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THE EXISTENCE OF
ANTI-SELF-DUAL CONFORMAL STRUCTURES

CLIFFORD HENRY TAUBES

1. Introduction

The following is a salient feature of 4-dimensional Riemannian ge-
ometry: The conformal class of a Riemannian metric on an oriented 4-
manifold defines a splitting

(l.i) Λ V ~A2

+T*®AIT*.

The bundles A2

±T* are real, 3-plane bundles whose sections are called
self-dual (+) or anti-self-dual (-) 2-forms.

With the metric's help, the Riemannian curvature can be thought of as
a section of the symmetric endomorphisms of A2T*. Then, with respect
to (1.1), this section, 31, has the form

(1.2) 31 =

Here, s is the usual scalar curvature, B is the traceless Ricci tensor (in an
unusual guise), and the W± are, respectively, the self-dual and anti-self-
dual Weyl tensors. (The metric is Einstein if B — 0, and it is conformally
flat if W+ and 2Γ. are both zero.)

(a) Existence. Given that this preamble is understood (and [1] is the
canonical reference), it can be said that the purpose of this article is to
discuss metrics with W+ — 0. We give the main result:

Theorem 1.1. Let M be a smooth, compact, oriented, 4-dimensional
manifold. Use CP2 to denote complex projective 2-space with the opposite
of its complex orientation. Use # to denote the operation of connect sum.
For all sufficiently large N, MN = M#N£P2 admits a metric with W+=0.

Remark that the connect sum of manifolds X and Y is obtained from
their disjoint union by cutting out an open ball in X and one in Y and
then identifying the two resulting boundary 3-spheres.
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One more remark: The complex orientation on CP2 is obtained by
identifying CP2 as (C3\{0})/C*—a complex manifold. Then CP2 has
the other orientation.

Without Theorem 1.1, there were known Riemannian manifolds with
W+ = 0. First of all, any conformally flat manifold. Second, CP2 with
the Fubini-Study metric. Third, the K3 complex surfaces with Yau's
Kahler-Einstein metrics [21]. Fourth, Poon [18] constructed such a metric
on CP2#CP2 and Floer [7] subsequently proved that such metrics exist on
#NCF2 for any N. Donaldson and Friedman [5] found more metrics of
this type on #^CP2 , as did LeBrun [16] and Joyce [10], [11]. Donaldson
and Friedman [5] also found F + Ξ 0 metrics on K3#NCP2 for N large.

Note here that not all manifolds can have metrics with W+ = 0. Indeed,
a manifold must have nonpositive signature to have such a metric, for the
signature τx of the intersection pairing on H2(M) is, according to Hirze-
bruch, one-third of the first Pontrjagin number of T*. Said characteristic
number is computed via a curvature integral:

( 1 3 )

where d\o\g is the metric's volume form and | |^ is the metric norm on

End(Λ2r).
(b) Moduli spaces. The condition W+ = 0 is equivariant under the ac-

tion of the diffeomorphism group of X. This condition is also conformally
invariant: If W+[g] = 0, then W+[eug] = 0 for any u € C°°(X). Thus,
when discussing the set of metrics on X with W+ = 0 , one should be con-
sidering their equivalence classes under the action of Diff(Jf) x C°°(X).

The space of such equivalence classes will be called the moduli space of
half conformally flat metrics on X and denoted by Jf{X).

Various abstract properties of J£{X) are discussed in [12]; the authors
point out that Jί(X) is a priori a real analytic variety with dimension at
a smooth point given by

(1.4) dim^f (JT) = -\{\$ex + 29τ^),

where ex is the Euler characteristic of X and τx is the signature.
It follows from (1.4) that

(1.5) dim^f (M#^CP2) = -\{\5eM + 29τ^) + 7N,

which evidently increases with N.
The structure of ^(MN) and its behavior as N —> oo is the subject of

a sequel which is now in preparation. Suffice it to say here (without proof)
that Theorem 1.1 constructs smooth points of ^£{MN) for laη*e N.
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(c) The Penrose correspondence. In describing Roger Penrose's work
on twistors, Atiyah, Hitchin, and Singer [1] point out that the condition
that W^ = 0 for a metric on a 4-dimensional manifold implies that a cer-
tain 2-sρhere bundle over said manifold has an integrable, almost complex
structure. Let X be the manifold and g the metric. The sphere bundle
is the unit sphere bundle,

(1.6) ZcΛjfl

The conformal class of a metric on X defines an almost complex structure
on Z which is integrable if and only if W^ = 0.

As a complex 3-fold, Z is rather special, for the fibers of the projection
to X are holomorphic CP1 's with normal bundle O ( l ) θ O ( l ) . Further-
more, multiplication by (-1) on A2+T*X induces an antiholomorphic
involution of Z .

Atiyah, Hitchin, and Singer [1] provide a converse to the preceding
assertion:

Theorem 12 [1]. Let Z be a complex 3-fold with the following prop-
erties:

(1) Z has a free, antiholomorphic involution, σ.
(2) Z has a σ-invariant foliation by CP1 's with normal bundle 0(1) θ

)
Then Z is the unit sphere bundle in A^T*X for X a smooth, oriented
4-dimensional manifold with a metric having W+ = Q.

Donaldson and Friedman [5] discuss complex properties of the 3-folds
which appear in Theorem 1.2. Hitchin [9] has shown that the only such 3-
folds which are Kahler have X = S 4 or CP2 with their canonical metrics.
Campana [3], building on work of Poon [19], has shown that for one of
these to be Moishezon, the corresponding X must be homeomorphic to
#JV£P 2 King and Kotschick [12] explain the relationship between the
space of complex deformations of Z and the moduli space *£(X).

Separately, Jim Carlson and Dieter Kotschik have pointed out to the
author that Theorem 1.1 has the corollary that every finitely presentable
group is the fundamental group of a compact complex 3-manifold.

2. Strategy

This section provides a section by section outline of the strategy and
steps in Theorem l.Γs proof.

(a) §3: Decreasing 2ΓJ.. To obtain a W+ == 0 metric on MN =

M#N£F2, start by fixing a metric gM on M.
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There is a method for decreasing 3F by connect summing with CP2 's.
Indeed, if W+ is large in some ball on M (as measured with gM), then
a suitable measure of W+ can be decreased by a predetermined fraction
if enough CP2 's are connect summed into said ball.

Here is why this connect sum strategy works: The Weyl curvature trans-
forms homogeneously under a conformal change of metric. Also, the op-
eration of connect sum is almost conformal. (It actually would be were
the summing manifolds conformally flat.)

Since ^JC 1 P2 = 0, connect summing into a very small ball on M has an
almost negligible effect on any conformally insensitive measure of the size
of W+ . The zΛnorm is, for example, conformally invariant. A somewhat
different norm, || \\m p (to be specified later), will actually be used.

