
J. DIFFERENTIAL GEOMETRY
38 (1993) 39-103

ON THE MODULI SPACE OF SU(n) MONOPOLES
AND HOLOMORPHIC MAPS TO FLAG MANIFOLDS

BENJAMIN M. MANN & R. JAMES MILGRAM

Abstract

In this paper, motivated by questions in mathematical physics, we study
the geometry of the components in the spaces of based holomorphic maps
from the Riemann sphere to complex flag manifolds, which we denote by
Rat c (F(/)) . We decompose these spaces into smooth, in fact, complex
strata each having a complex normal bundle. Using a modification of this
filtration we study the forgetful map i, : //+(Ratc(F(/)) -> //+(Ω2F(7))
and prove an Atiyah-Jones type stability theorem. We also use the nitra-
tions to determine the basic groups H^(KaX^(¥(J)) \ Z) and show that
/„, has a nontrivial kernel for general flag manifolds.

1. Introduction

Let S2 = CP(1) denote the Riemann sphere, and F(/) the flag mani-
fold of all sequences of complex 7 z-dimensional planes through the origin
in Cn for a fixed sequence / = (0 < j \ < < j m < n). Thus, a point in
F(/) is given by the flag

{0} c V j ' c c \jm c Cn,

where VΛ is a complex ji-dimensional plane through the origin. We

denote the space of based holomorphic maps of the Riemann sphere to

the complex flag manifold F(/) by Rat(F(/)), and denote its natural

inclusion into Ω2F(/) given by forgetting the complex structure by

(1.1) ι(J): Rat(F(/)) -> Ω2F(7).

The Rat(F(/)) spaces occur naturally in at least two distinct contexts:
first, as moduli spaces of SU(«)-monopoles [8], [9], [13] and second, when
m = 1, as moduli spaces of linear control equations. Additionally, it
had originally been hoped when we started this work that understanding
these spaces would lead to a better understanding of the instanton moduli
spaces. Indeed, our recent proof of the Atiyah-Jones conjecture [2] is
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motivated by the methods of geometrically decomposing the moduli spaces
of holomorphic maps considered here.

We studied these spaces when m = 1 in [11] and, using some ideas
from linear control theory, were able to determine both their geometry and
cohomology. In this paper we study these spaces for arbitrary m . Just as
in [11] we obtain complete control of the geometry of Rat(F(/)). This
analysis is presented in the first six sections. These results are then applied
in §7 to give one of our main results, the following stability theorem for
general flag manifolds.

Theorem A. Let ¥(J) be an arbitrary flag manifold. Given k > 0
there is an m-tuple of positive integers (sx(k), , sm(k)) so that for any
C with c( > s^k) then the natural inclusion

ι(C, J): Rat c(F(/)) -> Ω2

CW(J)

is a homology equivalence through dimension at least k. If J is not
( 1 , 2 , , m), representing the complete flag of length n = m + 1, then
both Rat c(F(/)) and Ω2F(/) are simply connected so that ι(C, J) is
then a homotopy equivalence through the same range.

Corollary B. Let ¥{J) be a flag manifold where ji+ι-j) > 1 for all i.
Then the range of stability in Theorem A. is k = 2c +1 where c = m i n ^ . ) .

This corollary follows immediately from our proof of Theorem A and
our sharp bound for the stability theorem for the Grassmannian case [11],
[12]. There is a similar corollary using the sharp bound of [5] when at
least one of the gaps j i + ι - j i = 1.

Theorem A is essentially Corollary 7.9 of §7 below. Earlier, special
cases of this stability theorem were proved by Segal [14] when ¥(J) is a
projective space, by Kirwan [10] when F(/) is a Grassmannian, and by
Guest [7] when F(/m) is a complete flag of the form Jm = (1, 2, , m),
i e. j i + ι - j) = 1 for I < i < m but m is not required to be n - 1 . For a
more detailed summary of the history of these stability theorems see [12].

Theorem A and Corollary B give the complete stability theorem for holo-
morphic mapping spaces from the Riemann sphere to the classical complex
flag manifolds, but there is one important generalization worth mention-
ing. One can consider holomorphic maps from the Riemann sphere to
G/P where G is a complex semisimple Lie group and P is a parabolic
subgroup. In discussions with C. Boyer and J. Hurtubise it has recently
become clear that the methods developed here and in [2] will extend to
cover this most general case.

Combining Theorem A with the work of Hurtubise and Murray [8], [9],
which shows that the Rat(F(7)) spaces for full flags / are equivalent
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to the spaces of "maximal symmetry breaking" SU(w) monopoles, we
obtain a version of the Atiyah-Jones conjecture for instantons in these
cases. Also, Murray [13] has given a stratification of the monopole moduli
space which is different than the one we give here for Rat(F(/)) and it
should be worthwhile to compare the two.

In §§8-10 we apply the geometric techniques developed in the first six
sections to analyze some basic examples, namely, Ratj(F(/)) for general
/ flags. It is at this point that the fundamental complexity of the topology
of flag versus Grassmannian Rats becomes apparent. Ratj(Gn m ) has
the homotopy type of the complement of the zero section of a vector
bundle over complex projective space, §8,6, but Raty(F(/)) is much more
complicated and difficult to describe. In §§9 and 10 we first determine
the homology of the individual strata and then, in principle, the resulting
homology groups for the Raty(F(/)) themselves. In particular, the results
are given explicitly for the spaces Ratj 1 (F( j 1 , j 2 \ n)) of 2-stage flags,

Cjι c CJ2 c C* .
Finally, in § 11 we discuss the homology of arbitrary flag manifolds above

the range of stability given by Theorem A and see new phenomena not
present in the projective space [5] or Grassmannian [11] cases. That is,
while

ι(n, m; *).: ^(Rat^G^J) - //.(ΩJ^J)

is always an injection from [11], it is not true that / (/ ; C) induces an
injection in homology for arbitrary flags. We conclude this paper with ex-
amples where ι(J \ C) has a kernel. Indeed, we conjecture that ι(J \ C)
always has a nontrivial kernel whenever / involves flags of length at least
2. Since this is tied to the structure of Ω2F( J), we begin §11 by comput-
ing // j | t(Ω2F(/)) and then compare the answer to the results of §§7-10 to
construct our kernel classes.

Now we describe in more detail the content of the first seven sections.
In [5] and [11] holomorphic maps into projective spaces and Grassmann

manifolds were analyzed. In [11] we analyzed Rat^(G^ m) by constructing
a stratification of the entire space by smooth manifolds (each with a trivial
normal bundle, and each contained in the closure of higher-dimensional
strata) whose homotopy types we understood. These strata were then or-
ganized into a filtration, and the resulting spectral sequence was shown
to collapse. For general flag manifolds the plan of attack is quite similar.
Again, using the techniques developed in [11], we construct a stratification
of Rat c(F(/)) by smooth manifolds, each with a complex, and hence
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orientable, normal bundle, and each contained in the closure of higher-
dimensional strata. However, the details are quite a bit more complex
in this new case and the basic stratification of §7 does not have much in
common with that of [11].

Our main effort in the first half of this paper is to describe the geometry
of these strata and the way in which they couple together to give the spaces
Rat c (F(/)) . These strata also can be naturally organized to give nitrations
of the Rat c (F(/)) 's . This leads to spectral sequences whose Eι and E2

terms are described in §§6 and 7.

First we generalize the method of [11] used to describe the points of
Rat c (F(/)) .

Theorem C. There is a one-to-one correspondence between elements of
Rat c(F(/)) and m-tuples

where the pairs [Dr, Nr] independently run through a prescribed normal
form of relatively prime polynomial matrices satisfying additional con-
straints {see (2.1) and §4 for the precise conditions).

These constraints are quite complicated to describe, involving vanishing
conditions on linear combinations of products, but they lead to our precise
determination of the dimensions and geometries of the various strata.

The remaining results need a bit more notation. The components of
Rat c(F(/)) are indexed by sequences of nonnegative integers C = (Cj, . . . ,
cm) corresponding to the total Chern class of the holomorphic map. For
any fixed total Chern class C we consider all sequences of m(A^+1) non-
negative integers given by

( 1 . 2 ) K = ( k ι ( l ) , k ι ( 2 ) , k 2 ( 2 ) , .. , * j ( m ) , . . . > M ™ ) ) >

where the kt{j) > 0 satisfy the recursive relations given in (3.14). In what
follows we call each such K a "multi-partition" of C.

The reduction of holomorphic maps to polynomial matrices gives man-
ifold coordinates for a geometric decomposition of Rat c(F(/)) into com-
plex submanifolds whose connected components, which we denote by
Y(B), are indexed by the various multipartitions K given in (1.2). The
geometry of Rat c(F(/)) and each individual strata is explained by the
following theorem.

Theorem D.
1. Rat c(F(/)) is a connected complex manifold of complex dimension

ΣCiUi+1-Ji-χ).
2. For each multipartition K, Y(K) is a complex submanifold of

Rat c(F(J)) of dimension £ ? c.(jM - jt) + Σi^ki(s)(ji - Λ_,). Further-
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more, the normal bundle v(ι{K)) of Y{K) in Rat c(F(/)) is a complex
bundle and hence orientable.

3. Y(K) is the total space of an iterate fibration where each of the
individual fibers or bases is homotopically a Grassmannian Rat space. {See
(6.1) for the precise statement.)

In §7 we modify the Y{K) filtration of §6 to obtain a second filtration
compatible with the Serre filtration for the fibration

induced by forgetting the smallest piece of the flag. This comparison,
together with the main result of [11], leads directly to Theorem A.

We would like to thank J. Hurtubise for communicating to us both
his and M. Murray's results on SU(«)-monopoles and the referee for his
careful reading of the paper and many helpful comments.

2 . T h e g e o m e t r y o f R a t i k ( G i ; „ _ , )

In this section we describe the decomposition, given in [11], of
RatA:(G/ n_i) into smooth strata each with a trivial normal bundle in the
entire space. This decomposition is basic to understanding the geometry
of both Ratfc(G/ π_ ) and Rat c (F(/)) . We begin by recalling a normal
form for elements of Ratfc(G π _ z ) .

Every rational map fτ\ CP1 —> Gf. n_i is represented by a pair of co-
prime, based matrices T = {D(z), N(z)) with coefficients in the polyno-
mial ring C[z]. As is standard we denote by C[z] the ring of polyno-
mials in the field of rational functions C(z). Here D(z) e Mat, f (C[z])
and N(z) e Mat. n_ J (C[z]), coprime means that there are matrices A(z)
and B(z), which are / x / and (n - i) x / with entries in C[z], so
that DA + NB = I, the i x i identity matrix, and based means that

ooCD"1 {z)N{z)) = 0. In particular, D(z)~ι exists if and only if

Det(D(z)) φ 0 in C[z], and (D(z), N(z)) e Rat^ίG^,,_,.) if and only if
Det(D(z)) is a (monic) polynomial of degree k.

The fact that D and TV are coprime implies that for every Z Q G C the
rectangular matrix of «-row vectors [D(zo)9 N(z0)] has rank / and hence
defines a unique /-plane in Cn , namely the span of the row vectors. This
gives the correspondence.

Note from the correspondence above that two such pairs, (D(z), N(z))9

(D1(z), N*\z)), are equivalent and represent the same element of
R a t * ( G i , n - i ) i f a n d O n l y i f t h e Γ e i δ a m a t r i x U(Z) e G L / ( C [ Z D s o t h a t
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UD = D', UN = N'. Note that U e GL;.(C[z]) if and only if U e
Mat,. ,(C[z]), and Όet(U) is a nonzero constant.

In general, by multiplying on the left by a unimodular matrix U we
can bring fτ to the following normal form (which is unique):

Uofτ = U[D, N] = [P,Q]

~ P n P n ••• P X i I n ••• Q χ , n - i '

(2.1) _ 0 P22 ••• Pa « 2 i ••• *i,n-i

. 0 0 ••• p . . q n ••• < ? , „ _ , ]

where
(a) P is upper triangular with monic diagonal terms,
(b) degree^) < degree(pαj = ka for b< a,

(c) Σ?ι=ιkι = c(f) = k,
(d) degree(ήrί4) < degree(pw),
(e) the basing condition on fτ forces constraints on all the qab see

[11, §3] for details.
We use this normal form to decompose Rat^(G( Λ_/ ) into smooth strata.

Let K — (kχ, , k() be a partition of k. That is, each ka > 0 and
Σά=i K = k • Lexicographically order the partitions of k by setting
L = (/,, ,/,.)< K = ( ^ , , A:.) if /,. < fr. or, if /ft = fcft for 6 > β
then la < ka .

Definition 2.2. For each partition of k let
The normal f ° ™ f Γ = [P'Q]\X[kχ , . . . ,*,) = j / Γ € Rat,(G/ „ ,) fi f \.

κ ι ιJ \JT kX ι>n~ιJ satisfies degree(paa) = ka J
The following is Proposition 4.2 of [11].

Proposit ion 2.3. X(kχ, , k t ) is a complex submanifold of

R a t f c ( G f π _ / ) of complex dimension (n - i + l)k + Σι

a=2(
a ~ ^)K

Associated to each fc, there is a filtration of Ratit(GI. π_|.) by open
manifolds,

To reassemble RatΛ;(G/ A2_/) from this stratification one needs to know the
structure of the natural inclusions

(2.4) i(fc l f . . . , * . ) : * ( * , , . - ^ ^ ^ ^ [ R a t ^ G ^ „ _ , . ) ] .

Proposition 2.5. ΓΛ^ normal bundle v(ι{kχ, , &z )) « trivial
Details are given in §4 of [11].
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Finally, in [11] the following result is also proved.
Proposition 2.6. There is a sequence offibrations:

{ n - i ) ) - * X { k x ,••• , k t )

I-
( « - / ) ) - • X ( k 2 , • • • , j fc.)

(2.7)
I-
i -
I--

It is shown in [11] that the homology and cohomology of the space
X{kχ, , k.) in (2.7) is just the tensor product of the homology of the
successive fibers (with field coefficients) when i < n - i.

Next we filter G. n_. by first using the lexicographic ordering on the
X(k{, , k.) and then refining further to include the filtrations described
above on each X(k{, , kt). This is not a problem since we are dealing
here with finite-dimensional spaces and consequently the total number of
filtering subspaces at each stage can be assumed to be finite. The result is
a spectral sequence for the space Rat^(G n_i). Specifically we have

Theorem 2.8 [11]. There is a spectral sequence with E2 term

« - /)) x x Rat^CPfa - /))} F)

converging to /ί*(Ratfc(GJ. π _ / ) ; F), where F is a field, K runs over all

partitions (kχ, ••• , k ) of k having length i, and t(K) = (i - \)k -

Σa=2(
a- l)fcfl If i < n-i then the spectral sequence collapses to E2 = E^

in this case.
This collapsing for Grassmannians is very special and turns out not to

be true for the more general flag manifolds.

