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PERESTROIKAS1 OF OPTICAL WAVE FRONTS
AND GRAPHLIKE LEGENDRIAN UNFOLDINGS

SHYUICHIIZUMIYA

0. Introduction

It is well known that parallels of given smooth hypersurfaces in Rπ

have Legendrian singularities [2], [3]. If we are concerned about the way
in which these parallels change as we alter the distance, then we are con-
cerned about perestroikas of wave front sets. This problem has been con-
sidered by several people [1], [2], [4], [5]. Roughly speaking, it has been
shown that generic perestroikas of the singularities of parallels of smooth
hypersurfaces are generic perestroikas of Legendrian singularities. In [15]
Zakalyukin proved that generic perestroikas of Legendrian singularities are
stable perestroikas of Legendrian singularities in the case n < 5 and clas-
sified these perestroikas. In this paper we shall consider the realization
problem of the perestroikas of Legendrian singularities. In relation to this
problem, Arnol'd [2, p. 40] mentioned that "one may find in the literature
the statement that the local perestroikas of the wave fronts generated by
the general Legendre mapping over space-time and of the equidistants (i.e.
parallel) of the smooth hypersurface are the same. It seems this has never
been correctly proved." However, he has corrected his mistakes in his other
book [2, p. 60]: "Indeed, the non-trivial perestroikas A{ and A2 change
the number of connected components of the Legendrian manifold. Hence
they cannot occur as perestroikas of equidistant hypersurfaces." This fact
was already known to Bill Bruce in 1983 [4]. We have the following natural
question.

Question. What sort of a class of one-parameter families of Legendrian
immersion germs is the correct class to describe perestroikas of parallels
of hypersurfaces?

Here we shall give a candidate of this class which we call graphlike Leg-
endrian unfoldings. Roughly speaking, a graphlike Legendrian unfolding
is a Legendrian submanifold germ with a submersive generating function.
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The general properties of graphlike Legendrian unfoldings will be studied
in §2.

On the other hand, it should be natural to consider this problem in the
framework of Hamiltonian systems which also contains the situation of
parallels of hypersurfaces in a Riemannian manifold (cf. [5]).

All maps considered here are differentiable of class C°° , unless stated
otherwise.

1. Optical wave fronts

In this section we shall introduce the notion of optical wave fronts which
is a generalization of parallels of hypersurfaces. We need some notions and
results on Legendrian singularity theory. For this we refer to [1], [2], [3],
[12], [14].

Let Jι(Rn, R) be the 1-jet bundle of functions of /t-variables. Since we
only consider the local situation, the 1-jet bundle Jι(Rn,R) may be con-
sidered as R2/ί+1 and the canonical coordinate is given by (x{, , xn, t,
P\ > ' " ' Λi) Then the canonical 1-form is given by θ = dt- Σ"=ι Pt dxr

Let Γ*R" be the cotangent bundle over Rn whose canonical coordinate is
given by (x{, , xn, pχ, , pn). We also have the canonical 1-form
a = ΣΊ *n
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Let H : (Γ*R", (xo,po)) -• (R, c) be a function germ. We call it a
Hamiltonian function germ. We say that H is starshaped if it satisfies
ΣjLi PidH(x, p)/dpi φ 0 at any (JC , p) G H~\c). We remark that if H
is starshaped, then H~ι(c) is transverse to fibers of π. It is easy to prove
the following proposition.

Proposition 1.1. If H is starshaped, then a\H~ι(c) gives a contact
structure on H~x(c), and π\H~ι(c): H~~ι(c) —• Rn is a Legendrian fibra-
tion.

Let (/, (x 0, p0)) c (T*Rn , (;c0, p0)) be a submanifold germ. We say
that / is an optical Legendrian submanifold relative to H if dim / = n-\,
a\l = 0, and / c H~ι(c). We call the image ft (I) an optical wave front
relative to H.
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By this proposition, if / is an optical Legendrian submanifold relative
to //, then / is a Legendrian submanifold of H~x(c), and π(/) is a
wave front set in the ordinary sense (see [1], [2], [3], [14]). We now give
examples of optical wave front sets.