It turns out that if the connect sum is carefully made, and only on a
very small ball B, where W*+ φ 0 initially, then

Here, δ0 > 0 is a universal constant. Equation (2.1) holds for the L2

norm too.
It cannot be stressed enough that (2.1) is valid in any sufficiently small

ball. The ability to make B arbitrarily small is the key to all that follows.
After connect summing, the metric on the ball B (ε = radius B) is

unchanged near the boundary of B. The metric is distorted in some
annulus with inner radius ε{. Then, an inner ball of radius εχ is replaced
by CP2. (See Figure 2.1 which pictures the connect sum of manifolds X
and Y (read M and CP2) with metrics gχ and gγ, respectively.)

Note. When Y = CP2 in Figure 2.1, with the Fubini-Study metric
gps, one has W+ = 0 on the region labeled "tunnel to Y" in Figure
2.1 (a), and also where the metric is labeled gγ in Figure 2.1(b).

In the problem at hand, the radius ε for the ball on M can be taken
as small as needed. The ratio εxjε can also be assumed small.

In any event, given (2.1) and the picture of Figure 2.1, the procedure
for decreasing W+ is clear: Fix some small ε and judiciously choose lots
of disjoint balls of radius ε. As pictured in Figure 2.1, connect sum with
Y = CP2 in each ball. The result is

(2.2) l|3Γ+

(after)IL,, < (l - δ)

where δ ~ < y i O O .
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(a) Looking from X

I

deformed
regions

(identified)

FIGURE 2.1

(b) Looking from Y

Now, repeat this procedure a large number, say n, times. But, be
careful to make ε = ε(/) smaller each time (require that Σ"={ e(/) be
very small), and avoid connect summing on any previously added GP2

(avoid the darkened tunnel region in Figure 2.1 (a)). If care if taken, then
n-repeats produces (2.2) with (1 - δ) replaced by (1 - δ)n .

After, say, n = 3 repeats, a ball in M can have the appearance depicted
in Figure 2.2 (next page), where each blackened spot is meant to represent
a tunnel to a different CP 2 .

It is tempting to consider infinitely many repeats (producing a factor
(1 - δ)°° = 0 on the right side of (2.2)), but this is not a reasonable
option. Rather, one must stop after some large number of (say, n - 1)
repeats.

It proves useful to then connect sum on an additional, /ith layer of
CP2 's according to a slightly different rule. This last step is called the
"Cokernel Step" for reasons that should be evident after reading §9.

Theorem 3.15 summarizes some of the properties of the metric on
Af#^CP2 which result from these n steps.

(b) The deformation theory: §§4-8. Let I be a compact, oriented 4-

manifold with a Riemannian metric g. If A € Sym2(T*X) has norm
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Θ

(2.3) h] = . h

Here, L is a second-order differential operator. Also,

\h\g < 1, then g + h is also a Riemannian metric.
The self-dual Weyl curvature of g+h has the following schematic form:

ghf2.
) and ^(Λ)

are tensors which are analytic in h (if \h\ < 1) and obey

(2.4) |/;(A)| < c |A|, |V^(A) | < c |V^A|, |/2(A)| < e,

where c is some universal constant. (Constants which are universal, i.e.,
metric and manifold independent, will be denoted by the letter c.)

If %^+lg + h] is meant to vanish, then (2.3) defines a nonlinear differ-
ential equation for h. It is a particular example of the following inhomo-
geneous equation:

(2.5) ^ A + 2

The relevant analytic issue is this: What properties of Q insure (2.5)'s
solvability for h (with \h\g < 1)?

The following line of thought leads to an answer of the preceding ques-
tion: If the solution, A , is to be small (\h\ < 1), then one should expect
Q to be small. Therefore, (2.5) should be amenable to techniques which
are essentially perturbative. (In practice, a contraction mapping theorem
will be proved.)
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A perturbative approach to (2.5) requires, at its start, the invertibility
of Lg . This operator forms part of an elliptic complex (see, e.g., [7] or
[12]) and its invertibility is insured on a finite codimension subspace of
the space of sections of the traceless, symmetric endomorphisms of Λ T*.
That is, the equation (for h0)

(2.6) τiLgh0 = n Q

is solvable when Π is a projection onto a subspace of the range of L .
Of course, for application to (2.5), the solution to (2.6) must have small

L°° norm. This is a nontrivial point in as much as a small iΛbound on
Q (which is conformally invariant) will not insure a small L°° bound
for h0. (In dimension 4, a second-order operator will not invert L2 into
L°° .) The preceding remark gives a reason for not taking the L -norm for

INI. , , in (2.1).
With the linear problem (2.6) understood, the nonlinear problem (2.5)

can be analyzed as a contraction mapping question.
For this purpose, one fixes a Banach space %?, in which the solution h

is to be found. Assume that

(2.7) (ΠL,Γ 1 Π Q € < r ,

and that

(2.8) T{h) = (ΠLgy
lΠ(Vg . (/j(h)Vgh) + /2(Λ) (Vhf2)

maps %? smoothly to itself.

Then, a small enough norm for (ΓLL )~* Π β in M? will be seen to
insure the existence of a (unique) small solution h of

(2.9) 0 = ΠLg- h + Π(V,C/; (h)Vgh) + f2{h){Vghf2 + Q).

Of course, (2.9) is not (2.5); they are only equivalent if h solves the
additional finite-dimensional system

(2.10) (1 - Π). (Lgh + V^/^/2). Vgh)+f2(h)(Vghf2 + β) = 0.

(c) §§4 and 5: Linear theory. The nonlinear equation in (2.9) will be
solved using the contraction mapping theorem. This puts all the hard work
into the analysis of the linear problem, (2.6). In fact, sufficient knowledge
of (2.6) will make (2.9) a formality. (Thus, four sections study essentially
the linear problem (§§4, 5, 6, and 7) while the nonlinear problem, (2.9), is
solved in the relatively short §8.)

With this understood, §4 is occupied with estimates for first-order op-
erators and the Laplacian. (§5 factors the linear operator Lg into two
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operators, one a first-order, elliptic operator, and the second an operator
with the Laplacian as its highest order piece.) These estimates in §4 are
not standard (to the author's knowledge). The subtlety is in solving (2.6)
for Q with an L°° bound on the solution hQ. One is further constrained
because Q, in practice, will be controlled only in a scale-invariant norm.
For example, W^ will be small only in the iΛnorm (which will not give
an L°° estimate for h0) and the norm

(2.11) p r | | = S u p | / rfvol ' 8 J ,
)P x£X[Jsβ(x) (dlSt^(X, •)) J

where Bp(x) is the radius p ball with center x and dist^(x, •) is the
distance function from x.

In any event, §4 is occupied with basic estimates for the Laplacian and
first-order operators using the norm in (2.11) and suitable generalizations.
Also, the projection Π is defined in §4 as a spectral projection for the
Laplacian.

