by a small rational multiple of an ample divisor H on X. Thus we get 
v\ := v + ßci(H) and Li := L + 7 H . By adjusting ß and 7 we can 
assume q ( c i ( L ) , vi) = 0 and L^ to be ample for small 7. Obviously, 
vi j / 0 and therefore v\ and L\ satisfy the conditions of the corollary. 
Thus 3.4 for elementary transformations along a projective space can 
be seen as a corollary of 4.4 if X and X' are projective. Does 4.4 work 
for general elementary transformations? 

ii) It is sometimes hard to check if v and L satisfying the conditions 
of 4.4 can be found. I do not know the answer for the examples discussed 
in Section 6. 

Using 4.3 one can in fact prove Corollary 4.4 without the assump­
tions on v. The proof relies on the fact that a compact Moishezon 
Kahler manifold is projective. It can be used to prove the following. 

L e m m a 4.6. If X and X' are birational compact irreducible sym-
plectic Kahler manifolds with p(X) = p(X') = 1 and X' is projective, 
then X =* X'. 

Proof. X is Kahler and Moishezon, hence projective. Thus, if L is 
the ample generator of P ic(X' ) , then Pic(X) = Z • L and either L or L* 
is ample. Since H°(X, L n) = H°(X', L'n) / 0 for n > 0, one concludes 
that L is ample and hence X = X'. q.e.d. 

Note that the isomorphism can be chosen such that it extends the 
birational map. 

Here now is the main theorem of this paper. 

T h e o r e m 4.7. Let X and X' be projective irreducible symplectic 
manifolds which are birational and isomorphic in codimension two. Then 
X and X' correspond to non-separated points in their moduli space. 

Proof. Assume X and X' are not isomorphic. Then p(X) > 2. 
Let L be very ample on X', and let L be the associated line bundle on 
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X . Then Def(X,L) C Def(X) is a smooth hypersurface of positive 
dimension hl(X, Ci) — 1. Since Pic (X) is countable and any line bundle 
M G Pic(X) defines a smooth hypersurface Def(X,M) intersecting 
Def(X,L) transversely if M n ^ L m (n • m / 0) ([2] and 2.3), there 
exists a generic smooth and one-dimensional S C Def(X, L) such that 
S Pi Def(X, M) = f0g for all line bundles M linearly independent of 
L. Let (X,L) —> S be the associated deformation of (Xo,L) — (X, L). 
Then p{X t) = 1 for general t G S, i.e., t in the complement of countably 
many points. Now apply Proposition 4.3. We get a deformation X' —> S 
of X'Q = X' which is S-birational to X. Moreover, the proof of 4.3 shows 
that there is a line bundle L on X' such that L = L . For small t the 
fibre X t is still Kahler and L't is still ample on X t . Thus the lemma 
applies and shows X t = X t for general t extending the S-birational map 

X > X'. Since the set of points t G S, where X t > X t cannot be 
extended to an isomorphism is closed (the base-point set of X > X' 
is closed and restricts to the base-point set on the fibres), we can shrink 
S such that X > X' is an isomorphism over S n f0g. q.e.d. 

We want to emphasize that the condition on the codimension of 
X n U is only needed in order to apply 4.3. If for the deformation 
X —> S considered in the proof the dimension h°(X t, L't) does not jump 
in t = 0, then the argument goes through. This will be discussed in 
length in the next section. 

As an immediate consequence of the theorem we have 

C o r o l l a r y 4 .8 . If X and X' are as in Theorem Jh7, then they are 
diffeomorphic and their weight-n Hodge structures are isomorphic for 
all n. 