Example 1.2. Let g — Σtj 8ij(χ) dxt dx. be a Riemannian metric on

Rn. We define a Hamiltonian function H on Γ*Rn by

H(xx, , xn, px, • , pn) = Σ gij
ij

Then we can show that

^ ^ W Λ ^ = 2 o n / / ' ( I ) .
k=x όp* ik

For a Hamiltonian function germ H: (T*Rn , (x0, pQ)) —• (R, c), we

define a function germ H : (Jλ(Rn, R), (xQ9 tQ, p0)) -+ (R,c) by

H(x, t,p) = H(x, p). We call H an induced contact Hamiltonian func-

tion germ from H. By the definition, we have the Hamiltonian vector

field

XH = " 2 J — — - — + 2 ^ - — on Γ R .

For an isotropic (n - l)-dimensional submanifold germ (/, (JC0 , pQ)) C
(T*Rn , (xQ, p0)) (i.e., a\l = 0), we say that / is noncharacteristic relative
to H at (xo,po) if XHΛXQ>PQ) i Γ ( W o ) Λ Then we have

Lemma 1.3. If Y^^P^dH/dp^ Φ 0 at (x 0, pQ) e I, then I is non-
characteristic relative to H at (xQ9pQ).

Proof. UXHΛXΰ,Po}eT{XΰtPo)l, then

which contradicts to the assumption.
By this lemma, if / is an optical Legendrian submanifold relative to a

starshaped Hamiltonian function H, then / is automatically noncharac-
teristic at any points relative to H. Thus we can apply the characteristic
method to solve the Cauchy problem of the first-order partial differential
equation H = c with the given initial condition / (see [12]). We con-
sider the embedding i\0 c H~\c), where & c / x (-e, ε) is some
open neighborhood of / x 0, ε > 0; here i(u, t) = Tt(u), u e I,
(u, t) e #, and Tt is a one-parameter group of translations along XH.
Hence we have a family of optical wave fronts n{lt).
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Example 1.4. We now consider the Hamiltonian function H = pχ +

\-p2

n. Let F: (Rn, x0) —> (R, 0) be a submersion germ. We define an

(n — l)-dimensional submanifold of Γ*RΛ by

lF=\(x,p)\p = ——L.—-(Fχ , . . . ,Fχ)andF(x) =
{ (ΣM(FXt))

where Fχ =dF/dxr

By the definition, / c H~ι(l) and a\l = 0. Parallels of the hypersurface

F~ι(0) in Rn are π(lt) which are constructed by the above argument with

the initial submanifold lF.

Our purpose is to construct a framework to describe the perestroika

of singularities of n{lt). Then we consider what the time t is. We can

construct a Legendrian submanifold S? c Jι(Rn, R) associated with the

Lagrangian submanifold L c T*Rn in the following way: We fix a point

(x 0, p0) G L. Then for every point (JC , p) G L and every path y = γ(t),

7(0) = {x0, pQ), 7(1) = (x, /?), we define a function

Then

= f«\L.
Jy

where [7] is the homotopy class represented by the path 7 joining (xQ,pQ)
and (x, /?). Since we consider the local situation, Sf does not depend on
the choice of 7. For any (x, p) e lt c L, we put (x , //) = T_{ (x, p) e I.
Then there exists a path 7 in / such that 7(0) = {xo,pQ) and 7(1) =
(x ,p). We denote ^(ί) = (x(t),p(t))9 which is defined by φ(τ) =
Tτ{x\p). Since α|/ = 0,

/ a\L= f
φ-y Jo ή

Jo ff{

Pi T ^Λ

Since H is starshaped,

</S(S(0,JK0)

^^ t=0
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This means that π2 |J?: -2* -* R is a submersion germ. Accordingly we
will introduce the notion of graphlike Legendrian unfoldings in the next
section.

2. Graphlike Legendrian unfoldings

We introduce the notion of graphlike Legendrian unfoldings and study
some fundamental properties. In [10], [11] we defined the notion of Leg-
endrian unfoldings, which is very useful in the theory of first-order partial
differential equations. However, it is still too general for our purpose.