§5 then takes §4's relatively abstract estimates and shows how to use
them to analyze the particular equation (2.6) which comes from the Ψ^ =
0 problem.

The novelty (to the author's knowledge) is a decomposition of (2.6) into
two coupled equations, one first-order with elliptic symbol and the other
second-order with Laplacian symbol. Propositions 5.1 and 5.7 summarize
§5.

By the way, §5's estimates depend intimately on properties of the metric
g on X, such as its injectivity radius and curvature. But, they depend
only on scale invariant properties of Q.

(d) §§6 and 7: Linear theory on connect sums. In the problem of inter-
est, (2.5) is an equation on M#NCr , where the metric g is pictured in
Figure 2.2 (and Figure 2.1), and Q is W+[g].

If the problem is considered in this light, then one is forced to consider
certain seemingly unpleasant issues which arise from the fact that the in-
jectivity radius of g cannot be controlled. That is, small Q requires small
injectivity radius. (This should be clear from Figure 2.2.)

This minute injectivity radius will cause headaches if one takes the clas-
sical approach to defining {JlLg]~x (in (2.7)) using the formal adjoint L*.

The classical choice for L " 1 ,

(2.12) lΓg

ι=Ug{Lgi:gT\

breaks the conformal invariance; as a result, standard estimates for this
operator involve said injectivity radius. One can imagine some sort of
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unpleasant feedback where the size of Q can be decreased with the addi-

tion of CP2 's, but as CP2 's get added, control is lost over L"1 and the

projection Π. That is, (ΠZ^)"1 Π Q might grow and/or the cokernel of

Π might increase in dimension with each additional CP2 . The first case
would jeopardize the solvability of (2.9) and the second would threaten
the solvability of (2.10).

Rather than tussel with (2.12), it proves simpler to construct (ΠLg)~ι

by employing a strategy of Donaldson for analyzing conformally invariant
operators on connect sums. (Donaldson employs the strategy to construct
anti-self-dual connections on bundles over connect sums, see [6].)

(This is an appropriate moment to remark that Lg has no unique in-
verse. In fact, its symbol has a 5-dimensional kernel; a manifestation of
the conformal and diffeomorphism invariance of the equation W^ = 0.)

Here (roughly) is Donaldson's strategy: Treat the equation
ΠL h = Π Q on a connect sum I # 7 as two equations, one on X
and one on Y. However, there are matching conditions which are im-
posed by the tube which joins them. That is, think of X # Y as in Figure
2.1. Schematically, the equation on X is

(2.13a) ΠχLiχhχ = nχ βχQ,

and the equation on Y is

(2.13b) ΠγL^hγ = nγ'βγQ.

Here, βχ + βγ = 1 on X # Y, with support of βχ on the complement of
the shaded region in Figure 2.1 (a). Then, βγ is defined likewise on 7 .
Meanwhile, gχ is a metric on X which agrees, up to a conformal factor,
with the metric g on X#Y in the complement of the shaded region.
Likewise, define gγ , a metric on Y.

The matching conditions for hχ and hγ come from the identifications
of the "deformed region" in Figures 2.1 (a) and 2.1(b).

If it turns out (and it will) that the metric gχ is suitably close to the
original metric on X (say, gχ), then (2.13a) will be a perturbation of
an equation on X, written with the fixed metric, gx. The same remark
holds on Y also for equation (2.13b).

For the applications under consideration, X = M, the given mani-

fold, and Y - UΛΓ S 2 Thus, Donaldson's strategy turns the equation

ΠL h = Π Q on M#NC¥2 into N -h 1 equations, one on M and one

on each of the added CP2 's. What is more, the metric gM will be seen
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to be suitably close to the original metric, gM, chosen on M. Likewise,

the metric £cp2 ends up being the Fubini-Study metric gΈS on CP .

These lasfpoints are important for they imply that the operators L^

and Lh can be analyzed completely in terms of LQ and L , re-

spectiveϊy. And, the analysis for the latter can be quoted verbatim from
Propositions 5.1 and 5.7, respectively.

Thus, Donaldson's strategy makes it possible to sidestep completely the
small injectivity radius pathologies that were predicted from §3's construc-
tions. The cost of this sidestep is borne by the estimates in §5.

Accept these last remarks and it should be no surprise that the projection

Π ^ in (2.13a) is defined completely by gM and is the same projection as

in (2.6). Meanwhile, on CP 2 , the operator Lg is actually surjective, so

the projection Π c p 2 in (2.13b) can be the identity operator.
These last points are absolutely crucial, for they imply that the num-

ber of constraints in (2.10) is independent of the number N of added
CP2 's. (Were CP2 replaced by K3 or Γ 4 as the stabilizing manifold,
then the number of constraints would grow with TV due to the failure of
the surjectivity of Lg on these manifolds.)

§6 shows how to write (2.6) on MN as (2.13a, b). The section ends
with Theorem 6.3 which states an existence theorem for (2.13a, b).

§7 is occupied with Theorem 6.3's proof. Given (2.13a, b) the proof,
though lengthy, is little more than a perturbation of the results from §5.

(e) §8: Nonlinear theory. §8 writes (2.9) on MN (from §3) in the
schematic form of (2.13). Think of Q in (2.13) as a sum of an A-
dependent term (the nonlinear part of (2.9)) and an A-independent term
(Q in (2.9)).

The linear theory for (2.13) from Theorem 6.3 was designed so that the
nonlinear version could be simply treated with the Contraction Mapping
Theorem. This is accomplished in §8 and Theorem 8.3 summarizes.

(f) §9: Killing constraints. If the reader will accept the plausibility of
the preceding comments, then the nonlinear problem (2.9) can be solved
without much trouble and one is left with (2.10). Remark that Donald-
son's method as outlined interprets the finite system of (2.10) in terms of
equations on M as written with the original metric gM .

These equations assert an orthogonality to the eigenvectors with small
eigenvalue of a Laplacian on M. (This Laplacian is the standard one,
V* V^ , on C°°(EndΛ2 T*M).) In fact, to a first approximation, these
equations assert that the metric g on MN has its W+ (suitably interpreted
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as a tensor on M) orthogonal to those eigenvectors of V* V with small

eigenvalue.
With this last remark understood, recall from §2a the remark that the

final step of adding CP2 's was done using a set of rules which differed
from those of the first n - 1 steps. These new rules are designed so that
the resulting metric on MN is a solution to (2.10).

That is, (2.10) will be considered to be a finite set of equations on the
space of parameters for the addition of CP2 's in that final nth layer, the
Cokernel Step.

(Note. The number of such equations is ultimately determined by gM

through a precise definition of the word "smalΓ as it appears in the phrase
"small eigenvalues of V* Vσ .")

Given the preceding remarks, the solvability of (2.10) can be analyzed
by considering the manner in which the addition of a CP2 affects the small
eigenvalue orthogonality.