5. T h e c o d i m e n s i o n - t w o case 

As before, let X and X' be birational projective irreducible sym-
plectic manifolds. Let L G Pic (X') be an ample line bundle and denote 
by L G Pic (X) the corresponding line bundle on X . The assumption 
on the codimension of X n U in Theorem 4.7 was only needed to en­
sure H 1 (X, L n) = 0 for n > 0. If codim (X n U) = 2, then H 1 (X, L n) 
is not necessarily zero. Indeed, consider an elementary transformation 
of a four-dimensional manifold X along a projective plane P2 C X . 
Then a standard calculation shows Hl(X,L n) / 0 if n > 2. The 
vanishing Hl(X,L n) = 0 was only needed at one point in the line of 
arguments. Namely, we used it in Proposition 4.3 to conclude that 
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h°(X t, C't) = const for a family X —> S. One might hope that this holds 
for another reason. Indeed, if X' = elm P X is an elementary transforma­
tion in codimension two and X —> S is as in 3.4, then h°(X t, C't) = const. 
To prove this use the family X' —> S constructed explicitly in the 
proof of 3.4 and the equality h°(X t,L) = h°(X t , L t n) = const, since 
Hl(X', L'n) = 0. For a general birational correspondence the situation 
is more complicated, since we need h0{X t,L t) = const in the first place 
in order to construct X' —> S (cf. 4.3). 

Under an additional assumption (cf. 5.2) one can in fact prove 
h°(X t, C't) = const. This is the goal of this section, and the result 
5.5 will be applied in Section 6 to moduli space and Hilbert scheme on 
a K3 surface. 

In the examples it seems as if a birational correspondence between 
irreducible symplectic manifolds might be non-isomorphic in codimen­
sion two, but that in such a case the birational correspondence is in 
codimension two given by an elementary transformation. Thus, it is 
not completely unlikely, tha t the following assumption is always sat­
isfied. For the birational correspondence between the moduli space of 
rank-two sheaves and the Hilbert scheme this is established in Section 
6. 

A s s u m p t i o n 5.2. There exist open subsets U C V C X and 
U' C V C X' such that codim(X n V), codim(X' n V) > 3 and V := 
elmy\jjV. In particular, we assume that P := V n U is a P2-bundle 
P ( F ) —T- Y over a smooth not necessarily compact manifold Y. If X 
and X' are isomorphic in codimension two we set U = V and U' = V. 

We are going to prove 4.7 under this additional assumption. 
First note, tha t a modification of the proof of 3.4 immediately yields 

Corollary 5 .3 . Assume X and X' satisfy 5.2. If X —» S is a 

deformation as in the proof of 3.4 (i.e., v is non-trivial on the fibres 

of P —» Y), then there exists a smooth morphism V' —> S such that 

V ' j \ o = Xs\{o} and V0 = V. 

It can be used to prove 

Propos i t ion 5.4. Let X and X' be as before, in particular L am­
ple, and assume that 5.2 is satisfied. If (X,L) —» S is a deforma­
tion over a smooth and one-dimensional base S such that the class 
v G Hl(X,Çtx) associated to the Kodaira-Spencer class is non-trivial 
on the fibres of P —» Y, then h0{X t,L t) = const in a neighbourhood of 
t = 0. 
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Since replacing L by another ample line bundle (if necessary) ensures 
that the generic deformation X —> S in Def(X, L) has a Kodaira-
Spencer class v such that v is non-trivial on the fibres of P —> Y (cf. 
4.5), the proposition immediately shows 

Corollary 5.5. If X and X' are projective irreducible symplectic 
manifolds such that X' is an elementary transformation of X in codi-
mension two, i.e., 5.2 holds, then X and X' present non-separated points 
in the moduli space. 

Proof of 5.4. Let s be the local parameter of S at 0 G S and let 
S n denote the closed subspace Spec(k[s]/s n + 1 ) C S. Furthermore, let 
X n := X XS S n and L n := Lj X n- In order to show that h0(X t,L t) = 
const, it suffices to prove that for all n the restriction H°(X n,L n) —> 
H°(X n_i, L n-\) is surjective. This will be achieved by comparing it with 
the analogous restriction maps for the family V' —> S. For this purpose 
we introduce the following notation. U n denotes the space (U,O X n j U) 
and is considered as a deformation of U over S n. Analogously, let V'n := 
V XS S n and U'n := (U', O\ni j U')i which is isomorphic to U n. The line 
bundle L induces a line bundle L on V'. Its restrictions to V'n are 
denoted by L'n. In particular L is isomorphic to L'j V>-