Let (oS*7, (JC0 , t0, p0)) c Jι(Rn , E) be a Legendrian submanifold germ

(i.e., dim-S* = n and θ\& = 0). We say that SC is a graphlike Leg-

endrian unfolding if π2\3* is a submersion germ. We remark that S?t =

3? n {t = t0] is an (n - l)-dimensional submanifold, and Π(J^ ) = lt

is an isotropic submanifold in (T*Rn, (xQ9p0)). Here we call π(lt ) a

wave front of /, . In order to study perestroikas of wave fronts of graph-

like Legendrian unfoldings, we now introduce the following equivalence

relation among graphlike Legendrian unfoldings. Let (Jz^, (x., t., p.)) c

Jι(Rn, R) (/ = 0, 1) be graphlike Legendrian unfoldings. We say that

(«S^, (x 0 , tQ, pQ)) and ( ^ , (x{, tλ, px)) are P-Legendrian equivalent if

there exists a contact diffeomorphism

Φ : ( / ( R n , R ) , (xQ, tQ9p0)) - , ( / ( R π , R ) , (χχ, tχ,pχ))

of the form

Φ(x,t,p) = (φx(x9 t ) , φ2(t), φ3(x, t,p))

such that
This equivalence relation preserves the diffeomorphic type of perestroi-

kas of wave fronts of graphlike Legendrian unfoldings. We can define the
notion of stability with respect to P-Legendrian equivalence in exactly the
same way as for the ordinary Legendrian stability (see [1], [2], [3], [14]).

By the Arnol'd-Zakalyukin theory of Legendrian singularities, we can

construct generating families of graphlike Legendrian unfoldings. Let F :

( R x l " x I f c , 0 ) ^ ( I 5 0) be a function germ such that dF/dt Φ 0 and

(d2F, F)|{0} x l " x R ^ is nonsingular, where

d F r ^ d F
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Then (d2F, F) is a submersion germ, so that Ct(F) = (d2F, iΓ)"1(0) is
an n-dimensional smooth submanifold. We now define a map germ

by

It is easy to show that Φ*FΘ = 0 and π 2 o φ f is a submersion germ, so
that Φ F is a graphlike Legendrian unfolding. By the theory of Arnol'd
and Zakalyukin, we can show the following result.

Proposition 2.1. All graphlike Legendrian unfolding germs are con-
structed by the above method.

We call F a generating family of ΦF. We also consider an equivalence
relation among generating families of graphlike Legendrian unfoldings.
Let

i ; . : ( E x l n x R * , 0 ) - » ( R , 0 ) (I = 0 , 1) .

be generating families of Φ^. We say that Fo and Fx are t-P-3?-equiv-

alent if there exists a diffeomorphism germ

Φ : ( I X R " X R \ 0 ) - 4 ( I X 1 " X 1 \ 0)

of the form

Φ(t,x, q) = (Φx(t),Φ2(t, x),φ3{t,x, q))

such that

where {F0)g> denotes the ideal generated by FQ in the ring of function

germs of (t, x, #)-variables at the origin. The definition of the stable t-

P-3Z-equivalence is given in the usual way (see [3], [14]).

For a generating family F of ΦF, we put

f d f

x q)

where / = F\0 x R" x Rfc. We also say that F is α P-5?-versal deformation

off if

For properties of P-^-versal deformations, see [9]. Then we have the
following proposition, whose proof is just like that of the ordinary theory
of Legendrian singularities ([3], [14]).
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Proposition 2.2. (1) Let F. (/ = 0, 1) be generating families of ΦF.

Then ΦF and ΦF are P-Legendrian equivalent if and only if FQ and Fχ

are stably t-P- 3Z -equivalent.
(2) Let F be a generating family of ΦF. Then ΦF is stable with

respect to the P-Legendrian equivalence if and only if F is a P-^-versa!
deformation of f

We can classify generic graphlike Legendrian unfoldings by the P-
Legendrian equivalence for n < 5 by the aid of classifications of one-
parameter perestroikas of wave fronts. In [15] Zakalyukin has given a
generic classification of function germs F : (RxRn xRk ,0) -> (R,0) by
the stable ί-P- ̂ -equivalence. Since the set of function germs F(t, x, q)
which satisfy dF/dt Φ 0 is an open subset, such a function germ is stably
t-F~ ̂ -equivalent to one of the germs in the following list:

ι = l

°Dr) q2

χq2 ± qr~X ^ x ^ 1 + xxqx + / (4 < r < n),

(ιAr) q[+l±q2

2+q[ \t±x] ±

1=2

r-1

i=\

r-1

(ιE ϊ

Since

<h

(d2F

C ̂

, 4 ,
H- q2 4-

r-2
"92

(*1*2

x l " X

±x

-l)t

Rk

i=2

+ x5qxq2 + X4q2

2+x

for germs ιAχ and

(4 < r < n

iqx+x2q2 +

ιA2 are not

+ 1),

submer-
2

sive, these germs can be removed from the list of generating families of
graphlike Legendrian unfoldings. Thus we obtain

Theorem 2.3. For n < 5, the generic graphlike Legendrian unfolding is

P-Legendrian equivalent to one of the germs of the following type: °Ar (1 <

r<n), °Dr(4<r<n), lAr(3<r<n), lDr(4<r<n), %.
We remark that we can choose a generating family of the graphlike

Legendrian unfolding ΦF of the form F(t, x, q) = f(x, q) - t by the
implicit function theorem. In this case the function f(x, q) should satisfy
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the requirement that (d2f, f) be nonsingular, so that it gives a generating
family of the initial isotropic submanifold ΦF\t = 0.