3. Normal forms for flag manifolds: preliminaries

In the next two sections we establish a normal form for elements of
Ratc(F(/)) which generalizes the normal form for elements of Ratik(G|. n_i)
given in [11]. In particular we prove the precise version of Theorem B in
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the introduction. The main difficulty will be in properly interpreting the
basing condition for elements of Rat c (F(/)) . For / e Rat c(F(/)) with
C = ( C l > ' * ' > Cm) W e

(3.1) f(z) = {VJι (z) c C VJm(z) c Cn}.

For each j . , 1 < / < m, the projection

(Pi(f))(z) =Pi(f(z)) = {\j'(z) c Cn}

defines an element pt{f) e Rat^ (G. ) . Notice that this assignment

makes use of the basing condition /(oo) = {Cjι c C J 2 c c Cjm c C " } .
In particular, we have an embedding

(3.2) Π Λ : Ratc(F(/)) | Λ ,
1 1

We now discuss this image in more detail. We begin with the largest
subspace YJm(z) c Cn , which, as in (2.1), we represent by

(3.3) pm{f(z)) = [Pm{z),Qm(z)].

Here PJz) is in reduced form, (2.l)(a),(b),(c), and [Pm(z), Qm(z)] is the
preferred explicit representative for the based map pm{f)€ Rat (G. . )
as given in [11]. In particular,

(a) Pm(z),Qm(z) are relatively prime,
(b) PJz) is j m x j m , and
(c) βw(z) is jmx(n-jj.

Next, let [ i ^ . j , β w _ J be the polynomial normal form representing

Vjm-ι(z) in Cπ . Since VJm-ι(z) is a subspace of VJm(z), it is clear that

we can represent Vjm-ι(z) by

(3.4) [E,F][Pm,Qm] = [Pm_ι,Qm_ι]

for some relatively prime pair of rational matrices [E, F].
Lemma 3.5. The matrices [E, F] in (3.4) are polynomial.
Proof. Since [P m , β w ] is in normal form, Pm and Qm are relatively

prime. Hence, there exist polynomial matrices X and Y such that
QmY = I. But then

and the right-hand side is manifestly polynomial. q.e.d.
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Left multiplication by a suitable unimodular matrix will convert the cor-
recting term [E,F] to [UE, UF] = [Dm_ι(z),Nm_{(z)] with Dm_{(z)
as in (2.1)(a),(b),(c). The fact that E and F are relatively prime implies
that Dm_χ(z) and Nm_χ(z) are also relatively prime. However, there is
no reason to suppose that

since there is no reason to assume that [Dm_χ(z), Nm_ι(z)] is properly
based.

Example 3.6. Consider the element / € Rat(2 2)(F(1, 2, 5)) whose
image under the embedding given in (3.2) is

Pι(f) = (z2 - 2, 3(z - 1), 1, 2, 1) € Rat2(G l f4),

z 2 - 2 0 x ^ , , D .
0 3 0 " " ] e R a U

1 2 1 \
0 0 θj

While px(f) and P2(f) = [P2> Qj\ a r e both based maps, notice that
[E, F] = [Dχ, Nχ] = [1, z — 1] does not satisfy the Grassmannian basing
condition. Nonetheless, as we shall see throughout the remainder of the
paper, in most cases it will be better to think of this element / in terms of
the pair ([Dχ, N{], [P2, Q2]) rather than in terms of the associated image
in (3.2).

We reiterate. The based map is
(3.7)

= [Pm-ι,Qm-ι]

From this point forward we will use the notation [P., (?.] to represent

/*/(/) while reserving [Di9 TV] for the polynomial matrix pair which multi-

plies [P.+ 1, Q.+1] to obtain [/>., β j . We view [^.(z), N.(z)] as describ-

ing the way in which Vji(z) is contained in Vji+ι(z), while [^.(z), (λ(z)]

describes the way VJι(z) is contained in CΛ .
Thus, the map described by (3.7) must satisfy the following:
(a) pm{f(z)) = [Pm(z)9 Qm(z)] is in the normal form given in (2.1)

(see (3.3)).
(b) Pm_{(f(z)) = [Pm_x(z), Qm_x(z)] is in the normal form given in

(2.1) (see (3.7)).
(c) Dm_{ is j m _ x by j m _ χ .
(d) Nm_χ is j m _ x by jm-jm_x.
(e) While each [P, (?] factor is in normal form, and each D matrix can

be brought to normal form, (3.7) and the basing condition place further
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conditions on the pair [Dm_χ, Nm_χ]. We shall examine this in more
detail in what follows.

(f) Recall that [Pm, Qm] and [DmX, Nm_χ] are each pairwise rela-
tively prime. In fact, more is true as the next lemma shows.

Lemma 3.8. The condition that two polynomial factors of pm_ι(f(z)),

and

are relatively prime is equivalent to the condition that Dm_χ and Nm_χ

are relatively prime.
Proof Recall by assumption that Pm and Qm are relatively prime. If

Dm-\ a n d Nm_χ are relatively prime then there exist polynomial matrices
X, X', 7 , a n d Y' such that PmX + QmY = I and Dm_χX

r+ Nm_χΫ =
I. Now just expand

Conversely, if Pm_x and Qm_x are relatively prime then there exist poly-
nomial matrices W and Z such that Pm_χW + Qm_xZ = I. It follows
that

\W~
[Dm 1>ΛΓ Λ\.P

mW + QZ] = [Dm 1 > ^m , R , β J*• m — 1 y m — 1 J I - A?? ^*Wl J L W — 1 7 A 7 7 — 1 J L in 7 *-^tflΔ

Remark 3.9. Lemma 3.8 gives an independent proof that the [E, F]
matrices of (3.4) (which are integral by Lemmas 3.5) are relatively prime.
Thus, not only do pm(f) and Pm_x{f) uniquely determine [Dm_χ, Nm_x]
up to normal form but given pm(f) and any relatively prime pair [DmX,
Nm_γ] their product yields a well-defined holomorphic map pm_x(f) from
S to G- „_• . Lastly, as mentioned in Example 3.6, we are inter-

Λw-l '" Jm-\

ested in all choices of [Dm_χ, Nm_χ] so that pm_x{f) is a based map.

Continuing inductively we may represent VJr(z) in Cn by

Pr{f(z)) = [(Dr(z), Nr(z))Pr+ι(z), (Dr(z),Nr(z))Qr+ι(z)]
= [Pr,Qr]

where
(a) Pr+ι(f(z)) = [Pr+X(z)9 Qr+X{z)} is inductively defined by (3.3), (3.7)

and iterations of (3.10) for m > r + 1 ,
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(b) each Pj{f), for r < 7 < m, is in the Grassmannian based normal
form given in (2.1),

(c) Dr is j r by j r ,
(d) ΛΓr is j Γ by jr+ι-jr,
(e) the two polynomial factors of pr(f), P r and Qr, are relatively

prime (this follows by iterating Lemma 3.8),
(f) again, while each [P., Q.] factor is in normal form, and each D

matrix can be brought to normal form by using unimodular matrices on
the left, (3.10) and the basing conditions place further conditions on the
Dj and N..

(3.10)(e) is equivalent to the fact that [Pr, Qr] has maximal rank and
hence represents a holomorphic map into the appropriate Grassmannian.
That is, iterate applications of Lemma 3.8 guarantee that all the pr{f) =
[Pr, Qr] matrices of (3.3), (3.7), and 3.10(r) for 1 < r < m taken together
represent a holomorphic map into the flag manifold precisely when each
pair [Dj, JV.] has the property that D. and N. are relatively prime for
all \<j<m.

Hence, we have shown that every element f(z) e Ratc(F(7)) can be
written in the form

(3.11) ([D{(z),N{(z)], . ,[DJz),Nm(z)])9

where [Dm , Nm] = [Pm , Qm], for suitable choices of Zλ and TV.. The m-
tuple given in (3.11) represents the holomorphic map whose image under
(3.2) we write as

m

(3.12) z^l[pi(f)(z) = ([Pχ(z),Qι(z)],--- ,[Pm(z),QJz)]).
1

However, as Example 3.6 shows, we cannot expect each individual [D, TV]
pair occurring in (3.11) to be described simply by the Grassmannian basing
conditions of [11].

We shall see that elements of the form given in (3.11) are naturally
classified by the diagonal degree pattern of the Zλ matrices. In the process
of analyzing the basing conditions associated to these individual degree
patterns certain essential building blocks which enable us to understand
the topology of the Ratc(F(7)) will appear.

To proceed we write

{ ( s ) Eχ 2 ( s ) .-. Eχ s ( s ) \
Ό D22(s)

(3.13) D =
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where Zλ .(s) is a (j.-j)^) x 0)-Λ_i)"matrix w i t h coefficients in C[z].
The determinant d((s) = det(Z). ;($)) is not identically zero, and we de-
note the degree of this determinant by k^s).

These k^s) are constrained only by the equations

m

5=1

m

(3.14)

5=2

m

i = 3

7 = 1

Here, of course, C = (cγ, , cm) is the total Chern degree of the map

/•
Also, for convenience we define

(3.15)

0 D22(s)

K o o

so ^(s) is a 7( x (jj+ι - y(.)-matrix with entries in C[z] and

(3.16)

Throughout the remainder of the paper we will be assuming the Zλ .(s)

are in normal form, so the A:th column of Zλ f.(i), Z)f ^5), has the form
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(fΐi'Ά

with fk

k(s) monic and deg(//(ί)) < deg(fk

k(s)) for r < k .
Similarly, the kth column of ^ ( s ) ,

satisfies deg(e*(ί)) < deg(fk(s)) for all r. We also write

where Ls is (js -js_{) x (js+ι - .
we write

as

(3.17)

(D
χ ,

and Ks is j s _ χ x (js+ι -

s+l ' 5 + l J L m » w-

F i n a l l y ?

and

(3.18)

Here we introduce the further notation

*,(*) =
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for 2 < i < s are the off-diagonal block matrix columns appearing in
(3.17) and

for s + 1 < j < m + 1 are the block matrix columns appearing in (3.18).
Notice that when s = m

When s <m direct expansion of the first block matrix column of (3.18),
using (3.15) and (3.16), gives the following key equation:

m—s—l

(3.20) Λ f l W = Λ;Z) J + 1 > J + 1( J+l)-Z) J + l f,+ 1(m)+ £
7=0

where

There are analogous expansions for the β%(s) and ^(s) when j Φ s + 1
but (3.19) is the key equation for the following reason. The fact that (3.11)
represents the based map given in (3.12) implies, among other conditions,
that afs+ι(s) must satisfy the constraint condition limz^o o(/>

5~
1^+ 1(5)) =

0. In the next section we shall see that this is the fundamental constraint
in that all other basing constraints follow from this one (see Lemma 4.6).
Recall from [11, §3] that the constraints for a single TV matrix in the
Grassmannian case came directly from evaluating D~ιN as z —• oo . The
computation in the general case requires that we make this same computa-
tion for each P~ιQs for 1 < s < m and the answer depends on the degree
pattern of the associated multipartition for the Ds 's as given in (3.14).

For example, the elements in Rat(1 2 )(F(1, 2, 5)) occur in two ways,
first with [P2, Q2] having pattern

Γ/1 a \ [0 0 0

L\0 z-b)' U i « 2 "3
so [Dχ(z), Nχ(z)] must have the form [z-c9 -a]. Alternately, [P2, Q2]

can have the pattern

z - 1 0\ fβ{ β2 β3

0 l) ' V 0 0 0

in which case [DAz), NJz)] must have the form [ 1 , 7 ] .
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The first case corresponds to the pattern of multidegrees, kχ (1) = 1,
kχ{2) = 0, k2(2) = 1, and has complex dimension 6. The second has
fcj(l) = 0, kχ(2) = I, k2(2) - 0 and has complex dimension 5. It will be
helpful to keep these simple examples in mind when we discuss the general
case in the next section.

4. Normal forms for flag manifolds: the basing condition

We now discuss how the basing conditions determine the permissible
forms in order that equation (3.11) represent an element of Rat c (F(/)) .
We begin by considering the pair

(/>,(/),Λ+i(/)) = ([(*>,. W + i . WitNt)QM\, [PM , Qi+ι))

where we have fixed a degree pattern on the diagonal determinants of the
D matrices (3.14). For simplicity write D. = A, N( = B ,

to get rid of subscripts. Here C is j t x j i , E is j ( x (ji+ι - jt), F is

α / + i - J l ) x ( 7 / + 1 - ; l ) , G is 7, x(«-;,-+,) and H is (ji+ι -jt)^(n-ji+ι) •
Furthermore, we write Kj(/) = deg(det(^4)), /Cj(ί + 1) = deg(det(C)),
and κ2{i + 1) = deg(det(F)). Notice that ci = κχ(i) + κ,(/ + 1) and
c / + I = * , ( / + l ) + κ2(/ + 1 ) . Then

- i

" \ 0 F-1 J
so the original basing conditions on pi+ι(f) = [Pi+ι, Qi+\] a r e given by

(4.2) lim C~l(G-EF~lH) = 0,
z—>oo

(4.3) \imF~lH = 0.
Z—XX)

The j . x « plane determined by [Pt, QJ is

so the next basing conditions are

(4.4) lim l

z > o oz—>-oo

(4.5) lim
z+oz—+oo
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Lemma 4.6. The basing condition in (4.5) is redundant. More exactly,
(4.2), (4.3) and (4.4) imply (4.5).

Proof. We are interested in the behavior of these equations as z goes
to infinity. Since both (4.4) and (4.3) go to zero as z -> oo, their product

C~ι{E + A~xBF)F~xH

must also tend to zero as z —> oo . But adding this equation to (4.2) yields
(4.5). q.e.d.

Thus, given the block diagonal entries of the two D matrices in (4.1),
namely A, C, and F, we can use (4.2), (4.3), and (4.4) to determine, in
order, the possible entries in the following:

1. H from (4.3).
2. The additional constraints imposed on E and B from (4.4). As we

shall see below it is best to view these constraints as symmetric in E and
B rather than fixing one to determine the other.

3. G from (4.2) and condition 2 above, or equivalently (by Lemma
4.6) from (4.5) and condition 2.

We now want to determine the precise deviation from the basing con-
dition in

that arises in the pair [A, B]. Write A~ιB as the sum of a polynomial
and a fractional part,

A~ιB=V+W9 with F e AT . _(C[z]) , lim(W) = 0.

It follows that B = AV+AW = M+R where both M, R are polynomial,
but

Lemma 4.7. [A,R]e Rat, (G, , _ , ) .

Proof. From the construction of R it follows that [A, R] is based. It
remains to verify that A and R are coprime. But A and B are coprime
so there are K, L with AK + BL = I. Hence, AK + (ΛF + i?)L =
ΛCfiΓ + KL) + RL = I and Lemma 4.7 follows, q.e.d.

It remains to see exactly how the solutions to C~ (E + A~ BF) are
constructed and what degrees of freedom we have. For the moment we
assume C, A, and the term R in B are fixed, so B varies by Λ K. It
is not hard to show that limz_+ o o(C~1F) = 0 though this is not strictly
necessary to our results. The following set of examples are instructive.
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Example 4.8. Let

/ I 2 + l \
= {θ z2-2)

c - I z' z'(z-l) I

z- 1
Let P be a column vector with entries in C[z]. Then
(4.9)

lim (C~ V) = 0 if and only if P = Pχz + Po, where P, = f Pi> ) ,
z—•oo \ U J

lim (A~ιP) = 0 if and only if P = ( P ) .