First, H°(V'n,L n) - • HOiV'n^, £'n_!) is surjective for all n. Indeed, 
using the exact sequence 

0 —> L'j V> —> L n —> L n_1 —> 0 

this follows from Hl{V',L'j V,) = Hl{X',L') = 0. Next, H£\U n, L'n j U n) 
-* H^U^L j J is surjective and H°(V'n,L n) -+ H°(U,L n j l ) 
is an isomorphism. This is proved by induction starting with 
H°(V',L'j V') = H°(U', L'j U') and the commutative diagram: 

0 ^ H°(V',L'j VI) - • H°(V n,L'n) - • H°(V n _ i , L U i ) - • 0 

0 ^ H0{U',L'j UI) - • H°{U,L'n\Uk) - • H°(Zn-i , n-1j U ) - • 

The isomorphism H°(U'n, L'n j n') — H°{U n,L n j „ ) and a similar induc­
tion argument prove H°(X n,L n) = H°(U n, L n) and H°(X n, L n) — » 
H°(X n_i, L n-\). In the analogous diagram one has further to use 
H^X,L^ H^U^j U). q.e.d. 
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6. Appl icat ion to modul i spaces of bundles on K 3 surfaces 

We briefly recall some facts from [11] that are necessary for our 
purposes. 

Let S be a K3 surface, let Q G Pic(S) be an indivisible line bundle 
and let ci G Z such that 2n := Ac2 — c\(Q) — 6 > 10. Assume that 
H is a generic polarization, i.e., an ample line bundle such that a rank 
two sheaf E with de t (E) = Q and c2(E) = c2 is H-semi-stable if and 
only if it is H-stable. Then the moduli space M H(Q, c2) of H-stable 
rank-two sheaves with determinant Q and second Chern number c2 is 
smooth and projective. By [17] the moduli space M H(Q,c2) admits a 
symplectic structure. 

Next, one finds a K3 surface So such that Pic (So) = Z • Ho, where 
Ho is ample, and HQ/2 + 3 = n. In [11] we showed that under all these 
assumptions the moduli space M H(Q,c2) is deformation equivalent to 
the moduli space M H (Ho, n) of sheaves on So- In particular, M H(Q, c2) 
is irreducible symplectic if and only if M H (Ho ,n ) is irreducible sym­
plectic. Moreover, both spaces have the same Hodge numbers. 

In order to prove that M H0(HQ, n) is irreducible symplectic we used 
Serre correspondence to relate this space to the Hilbert scheme Hilb n(So) 
Roughly, the generic sheaf [E] G M H0(HQ, n) admits exactly one global 
section, and the zero set of this section defines a point in Hilb n(So). To 
make this more explicit we consider the moduli space N of H s t a b l e 
pairs (E,s G H°(S0,E)), such that det(E) ^ H0 and c2(E) = n. The 
parameter in the stability condition for such pairs is chosen very small 
and constant. As explained in [11] the maps (E, s) \—> Z(s) and (E, s) \—> 
E define morphisms ip : N —» Hilb n(So) and tp : N —> M H (Ho, n), re­
spectively. For the fibers we have 

V-1(Z)^P(Ext1(I Z ^Ho,O S ) ) 

and 
4,-1(E)^P(H0(So,E)). 

Generically, h 1 (So, Z ® H0) = 1 and h°(S0, E) = 1. Thus 

X := Hilb n(So) ¥- N A M Ho (H0, n) = : X' 

defines a birational correspondence between irreducible symplectic man­
ifolds. 

Next, we want to show that X i— N —> X' satisfies the Assumption 
5.2. 
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Using the exact sequence 

0 — • I Z ® H0 — • H0 — • O Z — • 0, 

the vanishing H 1 (So, H ) = 0 and HQ/2 + 3 = n, one shows 

h1 (So, Iz ® H ) = 1 + h(S, I Z ® H ) . 

Therefore, f := cp o t/>-1 is regular at points Z which are not contained 
in any divisor D G jHoj. 