3. Optical graphlike Legendrian unfoldings

In this section we return to study perestroikas of optical wave fronts. For
our purpose, we now introduce the following: Let H : (T*Rn, (x0, p0)) —•
(R, c) be a starshaped Hamiltonian function germ, and (J?, (JC0 , to,po))
c Jι(Rn ,R) a graphlike Legendrian unfolding. We say that J ? is optical
relative to H if & c H~ι(c), where H is the induced contact Hamilto-
nian function germ from H. Then we have the following theorem.

Theorem 3.1. (1) Let H : (T*Rn, (xQ, p0)) -+ (R, c) be a starshaped
Hamiltonian function germ, and (/, (JC0, p0)) c T*Rn be an optical Leg-
endrian submanifold relative to H. Then there exists a graphlike Legen-
drian unfolding (J?, (xQ9 0, p0)) which is optical relative to H such that
π{& n{t = 0}) = /.

(2) Let (S?, (x0, t0, p0)) c Jι(Rn, R) be a graphlike Legendrian un-
folding. Then there exists a starshaped Hamiltonian function germ
H: (T*Rn, (JC0 , pQ)) -+ (R, c) such that 3* is optical relative to H.

In order to prove this theorem, we need the following quite useful the-
orem in symplectic geometry.

Theorem 3.2 (Kostant-Sternberg [8]). Let (P, ω) be a symplectic man-
ifold, L a Lagrangian submanifold, and β a smooth l-form on P with
β\L = 0 and dβ = ω. Then there exist a tubular neighborhood V of L
in P and a unique vector bundle isomorphism K: V -> (Γ*L, aL) such
that K is the identity on L and K*aL = β. Here, aL is the canonical
l-form on T*L.

Proof (1) This assertion was proved in §1.
(2) Since £f is a graphlike Legendrian unfolding, we can choose a local

parametrization φ: (Rn, (uQ, tQ)) -> (-2*, (x0, t0, pQ)) of Sf of the form
φ ( u , t) = ( x ( u , t ) , t 9 p ( u , ή ) , w h e r e u = ( u l 9 - ~ , u n _ x ) . F u r t h e r m o r e ,
we have φ*θ = 0, so that it is equivalent to

n dx

(a) 2 P I . ( M , 0 ^
i=\ J

n dx

(b) £ ( , ) i
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We now consider a vector field

-(£(..0.1. go,,,))

on y , so that we have

where L = π(<Sf). Since L is a Lagrangian submanifold germ in (T*Rn,
(x 0, p0)), there exist a decomposition / U / = {1, , w} and a function
germ 5(x 7 , Pj) such that

9 S
Γ f, M d S

L=^(xI,xJ,pI,pJ)\xJ = -—,

(for details see [3], [14]). If we define a 1-form β on T*Rn by β = dS-
Pj dXj+Xj dpj, then we have β\L = 0. Thus we can use β as the 1-form
in Theorem 3.2. It follows that there exist a tubular neighborhood V of
L in Γ*RΛ and a unique vector bundle isomorphism K : V —• (Γ*L, aL)
such that fc|L = idL and K*aL = β.

Since π^X is a vector field on L, we can lift this vector field XH> on
T*L, where Hf: (T*L, (xQ, pQ)) —»• R is a Hamiltonian function germ. If
we adopt the canonical local coordinate (x, p) of Γ*L around (x0, p0),
where x is a local coordinate of L, then L is the submanifold defined
by p. = 0 (/ = 1, , n). We now define a Hamiltonian function germ
H" : (Γ*L, (χ 0, p0)) -> (R, c) by //"(x, p) = //'(x, p) - H\x, 0) + c.
By the definition, we have Hn{L) = c. The Hamiltonian vector field XHn
on Γ*L has the following component:

dp±_dlf_ dxi__dlf_
~dt~ dx{ ' βί " dPi9 ί - l , ,«•

On the other hand, we have dH/f/dpi = dHf/dpi and

0) = 0 o n L ,
dx{

so that XHn\L = XH>\L = π^X.
Finally, we define a Hamiltonian function germ H : (T*Rn , (xQ, /?0)) ->