In this regard, it is important to note that the addition of a CP2 is
local to the ball B in Figure 2.1 (a), where the CP2 is summed, for the
difference, ^ [ ^ # C P 2 ] - ^[gβ], is supported only in the deformed re-
gion in Figure 2.1 (a). This localization of the affect makes the calculation
straightforward. Here is the result: Adding additional CP2 's in that nth,
Cokernel Step can insure the vanishing of (2.10).

The details of all of this are given in §9 and Theorem 9.2 summarizes.
Theorem 1.1 is a corollary to Theorem 9.2.

One last point: The ultimate number, n, of steps of adding CP2 's
has a lower bound which is determined in §9 from these small eigenavlue
considerations. The number N of total CP2 's added can be estimated
from gM, but this estimate will not likely be optimal.

(g) Some comparisons. The preceding strategy for the construction of
metrics with W+ = 0 is modelled heavily on a strategy that the author
used in [20] to analyze the topology of moduli spaces of anti-self-dual
connections on principal bundles over a fixed 4-manifold. As here, the
strategy in [20] had three parts consisting of: (1) Decreasing self-dual
curvature by "connect summing" a standard anti-self-dual connection from
S4. (2) Construction of a contraction mapping theorem, decomposed as
in (2.9), (2.10) into infinite- and finite-dimensional parts. (3) Solving the
finite-dimensional constraints by making additional "connect sums."

Remark here that the author learned of the decomposition in (2.9),
(2.10) from a paper by Kuranishi [14] on deformations of complex struc-
tures.
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Finally, remark that Floer's construction of metrics on #ΛΓCP2 with
W* = 0 is similar, in spirit, to the approach here. However, FΊoer was not
faced with the problem of decreasing W+ , not was he forced to deal with
(2.10). For these reasons his implicit function theorem is much simpler
than the one that will be presented here.

Floer's theorem is reproved here as Theorem 9.3.

3. Decreasing W+

Let M be a smooth, oriented, compact 4-dimensional manifold. This
section will construct metrics on M#NCΨZ (N is large) which have small

ar;.
(a) Terminology. Let I b e a 4-dimensional oriented manifold with

Riemannian metric g. Let (v , w) denote the inner product on tensor
bundles {T\X®P ® TX®q) over X. Let \v\g be the norm, and V^ the
covariant derivative as defined with the Levi-Civita connection.

The Riemann curvature, R , of g is defined as follows: It is a section
of Sym2(Λ2Γ*) and evaluates on vector fields u,v,w,z according to
the rule

(3.1) Rg{uΛv 9wΛz) = (u9\yw9Vz]v-V{Wtl]v)g.

As X is assumed to be oriented, the bundle Λ2Γ* decomposes as indi-

cated in (1.1). With a chosen, oriented, orthonormal frame {e{ ,e29e3, eA}

for T*X at some point, A2

±T* have orthonormal frames

The decomposition in (1.1) is due to the fact that the Lie algebra so(4) is
not simple; it decomposes as so(3) Θ so(3).

Let FX denote the principle SO(4) bundle of oriented, orthonormal
frames in TX. Let π : FX -»• X denote the projection.

A point / e FX defines a coordinate system on a ball B with center
x = π(f). These are the Gaussian coordinates; a diffeomorphism φf of

a ball about the origin in E 4 onto B. The origin is mapped to x and the
geodesies through 0 € M4 (the straight lines) are mapped to the geodesies
through x. This φf is characterized by the preceding two qualities plus

(3 3 ) dφ
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The metric g pulls back by φf as

(3-4) φ*g = gE + mg,

where gE = £ * = 1 dxi ® dx( and

(3.5)

The constant Zg B, above, is

(3.6) ZgB = sup(\Rg\g + diam(B) \VgRg\g).
B

Here is one last and crucial remark about Gaussian coordinates:
V^ V φ*fg\0 both determines and is determined by R \x in that

a2 I d aI
\j \8xk'

= Kijkl'

x=0
where

(3.7) KiJkl = ±(Rg(ei, βj, e£, ek) + Λ^(^, ^., e,, efc)).

Note that (3.4)-(3.7) are all classical facts which may be found in most
texts on Riemannian geometry (e.g., [13]).

One last remark about Gaussian coordinates: A ball B c M is con-
tained in a Gaussian coordinate chart whenever its radius is bounded by
c~~λ r , where c > 1 is a universal constant and rg is the injectivity
radius of X. The derivation of the manifold from Euclidean space will
be measured in part by

(3.8) Z ^ r ; 2 + s u p ( | ^ | + |Vi?J 2 / 3).

(b) Conformal transformations. A metric g is conformally equivalent
to a metric g if g = eu-g for some u e C°°(X). The phrase "conformal
equivalence class of a metric g " is a mouthful, so we will use the term
"conformal metric."

The splitting in (1.1) only depends on the choice of a conformal metric,
and the assertion that W+ = 0 is an equation for a conformal metric. This
is because W+ transforms homogeneously under conformal transforma-
tion. Write eu = f and

(3.9) γ
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A diffeomorphism ψ of M will be said to be conformal for a metric g
is ψ*g = eu g for some u. Of prime interest is the following example.
Think of E 4 as the quaternions, H. Let λ > 0 be a fixed number and

define ψλ: R
4\{0} -> R4\{0} by

(3.10) ψ*kx=λ-x~\

It is an exercise to check that

(3.11)

where # £ = Σ 4 ^ dxi <g> rfx.. (Note: ^ is orientation preserving!)
(c) Connect sums. Let Xχ and X2 be oriented, 4-dimensional man-

ifolds with metrics gχ and g2, respectively. The connect sum Xχ#X2

with a conformal metric can be constructed with the choice of points
/j e FX{, ^ G FX2 and positive £ t , ε2 , and A obeying

(3.12) λ>ειε2 but A < m i n ^ Z ^ 1 7 2 , ε 2 Z ^ 1 / 2 ) ,

with Zg defined in (3.8).

Use /, to construct the Gaussian coordinate chart on a ball Bχ c Xλ

centered at π(fχ). The chart φx for Bχ identifies 5, with a ball centered

at 0 G E 4 . Let (xχ, , x4) be the Euclidean coordinates on this R4 .

Use f2 to construct the Gaussian chart φ2 for B2, thus identifying B2

with a ball about 0 in a second copy of E 4 with coordinates (y{, , yA).
Definition 3.1. The connect sum X{#X2 is defined as a smooth man-

ifold as follows: It is the union of open sets Uχ, U2 :

U2^X2\φ2({yeR*:\y\<ε2}).

These sets overlap with

Uλ n £/, ~ < ] . ' 2

1

 ! ι '
[^({yeR4:^-1^:^})^.