Let D —T- jHQj denote the family of divisors parametrized by the 
complete linear system jHj> and let Hilb n(D) —> jHoj be the rela­
tive Hilbert scheme. Then f is regular on the complement U of the 
image of the natural map g : Hilb n(D) —> Hilb n(So) = X. Since 
dim Hilb n(D) = n + h°(S0, H0) - 1 = 2n - 2 = dim Hilb n(S0) - 2, the 
birational correspondence f is not isomorphic in codimension two. 

Let C —> B C jHoj denote the family of smooth curves. The rel­
ative Hilbert scheme over B is just the relative symmetric product 
S n(C/B) —T- B, which factorizes naturally through the relative Picard 
Pic n(C/B) - • B. 

The fibre of the factorization 4> : S n(C/B) - • Pic n(C/B) over a 
point L G Pic n(C t) is naturally isomorphic to P(H°(C t, L)). Note that 
by Riemann-Roch x{C t,L) = n — HQ/2 = 3. Hence h°(C t,L) > 3. 
Let Y C Pic n (C/B) denote the open set of line bundles L G Pic n(C t) 
such that h°(C t,L) = 3 and let 4> : P := (j>~l{Y) -> Y be the induced 
P2-bundle. 

Propos i t ion 6 .1 . i) The morphism g : Hilb n(D) —> X restricted 
to P is an embedding. 

ii) The union V of U and g(P) is open and codim (X n V) > 3. 

iii) V <— tp~l(V) —> ip(tp~l(V)) is an elementary transformation 
along the P -bund le P. 

Proof. There is a number of little things to check. First, by our 
assumption n > 5 we have HQ > 4. Thus we can apply a result of Saint-
Donat (cf. [18]) to conclude that Ho is very ample. Hence B C jHoj is 
dense. Moreover, Hilb n(C) is dense in Hilb n(D) (cf. [1, Th. 5]). 

Next, we show that Y C Pic n(C/B) is non-empty and, therefore, 
dense in Pic n (C/B) . Indeed, if x\,..., x n_2 are generic points in So, then 
there is exactly one smooth curve C G j H j containing them all. Let 
x n_i and x n be two more generic points on C and let Z := fx\,..., x n g. 
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Then h°(S0,I Z <8> H ) = 1 and hence ^{SQI Z <8> H0) = 2. Using the 
exact sequence 

0 — • O Sa — • I z ® H — • O c ( - Z ) ® H — • 0 

we get hl{C, O C(-Z) ® H ) = ^ ( S o , I z ® H ) + h2(S0, O So) = 3 and 
therefore h°{C,O C{Z)) = 3. Thus the line bundle L := O C{Z) defines 
a point in Y. Note that one could invoke a result by Lazarsfeld [15] to 
prove Y / 0. His result also shows that for the generic curve C t the 
complemet of Y (~) Pic n(C t) C Pic n(C t) has at least codimension four. 

Since P is obviously smooth and any Z G Im (g) satisfies 
h°(So, I Z <S> H ) = 1) the morphism g is an embedding on P. 

By definition V is the intersection of the open set 
fZjh°(So,I Z<S)H0) < 1g and the complement of g(Hilb n(D)nHilb n(C)). 
Hence V is open. The assertion on the codimension follows from Y / 0 
and the irreducibility of Hilb n(D) (cf. [1]). 

It remains to prove iii). Here we make essential use of the moduli 
space N. 

Let N P denote <*p~l(P). We first show that tp : N P —> X' respects 
the projective bundle <p : P —> Y, i.e., a fibre of tp maps to a fibre of <p. 
Indeed, if [E] G X' and s i , s2 £ H°(So, E) are two linearly independent 
global sections, then we have a diagram 

O S O S0 

O S 

=i 

s 

sil 

E 

I 

s i i 

—> I Z ( s )®Ho 

I 

O S - ^ I Z(s i)®H0 — • H 

Thus s\ and s2 vanish along the same curve C G jHoj and 
H 9* O C(-Z(s i)) ® H0 for i = 1,2. Hence O C{Z{sl)) 9* O C(Z(s2)), 
i.e., (pitpiE^x)) = (p(tp(E,s2)). 