(R, c) by // = if" o K. Since # | L = idL, the Hamiltonian vector field
XH is an extension of π^X on Γ*Rn and H(L) = c. It follows that we
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have relations

on L. Since equality (b) implies that

> , t)-^(u, t) = ΣPi{U, t)^y(x(U, t),P(u, t ) ) ,

H is starshaped near (x0, p0). Hence the proof is complete.
This theorem guarantees that the class of graphlike Legendrian unfold-

ings supplies the correct class which describes perestroikas of optical wave
fronts. However, for our first question, we must deal with the case where
the Hamiltonian function germ H is fixed.

4. Optical graphlike Legendrian unfoldings

relative to a fixed Hamiltonian

In this section we consider the perestroikas of optical wave fronts rel-
ative to a fixed Hamiltonian function H. Let H: (T*Rn, (xQ9 p0)) ->
(Rn , 0) be a starshaped Hamiltonian function germ. Since π : H~ι(c) —•
Rn is a Legendrian fibration, there exist a local contact diffeomorphism
K: PT*Rn - i / " 1 ^ ) and a diffeomorphism h: Rn -> R" such that
π o AT = Λ o p , where /? : PΓ*Rn -> R", is the projective cotangent
bundle (see [1], [2], [3], [14]). If / is a Legendrian submanifold germ in
PT*Rn, then K(l) is also a Legendrian submanifold germ in H~ι(c).
Of course, / and K(l) are Legendrian equivalent, so that any wave front
can be realized by an optical one. However, for the perestroikas of wave
fronts, the situation is different from the above. Consider the following
example.

Example 4.1. Let H : (Γ*RΠ , (JC0 , pQ)) -+ (Rn , c) be a Hamiltonian
function germ defined by H(x, p) = pn, where (xQ, p0) = (0, , 0, 1).
Let F(t, x, q) = f(x, q) - t be a generating family of the graphlike
Legendrian unfolding Φ F . Suppose that ΦF\t = 0 is an optical Legendrian
submanifold relative to H. Then
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Because

*(*•§£*••>)-!£<*•"•
we have

It follows that F(t,x,q) is not a P-^-versal deformation of f(x, q) if
P-Jf-cod(/) > 1. Thus, for example, types of ιAr and ιDr in Theorem
2.3 cannot be realized by an optical one relative to H.

Hence, we should assume a kind of nondegeneracy condition on a
Hamiltonian function germ. We say that a Hamiltonian function germ
H : (T*Rn, (x0, p0)) -• (R, c) is nondegenerated if

(1) H is starshaped,
(2) the quadratic form

v^ d2H ,

does not vanish on the null space of

(dH. . dH

The second condition of the above definition is given by Duistermaat
(Proposition 5.2.1 in [7]) in order to study optical Lagrangian submani-
folds. It is easy to check that the Hamiltonian function in Example 1.2 sat-
isfies the above conditions. Thus we obtain the following theorem, which
gives an almost complete answer to our first question.

Theorem 4.2. Let H : (T*Rn, (xo,pQ)) ^ (R,c) be a nondegener-
ated Hamiltonian function, and {&, (x{, tx, pλ)) c Jι(Rn

9 R) be a P-
Legendrian stable graphlike Legendrian unfolding. Then there exists an
optical graphlike Legendrian unfolding {£?',(xo,ίo,]?o)) relative to H
such that 3* and 3' are P-Legendrian equivalent.

Proof Without loss of generality, we may assume that (x0, tQ) = (0, 0).
Let

6 : ( l x l M xR*,0)->(R,0)

be a generating family of the graphlike Legendrian unfolding Sf. Since

(d2G9 G)\0 x Rn x Rk is nonsingular, the set
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is a Legendrian submanifold in PT*Rn , where g = G\0 x Rn x Rk . Thus
/0 = K(ψ ) is an optical Legendrian submanifold relative to H which is
Legendrian equivalent to ψ , where K is the contact diffeomorphism as
in the previous arguments. It follows from Theorem 3.1 that there exists
an optical graphlike Legendrian unfolding <S?f relative to H such that

/=0 0

We now choose a generating family F(t9 x, q) = f(x, q) - t of
By definition, <2f'\ί=0 is given by

so that / and g are stably P-^-equivalent by Arnol'd-Zakalyukin theory
[1], [2], [3], [14]). Thus we may assume / and g are P-^-equivalent.