Consequently,

with q Φ ±yfΐp in order to assure that [A, R]e Rat2(G2 χ).

Let F = fn = z—2 so E = (^) is a constant matrix. (We are assuming

throughout that [Pi+ι, Qi+\] is in normal form.) Then a short calculation

shows that

\j \ q J V e2 J
where L_χ has entries which are rational functions of z that go to zero
as z —• oo. Consequently, in order for the basing condition (4.4) to be
satisfied, (4.9) implies that p = q = 0 while e{, e2 , and p" are arbitrary.
It follows that, in this case,

and E, F together have three degrees of freedom. Notice that this is
precisely the total amount of freedom one has in choosing a matrix T e
M2χ(C[z]) which satisfies l i m ^ J C ^ Γ ) = 0.

Example 4.10. Next, suppose A and C are as given in Example 4.8,

1,1
but now F = f. , = z 5 - 2 . I n this case we can write

4 3 2

E = E4z + E3z + E2z + E{z
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and

while /

-
Since Es = E6 = 0 from the normal form constraints in [P2, Q2], it
follows that V = 0 and

E4 + L4 = 0,

' (p>

Once more there are three degrees of freedom in the solution, but here
V = 0 and all the degrees of freedom are concentrated in E.

In one sense Examples 4.8 and 4.10 are too special. The three basic
solution vectors are either in £ or in V, and this would lead us to expect
that Rat c(F(/)) might be a union of elements described simply by fixing
A, R, C, and F , and then letting E and V run independently through
a direct sum decomposition of the appropriate dimension. But this is not
true. It is easy to construct a C and fχ { so the set of solution pairs

(E, V) to limz^oo(C~ι{E +Vfx ,)) = 0 do not split as a direct sum.

Example 4.11. Let fn = z 2 + z + 2, and

C =

Then
_ / v3z

2 + v2z + uί

" U 3 z 3 + ^ 2z 2 + ^1z I

 u

but for C" 1 (E+ Vf{ j) to go to zero as z —> oo we must have
and υγ=uQ. But then it follows that vQ = eu where

However, it is routine to check that E and V still span a 5-dimensional
solution space and again this is precisely the dimensional freedom one has
in selecting a matrix T such that lim _̂  (C" 1 T) = 0.
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Hence, the important thing which all three of the examples above do
show is that, in general, one must use both E and V in order to obtain
a sufficiently large solution space to construct all elements which satisfy
both the basing conditions and a given degree pattern. We now show that
for any A, C, and F, the solution space always has dimension (over
C) exactly equal to (j.+ι - j\) deg(det(C)). To do so we first require the
following elementary observation.

Lemma 4.12. Let Tc c (C[z])n be the set of all n-tuples

with deg(υ.(z)) < c for all i. Let f e C[z] be any monk polynomial of
degree c, and let

be the image of the map

Then <Vc + Wf = (C[z])n . Indeed, <Vc n Wf = 0 so there is a direct sum

decomposition

Proof It suffices to observe that Lemma 4.12 is true when n = 1, but

there it is just the division algorithm in C[z]. q.e.d.

Theorem 4.13. If we fix A, R, C , and F, then the set of (E, V)

which satisfy the basing condition at infinity has exactly (jj+ι -jf) x κχ (/+1)

degrees of freedom.

Proof Let 2^. c (C[z])J be the subspace of all vectors μ in (C[z])Λ

with the property that l i m ^ ^ C " 1 μ) = 0. Note ά\mcTc = deg(det(C)).

If μ G Vc and / G C[z] is any monic polynomial of degree r, then, by

Lemma 4.12, we can write

μ = # + /oω, θeT., ωe(C[z})Jl.

N e x t write b o t h F = (Fι, F2 , , Fii+ι~ji) a n d E = (E], , EJi+*~Ji)
as a set of column vectors.

The normal form constraints imply that E1 e ? d e g ( f ) for each /.

Moreover, the same is true for the polynomial part of A~ RF , which we
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denote by P(A~ιRF) that is, the /th column P(A'ιRF)1 e ̂ e g ( / / } for

all /. Also we may write

Assume for the moment that there exists a solution EQ and VQ . Then a
direct computation shows that

(4.14) θ'o = F0VM + E'o + P{A-lRF)1 + £ V™fmJ

is an element of T^ . But Lemma 4.12 implies that for every μt e "Vc we

can inductively solve for V1 and Eι so that θι

0 + μι e ̂  can be written

as

/-i

(4.15) Vlfιι + El + P(A~lRF)1 + £ Vmfml = θ[ + μ,
m=\

with Eι e ^deg(/ ) Hence, the existence of one fixed solution implies that
each of the j^^j) columns contributes exactly deg(det(C)) dimensions
to the solution space.

To complete the proof it suffices to show that the solution space is not
empty. For this first notice that if κχ(i + 1) = 0, i.e., C is the identity
matrix, then E = P(A~ιRF) and V = 0 is the unique solution to (4.14)
for any given A, R = B, and F. Thus, the theorem is true in the case
when C = I (which we will see later is actually the generic situation in
Rat c (F(/))) . Hence, we can assume that κ{(ι: + 1) > 0. But whenever a
diagonal entry of C, cu , has positive degree, the vector

/0\

(4.16)

.0)\y

is an element of Vc. Here the entry 1 occurs in the /th row. Now
use these elements of Vc to inductively construct a solution to equation
(4.14). q.e.d.

Corollary 4.17. If we fix A , C, and F, then the set of (R,E,V)
(equivalent!)? the set of (B, E)) which satisfy the basing condition at infinity
has exactly deg(det(ΛC))(y / + 1 -j)) degrees of freedom.
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Proof. Theorem 4.13 implies that for each fixed R there are exactly
deg(det(C))(7/+1 - jt) degrees of freedom while the set of admissible R
contributes exactly deg(det(^))(j/+1 - jt) degrees of freedom.

Corollary 4.18. The complex dimension of the space of all elements of
the form

is ς ^ - ^ O + c ^ / i - ^
Proof First hx A, C, and F. The ci(ji+ι - jt) term comes from

the freedom to vary (B, E) as in Corollary 4.17 while the c/+1(n - ji+ι)
term comes from the freedom to vary G and H which is determined by
the conditions (4.2) and (4.3). Finally, the last three terms in the sum
come from the freedom to vary A , C, and F as shown in the proof of
Corollary 4.21 (a) below, q.e.d.

We conclude this section by analyzing the general case. Although this
is notationally formidable all the mathematical ideas have already been
presented in the proof of Theorem 4.13. At this point the reader is advised
to review equations (3.13) through (3.20) to recall the block matrix pieces
that replace the A, B, C, E, F, G, and H that appeared in the
analysis above.

In fact, recalling (3.19) and (3.20), we have the direct generalization of
Theorem 4.13.

Theorem 4.19. Fix the D( t(s) matrices for s fixed and 1 < i < m.
Then the set of solutions ^ + 1 (s) to the fundamental basing constraint equa-
tion

has dimension deg(det(P^)) (js+ι - js) as a vector space over C.
Proof The proof is a formal extension of Theorem 4.13 and is perhaps

best understood by explicitly working out the situation for m = 3 and
Here the constraint equation for ^,(1) expanded out is

We now just iterate Theorem 4.13 on the individual terms working
from the inside brackets out. We can write N{ = R{ + D{ x{\)Vχ where

>j~ (l)/? —• 0 as z —• oo. As we observed above, the polynomial part of

D~\(l)R{D2 2(2) lies in the vector space of possible Eχ 2(2) 's so we are
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free to choose Rχ subject only to the constraint that l im z ^ o o (D~ \ (1 )Rχ) =
0. This first choice gives us deg(det(Z)1 χ (1 )))(j2 - j\) degrees of freedom
in the solution space by Theorem 4.13. The resulting freedom of choice for
the next piece, (Eχ 2 (2), Vχ), gives any arbitrary vector as the polynomial
part of

Eχ2{2) + D ^ N ^ ^ ) = R2+ Dχχ{2)V2.

Again, lim2_+oo(D~1

1(2)i?2) = 0 so Theorem 4.13 shows this piece con-
tributes deg(det(D1 ι(2)))(j2-jι) more dimensions to the solution space.

Consequently, since D~\(2)R2D2 2(3) and D~\{2)WD2 2(3) lie in the
space of possible Eχ 2(3) 's for W satisfying lim z^ o o( W) - 0, we see that
Theorem 4.13 implies the next pair [Eχ 2 (3), V2) is free to determine any
polynomial vector satisfying our constraints, i?3 = Eχ 2(3) + V2D2 2(3)

(with freedom of choice in Rχ and R2). But D~\(3)R3 —• 0 as z -> oo ,
so Theorem 4.13 shows that the dimension of the space of such R3 's is
equal to deg(det(Z>j x(3)))(j2 - j x ) . Thus, the total amount of freedom
we have at this point is exactly

U2-JX) = deg(det(P1))(72 - j γ ) .

The general case now follows by double induction on s and m . q.e.d.
Finally, we have the generalizations of Corollaries 4.17 and 4.18.
Corollary 4.20. Fix the Zλ t(s) for all i and s. Then the complex

dimension of the space of all elements of the form

[Dχ, Nχ][D2 , N2] • [Dm , NJ e Rat c(F(/))

with these fixed Diti(s) is E Γ ^ ( Λ + I ~Λ) w h e r e Λ*+i = n

Proof When each of the Dt t(s) 's is fixed, the degrees of freedom are
completely described by afs+{(s) for 1 < s < m . q.e.d.

Corollary 4.21. Fix the degree pattern {k^j), / < j} satisfying (3.14)
for a given C = (cx, ••• , cm).

(a) The complex dimension of the subspace of Rat c(F(/)) consisting of

all elements of the form [Dχ, Nχ] [Dm , Nm] with the multidegrees of the

Dj 's equal to the fc.(j) 's is E Γ φi+χ ~ h) + Σ,-,, ̂ ) ( Λ " Λ-i)
(b) The complex dimension of'Ratc(F(/)) is Ylci(ji+x-ji_χ) and there

is one and only one pattern of multidegrees for which this dimension is
achieved, namely, kt(i) = ct, k^j) = 0 for j > i. Here j o = O.

Proof The first summand term comes directly from Corollary 4.20.
The second summand counts the degrees of freedom contributed by each
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Zλ .(s). The greatest number of degrees of freedom for an rxr matrix T,
which is in normal form, with coefficients in C[z], where deg(det(Γ)) =
v, occurs when

/ I 0 ••• 0 /, \
0 1 ••• 0 f2

T =

0

Vo
0

o

0

1
0

fr-X
gr J

with deg(yj) < deg(gr). Since the coefficients in each ft are arbitrary
and gr is monic, there is freedom of choice for precisely vr coordinates.
From this Corollary 4.21 (a) follows.

Next note that

from (3.14), and equality occurs if and only if all the kr(j) are zero for
j > i and r < i. Consequently, the only way in which equality can occur
for all these sums is if k^i) - ct, kt(j) = 0 for j > i. From this Corollary
4.2 l(b) follows.

5. Stratification of Ratc(F(/)) by normal forms

We now use the normal form constructed in the two last sections in order
to decompose Rat c(F(/)) into smooth strata. Recall that the degrees
of the determinants of the diagonal Zλ .(s) blocks of the normal form

ipartition the total Chern class C = (c{

(5.1)

cm) into "multipartitions"

km{m)),

where the C and K are related by (3.14).
Definition 5.2. For each multipartition K of C let

τ h e normal form of / given in (3.11) 1
satisfies deg{det(Du(s))) = tys). j

Theorem 5.3. For each multipartition K of C, Y(K) is a complex
submanifold of Rat c(F(/)) of complex dimension as given in Corollary
4.21 (a).
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Proof. The local submanifold coordinates for Y(K) are determined by
the free coefficients of the polynomials in the flag normal form described
in §§3 and 4. The fact that Y(K) is a regularly embedded submanifold of
Rat c(F(/)) follows from the proof of Proposition 5.5 below, q.e.d.

Just as for the Grassmannian case, associated to the multipartitions of
C, there is a filtration of Rat c(F(/)) by open manifolds,

^[Ratc(F(J))] = U Y(K'),
κ'>κ

with natural inclusions

(5.4) i{K): X{K) -

Here we have imposed the natural lexicographic order (from the right) on
the multipartitions (5.1) which explains the equation K1> K.

Proposition 5.5. The image of X(K) in ^ [ R a t c ( F ( / ) ) ] has a complex
normal bundle v{i(K)).

Unlike the simpler Grassmannian case [11, §4] the normal bundles here
are not, in general, trivial. Parts 1 and 2 of Theorem B follow from
Corollary 4.21, Theorem 5.3 and Proposition 5.5. Before giving the proof
of Proposition 5.5 it is worthwhile to consider some examples.

Example 5.6. We begin with the two strata of Rat(1 1 }(F(1, 2, 5))
(recall the examples given at the end of §4). The smallest stratum of
Rat(1 j)(F(l ,2 ,5)) is given by elements of the form

[1 7] \(Z~X °) ( β ι β>

We perturb these elements by placing an ε in the lower corner of the D2

matrix to obtain

It is then a straightforward calculation that the following unimodular ma-
trix

U
_ / 0 l/e\
-\-e z-l)

can be used to rewrite (5.7) as

(5.8)

[Z>,,J\r,]i/ λU[D2,N2]

0 0
r, -eβ2 -εβ
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Thus, we see that an infinitesimal perturbation of an element in the 5-
dimensional strata can land in the 6-dimensional strata. Notice that rather
than use the unimodular matrix U to bring the perturbed matrix to normal
form (5.8) that one can also verify directly that (5.7) still satisfies the rank
condition and the base point condition, for both px{f) and p2(f)

Example 5.9. Consider the element

(5.10)
z - 1 0 1

0 1 0

z 0 0 βx β2

0 1 0 0 0
0 0 1 0 0

in Rat2 1(F(2, 3, 5)). Let Lab be the 3 x 3 matrix with a 1 in the
(a, b)th entry and zeros everywhere else. One can check that adding
L, , to the D2 matrix in (5.10) perturbs the map to an element with

det(Z), ,(!)) of degree two and new D2 matrix of the form

Ί
0
0

0
1
0

0"
0
z

However, there is another way to perturb (5.10) to this same element in
two steps as follows. First, use the matrix L2 χ to perturb the D2 matrix
in (5.10) to the form

1
0
0

0
z
0

0
0
1.

This perturbation of the " C " matrix does not change either the degree
of d e t ^ i(l)) or the bottom row [ 0 , F , / / ] of (5.10). If one thinks of
the block rows of [D2, N2] as representing a fibration of Grassmannian
pieces and realizes that each Grassmannian piece is further stratified as
described in [11, §4] then this perturbation is recognized as a perturbation
of the internal strata of the possible C matrices of a fixed determinantal
degree which does not affect the degrees of the determinants of either A
or F. One can next use L3 2 to bring this new matrix to the original
perturbed matrix described first which was obtained by using only L3 , .