This reduces assertion iii) to the following problem. Let 
L G Pic n(C t ) n Y , let P L := P(H°(C t,L)) =* P 2 and let N P L := ^ ( P L), 
which is a Pi-bundle over P2. Identify P L i— N P L —> tp(N P L) with 
P 2 < - P ( O P ) - • P* !! 
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The argument goes as follows. Any point Z G P L gives an exact 
sequence: 

0 — • O Sa — • I Z ® H0 — • O C t - Z ) 'S) H0 — • 0 
= L* ® K C t 

Now use the canonical isomorphisms 

P(H°(C t, L)) =* P(H 1 (C t, L* ® K C t)*) =* P(Ext1(L* ® K C t, O S ) ) 

to obtain the exact sequence 

0 ^ q * O So ®p*O P L(l) - ^ I Z®q*H0®p'O P L{a) - ^ q* (L* ® K C t) — • 0, 

where q and p are the two projections from So X P L and I Z, is the 
ideal sheaf of the universal subscheme Z C So X P L- By restricting to 
fxg X P L , where x G So nC t, we deduce a = 1. The push-forward under 
p induces the exact sequence 

0 ^ R1p*(I Z(x)q*Ho)(x)O P L(l) ^Hl(C t,L" ®K C t)®O P L -^O P L(1) —>• 0. 

Hence R1p*(I Z <S>q*H0) = QP L- It is straightforward to identify N P L —> 
P L with P ( R p ( Z ® q*H0)*). Thus ( N P L - • P L) 9* ( P ( T P2) - • P2) = 
( P ( O P 2 ) ^ P 2 ) . 

It remains to show that tp : P E := P(H°(S0 , E)) = ^~1{E) -> P L is 
a linear embedding. On P E we have 

0^O^q*E®p*O P E(l) -^ {lx<p)*{I Z®q*H0)®p*O P E{a) — • 0, 

where by abuse of notation q and p are again the projections from 
So X P E. A s above one finds a = 2. Taking direct images we obtain 

0 — • Hl(S0,E) ® O P E (1) — • <p*(Rlp.(I Z (x) q'Ho)) ® O P E (2) — • O P E — • 0, 

i.e., 0 —> O E( l ) —> ¥>*Î2P L ® O P E(2) —> O P E —> 0. T h u s ^ O P L(l) 

= O P E(l). q.e.d. 

Remark . The identification N P L = P(TpL) seems to show that the 
birational correspondence described by N is not some kind of "nested el­
ementary transformation" : It is only in the codimension-two case where 
one h a s P ( O P J ^ P (T P J . 

Corollary 5.5 now immediately implies 

Corollary 6.2. If So is a K3 surface with Pic(So) = Z • HQ and 
HQ > 4, then M H0(HO,n) and Hilb n(So) correspond to non-separated 
points in the moduli space of symplectic manifolds (n = HQ/2 + 3). 



b i r a t i o n a l s y m p l e c t i c m a n i f o l d s 511 

Thus we can conclude 

T h e o r e m 6.3. If S is a K3 surface, Q G Pic (S) is indivisible, 2n := 
4c2 — c\(Q) — 6 > 10 and H is a generic polarization, then the moduli 
space M H(Q,c2) of H-stable rank-two sheaves E with de t (E) = Q and 
c 2(E) = c2 is deformation equivalent to Hilb n(S). 

Note that in particular moduli space and Hilbert scheme are just 
different complex structures on the same differentiable manifold. 

Remark . O'Grady works with an elliptic surface instead of So and 
shows that every moduli space is deformation equivalent to a moduli 
space on an elliptic surface [20]. The birational correpondence between 
moduli space and Hilbert scheme on the elliptic surface is again given 
by Serre correspondence. The picture there is slightly more complicated 
than what we have encountered above. Nevertheless I believe, that 
also in his situation the assumptions 5.2 are satisfied and that moduli 
space and Hilbert scheme are deformation equivalent. This would prove 
Theorem 6.3 also for the case of moduli spaces of sheaves of rank> 2. 
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