The preceding identifications are

[/, n ί/jl̂ - = φλ © ̂  o ̂ J (C/j n C/2|̂  )>
1 2

where ^ : R4\{0} -* M4\{0} is given in (3.10).
Equation (3.12) insures that Xi#X2 is a smooth, oriented manifold.
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The construction of the conformal metric on Xχ#X2 requires the spec-
ification (once and for all time) of a bump function β e C°°([0, oo))
which obeys

<3 1 3 ) l̂io,5/6] = 0 ™* β\μ/i>oo) = 1.

With positive p chosen, introduce β e C°°(R4) as

(3.14) βp(χ) = β(\x\/p).

In the specification below of the conformal metric, it is implicit that the
pullback by φ{ of gχ has the form of (3.4), and likewise for φ*2g2.

A conformal class of a metric g is denoted below by [g].
Definition 3.2. The conformal metric [g] on XX#X2 is defined as fol-

lows: On Ux\(Uxf)U2), set g = gχ. On U2\(UXΓ)U2), set g = g2. Define
[g] o n Uχ Π U2 by φ*u2[g] = [ £ 1 2 ] , where

and

With reference to the definition, the astute reader will have observed

that an honest metric on XX#X2 has not been defined, since the indicated

gχ is merely conformal to the pull-back by φχ o ψλ o φ~x of the indicated

Si-
(d) 2ΓJ. for the conformal metric. Of sole interest here will be the case

where the metric g2 on X2 has W+ = 0. It will also be assumed that the

constant Zg of (3.8) is equal to 1. (When X2 = CP2 with the Fubini-

Study metric, the curvature is covariantly constant.)
With W+[g2] = 0, it is clear that W±[g] has support on the open set

U{, and it differs from ^+[g{] only on U{Γ\U2. Thus, it is natural to
compare W+[g] with W+\gχ\.

The comparison requires the following algebraic fact: Identify Euclidean
E 4 with the quaternions H (use the inner product (α,&) = Real(α&+)).
Then conjugation on H induces an orientation reversing, isometric invo-
lution of R4 and thus an isometry I: Λ^Γ*R4 -> Λ^Γ^R4. With this
understood, use I to denote the induced isometry

(3.15) I: S y m 2 ( Λ ^ r V ) -> Sym2(Λ^Γ"R4).

Proposition 3.3 Let Xχ and X2 be oriented, ^-dimensional Rieman-
nian manifolds with metrics gx and g2, respectively. Suppose W+[g2] = 0.
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Choose / 1 2 G FX{ 2 and positive numbers ε{, ε2, λ as constrained in
(3.12). Make the connect sum Xχ#X2 with conformal metric [g] as de-
scribed in Definitions 3.1 and 3.2. Let g{ be as given in Definition 3.2.

ιιIn the annulus λε2

ι > |JC| > εχ,

~

em\gi < c • ίβ (I - β2ει) Z, + \x\ • z\β + i ^ Z , + λ2zf
I \χ\

where Rem is estimated as follows:

\gi

Here, Zx~Zg as defined in (3.8) and c is a universal constant.

Proof of Proposition 3.3. Of course, these formulas are obtained from
Definition 3.2 by the standard formulas for calculating the curvature from
a metric. With this said, the proof will be left to the reader except to
remark that the estimation of the Rem can be accomplished if one takes
the following schematicized approach: Suppose that a metric g is given
as

(3.16) g = gE + Uι+U2

with |Mj 2\g small. The curvature of g can be estimated from that of

#j = gE + uχ and g2 = gE + u2 if one observes that the Levi-Civita

connection (indicated by subscripted Γ) for g{, g2, and g is

(3.17) Γ ^ l + α ^ . Γ ^ + O + α , ) . ^ ,

where \at\ < c [u^ and |V^| < c |Vw.| as long as \ut\g < \ . (Under

this same assumption, |Γ^ | < c |Vw.|.) q.e.d.

The application of this schematic approach obviously requires part of
the following lemma.

Lemma 3.4. Let Xχ, X2 and g{, g2 be as in Definitions 3.1 and 3.2.

Let ux = βtmx and u2 = \x\4ψχ(βε -m2)/λ2. Then

(1) \uι\g

l

E<Zr\x\2, \Vuχ\gE<izχ\x\.

( 2 ) \ u 2 \ g £ <cZ2 λ 2 / \ x \ 2 , \ V u 2 \ g £ <cZr A 2 / | J C | 3 , where Zi = Z ^ .
The proof of this lemma is left as an exercise.
(e) Local estimates for W+ . The formulas in Proposition 3.3 are ulti-

mately responsible for the assertion that connect summing with CF2 can
decrease W+.
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There are two useful measures of W^ . The first is the L2-norm over
the ball B cXχ of radius λ/ε2 and center π{fχ):

(3.18)

(Keep in mind that \^.[gx]\^ has support in Uχ c Xχ even though g is
a conformal metric on Xχ#X2.)

The second measure of W+ is actually a function of x € Xχ:

(3.19) e j £ ; * ] Ξ / ί/vol
^ *' (distS](

Here, dist^ (x, •) is the function on Xχ which assigns to each y € Xχ

the distance, dist (x9 y), from x to y as measured by the metric gχ.
(Note: In (3.19), the volume form and norm are also defined with the
metric gχ .)

With (3.18) and (3.19) understood, define e[gχ] and e[gχ x] by the
same equations but with g{ replacing gχ.

Proposition 3.5 below estimates e[g] and e^[g\x]. Before reading
said proposition, please recall from Definition 3.1 that the connect sum
Xχ#X2 is defined with the choice of positive numbers εχ, ε2, λ together
with points fx € FXχ and f2 e FX2. With xχ = π(fx) € Xχ, Proposition
3.5 will require

(3.20) ^l^trt^X).

Proposition 3.5. There exist constants δ > 0 and c0 > 100 with the
following significance: Let Xχ be an oriented, compact 4-manifold with
metric gχ. Let X2 = CP2 with the Fubini-Study metric. Pick xχ e X{

where (3.20) holds. There is a constant Z o > 1 so that when

(a) Zχ>Z0 (uχ + 2) is first chosen;
(b) given Z{, small ε > 0 is chosen;

(c) am/, finally, εx, ε 2 , anrf A are .seί /ί? Z?e ε{ = c ^ 1 ^ Z^ι)ι/2 - ε,

there is a choice of f2 € FCP2 anrf /j € FXχ\χ for which Definition

on Xχ#CP obeys

e[g]<(l-δ)e[gι]

3.2 fs conformal metric [g] on Xχ#CP obeys

and, for all x e Xχ,
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(Remark that the conformal metric [g] on Xχ#X2 is unchanged when
fχ and f2 are changed simultaneously by an SO(4) rotation.)

With respect to Figure 2.1 (a), the deformed region has outer radius

λ/ε2 = ε and inner radius ε{ = CQ1(I/X Zj~ ι) 1 / 2 ε.