Remark 5.11. Example 5.9 points out that we must be careful in talking
about "normal" directions to various strata. That is, one could further
stratify each Y(K) by the degrees of the individual diagonal entries of
each of the Dt t{s) matrices, and the perturbations we describe below
in the proof of Proposition 5.5 also describe the normal bundles of each
strata in this finer stratification. As in the Grassmannian case but unlike
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Proposition 5.5, the normal bundles for each individual strata in this finer
stratification are all trivial. For homotopy theoretic reasons we will need to
consider a coarser filtration by complex submanifolds than the one defined
in Definition 5.2 for Rat c (F(/)) . The proof we give below will also extend
to show the normal bundles for the strata in this coarser filtration are also
complex bundles.

Proof of Proposition 5.5. Let f e Y(K) be represented by the associ-
ated normal form

(5.12) ([D^N,],--- ,[Dm,Nm]).

To compute the local coordinates for the normal bundle of Y(K) we
consider infinitesimal perturbations of the form

and analyze the first-order effect on the tangent level. Here S = [0, S2,
• , Sm] is to be regarded as m - 1 matrix pairs which should be added
term by term to (5.12). We may set Sx = 0, for, as we stated in Remark
5.11, a permissible perturbation having S{ / 0 will split as a sum of
two perturbations, the first tangent to Y{K) e Rat c(F(7)) and the second
induced by a perturbation S where S{ = 0. Just as in the proof of
Proposition 4.4 of [11], one must be careful when choosing S, in order not
to leave the C component of Rat(F(/)) (given by the region where, for
all r, the r x r minors of pr(f) = [Pr, Qr] all have degree < cr except for
the minor Pr itself). Using induction and the arguments from the proof
of [11, 4.4] we shall see that the theorem follows from the fact that one
can vary the coordinates of each Pr (independently for each r) by small
polynomials in the lower triangular regions, always taking care to keep the
multidegrees sufficiently under control so that pr(f) + εS remains in the
C component, and, having done that, checking that all the coordinates in
the new (λ 's are uniquely determined, modulo the tangent direction to
Y(K), by this procedure.

Formally, we proceed by induction on m. When m — \ [11, §4]
shows the normal bundles are actually trivial and hence complex. Next we
consider the case m = 2 and, using the notation of §4, write

where
1. L is any j \ x j . + χ -ji matrix with deg(lt^β) < deg(cβ β
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2. G' = G + Γj(L) and H' = H + T2(L) are the associated perturbed
" R " matrices of [11, 4.6] which ensures that the perturbation stays in the
Rat space. More precisely, these matrices are required in the perturbation
so that the basing condition is still satisfied. It is a routine calculation that
given any L matrix satisfying our degree pattern such T{(L) and T2(L)
exist.

3. Since the maximal rank condition is an open condition it follows that,
for all sufficiently small ε, (5.13) represents an element of Rat c (F(/)) .

4. It follows exactly as in the proof of 4.4 of [11] that it is sufficient to
consider only such L 's as given in item 1. This follows as any matrix L
with entries of higher degree can be shown to split on the tangent space
level as an L as in item 1 and a perturbation in the Y(K) direction.

Thus, for all sufficiently small ε , [11, 4.4] implies that P2(f) is a based
map and hence an element of Rat^ ( / + 1 ) + A : (/+i)(G7 n_j ). Therefore, to
prove Proposition 5.5 in this case it suffices to check that

pχ(/) = [AC + εBL , , A{G + εG') + B(H + eH*)]

is a based map. By Lemma 4.6, it suffices to check that

(5.14) (AC + εBL)'

as z —> oo . Note that the degree conditions on L ensure, for sufficiently
small ε , that (AC + εBL)~x exists and can be computed by the standard
convergent power series expansion. It is then a straightforward calculation,
using (4.3), (4.4), and the fact that C~XL is bounded, to show that (5.14)
is satisfied. This shows that there is an injection from the set of all such
L matrices to v(i(Y(K))) but comparing dimensions (recall Example 5.9
and Remark 5.11) shows this injection must be an isomorphism. Thus,
the coordinates of such L give the desired local trivialization.

Next, consider the case when m = 3 , and explicitly write (5.12) as

(5.15)

where

and

[DΪ9l(l)9

[D2,N2] =
D

χ {

, N2][D39 N3],

Eχ 2(2) Rχ 3(2) + Afj 3(2)

0 D22(2) R2

Duι(3) Eχ 2(3) E{ 3(3) Rχ 4(3)
0 D2 2(3) £ 2 3(3) Λ2 '4(3)
0 0 D3 '3(3) Λ3 '4(3)
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Here the R and M matrices are as in §4.
An argument similar to the one given above shows that if we perturb

[D3, N3] by a lower triangular

/ 0 0 0\
L=\L2X{3) 0 0 ,

\L3[{(3) L3 2(3) Oy

then the new map f is in Y(K') c Ratc(F(/)), and is given in terms of
normal coordinates by

[Dχ, Nχ][D2, N2][D3, N3] = [Dχ, Nχ][D2, N2]U'1 U3[D3 + εL, N3 + *Γ]

^ J z N2]U-l[D3, N3]

= [Dι,Nι][D2,N2][D3,Ni]

(5.16) = [Dχ, Nx]U2

lU2[D2,N2][D3,

= Uι[Dι,Nι][D2,N2][D3,N3],

where each Ur is a unimodular matrix which brings the new £>r matrix
to normal form (2.1).

Next consider the perturbation on the second term
(5.17)

While it is clear that we may rewrite the effect of the perturbation to the
left as in (5.15), we must check that the perturbed map in the third matrix
remains based and in Rat c (F(/)).

Lemma 5.17. There are choices TX(L), T2(L),and T3(L) such that
the element

is an element of Ratc(F(/)).
Proof. This is a straightforward computation using the original basing

equations as above. Again the key observation is that the degree conditions
on L insure, for sufficiently small ε , that (D2 + εL)~x exists and can be
computed by the standard convergent power series expansion. One also
needs to observe that Dχ 1(2)~1 L is bounded. Finally, the choices of the
T 's and T 's are simply the matrix equivalents of the "/? " matrices of [ 11,
4.6]. q.e.d.
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Lemma 5.18 provides the inductive step and hence, using Theorem 4.18
and Remark 4.19, one sees that the allowable perturbations

of / = (/?j(/),••• , Pm(f)) where each L is lower triangular with
deg(/α β) < deg(dβ „) are in one-to-one correspondence with the pair-
wise independent allowable perturbations of each [Dr, Nr] pair. A simple
dimension count using Corollary 4.21 (again recall Remark 5.11) shows
these L then give the desired local trivialization of the normal bundle
u(i(K)). q.e.d.

Finally, an elementary calculation, using the Euclidean algorithm in-
ductively in each of the r factors, implies that the normal directions for
Y(k) in Rat c(F(/)) lie in the union of the higher-dimensional strata
Y(Kf) where K < K1 in our lexicographic order. This analysis and the
fact that Ratc (GJ n ) is a connected complex manifold [4] imply

Corollary 5.19. Ratc(F(/)) is a connected complex manifold of com-

plex dimension Σ ^ , (Λ+i " Λ-i)

6. Filtering the individual strata via Grassmannians

We now analyze the geometry of an individual stratum Y(K) where
AT is a fixed multipartition of C. The general procedure, which general-
izes the analysis for a single Grassmannian [11], is to exhibit the stratum
Y(K) as an iterated fibration, where each of the iterated fibers is, in turn,
an iterate fibration with each of the smaller bases and fibers homotopy
equivalent to various copies of Ratfc(Gn m ) for appropriate choices of k ,
n, and m. In order to obtain an inductive procedure for decomposing
Y(K) we systematically "peel" off the bottom block row of each [Dr, Nr]
by projecting onto the "based Grassmannian" part of this product.

Proposition 6.1. Let K be a multipartition

(fc 1 ( l), fc 1 (2),Λ 2 (2),-. . , / c w ( l ) , . ,kjm)).

Then there is a sequence offibrations

> Y{Km_χ) > > Y(K2) > Y(K)
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where each 3ίr is itself an iterate fibration

i

I

Mr(m - r) —r-=U Rat^. _ ( m _ 1 ) ( G ; _ _} _ ; _,• _ )

1

/fere
(a) ^ r w homotopy equivalent to the stratum

l r ) = 7 ( / j ( l , r ) , / j ( 2 , r ) , / 2 ( 2 , r ) , ••• , / j ( m , r ) , •• , / m ι

ί ^(<z + r ~ 1) z / α = ^>
/ (6 5 r) = <

1 0 otherwise,
(b) π r w Λ "peeling projection" defined below in terms of normal coor-

dinates,
(c) Y(Kr) denotes the fiber of πr_χ,
(d) p. is a projection defined below in terms of normal coordinates,
(e) 3%r{i- 1) denotes the fiber of pt.
Proof To begin consider a general point in Y(kx(l), , km(m)). It

has the form
[Dι,Nι][D2,N2] ..[Dm,NJ.

As we have seen, each [Zλ, TV] can be uniquely written in the form

[Di9Mi + R;] where D~\z)Ri(z) -* 0 as z -> oo. Thus, there is a

differential surjection

given by projecting each [Z)/? iVf ] to [Zλ ^ z ) , ϋ / ^Z)] where Ri .(i) is the
bottom (j. - j t _ x ) x (y / + 1 - j . ) block of i?^. The homotopy equivalence
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between 31 χ and Y(Lχ) follows from the normal form computations of
§4. Furthermore, the map πχ is, in fact, a submersion and, exactly as
in [11, 5.1] it can be proved that πχ is a fibering. (The argument pro-
ceeds by embedding Y(kχ(l), , km{m)) into an appropriate product
of symmetric products SPλi(C) c SPλi(CΨι). The embedding includes
Y(kχ(l), , km(m)) as the complement of a closed set. By thickening
this set and taking complements we see that Y(kχ(l), , km(m)) defor-
mation retracts onto a compact manifold pair (Y, dY) such that πχ\dY
is also a smooth surjection. But from this the result follows.) It remains
to identify the fiber and to show that 3ίχ is an iterated fibration.

Before doing this let us consider some simple cases in order to anticipate
the arguments for the general case. Therefore, we begin with the case
m = 2 by projecting the strata Y{K) = Y(kχ(l), kχ(2), k2{2)) onto the
properly based factors of both bottom rows:

(6.2) πχ: Y(kx(l), kx(2)9 k2{2)) ->& χ ~ Y(kx{\)9 0, k2(2)).

Explicitly, in normal coordinates with the notation of §4,

(6.3) n

Using normal forms it is easy to verify that Y(kχ (1), 0, k2(2)) is the total
space of a fibration

This fibration is not topologically a product and the twisting is discussed
in §§9 and 10.

At this point we identify the fiber of πχ, which we denote by Y(kχ (2)).

The fiber consists of V = A~ιM, C, E, and G such that the left-hand

side of (6.3) is an element of Y{K). Recall that, as shown in [11], if there

is no [A, B] term, the projection

is also a fibration. Recall also that, in this simpler case, with no [A, B]
term, the fiber can be identified with a entire copy of Rat, m ( G , „ , ).
Since the presence of the [A, B] term adds additional constraints, it is
no longer true that the [C, E, G] term itself can be identified with a
Rat space. However, the freedom to vary the V = A~ M term precisely
compensates for this difficulty. More precisely, the fiber of πχ can be
identified with a copy of Rat, m ( G , „ , ) via the homotopy equivalence

(6.4) π;\[AQ,RQ], [F0,H0]) = [C,E+VF0, G+VH0],

so y(fc1(2))~«$f2 in this case.
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Notice that the basing equations (4.4) and (4.5), Lemma 4.6 and Theo-
rem 4.13 imply that the fiber { V, C, E, G) is equivalent to the space of
matrices [C, E + VFQ, G + VH0] which are based with respect to C" 1 .
Next, the fact that the right-hand side of (6.4) has full rank for all z and
hence represents an element of Rat^ nΛG n-j ) f°U°w s fr°m the fact

that p2(f) is a based map and from multiplying the bottom block row
[0, EQ, HQ] by V and adding it to the top block row of p2(f) to obtain
[C,E+VF0,G+VH0],

Remarks 6.5.
(a) It is easier to use (4.5) rather than (4.2) here, although one could

equivalently identify the fiber with elements of the form [C, E + VF0,

P(G + EF'lH0)].
(b) The argument in the previous paragraph shows that the assignment

of points in the fiber with [C, E+VF0, G+VH0] maps the fiber of π{ into
Rat^ (2)(Gy ) but does not show this assignment is surjective (even up
to homotopy). However, by examining the fiber over an appropriately
chosen point we can identify it with Rat^ m^j n-j ) explicitly. Perhaps
the best choices of matrices to fix this point are

(6.6) [A0,R0] =

(6.7)

(\ ...
0 •••

0 •••

^o ...
/I . . .

0 •••
•

0 •••

Vo •••

0
0
•

1

0 (

0
0
•

1
0

z -

0
0

0
zk2(

0
0
\

0

i ) * l ( 2 \

V

J

/

λ ί°

2)

J 0

(

0

u
•..

OΛ
•

0
•

o)

\
0

o7

It then follows that
1. Only the last column of E may be nonzero.
2. The basing condition implies that

(6.8)

Λ(2)

tends to zero as z —• oc .
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3. The last n - j 2 - 1 columns of P(G - EF0

 ιH0) are precisely the
last n - j 2 - 1 columns of G.

4. The basing condition determines the first column of
P(G-EF~ιH0) via

(6.9) C- 1

tends to zero as z —• oo.
One can then generalize the arguments of [11, 5.6-5.11] to construct an

explicit homotopy equivalence of πj"^*) with RaXk,2JGj n_j) in this

case. Notice that the first J2—jx — l columns of V satisfy only C~ιVs —> 0
as z —• oo but do not affect the rank condition as they merely add vectors
in the span of [0, FQ, HQ]. Thus, these columns of the V matrix do not
affect the homotopy type of the fiber of π{ rather their role is to control
the dimension of the strata in a manner compatible with the normal bundle
discussion of the previous section.