If P-^-cod(s) = 0, then P-^-cod(/) = 0, so f{x, q) is already a
P-^-versal deformation of itself, and F(t9 x, q) is also a P-^-versal
deformation of f(x, q). From the uniqueness theorem of P-^-versal
deformations (see [6], [8]) it follows that F(t, x, q) and G(t, x, q) are
t-P-^-equivalent. Hence 3?' = ΦF and Jϊ? = ΦG are P-Legendrian
equivalent.

Thus, we now assume that P-Jf-cod(£) = 1, so that P-^-cod(/) = 1.
If -1 = dF/dt\t=0 £ Te{V-X){f), then we can get the required assertion
by the uniqueness of the P-^-versal deformation as in the previous case.

Suppose 1 G Γe(P-^)(/) for any generating family of £?' of the form
F(t, x, q) = f(x, q) - t. Since H(l0) = c, we have a relation

so that

where f0 = f\x=0. We may assume that fQ e 9Jl3

k. Now consider the
Taylor polynomial of H(x, p) of degree 2 at (x, pQ) with respect to
P = {Pχ9 -" 9 pπ)-variables as follows :

2 Σ dp dp ^X' p°^t ~ po,'^pj ~ po,β + hi^eτ t e r m s
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Since H(0, p0) = c, we have

+ - J 2 •
2 f dpdp

ι,J ι J

+ higher terms.

Because

the right-hand side of the above equality is a function of q = (ql9 - , qk)-
variables whose order is at least 2. Since F(t, x, q) = f(x, q) - t is a
generating family of the graphlike Legendrian unfolding 2?',

and we may assume that d2f(0)/dqidxj = δ^ for i, j = 1, , k and

9/(0, 0)/0JT7 E απj for / = fc + 1, , n . Thus 0/(0,

ψ(q), where ^(ήf) G 9Jt£, so that

Since H is nondegenerated, we have

On the other hand, the assumption implies that
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ΣΛuf£«>.Λ>>

Let Λ : M" —• R" be a linear isomorphism. Then

dxi > i -J

Since

v ^ dΔH / Λ N J m > 3

= > 7r—-—(09P(\)QiQi modOT,
^—' dp dp rv'*ι*) K

and the vector space

is invariant under the action of linear isomorphisms 4̂ : Rn —»• Rn, all

quadratic forms of q = (^ , , ^-variables are contained in the above

vector space. If there exists a quadratic form of ^-variables such that

it is contained in (f0, dfo/dq)g, modSUl^, then every quadratic form is

contained in it for the same reason as above. In this case, since the vector

space (f0, dfo/dq)g, modOJt^ has at most dimension k, k should be

1 and f0 is an ^42-type function germ. It follows from Theorem 2.3

that F(t, x9 q) is °^2-type, so that this case is contained in the case P-

= 0.



in

PERESTROIKAS OF OPTIMAL WAVE FRONTS 499

We may assume that all quadratic forms of ^-variables are contained

moΛ<

Since o^-cod(^) is finite (for the definition of o^-finiteness, see [13]),

there exists r e N such that UJlr

k c (/0, § ^ ) r . By the same arguments

as in the previous paragraph, we can assert that every monomial of q-

variables of degree 3 is contained in the vector space

If a monomial of degree 3 is contained in (f0, dfjdq)^ mod9Jt*, then

k should be 1, and f0 is an ^3-type function germ. It follows that

>3 j

By Theorem 2.3, F(t, x, q) should be of type °A3. This case is thus
contained in the case P-^-cod(/) = 0.

For °Aj- or Uz-type germs, we can get the same normal forms as Theo-
rem 2.3 without the assumption n < 5 (cf. Theorem 2.2 in [15]). Hence
we can continue this procedure up to degree r - 1. Eventually, it is still
true that every polynomial of degree r - 1 is contained in the vector space

Since ίΰfkc(f0, dfjdq)^ , we have

It follows that

so that

by the Malgrange preparation theorem. This contradicts the fact that P-
= 1. Hence the proof is complete.
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Remark. The above proof is motivated by the proof of Proposition
5.2.1 in [7]. In fact, Theorem 4.2 was discovered in the attempt to under-
stand the proof of the proposition.
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