(f) Proof of Proposition 3 5: The zΛnorm The value of e[gχ] can be
estimated by the fundamental theorem of calculus to be

n ? n e\0^ π l / u2 <cv -zy2-ε5

where the substitution λ/ε2 = ε has been made.
As for e[g], use Proposition 3.3's expression for ^+[g{] to compute

the latter's | |^ -norm. Then, integrate the square of this norm (using
dvolgx) over B. The result is
(3.22)

dvoi^ Wx[gx}\\ = y . « V + q . R 2 -ε4. (ar ^jio, lar

+ c2- R ε + Error.

2
Here, /? = λ/ε has been introduced. Also, cχ, c2 > 0 are universal
constants. The term above marked Error involves Rem from Proposition
3.3. An estimation of the size of this term is a straightforward calculation:
As long as R in (3.22) is fixed, the term "Error" in (3.22) is bounded by

(3.23) Error < c3 R4 ε4

when ε is small and c3 is another universal constant.

Of course, (3.22) and (3.23) measure the L2-norm of W+[g{] using the
volume and inner product of the metric g{. However, Lemma 3.4 insures
that the replacement of gχ by g{ can be accommodated by changing the
universal constant c3 in (3.23). Thus, (3.21)-(3.23) imply that

/^>^y|\ *Ίft J ^ I -i . - * v / •* / rxs/ r f i TΓ (V// r n i l \ . •**

Given (3.24), the proof of the first assertion of Proposition 3.5 will
follow from

Lemma 3 6. There exists a universal c0 > 0 with the following signifi-

cance: Let A be a 3 x 3 , symmetric and traceless matrix. Let vλ = \A\ =

(tr(A2))1 / 2. Let g2 denote the Fubini-Study metric on CF 2 . Pick y e CF2

and there exists an isometry J: Λ^ T* CF2 -> R3 with the property that

(3.25)
i \y / / —
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Before proving Lemma 3.6, consider how it implies the first assertion
of Proposition 3.5: The lemma's isometry can be realized by choosing
f2 G FCF2. With this understood, use the lemma with A = I 2^[£,] | 0 .
Put the result in (3.24) to find

e[g{]

With (3.26) understood, one should make R2 = vλ c, co/(2 c 4 ), to
obtain Proposition 3.5's first assertion.

Proof of Lemma 3.6. The Fubini-Study metric on CP2 has covari-
antly constant W_ . Furthermore, there exists an isometry Jo between

Λ2_T*CF2\y and E 3 so that

(-2 0 0>

(3.27) J0^-[gFS]= 0 1 0

V 0 0 1
From this fact, one gets (3.25) with some simple linear algebra. This last
step is omitted, q.e.d.

(Remark that the lemma is also true with all signs reversed on the right
side of (3.27).)

(g) Proof of Proposition 3 5's e^ assertion. The proof of the e% asser-
tion of Proposition 3.5 is similar in most respects to the proof of the L2

assertion. For the purpose of the proof, it is convenient to introduce the
function / on X{ whose value at x is

1
(3.28) f{x) = f

JB

Here, B c Xλ is the ball of radius λ/ε2 = ε about xλ. This function
obeys the following uniform estimate:

, 3 . 2 9 ) c ; - . < < £ ! l

With f(x) understood, the fundamental theorem of calculus can be

used to estimate e^[g{ x]:

(3.30) \e.[gλ ;x]-vr f(x)\ < c z\β * ε. f(x).

As for eφ[g\x], if λ = R . ε2 with R = c^ιv\12, c0 > 100, then
the second term in the expression for W+[gλ] (in Proposition 3.3) is ap-
proximately 1/100th the size of the first. Therefore, a Taylor's expansion
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bounds the absolute value of the first two terms by

+ v ί
(3.31)

Now, integrate the preceding against the function (dist^ (ΛΓ, •))" t o

bound

(3.32) I "ι

+ / rfvol (dist (x, •))"

Here, (3.25) has been exploited and (3.29) as well.
The last term in (3.32) can be readily estimated using Proposition 3.3

and (3.29). The result is: For ε small (and R fixed),

(3.33) ejg;x]<e.[gι;x]

a referral to (3.30) having been made. The last term in (3.33) (the one
proportional to 1/ZO) comes from the first term in the expression for
|R*mL in Proposition 3.3.

The second assertion of Proposition 3.5 follows directly from (3.33).
(h) Global decrease of W+. Proposition 3.5 established that connect

summing with CF2 can decrease W^ . The decrease is nonnegligible near
the connect sum point, but its affect globally is insignificant for small ε.
To affect W^_ globally, one must connect sum at many points at once.

When connect summing at many points, the following convention will
be in effect: At each connect sum point, Definitions 3.1 and 3.2 required
parameters λ, εχ, and ε2 . The values of these parameters will vary from
point to point and this variation will not be explicitly noted (usually). So
be forewarned.

The connected sum of many CF2 's into a given Xχ starts with a choice
of N disjoint points in Xχ . Let Ωj c Xχ denote the chosen set, and
introduce

(3.34) d= inf (distg(x9y)).
x,y€Ω{ *J

If one CP2 is connect summed at each point in Ω{ with parameters
βj, ε29 and λ always obeying λ/ε2 < d, there will not be interference
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between the different connect sums. This requirement simplifies the ac-
counting of the size of 2ΓJ..

Speaking of W^ , there are two convenient measures of its size. In fact,

let Q be any section of End(A2

+T*M). Let U c Xχ be an open set.

Then, the ίΛnorm of Q over U is

(3.35)

It turns out that there is a better way to measure Q on U. For this
jrpose, one must choose p > 0. For eac

denote the radius p ball with center x. Set

(3.36) ||(2IL , . π = sup

purpose, one must choose p > 0. For each x € M, let B (x) c M

The convention will be that | | β | | 2 = \\Q\\2 χ and likewise for | |Q| |#

When iV CP2 's are connect summed to Xχ at disjoint points with
λ/ε2 < d, there results a conformal metric [g] on Λ f ^ C P 2 . The support
for W+[g\ is restricted to

(3.37) * ί = *,

Thus, the choice of a metric gj on X[ in g 's conformal class identifies
S^[g] as a section over Xχ of End(Λ2 Γ * ^ ) . As such, its size can be
measured by (3.35) and (3.36).

Definition 3.2 provides a useful such gχ. This metric restricts to
X\\^χεaBe ( χ ) a s g\ and its restriction to each Bλ/ε (x) is documented
in Definition 3.2.