We now consider the case m = 3 in order to exhibit an additional
subtlety that must be taken into account. Recall we can write an arbitrary
element / of Y(K) = Y(kx(l), fc,(2), fc2(2), k{(3), k2(3), fc3(3)) as

(6.10) [ Z λ χ ( l ) , R { 2 ( l ) + Mx

where

and

l ^ ' y V 2 J - [ o D22(2) Λ2 f 3(2) 2

(2)

) t j(3) Eχ 2(3) £ t 3(3) R{ 4(3)
0 Z)2"2(3) £ 2 ' 3 (3) Λ2 '4(3)
0 0 fl3ι3(3) Λ3 i 4(3)

Here the R and Af matrices are as in §4. We project

, 0, , 0, 0,

via the assignment

, [ D 2 > 2 ( 2 ) , Λ 2 i 3 ( 2 ) ] , [D 3 3 ( 3 ) , Λ3

Again, it is routine to see that y(/c,(l), 0,/c 2(2), 0, 0, &3(3)) is
the total space of a fibration with fiber Rat. , n ( G , ) and base

« |U) J] <J2~J\
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7(0, 0, fc2(2), 0 , 0 , fc3(3)). But we have already seen this base space
is itself the total space of a fibration with fiber Rat^(2)(G^, . j j) and

As πχ is a fibration, with fiber Γ(A^2), we project again

π 2 : Y(K2) -*<%2~ 7(0, ^ ( 2 ) , 0, 0, fc2(3), 0),

where the base is the total space of a fibration with fiber Rat, m(Gt- , , )

and base Rat, Π,(G , „ , ) via the assignment which projects onto the

following two elements:

(6.11) [Z) l f l (2) ,Λ l f 2 (2) ,Λ l f 3 (2)] ,

(6.12) [Z> 2 f 2(3),£ 2 f 3(3) + K2f3(2χ^^^

Remarks 6.13.
(a) V.Jk) = D-)(k)Mi9J(k) as in §4. _ _

(b) W e h a v e w r i t t e n Eχ'2 + VU2(\)D12(2) a s Rχ2{2) + Mχ2(2) w h e r e

D " 1

1 ( 2 ) 5 1 | 2 ( 2 ) ^ 0 as z ^ o c . We shall need Vχ 2{2) = D~x

χ{2)Έχ 2{2)
to identify the iterated fiber of π2 .

(c) We have written i? 1 3 (2) + Vχ2{\)R22){2) as Λ l f 3(2) + Mχ3(2)

where D~\(2)Rχ 3(2) ^ 0 as z -> oo. Again, we shall need Vχ 3(2) =

Z)~1

1(2)Λ/1 3(2) to identify the iterated fiber of π2.
(d) Notice that, in general, the matrix

(6.14) [Dχχ(2),Eχ2(2) + Vχ2D2\(2),RχJ2) + V χ 2 D 2 ^

is not properly based. However, just as in the proof of Theorem 4.19, we
use the based piece of (6.14) to project onto, while the remaining degrees
of freedom are saved to base a projection at the next stage of the induction.
It is precisely this iterated projection onto the based piece which makes it
possible to identify all the fibres in the general case.

By using the basing conditions, Theorems 4.13 and 4.19, just as in the
case m = 2, we see that π2 is a smooth surjection and fibration. Again,
the fact that each /?,(/) is a based map and that (6.11) and (6.12) are
obtained by adding multiples of the bottom block row to the next ensure
that, for all z, (6.11) and (6.12) have full rank. Next, the basing condi-
tions imply that π2 maps Y(K2) into Y(0,k{{2), 0, 0, k2{3), 0). The fact
that π2 is onto follows again by considering the inverse image of the point
given by defining the relevant Daa{b)0, Ea b(c)0 , and Rab(c)0 matrices
as in (6.6) and (6.7).
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Finally, Y(K3), the fibre of π 2 , is homotopy equivalent to

fc (3)(G . ) . Again, this can be checked via the assignment

n3(f) = (^ J3), EK2(3) + Vι 2(2)D2 2(3)0, Y, Z])

for / e y(ΛΓ3) where

and

Z = Λ, 4(3) + F(D-1

1(2)0Z)-1

2(2)0[/?2 4(3) 0 + F2>3(2)/?3 4(3)0])

+ K l j 2(l)[Z> 2 > 2(2) 0Λ 2 i 4(3) 0+K 2 j 3(2)Λ 3 ) 4(3) 0].

Once again, since the projection was constructed using iterates of the bas-
ing conditions, it follows immediately that the fiber is a subset of the
appropriate Rat space. Next, we may use the full freedom of the various
V matrices to fill out the copy of Rat^ (3)(G • . ) . This computation is
basically identical to the computations in the proof of Theorem 4.19.

The extension to the general case and the complete proof of Proposition
6.1 are now clear. The proof is an induction on m with the case m = 1
5.1 of [11]) while the cases m = 2 and m = 3 are given above. The fact
that each πr and ps are fibrations follows exactly as in the Grassmannian
case as has been indicated.

It remains to identify the homotopy type of the fiber which can be done
by analyzing the projection above the point defined by iterates of (6.6) and
(6.7). This is carried out exactly as above by the "peeling" projections onto
the modified block rows of the [Dt, Nt] matrices where, at each stage, the
extra degrees of freedom, as captured in the Va b{c) matrix blocks, are
used to bring the block rows to based form. More precisely, the funda-
mental basing equations \imz_^oo(P~{ fs+t(s)) = 0 are all "divisible" by
the appropriate Da a(r) matrices. By that we mean that these fundamen-
tal basing equations, which appear as rational equations involving certain
Da a(r) matrices, can be written as polynomial equations in the V 's. But
these polynomial equations can be used to explicitly write down the pro-
jection maps πr. q.e.d.

Just as in Theorem 2.8 the iterate fibration in Proposition 6.1 yields

Proposition 6.15. There is a filtration of each stratum Y(K) so that

the E term in the resulting spectral sequence converging to H (Y(K) F)
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for F any field is a tensor product of suspensions of terms of the form

(/)(G . , ) ; F ) Λ

Furthermore, we may combine Proposition 2.6, Theorem 2.8 and Propo-
sition 6.1 to obtain

Proposition 6.16. There is a filtration of each stratum Y(K) so that
the E1 term in the resulting spectral sequence converging to H^(Y(K) F)
for F any field is a tensor product of suspensions of terms of the form

As done in [11] for Rat^(GΛ m) and in [2] for moduli spaces of in-
stantons it is possible to use the filtration of Rat c(F(J)) by the Y(K)
to construct a Leray spectral sequence converging to a filtration of
H^(Ratc(F(J))) with Eι term computable in terms of the (suspended)
homology of the Y(K) 's. However, differentials in this Leray spectral
sequence are hard to track and the filtration used is not compatible with
the usual Serre filtration on Ω 2 F(/) . Consequently, in order to do actual
calculations it is necessary to introduce a further filtration on our spaces.
We address this problem in the next section.

7. A new filtration and the stability theorem

We now modify our stratification of R a t c ( F ( / ) ) to make the previ-

ous geometric analysis more compatible with the forgetful map ι(J C ) :

Ratc(F(/)) -> Ω 2 F(/) .
Definition 7.1. For each 1 < k < cχ let

X(k) = U Y(K).

Thus, X(k) is the union of all strata Y{K) c Rat c(F(/)) such that
the k{ (1) entry of K is k . Notice here that for some values of the total
Chern class X{K) may be empty. For example, if m = 2, c{ = 100,
and c2 = 5, then X(k) is nonempty only for k between 95 and 100. Of
course, there is a kQ depending on C and / such that

Ratc(F(/))=
k=k0

where the right-hand side is the disjoint union of nonempty strata. Fur-
thermore, for each k0 < k < cχ , the stratum Y(K) of Ratc(F(7)) with



THE MODULI SPACE OF SU(/i) MONOPOLES 75

kχ(ί) = k, kχ{2) = cχ-k, k2{2) = c2-cχ+k, kr(r) = cr for 3 < r < m ,
and ks(r) = 0 otherwise, is a generic open set in X(k) (open in X(k)
and not, unless k = cχ, open in Rat c (F(/))) . The lexicographic order on
the set of all multipartitions K gives that set a poset structure, and, as the
choice of index associated to the generic open set is an extremal element,
it follows that each X(k) is a complex submanifold of Rat c (F(/)) . But
then it also follows that the proof of Proposition 5.5 extends directly to
show that the normal bundles of the X(k) 's in Rat c(F(/)) are all com-
plex. Summarizing we have

Proposition 7.2. There is a stratification of Rat c(F(/)) obtained from
the stratification of Definition 5.2 by taking unions as in Definition 7.1. This
coarser stratification consists of strata X(k) which are complex submani-
folds of Rat c(F(/)) such that the normal bundles v(X(k)) are complex
bundles. Here k0 = max(0, cx - c2) < k < cx.

We now justify the introduction of this new stratification. Consider the
following commutative diagram:

Ω2

CF(J)

(7.3)

where
(a) / ' is obtained from / by forgetting the jχ entry,
(b) C' is obtained from C by forgetting the cx entry,
(c) both p and π are the forgetful maps induced by forgetting the

smallest flag,
(d) recall both ι(J \ C) and ι(f \ C1) are the natural inclusions induced

by forgetting the holomorphic structure.
While p is not necessarily onto (this depends on the actual values of

C), p is always an open map. Of course, while π is a fibration of two-fold
loop spaces with fibre Ω2G . _• , p is not a fibration over its image. The
point is that the inverse image of p varies as one moves around in the base
space. However, we can thicken the individual strata X(k) c Rat c(F(/))
to open regular neighborhoods Xt(k) that have the same homotopy type as
X(k) by using the complex normal bundles v{X(k)). But the arguments
in §6 show that, when restricted to each Xt{k), p is a fibration, with fiber

homotopy equivalent to Rat^(Gy • _•).
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Thus, for each kQ < k < c{, we have the following commutative dia-
gram where the vertical maps are both iterations:

1 I
(7.4) χt(k) - ^ λ ΩJί,F(/)

I- _ _ l
pk{Xt{k)) ^ X Ω2

C-F(/)

Here pk is the restriction of p to Xt(k).
Since the thickened open strata Xt(k) cover Rat c(F(/)) and p is an

open map, the image strata pk{Xt(k)) cover the open image of p in
Rat c/(F(/')). Therefore, in homology, we may consider cells that are
subordinate to these open covers. In this way we see that, while the inverse
image of p varies over different points, p restricted to each individual cell
is always a fibration. We now filter Rat c(F(/)) using the inverse images,
under p, of cells in Ratc#(F(/')) to obtain a Leray spectral sequence
converging to a filtration of // s ) c(Ratc(F(/)); A). The point is that, by
construction, the new filtration arising from the inverse images of cells
in (7.4) is manifestly compatible with the usual Serre filtration on the
fibration π. Thus, we have

Theorem 7.5. The Leray spectral sequence associated to the filtration
above converging to ^ ( R a t c ( F ( / ) ) ; A) has E2 term isomorphic to

(7.6) E 2

s t £ H s ( R z t c , ( ¥ ( f ) ) H t ( R a t k { a ) ( G j j j ) \ A ) ) .

H e r e
(a) C ' = ( c 2 , -•• ,cj,

(c) 0 < k(a) < cχ. The value of k(a) over any homology class in the

base a is determined by the stratum X{k) that carries a.

Furthermore, the natural inclusion ι(J C) induces a map of spectral

sequences

(7.7) ι(J C)r: £ r (Rat c (F(/)) Leray) -> ^ ( Ω 2 F ( 7 ) Serre).

In particular, differentials are natural in these two spectral sequences.
Proof The preceding discussion shows that the Leray spectral sequence

associated to this new filtration of Rat c(F(/)) is naturally filtration pre-
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serving with respect to ι(J; C) and the Serre fibration on π. Thus, it
remains to identify the E2 term. As we only need to consider cells subor-
dinate to the open cover of the Xt(k), this follows immediately from the
fibrations given in (7.4) for k0 < k < cχ .

Remark 7.8. As mentioned at the end of §6 the stratification of
Rat c(F(/)) by the Y(K) can be used just as in [11] and [2] to con-
struct a filtration of Rat c(F(/)) with associated Leray spectral sequence
Er(Y(K)) converging to a filtration of H^(RaXc(¥(J))). However, the
Leray spectral sequence Er(Y(K)) constructed in this way is very differ-
ent from the Leray spectral sequence constructed in Theorem 7.5.

As an immediate corollary of Theorem 7.5 we have the finite stage sta-
bility theorem for arbitrary flag manifolds stated in the introduction.

Corollary 7.9 (Flag Stability Theorem). Given (j\ , , j m ) , k > 0,

there is an m-tuple of positive integers (sχ(k), ••• , sm(k)) so that for

any C with ci > st(k) then the inclusion into the second loop space,

R a t c ( F ( / ) ) —> Ω2

C(W(J)), is a homology equivalence through dimension

at least k. Furthermore, if J is not ( 1 , 2, ••• , m), representing the

complete flag of length n = m+\, then both R a t c ( F ( / ) ) and Ω 2 F ( / ) are

simply connected so that ι(C, J) is a homotopy equivalence through the

same range.

Proof The homology results follows immediately from induction using
Theorem 7.5 and the stability theorems for Ratj|e(CP(n)) and Rat^G, β
proved in [14] and [10] and sharpened in [5] and [11]. The statement on
fundamental groups is well known.

Remark 7.10. While the stability theorem for general flags is identical
in spirit to the special case for Grassmannians, it is a different story above
the range of stability. In fact, the situation for general flag manifolds is
considerably more subtle than for Grassmannians; for example, the map
in homology ι(k /, j): H^RBX^G^J) A) -+ /^(Ω^G^. A) was shown
to be injective for every k > 1 in [11]. However, we will show in §11
that this is not true already in the case of general 2-stage flag manifolds

8. The space Rat t(Gn m)

In this section we analyze the geometry of Ratj(Gn m) by identifying
Ratj(G ), up to homeomorphism, with a well-known space and, as a
corollary, determine its homology. Then in the next two sections we extend
this analysis to the Ratj ... X(¥(J)).
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We consider the space of n x n matrices JtΛ with coefficients in C[z]
and determinant z —A under row equivalence. More exactly, for a e JίA ,
we set

a ~ Ua,

where U e GLn(C[z]). This action GLn(C[z]) x^A->JfA is continuous,
and we write GLn(C[z])\JtA for the orbit space.

Remark 8.1 Any such a is uniquely equivalent to an upper triangular
matrix

/ I 0 ... aΛ ,. 0 ••• 0\
0 1 22,i 0 0

0
0
0

0 ••
0 ••
0 ••

• fl, -i,i
• z-A

0

0 ••
0 ••
1 ••

• 0
• 0
• 0

VO 0 0 0

where α, ( , ••• , α(_, ; e C. In particular, note that even though both
MA and GLn(C[z]) are infinite dimensional, the orbit space is finite di-
mensional, in fact an (n - l)-dimensional complex manifold. Precisely,
we have

Theorem 8.2. GLn(C[z])\4TA =; CP"~1.
Proof. Consider the matrices

/ z-A 0 ••• 0 0 \
- 1 ... 0 0*2,1

n,l

0
0

- 1
0

0 λ
0

0

-\)

= Aχ{a2Λ, anΛ)

- 1 0
0 - 1

0 0

V 0 0 •
Note that if, for example, ai χ Φ 0, then we have directly
(8.3)

z-A

1,1

AΛcu *2,\ *n,l
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In particular, if an { φ 0 the resulting matrix An(- ) is in normal
form except for signs. Likewise, if aχ. χ Φ 0 but a). χ = 0 for j > i,
then Aχ ( ) ~ 4̂.r( ), and ^.( ), except for signs is in normal form,
(Ai(a{, , α._j) ~ Bi(-aι, - α 2 , , -a^)). On the other hand the
relation (8.3) above is exactly the equivalence relation that holds among
the charts of C P " " 1 , and from these two remarks the theorem follows
easily, q.e.d.

Next we consider the situation for Rat t (Gn m), the space of based holo-

morphic maps / : S
n, m

satisfying {f*(cx)9[S]) = 1 where c{

is the first Chern class. Here, any element is uniquely written as a pair
[D, TV] where D is an n x «-upper triangular matrix of the form

/ I ••• 0 a, .. 0 ... 0\

(8.4) D =

0 0 a:2,ι 0 0

0 ••
0 ••
0 ••

• 1
• 0
• 0

a
z-A

0

0 ••
0 ••

1 ••

• 0
• 0
• 0

VO ••• 0 0 0 ••• 1/

and, for such a D, N is n x m and has the form

/ 0 ••• 0 \

(8.5)

0

/, m

0 J

with J V . ( . € C , Σ Γ W , / ^ o .

Over CPn , we define the complex line bundle (ζj)n , as the bundle given
in homogeneous coordinates as follows:

«
(%,••• , a n , w ) ~ ( z a 0 ,••• , z a n , z J w ) , z e C * , J 2 \ a f * °

o

Corollary 8.6. Rat,(Gn m) is homeomorphic to the product

Cχ{/w(<ΓV,}\

where mξ denotes the m-fold Whitney bundle sum, and {mξ}* denotes

the complement of the zero section.
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Proof. This is a direct extension of the previous result. Precisely, write

1,1
0 0

V o o 7 .
= Aι(a2ίl, ' , a n t l : N l t l , . . ,NUm)

with a similar meaning for [Ai{alJ, , ai_li, ai+ι > { , ^ n i : N i {

"' ' ^ i w)ί Then it is easily seen that if at φ 0 we have

with similar results in the other cases. From this the corollary follows.

Remark 8.7. Delchamps [6] first computed JF/'ilι(Rat1(GII m ) , Z) using

Morse theory. That computation was possible because, as Corollary 8.6

shows, Rat 1(G / I m) admits a CW decomposition where cells never oc-

cur in consecutive dimensions and hence there are no torsion classes in

H^{ΈLaXx{βn m ) , Z ) . However, for k > 1, /ί l c(RatΛ(G / I m ) , Z) is almost

exclusively torsion [11] so the case k = 1 is somewhat of an anomaly.

As a consequence of Corollary 8.6, Ratj(Gπ m) is homotopy equivalent

to the total space of the sphere bundle S(m(ξ~ι)rι_ι),

•>,2m-\ S(M(ξ-ι)n_{

(8.8)

CP1n-\

and, to compute its cohomology we can use the Gysin sequence, remem-

bering that the Euler class of mζ~ι is {-b)m , where b is the usual gener-

ator for / ^ ( C P " " 1 Z). Putting this together, the Gysin sequence in our

situation takes the form

ti
— 2m+l 7 7 - 1 υ(-b)"

Z)

P* T T * + 1 / Γ K— 1 Ί * Γ77\

As a consequence, for n < m we have

Lemma 8.9. For n < m there is α class M e / / 2 m + ' ( { w ί " ' } „ _ , Z) =

Z flflί/, as a ring we have that H*{{mξ~x}n_{ Z) = Z[b]/b" <8>E[M] where
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We can obtain more detailed information about S(m(ζ~ι)n_ι). Note
that

(8.10) S(m(ξ~ι)n_ι) = S2m~ι χS2n~1/^,

where 3$ is the relation

(φ,ώ)~(ζφ,Clώ),ζ = eiθ

9

and from the fact that this description is symmetric in n and m , we have

Lemma 8.11. There is a homeomorphism S{m(ξ~ι)n_ι)=S(n{ξ~ι)m_ι).
As Gn m is antiholomorphically equivalent to Gm n Lemma 8.11

should be no surprise. Furthermore, it is instructive to note that (8.8)
shows there can be no differentials in the spectral sequence of Theorem
2.8 for /^(Rat^G^ m)) when n<m, and that when n> ra, (8.8) forces
the obvious differentials in Theorem 2.8. These differentials for n > m
are also well known to occur in the spectral sequence for H^(Ω2Gn m).

9. The geometry of Rat(1 ... 1 }(F(J))

In these next two sections we extend the analysis just given for
Ratj (Gn m) to flag manifolds. The analysis for general flags is substantially
more complicated than for a single Grassmannian because Ratj X{^{J))
consists of more than one stratum and we must see how they fit together
in the Rat space. In §10 we use the main results here, Lemma 9.2,
(9.8), (9.15), which describe the explicit structure of the two strata
for Ratj j (F(7j, y2; n)) and the attaching maps on the boundaries of
their normal bundles. These have evident generalizations to the spaces
Ratf(F(/)) and enable us, in principle, to determine the cohomology of
these spaces as well.

The results of §6 show that Ratj {(¥(j{, j2)) is the union of two strata,
7 ( 1 , 0, 1) and 7(0, 1,0). The first is open in Ratj ι(¥(jι, j2)) and
consists of points with representations

where det(Z)j) = z - A , det(D2) — z — B . It is given as the total space of
a fibration

7(1, O^Rat,^,,,,_,_,)
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To describe this fibration we need to consider line bundles over CPm xCV1.
Any such line bundle is determined by its first Chern class, and will be
written as ξ^ t .

Here acχ + bdχ is the first Chern class of ξ^ / where cχ and dχ are

the first Chern classes of the tautological line bundles over CΨm and CPι

respectively. If a — 0 or b - 0, we will sometimes abbreviate this bundle
by ξb or ξa

m , respectively.

If we have a vector bundle ξ —• X where ξ — ζ Θ v is the Whitney sum
of two bundles, then the complement of the mutual 0-sections is defined
to be the set of points (υ , w) £ ζθv , v e ζ, w e v with neither υ nor
w on their respective 0-sections.

Lemma 9.2. If j 2 - jχ > 2, then 7 ( 1 , 0, 1) is homeomorphic to the

Cartesian product of C2 with the complement of the mutual 0-sections in

the Whitney sum

On the other hand if j 2 = jχ + 1, then Y(l, 0, 1) is homeomorphic to the

Cartesian product of C2 with the complement of the mutual 0-sections in

Proof Every point of Y{\, 0, 1) can be written as

(9.5) \P,,N,J" C W °

where

0 D2J'\N2

Z>! = I 0 z-A
0 0

D2 = ( 0 z-B 0
0 0

Here E and F are column vectors, and w is a row vector. Recall that
Dχ and Zλ, give local coordinates for the base C P O l " 1 } and CΨ{j2~Jι~~l)

respectively, whereas the Nχ and N2 give local coordinates for the fibers
of the respective bundles. The roots of the linear terms, A and B, fill
out a copy of C 2 . Next, the constraint condition, ((4.4) and (4.5)) that
insures (9.5) represents a based map, limz^oo(C+J9~1yV1Z)2) = 0 uniquely
determines the one nonzero column of C in terms of ws+] and E.
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Theorem 8.2 and Corollary 8.6 show that to understand the interaction
of these components it suffices to replace D2 by

fz-B 0 ••• 0 \
1 •.. 0

(9.6) D'2 =

0 1

and track the effect of reducing this new point to normal form. There
exists a U e GL (C[z]) such that

and

Indeed, explicitly constructing U will show that it has the form

J
(9.7) U = o
where U2 € GL, _ ; (C[z]). This implies that DχU

 ι - Dχ and, thus, that
the twisting of the two normal forms involves only the fibre coordinates.

Recall from §8 that we are actually using the following embedding

CP'cGL, W i (C[ Z ])\{Λ/ Λ _ 7 i ( l )} ,

C GL j2_^(C(z)) n Mh_h(C[z\) is the set of elements

l /
where ^ 2 ^ h h

with determinant of degree exactly / as a polynomial in z .
Λ-1 has J2-J\ coordinate neighborhoods [/. = C7'2"-7'1"1 where

the yth neighborhood has coordinates (v\, ,vJ

j_j_γ) and Ux Π U• c

Uχ are those points with v. Φ 0. In this region the transition function is

ι;!

vj

The embedding is then given by

U,

/ _;

\ υ L - i .-l

0
- 1

o \
0

(~\ 0

0
0

0

o
- 1
0

{2

vj1 j

-z J
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Furthermore, the transition matrices in GL^ . (C[z]) between Uχ and

U are given by the TJ 's where T is the composition

1 0

VJ

/I 0
0 1

— z
0 0
0 /

- 1 0
0
0

I)

Consequently, in (9.7), the submatrix U2 in the matrix U for this tran-

sition is TJX . This implies, under U~ι, that w ι-> -JT~X + wTj. Ex-

plicitly, when we apply each T~x to the fiber coordinates w e Nχ we

have
(9.8)

j

In the rather degenerate case, when j 2 = j \ + 1, (9.4) follows from the

facts that CP7'2"7'1"1 is just a point and w is just the scalar wx . Also, if

j 2 = j { + 2 , then (9.8) is just (-vχw2, wχ/v2) and we recover (9.3) in this

case.

For the remainder of the proof we assume j 2 — jx > 2. On a basis

e\, , ej _• _j the transformation in (9.8) takes the form

- vse\

when 5 = 1 ,

when 5 = 7,

otherwise.

T h i s m e a n s t h a t t h e b u n d l e s p l i t s a s ζ. . } φ W w h e r e W h a s t h e b a s i s
h h ι

{ei\k Φ J} o v e r Uj and transition function

i j

Computing further we find that the 7th transition matrix for W is given
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by
( - υ x 1 •••

0 ••• 0

χ -Vj _. _{ 0 ••• \ /

To understand this bundle it is easier to consider the adjoint bundle W*
with transition matrices given by the transpose inverses of the transition
matrices for W. Explicitly they are

(—vΛlv —l/v —v • Λ/V-
f 1 ' J I J h-h-χl J

1 0 0

so

0 0 1

e{ when s < j and s > 2,

eJ

s_χ w h e n s > j .es_χ

It follows that the j 2 — J\-2 local sections defined by {eι

s} for s Φ 1 and

s Φ j in the j = I coordinate chart extend to global sections and span a

trivial bundle {j2-jι-2)ε c W*. Therefore, W* = (j2-jx-2)e^j j {

for some i. On the other hand the determinant bundle of W* is ξ _ ,
h J\ ι

and hence we have proved that IV* = (r - l)ε e ξ. _. _{ . Therefore,
C(W*)9 the total Chern class of W7*, is 1 -b . But, if \ i is the zth Chern
class of the original bundle, then the zth Chern class of the adjoint bundle
is - l 'c j and so C(W) = 1 + b. Therefore, as our original bundle has
fiber dimension greater than that of the base, it must be isomorphic, as a
complex vector bundle, to (j2 - j \ - 2)ε Θ ζj _} _{ Θ ξjl_j _{ with total

Chern class (1 + b)(l - b) = 1 - b1. q.e.d.
We note in passing that the splitting in (9.3) is as a complex vector

bundle, but there is no reason to assume this splitting preserves the holo-
morphic structure of 7 ( 1 , 0, 1). Also, the holomorphic vector bundle W
occuring in the proof of Lemma 9.2 above will play a critical role in what
follows.

We will need the following explicit model for the homotopy type of
Y{\, 0, 1) which is direct from Lemmas 8.11 and 9.2.
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Corollary 9.9. 7 ( 1 , 0, 1) is homotopy equivalent to

(9.10) C 2 x (S2jι~l x S2{J2~Jι)~l x sΆJ2~Jι)~l x S2{n~J2)~ )/(Λ x .

where the S x S action is given by

z(a, b, c, d) = (za, z ιb, c, d),

w(a, bχ, b2, b3, -" , bj^ , c, d)

= (a, wb{, w~ b2, b3, - ,b _• , we, iί;~ ί/).

Remark 9.11. Lemma 9.2 generalizes easily to describe the geometry of

the corresponding generic set 7 ( 1 , 0, 1, 0, 0, 1) in Ratj { {(F(jv j 2 , j3)).

Indeed, this is the complement of the 0-sections in the sum

Here we have assumed that each j i + ι — j \ — 1 > 0 with the obvious mod-

ification required in the complementary cases. Similar constructions for

arbitrary m give all of the strata in Rat ( 1 ni^Ui > '" > Jm^ •

We now turn our attention to the second stratum, 7 ( 0 , 1 ,0) , and the

way in which it attaches to 7 ( 1 , 0 , 1), 7 ( 0 , 1 , 0 ) consists of all matrices

of the form

0 . . . 0 . . . 0

v, ••• v, ••• υ.(9.12)

where

0 0 ?)•(?)]•
Ί-ι

0
0

z-B

and the only nonzero row in N'2 is the /th which is given by the vector

w. After multiplying these pairs to get a pair representing a point of

Rat t(G ) we see that these quadruples are equivalent to pairs

D2 '

0

0
υι
0

0

V1

0

w{

0

0

W-

0

which give the points in the subspace of Rat,(G, „ ) determined by

the constraint Σ \wi\ ¥" 0 Consequently 7 ( 0 , 1 ,0) , which is homotopy
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equivalent to

(9.13) (S2jι~l xS2{n~J2)~l)/Sl,

is the total space of the bundle /?*(C/2 ~ J\)ζJ-\) o v e r Ratj(G • )

pulled back from the projection p onto CP 7 1 " 1 . The fiber coordinates
are (vχ, , v. _.) and there is one more free coordinate, B .

Proposition 9.141 The normal bundle to 7(0,1,0) in Rat t λ(¥(j\9j2))t

u(Y(0, 1,0)), is the pullback of (j2 - jχ )ξ. under the projection

7(0, 1, 0) -> Rat l f ^ F U ! , j2))

Proof. The map Rat t ι{
1S'(jι, j2)) —• CP 7 2 " 1 is holomoφhic and trans-

verse regular on CP^1"1 with inverse image 7(0, 1,0). Consequently,

the normal bundle is the pullback under this map of the normal bundle

of CP7'1"1 in CP7'2"1 , which is (j2 - jx)ζh_x . q.e.d.

The normal sphere bundle is thus homotopic to the space

V { j χ , j 2 , n) = ( S 2 ( ^ > - 1 x S 2 χ Ά h ) χ x

where the S'-action is given by

In particular, up to homotopy type Ratj , (F(j,, j2)) is given as the double
mapping cylinder associated to the maps

( 9 . 1 5 ) (S2J>-1 x S 2 ( n - j > ] - { ) / S l Λ V ( j { , j 2 , n) - t 7 ( 1 , 0 , 1 ) ,

and the major difficulty remaining in understanding Ratj {(β(j\» j χί) i s

the determination of the map φ.
Recall that

7(1,0, l ) - ^ 2 7 ' " 1 x5 2 ( 7 2 " 7 l ) " 1 xS2U2'Ji)-{χS2{n-J2)~ι)/(SlxSι)9

which, in turn, is the homotopy type of the sphere bundle in the holomor-
phic vector bundle

C^-^ι -> ξ~^h_h_χ θ W -+ CP 7 ' " 1 x {(S2 0 '2"7 1^1 x S2{n~J2)~l)/S1}.