With this understood, one has
Proposition 3.7. There exists a δ > 0 with the following significance:

Let X{ be a compact, oriented 4-manifold with metric g{. There is a
constant ZQ such that if one chooses,

(a) r > 0 ,
(b) an open U C X{, and
(c) Z{>Z0,

then, given r , U9ZX, and ε > 0, a finite set Ω c ί / can be found so that
the balls {Bε(x)}x€Ω are disjoint and lie in U. Furthermore, with εχ,ε2>

and λ determined for each x e Ω as in Proposition 3.5 (using Z{ and
ε), frames {f{ e FXx\x}x€Q and f2 e FCF2 can be found so that connect
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summing CP2 to X{ at all x e Ω (according to Definitions 3.1 and 3.2)
produces a conformal metric [g] on said multiple connect sum which obeys

(2) H^[^!]tU^ ;^< (i -^) - llV ί^liU,^;^ yb̂ /̂/ /̂  > r.
Proof of Proposition 3.7. It is first necessary to establish the following

geometric fact:
Lemma 3.8. There exist integers n, m with the following significance:

Let X be a compact, ^-dimensional Riemannian manifold. For all suffi-
ciently small ε> 0, there exists a finite set Ω c X of disjoint points such
that:

(!) UxGQBnJx) covers X.
(2) The balls {Bε(x)}xeςϊ are mutually disjoint.
(3) Πjcen' Bn.ε{x) = 0 if Ω' c Ω is a subset of m or more disjoint

points.
Proof of Lemma 3.8. Isometrically embed X in R10, then cover a

tubular neighborhood of I in R10 using balls centered on a regular, (hy-
per)cubic lattice of side length 4 ε. These Euclidean balls will not intersect
X in balls, nor will their centers lie in X. But for ε small, this defect
can be readily alleviated by small deformations, q.e.d.

Given now the preceding lemma, here is how to prove Proposition 3.7:
First, pick μ > 0 small (to be determined shortly). Then, choose ε and
then Ωc Xχ according to Lemma 3.8.

When ε is sufficiently small, one can require the following: If, for given
J C G Ω ,

(3.38)

then

(3.39)

This condition insures that estimates in Bn,ε(x) for W+[gx]\g can be
inferred from knowledge of ^ [ ^ J i x .

With μ , ε , and Ω chosen (subject to (3.38) and (3.39)), introduce
Ω ' c Ω as the subset of points for which Bε(x) c U. Then, set

(3.40) U' = \J Bε(x) and if' = U\U'.
xeίΐ

Now, store these definitions and use Definitions 3.1 and 3.2 and Propo-
sition 3.5 to connect sum a CP2 into each Bε{x) for x e Ω'.
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With the connect summing complete, consider the proof of the second
assertion of Proposition 3.7. The proof of the first goes in much the same
way and is left to the reader.

To obtain the proposition's second assertion, it proves convenient to
introduce one additional piece of notation: When V c X{ is an open
set and Q is a section over V of E n d Λ ^ Γ * ^ , introduce the function
eφ[V;Q)( ) on Xχ by

(3.41) em[V; Q](y) = ί dvol I C I *
JB(y)nv 8i (dist^ (>%•))

where B(y) is the radius p ball with center y .
Introduce a function a: Xχ —> [0, 1] by

(3.42) e.[U"; W+

Thus

(3.43) e.llf ; ^ ι t p ; ϋ

A lower bound for α( ) is needed, and here is how to get one: When
(3.38) is obeyed by x e Ω, then

(3.44) eφ[Bn.t(x) W*+[gx]]{.) < c. e.[Bε(x) S T ^ Π O ) ,

where c is a universal constant. This last equation implies that

(3.45) ejlf W+[gι]]( ) < c. em[l/ ^+[^]](0 + Z . μ + y[l/ e] - Z r

Here, Z is a constant which depends on Λ^ and ̂  (not x or U), while

F is a constant which depends on U and ε: 7 is proportional to the

volume of that subset of U which is not contained in a ball Bn,ε{x) with

x e Ω'. In particular,

(3.46)

These last remarks (and (3.42), (3.43)) insure that

(3.47) l ^ ί i + ^ . α + z ί i M + y j . i i a ^ t ^ π i i " 1 ^ ^

Equation (3.7) provides a uniform lower bound for a provided

(3.48) μ + Y < i ^ 2 ) .o

a condition which will be assumed from now on. Thus,

(3.49) Q( ) > ^ y > 0.
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With α( ) now understood, notice that eφ[U" ;W+[gx]]{-) is identical

to eJU";W+[gl]](•), but

(3.50) ejlf, W+[gχ]] < (1 - δ)em[UΊ ^[gx]]9

which is courtesy of Proposition 3.5. Put these last two facts together to
find that

which, given a's lower bound, is the required estimate.

(i) Properties of Xι#NCP2. Proposition 3.7 constructs a conformal

metric [g] on -Y,#^CP2 which has some useful properties. These are

described in a definition and a proposition.
In both the definition and the proposition, Xχ is a compact, oriented

4-manifold with metric gλ. Also, Z is a given constant and U C Xχ is
an open set.

When small ε > 0 has been fixed, it will be assumed that a finite set
Ω c U has been specified whose points are separated by a distance 2 ε
or more. It will also be assumed that numbers λ> ε,, ε2 > 0 have been
assigned to each x e Ω subject to the constraints

(a) λ<Zε\

(3.52) (b) A/ε2 = ε,

(c) ε{/ε2<(l+Z)-\

Let iV denote the number of points in Ω, and use Xχ#NCS? to denote
the manifold constructed in Definitions 3.1 and 3.2 by connect summing
CF2 to Xχ at points in Ω using the parameters A, εχ, and ε2. Use [g]
for the resulting conformal metric.

Here is the promised definition:
Definition 3.9. Define X1 by (3.37).

(1) Use θ: X1 —• X#NCg? to denote the canonical identification as an
open subset.

(2) Define a metric g on X1 by setting g = gx on Xx\\Jχ€CιBε(x) and
on Bε(x)\Bε (x), and write g = gχ as given in Definition 3.2.

(3) Define a metric g[ on Xχ as follows: Set g[ = g on X[. When
x € Ω, define g[ on the gχ-radius εχ ball about x to be

This notation refers back to Definition 3.2.
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For the sake of an explanation, upon restriction to Xχ \ \JxeQ Be /12g(*) >

the conformal class of g[ is the same as that of Definition 3.2's confor-

mal metric [g] on X ^ C P 2 . However, g[ is a metric on Xλ, not on

^ι^N£K2 Trust for now that this g[ has a role to play.

The role of g[ is predicated on the fact that it is, for ε small, an
insignificant perturbation of the original g{. Here is the precise statement:

Proposition 3.10. Let X{ with its metric gχ be as previously described.

For ε > 0 small, construct the metric g[ on Xχ as described in Definition

3.9. Introduce m = g[- g{ and then

(1) sup|m| < ε ,

(3) sup ' ' 5 l g> - - 1 / 2f ιvg,ml«,

*exJx (dist ( \

Proof of Proposition 3.10. The metrics gx and g[ differ only on

• O n o n e s u c h Bdx)'

(3.54) m = (1 - /J t i)m#i +

Remember that the coordinate system here is that of (3.3)-(3.5). Thus,

(3.55) \m\ < Z ε2

{+c-λ2/ε2

λ <c>Z-ε2.