We have

Proposition 9.16. The space V(j{, j 2 , n) is homeomorphic to the circle

bundle in the fibering ξjι_\ι j j x -+ CP 7 ' " 1 x Rat,(F(y2 - j\)), and the
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-l\\f\ξ-l_\\J2_Jι_iΘlV),

map φ is homotopic to the natural inclusion

V(j.,j2,n) - /'(TV

1
7 ( 1 , 0 , 1 ) -

>vAer̂  / : CP^1"1 xRat t(G y _. n_^) -* CΨh~x x C P ; r i r l is the projection.
Proof. Recall from §5 that the normal bundle calculations in terms of

normal forms proceeds by perturbing an element of the form in (9.12)
by placing a nonzero vector ε = (ε{, , ε, • _ • Λ in the /th column of
the D(2) matrix (in the notation of (9.12) the vector ε is placed in the
/th column of the zero matrix directly below the D'2 submatrix) and then
using a unimodular matrix U to bring

0 ... 0
(9.17)

0
u~ιu

D'
0

- 1
into normal form. Expanding out, U has the form

0
0
0

V0

C
z-B

E,

0
0
/
0
0

0

1/
0
0
0

0λ
0
0
0

and we can rewrite (9.17) as

[£>i> Nil

where

I ιι-\ ι\
z - B + ε v

C

and

Here
(a) the one nonzero row of N{ is obtained from ΰ by replacing vι by

- 1 /ε( and leaving the remaining entries alone,
(b) the one nonzero row of Λ̂ 2 is -e^ that is, -ει times the original

nonzero row of N'2 in 9.12,
(c) the one nonzero column of the C matrix, Cs, is the vector

ii-h
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As has been observed the ΰ coordinates and B are free to vary linearly

over c7'2"7"1"1"1 and hence we can set them all to zero, so Nχ has the form

(— 1 /£/)£/. In view of the discussion in the proof of Lemma 9.2 (especially

the remarks after (9.7)), which describes how ζJlJ\ j _7 _i splits off, we

see that this image is exactly the circle bundle in ξjW , - _ , , .
J\ ι >J2. ι l

It remains to observe the homeomorphism. We can describe the total
space of this circle bundle as the quotient under the action of Sι x Sι on

(z, ζ)(A, B, C, D) = (zA, z'ιζB9 ζC, ζ~lD).

Note that the diagonal copy of Sι c Sι x S 1 , acts trivially on the Sι .
Thus the quotient by this action is the product S x (sphere bundle of
normal bundle). Now acting by the second S gives the result since the
action is free on the extra Sι.

Remark 9.18. From the perspective of holomorphic bundles
we see that Proposition 9.16 is forced. Indeed, note that the map
to the two extremes (S2jι~ι x S2{j2~~iι)~ι)/Sι -> CP7'1"1 x CP7'2"7'1"1 in
cohomology takes bt to the generator for both i = 1 and 2. Since this
map factors through the complement of the 0-section in the bundle
ξ~ι\l • , Θ W -• CP 7 1 " 1 x C P 7 2 " 7 ' " 1 , the induced bundle over

(S2jι~ι x 5 r 2 ( j 2~7 l )~ ι)/5 t I has an everywhere nonzero holomorphic section.
But, by restricting to a diagonally embedded CP , we see that, if indeed
W has any holomorphic sections, they must always have zeros. On the
other hand, the bundle induced from ξ~ ' is the trivial bundle so the sec-
tion must be nontrivial in the complement of the zero section in ξ~ ' .
Thus, it deforms to this section.

Remark 9.19. This discussion extends directly to the general case, and
with the obvious modifications, Proposition 9.14 describes the normal bun-
dle of the general stratum in any larger stratum while (9.15) describes the
homotopy type of the attaching of the normal sphere bundle to this stratum
into one of the larger strata.

10. Thehomology of Rat(1 1}(F(7))

In this section we study the cohomology of the strata in Ratt }

and the map φ* associated to the map φ in (9.15). In certain cases the in-
formation we obtain is sufficient to entirely determine //*(Ratj {(F(/))),
and, in all cases, it provides a complete algorithm for doing the calculation.
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We begin with some basic spaces and their cohomology rings. Denote

by S(k,l + k) the S2l~ι sphere bundle of the holomorphic vector bundle

v P~ ' (Ts ΛΛZ ^ (PIP ~ v (PIP
^k—1, /— 1

Consider the Gysin sequence of the bundle S(k, l + k) -• CP^"1 x C P / - 1 ,

(10.1) '
- ^ > i/^CP*" 1 x CP7"1) -+ //*(£(£, / + fc)) Λ ...

where T(V) is the Thorn complex with Thorn class Uv, χ(V) is the
Euler class of the bundle V, and Uχ(V) is the map aU Uv \-+ aU χ(V).
Recall here that if V is a complex vector bundle with fiber Cn, then
χ(V) = cn(V), the «th Chern class.

It follows that the image of H*(CFk~ι x CP / - 1 ) -^ //*(5(A: ,/ + £)) is

(10.2) j/(fc, /) = Z[&!, 62]/(6f = bl

2 = b[~2{b2 - b\) = 0).

If k < I -2, then (10.1) becomes especially simple and we have
Proposition 10.3. If k < I -2, then

H*(S(k, / + k)) =A/(k, / ) ( 1 , ^9/_i) = —r—^—7-^—(15 ^?/_i)

b* = bι

2 = 0
where e2l_x is dual to the spherical class of the fiber.

Therefore, in what follows we assume k > I - 2. To set notation let
a = m a x ( 0 , 2 l - 2 - k ) so that

/ when k > 2/ - 2,
1

~ α = 1 * * ~ if / - 2 < fc < 2/ - 2.

Also, let ε be the parity of / that is,

1 when / odd,
6 =

1 0 when / even.

Next, set

C{1) = Z[bχ, b2]/(bι

2 = b\~2{b\ - b\) = 0),

and

for / even. Finally, let J£a / be the module over C(l) on two generators
5 , h , with dim(Λ) = 0 and dim^) = 2(a + ε - 2), specified by relations

(10.4)
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Notice that, in certain cases, the dimension of s is negative. With this
notation we have

Proposition 10.5. Assume I, k > 3.
(a) Ifk = 2l-2 with I odd, then

where W has generators w — Pj_xe, v = b{b2pι_3e, so dim(iί ) =

dim(ΐ ) = 4/ - 3, and the relations are w v = 0, b[~2(bχw - b2υ) = 0,
b2w = bχv.

(b) If I - 2 < k < 2/ - 2 or I is even, then

H*(S(k, I + k)) =

Moreover, in the Gysin sequence (10.1) we have

δ(Σ h) = bχ U,

( ,/-£

where U is the Thorn class, and d = max(0, k - 21 + 2).
(c) If k>2l-2 and I is odd, then

H*(S(k, / + k)) = srf{k, /) θ JT{1),

where ^(l) has generator s of dimension 2k - 1 with relations

( W + l ι / + l \

Λ l — 7 2 " U'
bx-b2 )

Proof Fix / and let k increase, starting at / - 1. The Euler class

χ(S(k, / + fc)) = b[~2(b2 - b\) and so, in this first case, equals -b[~2b2.

In particular, the kernel is clearly generated by b{U and bl

2~
2U. Now

increase k by 1. The Euler class is unchanged, and bx U now acts like

U did previously, giving kernel classes bχ U and bχb2 U. Moreover,

the previous kernel class b\~2U remains in the kernel. Keep extending

in this way by increasing k . Notice that each time we go up by 2 in k ,

the multiplier on b!f2U gets a term added to it, first b2b2~
4, then b\bι

2~
β

and so on until the term I - 2r becomes ε. At this stage, the image of

this class, under multiplication by the Euler class, is b2ί~2~εb2, which is

a class that has not previously been hit.

Now continue to increase k. If / is even then nothing more com-

plex happens. From this point on the generating classes (bx p{_2e) and
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b2φ
d\Pi-2e) h i t f̂+2/~2 = b\~X and b2b\~x, respectively, so that the new

generating classes are b^p^e and b\~ί+2e . This establishes part (b).

However, if / is odd, then we have to be more careful. In case k = 21-2

we see that b2pι_3e »-> b\~xb2, so b^p^^e and bχb2pL_3e survive to

become generators. In this case we get the module in part (a). When

k = 2/ - 1, then bχb2pt_3e *-+ b2b\~x but the class {b\pι_3 + b[~~ι)e

survives. Hence, besides h, the generators are b\b2Pι_^e and pt_χe.
Next, a direct calculation shows that this module does not change as k
increases further, even though the dimensions of the generators augment
by 2 each time. This establishes part (c). q.e.d.

Finally, the cases not covered by Propositions 10.3 or 10.5, when either
/ or k is less than 3, are trivial and left to the reader.

These S(k, l + k) spaces are the first stages of inductive building blocks
for the strata 7(1, 0, 1), 7(1, 0, 1, 0, 0, 1), etc. For example, 7(1, 0, 1)
has the homotopy type of the sphere bundle in the fibration

(10.6) Cn-j>-+E^SUl9J2)

with total Chern class (1 - b2)
n~h . To build 7 ( 1 , 0, 1 , 0 , 0 , 1) we first

construct the sphere bundle of the fibration

with Chern class (1 - b2)
h~jl~2{\ - b2 - b3){ 1 - b2 + b3). If we denote the

total space here by S(j{, j 2 , j 3 ) , then we obtain 7 ( 1 , 0, 1 , 0 , 0 , 1) as
a homotopy type of the sphere bundle in the fibering

n —
(10.7) C" J>-+E^SUι,J2,h)

with total Chern class (1 - b3)
n~j3. Moreover, the higher strata are ob-

tained by repeating these constructions. Thus, in order to understand the
next level of strata, we need to know H*(S(j\ , , jr)) as a module over
Z[br] since each Gysin sequence only involves this data.

It is easy to verify that at each stage the cohomology is torsion free, and
this puts a severe restriction on the modules over Z[br] which can arise:
they are all direct sums of cyclic modules, Z[br]/(bs

r)e .
In particular, for S(k, I + k) we have
Corollary 10.8. Suppose k>l-2\ then H*(S{k, l + k ) ) , as a module

over Z[b2], has the form

Z[b2y{b'2){l,bl9... , 6 ( - 3 , * , & , * , - . . ,b[-χh}

θZ[b 2 ] / (b 2 )b[~ 2 eZ[b 2 ]/(bζ)b[~ ι θ Z [ b 2 ] / ( b ι ~ a ) s e Z [ b 2 ] ( b ι - β ) s .
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Here a = min(/, 2[*=£±]) and β = min(/ - ε, 2[ψ]) provided that
k Φ 21 - 2 or I is even. In the case I odd and k = 21 - 2, we have
a = β = l - l .

Proof. We have b\bι~2M = b1^ for t>0. Then the classes b[~2 and
b[~ι generate two special modules, and the truncation is due to the fact
that bf~2 = 0 in s/(k,I) for / even, and b2bf~2 = bf'1 - 0 for /
odd. On the other hand, it follows from the Gysin sequence (10.1) that
H*(S(k,/ + £)) is the direct sum of the kernel of Uχ(V) with sf{k,l)
since both the middle terms in (10.1) are free as modules over Z[b2]/(bι

2).
Thus, the fact that the cokernel is known forces the structure of the kernel
and Corollary 10.8 follows, q.e.d.

The following lemma is standard and is the second main tool needed
for calculations.

Lemma 10.9. Let ξ and W be oriented bundles over a space X, and
T(ξ θ W) the associated Thorn space of the Whitney sum. Then, in co-
homology, the map induced by the inclusion i: T(ξ) c T(ξ θ W) is given
by

where χ(W) is the Euler class of W.
We will be interested in the inclusion β: N —> L where TV and L

are the sphere bundles associated to ξ and ξ θ W respectively. We can
determine the cohomology map β*: H*(L) —> H*(N) using Lemma 10.9
and the long exact sequence

>H*(X)->H*{L)^H*+ι(T{ξ®

(10.10)

>H*(X)->H*(N)^ H*+l{T(ξ)) -*•

since both extreme maps are known precisely.
To determine H*(Rat{ 1 (F( j 1 , j 2 , n))) we need to evaluate φ from

(9.15). This we can do in two steps since the second matrix (N2) in our
description of the points of Rat t 1(F(>/1, j2)) is acted on by U in (9.7)
and (9.17) but in no way contributes to U . More precisely, let W(j\ , j2)
be the double mapping cylinder

(10.11) SUi,J2)^-(S2Jι~ι xS2{J2~Jι)~l)/Sl -

Here φ has the same description as given for φ in (9.15) and Proposition

9.16, except for ignoring the sphere S2^n~j^~l. Then, up to homotopy
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type, we have the commutative diagram
(10.12)

i
Y( 1, 0,

I

I
V{jx,j2,n)

1
— p — + ( n -

I
J2)Ziι~ι

1

Here the leftmost vertical column is (10.6), the middle horizontal row is
(9.15) and the bottom horizontal row is (10.11).

Consequently, since W(jχ , j2) and Rat(1 1 )(F(y i, j2)) are, up to ho-
motopy type, the double mapping cones the bottom and middle rows of
(10.12) respectively, we may regard Rat t 1(F(71, j2)) to be complement
of the zero section in the fibration

with Euler class -b^~jl.
Therefore, we begin by determining H*(W(j{, j2)). In particular,

(10.11) is equivalent to the existence of the exact sequence

(10.14) ... - H\T{{j2 - jx)ξh_x)) - H\W{jx,

T{{J2-Jx)ξh
H\S{jχ, j2)) Λ H*+\T{{J2-Jx)ξh_x))

which shows H*(W(jχ, j2)) is determined by the map δ .
To explain the groups H*(W(jχ, j2)) we need to introduce a new family

of rings and modules.
Definition 10.15.

, b2]

Note that the relations imply that bι

2

s = b\b\ for s > 1 and b[+2t =

b2

2

Mb1'2 for t > 0. It follows that b2l~2+ε = b2

2~
2+ε in <^{k,k + l) and

consequently ^ a χ ( 2 / " 2 + ε » f c ) = o. Indeed, the projection <%(k,k + l) -*

s/(k, k + I) is onto with kernel (έ^ 1 ) = Z ( ^ + 1 , &2+2» *" ' ^2) where
r < max(2/-2 + ε, A:). 3S{jx, j 2 ) is a direct summand of H*(W(jχ, j2))
and we will shortly determine r, but first we introduce a module over

72) which will turn out to be the remaining part of H*(W(jχ, j2)).
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Definition 10.16. JVa ι is the module over &(k, k + l) on generators
h, s, of dimension dim(Λ) = 0, dim(s) = 2(a + ε - 1) and is specified
by the relations

[

(b{ - b2)bε

2Pι_2_εh = b[~as.

Theorem 10.17. Let k = j \ and l = j 2 - j \ . Then H*(W(j\ , j2)) is
given as follows.

(a) When k = 21 -2 and I is odd,

where W has generator s in dimension 4/ - 3 with relations b[~2

•{bx +b2)s = 0, b2s = 0.
(b) // / - 2 < k < 21 - 2 or I is even, then

where a = max(0, 2/ - 2 - k).
(c) // / is odd and k > 2/ - 2, then

where W has one generator, s, in dimension 2k + 1 with relations

b[~2{b{ + b2)s = 0, φ = 0, and b\s = 0.

Proof. Recall S(j\ , j 2 ) = (Sj>~1 x 52^-Λ)-i x s2^'^'1)^1 x 5 1 is

the sphere bundle of f !̂'/; j θ W7 over CP 7 ' " 1 x CP 7 2 " 7 ' " 1 . Then

(10.1) and (10.11) imply that Lemma 10.9 and (10.10) yield the following

commutative diagram of long exact sequences:

> H*(CΨJι~ι xCP 7 ' 2" 7 ' 1" 1) ->

i-
x C P J r i r ' ) ->

7 l ' 7 2 7 l

!•• I--

Since /* = U χ ( ^ ) = U±έ(~2(6, +6 2 ) it follows directly that i*(Σ2k+i(h))( ( 6 , 2

= 0 and that i*{Σ2k+3(s)) φ 0 in each of the cases (b) of Lemma 10.5.
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Next, when k = 21 -2 with / odd, we see that i*(v) = i*{w) Φ 0, and
when k > 2/ - 2 with / odd, once more i*(s) φ 0. Indeed, all these
images are integral generators, that is, they are not divisible by any integer
except ± 1. On the other hand, by the exactness of the lower sequence,
we see that the kernel of the map

where j * is just Uχ(ξ~ι_\ι . . _x) = U(-bx + b2), and is at most a single
copy of Z in any dimension. It follows that φ* maps s to an integral gen-
erator H*((S2Jι~ι x S2{J2~Jι)'ι)/Sι) in that dimension. Moreover, since
φ*(bχ) = φ*(b2) = b is a generator in dimension 2, it follows that all mul-
tiples bιφ*(s) or bιφ*(v) are also in the image. Hence, the map φ* is
completely determined (and as nontrivial as it is possible for any such map
to be). But now both maps in (10.11) are completely known in cohomol-
ogy so that Corollary 10.8 and a Mayer-Vietoris computation on (10.11)
establish the theorem, q.e.d.

Thus, H*(Ra\ι ι(V(jι, j2))) is obtained directly from Theorem 10.17
and the Gysin sequence applied to (10.13). In particular,

T h e o r e m 1 0 . 1 8 . If n — j 2 > j 2 - j { , then

On the other hand, if n - j 2 < j 2 - j \ , then

i/*(Rat1 \(¥UX, 72))) = ^Άn~h)~X^Ux, h , n) Θ &(j\ , h ' n)'

Here 3?{jx, j 2 , ri) and (^'{jx, j 2 , ή) denote the kernel and cokernel of

n h * j 2 ) ) - H\W{jχ , j2)).

Hence, they may be explicitly computed using Corollary 10.8 and Theorem
10.17.

11. On the homology of Ratc(F( J)) above the range of stability

In this section we explain why the homological behavior of arbitrary
flag manifolds above the range of stability given in Theorem A is much
more subtle than that for Grassmann manifolds. Recall from [11] that the
natural inclusion ιn m always induces monomorphisms

!(Λ, m;k)t:Ht{R&\k{Gnm) A) -+ Hι(Ω2Gnm;A)
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for all k , n , m , t, and all coefficients A . Furthermore, one can show
that Rat^G^ m) is the basic building block for H^RaXk(Gn J A) that
is, one can build Dyer-Lashof homology operations on \JkRatk(Gn m)
and show that every class in Hm(Ratk(Gn m)\A) can be constructed from
these operations applied to classes in // | {(Rat1(GΛ m); A), (see [12] for
details). However, for all flag manifolds of length 2 or more this regular
behavior fails to hold.

To illustrate this phenomenon we first compute H^(Ω2¥(J) Z/p) and
then use the results of the previous two sections to show that the natural
inclusion /(/ Γ) has a nontrivial kernel in homology as long as the length
of J is at least 2. Recall the flag manifold ¥(J) is given as the quotient
of unitary groups

F(/) = U(n)/(U(j\) x U(j2 - yj) x ... x t/(/i - jj).

The Stiefel manifold of /c-frames in Cn is written V^ n_k and is given as
a quotient of unitary groups as V^ n_k = U(n)/U(k). It is 2/c-connected
and there are fiberings Pέ given as

for each i with 1 < i < m .
The homology groups H^(U{j)\ Z) = E(e{, e3, , e2j_x) are well

known, and

j) Z)) s £

Similarly, the work of Bott and Samelson, [3], determined the homology
of the loop spaces here as

H.(Ω(U{n)) Z) = Z x 7/,(Ω(SU(/ι)) Z) = Z x

Γ ϊ Λ_Γ Z) = H^(Ω(U(n)) Z)/(/f#(Ω(t/(r)) Z))

Lemma 11.2. Givew F(7), to v(J) = maxO .̂ - 7Z _ , ) , 1 < / < m + 1,
and suppose i(J) is the first index i so that j i - j i χ — v(J). Let A

be any commutative ring. Then //+(Ω (F(/)) A) is isomorphic as a ring

under loop-sum to the tensor product

H^Ω2(Vv{J)n_j{J)) A) ®Ά H^Q(U(j\)) Z) ® ® H^(Ω(U(n - jj) Z)

with only the term H^Ω(U(v(J))) Z) deleted.
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Proof. Consider the Serre spectral sequence for the 2-fold looping of
the fibration (11.1) where i = i{J)

Λ Ω(UU\)) x x Q{U(v(J))) x . x Ω(U(n - jj).
In homology the loop multiplications on the fiber, base, and total space
determine an algebra structure in the spectral sequence so E2, being the
tensor product of H^(Base) <8>H^(Fiber) (since //^(Base) is Z-free), is also
the tensor product of Base and Fiber as algebras. Moreover, the differen-
tials are all derivations. It follows that the differentials are determined by
their values on the generators on the base. But our choice of / guarantees
that the connectivity of the fiber is at least as large as the dimension of any
generator on the base. Consequently, the differentials on these generators
are identically zero and E2 = E°° .

Hence there are elements in H^(Ω2(¥(J)) A) which project onto the
generators on the base. Since this is a second loop space (so the ring struc-
ture is commutative) and the homology of the base is a polynomial alge-
bra on these generators, it follows that the subalgebra of H^(Ω2(F(J)) A)
generated by these elements is likewise the polynomial algebra on these
generators. Next, the map Fiber x Total space -> Total space induced by
the loop-sum operation gives an explicit map of the tensor product of the
fiber algebra with the base algebra onto the homology of the total space
and completes the proof, q.e.d.

Thus, to complete our determination of H^(Ω2(¥(J)) A) it suffices to

determine H^(Ω2(Yj n_j)\ A). We turn to this now. There is a spectral

sequence (the cobar spectral sequence derived from [1]) with Is^'-term

Ext^ί ( χ . F }(¥p, ¥p) that converges to Ht_s(ΩX\ ¥p). These Ext-groups

are calculated as follows:

where |JC| hasbidegree (l,dim(jc)) and yι

χ hasbidegree (2, pι ά\m(x)).
For example the f^-term for Ω(SU(3)) at 2 is

, , k 2 | , ) ^ p ^ 2 , , y , ]

and E2 equals E^ .

We consider ΩSU(/i) and ΩVr n_r for r > 1 . ^ ( Ω S U ( Λ ) ; Z) =
e4' ' ' * > e2n-2^ *s a commutative and cocommutative Hopf algebra
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with ψ(e2j) = Σeik® e2(j-k) s m c e there is a map

λ: C P " ' 1 -+ ΩSU(n)

so that λ(e2J Π [CP""1]) = e2n_2j_2 for y = 0, 1, ,n-2. Also,

#.(ΩVΓ > π_ r Z) = ^(Ωt/(/i) Z)///f.(Ωt/(r) Z) = Z[e2 r, , e 2 π _ 2 ] ,

the quotient Hopf algebra. (For details see [15].)

The dual algebras /Γ(ΩSU(«); Fp) and 77*(ΩVr n_r\ ¥p) are tensor
products of algebras of the form

for 1 < 7 < Λ - 1, in the case of SU(n), and r < j <n-\ for Vr Λ _ r ,

where 7 and /? are relatively prime. Here k(j) is given by [n/j] = p ^J*w
with w prime to p , and [α] denotes the integer part of a . In both the
cases of SU(n) and of Vr n_r the spectral sequences collapse, so E2 = E^

for all p , which determines ίΓIι(Ω2SU(n) Fp) and /ί+(Ω2Vr rt_r ¥p).

This is a more efficient way to compute H^(Q2¥(J)) than by using
the Serre spectral sequences associated to the fibration in the right-hand
column of (7.4). However, this direct computation is not as useful as
(7.7) when studying flags, and thus the computation given above and a
comparison argument need to be used to compute the differentials on the
right-hand side of (7.7). This proceeds as follows:

Rationally we have

from which it follows that, when we factor out the torsion direct summand,
we have H^(Ω2(Yjn_j) Z)/(torsion) = E(e2j_χ, , e2n_3) as well. In
the case of the Grassmannians G . = U(n)/(U(j) x U(n - j)) we can
assume n — j > j , that is when v(J) = n — j . Then the torsion free gener-
ators are exactly {e2, , e2j-2 > fm-ij-x > * *' > Λ11-3)» a n c ^ ^ose are in
one-to-one correspondence with the elements of Rat t(G ; .) . Thus, we
can expect things to be considerably simpler here than in the case of the
general flag manifold. In fact
(11.3)

Hm{θi(GJ9n_j) Zip) = Z/p[b2, , b2j_2]

0 CoXoτE{β2ιι_2j ... te2n_2)(Z/p , Zip)

= Z/p[b2 , , b2j_2]® H^(Ω2S2n-2j+X Zip)
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and this isomorphism is both as rings (loop sum), and modules over the

Dyer-Lashof operations. Here H^(Ω2S2s+ι Z/p) is described as follows.

There is a (torsion free) generator f2s_{ e H2s_{(Ω2S2s+ι Z/p) = Z/p,

and for p any odd prime

H(Ω2S2s+l = E\f,Q.(f),-- ,Q,'--QΛf),

i times

βQΛf),~ ,βQr QΛf),

where Qχ is the first Dyer-Lashof operation (it takes a class of dimension
/ to a class of dimension Ip + p - 1), and β is the mod(p) Bochstein.
With mod(2) coefficients the form of the answer is slightly different, as
follows:

Qx ~Qi(f)>

i times

and β(Qi(f)) = f .
Now proceed by induction. Let / = (jι, j 2 , / ) and set / =

, j m ) . Then the differentials in the Serre spectral sequence for

Ω2G.
Jy,J2 J\

Ω2F(J) -> Ω 2 F(/)

with mod(/?) coefficients are as follows. The E -term is the tensor prod-
uct of the groups described in Lemma 11.2 with those of (11.3), and the
generating differentials are transgressive with d(e2s(i)) = fis-x anytime
both e2s and f2s_ι are nonzero. There are also transgressive differentials
from the base on the terms in //jVυ( ; ί ) n-vu') \ %/P):

d(e4s-0 = e2s-ι * e2s-ι' w i t h z / 2 coefficients,
d(e2sp-\) = βQ\(e2s-i)> w i t h ZIP coefficients.

These have the effect in the mod(2) case of building a (torsion free) gener-
ator in the total space represented by Qϊ{e2s_ι) and having image 2e4s_ι

on the base. Similar things happen for odd primes.
With this background we now determine the kernel of
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In this case the E2 term in Theorem 7.5, E 2 (Rat r (F(/))), has two direct
summands:

(11.4) ^ ( R a t ^ G j χ fΛ_Λ) A) ® tf.(Ratr(F(/')) A)

and

(Π.5) tfφ(Ratr(F(/));Λ),

where / = (j\ , ,jm), j " = (j2 - j χ , . , j m - j χ ) , and A are ar-
bitrary (untwisted) coefficients. The first summand consists of all terms
whose multipartition K has fc^l) = 1 while the second summand con-
sists of all terms where kχ{\) = 0. In particular, for Rat} ι(¥(jι, j 2 , n))

this E2 term becomes

( . ( l ( G Λ > Λ _ Λ ) A) β ^ ( R a t l ( G Λ _ Λ ; H _ Λ ) A))

When we compare (11.6) with the results of § 10 we see that for j2—j{ > j {

there is an "internal" differential (staying in the first summand in (11.6)),

dip \ /v _ h

and an external differential as well,

going from the first to the second summand in (11.6).
If n — j 2 > j 2 , then it is direct to verify that (11.6) injects into the

E -term of the Serre spectral sequence for Ω ¥(j{, j 2 , ή) given in (7.7).
In this case set m = max(72 - j \ , j \ ) . Then the results of §10 or natural-
ity of differentials in the dual spectral sequence imply δ{e2m_x) = (δ^1)*
on the dual classes in cohomology. However, since {bχ - b2)b™ = 0 in
Hm{Ratuι{W{jl9j2, n))), the cohomology class dual to {b{ - b2)e2m_χ

must be an infinite cycle which is not in the image from the E^ -term
of the Serre spectral sequence for H*(Ω2W(jχ, j 2 , n)). Note we can pass
freely between homology and cohomology here as (11.6) is torsion free.
By passing to rational coefficients it is direct to verify that no multiple of
the dual of (bx - b2)e2m_x is in the image. Thus, the map in cohomology
is not surjective, and therefore the map i# in homology is not injective.

Similarly, when n - j2< j 2 we have two possibilities, j 2 - jχ < n - j 2

or n - j 2 < j 2 . In either case, the classes e2^ _j ^_χb2 for I < n - j 2

occur in the main block and are infinite cycles. When j 2 - jχ < n - j 2 ,

the classes e b\ in the smaller part of the Leray spectral sequence for
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Rat(1 {J¥(J)) are the terms in the image from the Serre spectral se-
quence. Consequently, here again the cohomology map is not surjec-
tive, so the map ^ in homology has a kernel. The final case where
n — j2< j 2 is almost identical; only the indices on the e^ classes change
slightly. Thus, in all cases of 2-stage flags, the homology map ι^ on
//^(Ratj {(¥(J)) Z) has a kernel which is a direct summand. It is now
clear that the same result extends directly for all Ratj(F(Jr)) where / has
3 or more terms. It is direct to extend the Dyer-Lashof construction given
in [12] for Rat(GΛ m) to Rat(F(/)), and we believe that this Dyer-Lashof
construction propagates these kernel classes to all the Rat c (F(/)) . How-
ever, it appears to be relatively difficult to verify that these (^(^-classes
with v e Ker(iJ are, in fact, nonzero in //sie(Ratc(F(/)) Z/p). But mod-
ulo this we are convinced that there are kernels for all the homology maps
^ ( R a t c ( F ( / ) ) Z/p) -> H^Ω2¥{J) Z/p) as long as / has two or more
nonzero terms.

Finally, it can be shown that the Dyer-Lashof operations and Z -^
Z —• Z/p Bochsteins do not generate the homology of Ω2Vr n_r from the
"spherical" classes coming from the Ratj (F(/)) in the case when n—r > r.
Essentially what happens is that higher Bochsteins connect the Qι -Qι (e)
Dyer-Lashof classes to various polynomial generators when enough Q{ 's
are present for certain choices of the e 's. Thus, for all flags where the
length of / is at least two, in order to generate all of //+(Ω F(/)) under
the image of J+ (which we know can eventually be done because of the
stability theorem) one must use more than operations on the classes from
fl.(RatΓ(F(J)).
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