The last inequality in (3.55) used λ/β, = λ/ε2 -ε2/ε{ and (3.52). Equation
(3.55) proves the proposition's first assertion.

To prove the second assertion, note first that, on B (x),

(3.56) |VmL <
λ2

Therefore, if y ^ J?β(jc), then this x eΩ contributes at most

(3.57) c (distg| (y, x ) ) " 2 {Z t V + A4/βJ}

to the integral in (2) of Proposition 3.10. If y e B£(x), then x contributes

(3.58) c (Z2ε4 + A4'/eJ) < c z f c 2

to said integral.
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The integral in (2) of Proposition 3.10 can be bounded by the sum of
(3.57) and (3.58) over all x eΩ. The resulting bound is

(3.59) c z\ . ε21 1 + ε4 . £ (dist^ (y,

Here, Ω' C Ω is the subset of those x for which y £ Be(x). (Equation
(3.52) had a hand in the derivation of (3.59).) Finally, (3.59) can be
bounded by c Z e2 , where Z depends on the metric ^ .

This last assertion follows after observing that the number of x € Ω
whose distance from y is between d £ and (rf + 1) ε must be bounded
by Z -d3. Since the size of d is bounded by Z - ε~\ one gets

(3.60) ε4.^dist^(y,x)"2<Z.

x€Ω'

The bound of (3.59) by c-Z ε2 finishes the argument for assertion (2)
of Proposition 3.10). The proof of assertion (3) is very similar and is left
to the reader.

(j) Iteration. Take a compact, oriented 4-manifold M with metric

gM and apply Proposition 3.7 with Xχ = M and gx = gM . The result is

-Λ/^tυCP2 with a conformal metric whose W+ is smaller than that of gM.

Now, repeat Proposition 3.7 with Xχ = M#Nίi)CF2 to get a manifold and

a conformal metric with even smaller 3fj_. One can repeat Proposition

3.7 again and again to obtain a manifold diffeomorphic to M#NCr with
tiny W+.

The purpose of this subsection is to precisely specify the iteration just
outlined. We begin with

Step 0. Select M with its metric gM .
Also, fix ε0 > 0 and small.
Suppose now that Step n > 0 has been completed with the following

results:
Result 1. An integer N{n) with a conformal metric [g{n)] on Λ/^^CP 2 .

itesu/; 2. An open subset M(n) C M together with an embedding

0 ( n ) : M{n) -> Λ/#Λr(n)CP2. Identify Λ/(Λ) with its image and require that

W^\g{n)\ have support on Λ/(n).

Result 3. A metric £ ^ } on Λ/ which is in the same conformal class

on M{n) as [g{n)]. Require that m = g^] - gM obeys (3.53) with ε = εQ

and gx=gM.
Given all of the above from Step n , the next step is
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Step n + 1. Apply Proposition 3.7 using Xχ = M, U = M{n), gχ =

g$ , some large Z , , and ε = ε{n) < εn

Q .
The next proposition lists the salient results of Step n + 1.
Proposition 3.11. There exists a δ > 0 with the following significance:

let M be a compact, oriented 4-dimensional manifold. Let gM be a metric
on M. Fix r > 0. Suppose εQ > 0 is small, and assume that Step n>0
of the iteration has been applied with results 1, 2, 3. If Zχ — Z{{n) is
chosen, and then ε = ε(n) > 0 is chosen sufficiently small in Step n + 1,
there will result an integer N{n+ι) > N{n), a conformal metric [g{n+l)]
on Λ/#^(W+1)CP2, an open set M{n+1) c M with embedding θ{n+ι) into

Λ/^V+oCP2, and a metric g{^λ) on M in [g{n+ι)] on M{n+ι). These
obey

(1) W+[g{n+l)] is supported on M{n+ι).

(2) m = g{^ι) - gM obeys (3.53) with ε = ε0.

(3) p>r, define || | l^^ ; ί /
 a s i n (3.36) using gM. Then

< ( i - . /<">•

(4) For L -norms, one has

•'M

f (n) 1

<(\-δ) .dvoi^,|y;[^']|,,.,.
JM

11 ay

Note, in particular, that this proposition affirms Results 1, 2, and 3 for
Step n + 1.

Here is a second remark: Assertion (2) of Proposition 3.11 measures

W+[g{n+ι)] and ^[g{n)] using the fixed metric gM on M. It can do

this because connect summing into balls in M(/l) for the metric gff can

be interpreted as connect summing into Mtt^CF2 for a metric in the

conformal class [g^].

Proof of Proposition 3.11. Take M{n+ι) to be X[ in (3.37). Then,

take θ{n+ι) to be θ from Definition 3.9 and take g{^+{) to be g[ from

the same definition.
Assertion (1) of the proposition comes from Definition 3.2 and assertion

(4) comes from Proposition 3.7. Assertion (3) also follows from Proposi-
tion 3.7 given

Lemma 3.12 Let X be a compact Riemannian manifold. Let g and
g + m be metrics on X with \m\ <\. Let δ = s u p ^ ^ \m\ . Then, for
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any X J E I ,

distg(x,y)

( 1 + * )

Proof of Lemma 3.12. Measure the (g + w)-length of the shortest #-
geodesic from x to y , and vice-versa, q.e.d.

Assertion (2) of Proposition 3.11 would follow automatically from Pro-
position 3.10 were the norms and covariant derivatives defined (in said
proposition) with the metric g$ instead of gM. But such an inconve-
nience pales to insignificance using

Lemma 3,13. Let X be a smooth manifold with metrics g and g + m.
Suppose \m\ < \ . Let ω be a tensor (section of <8>pTM <8>q T*M). Then

(1 + c | m L Γ V L < |ω|_+ m < (1 + c\m\ )\ω\\g)\ω\g < \ω\g+m < (1 + c\m\g)\ω\g

and
\Vg+mω-Vgω\g<c-\Vgm\ \ω\g.

Proof of Lemma 3.13. This is an exercise, q.e.d.
Given this lemma, Proposition 3.1 Γs proof becomes an exercise.
(k) The Cokernel Step. After some number, n - 1, of iteration steps,

one can stop this iteration procedure. But, it proves useful (see §9) to
stifle this urge and complete one additional iteration, which will be called
the Cokernel Step. This Cokernel Step will always be the final round of
attaching CP2 's.

This final round differs from the previous iteration steps in the man-
ner in which the specific parameters (i.e., Ω w , {/ e FM\x}χeΩ , and
{(ει, ε2, λ)\χ}χeΩJ are chosen.

The precise details of these choices are given in §9, but a summary of
some of the features is given here for use in the sections prior to §9.

First, a positive ε(n) = ε < ε^ is chosen; its upper bound is determined
by the particulars of the metric g{^~X). Then, a discrete set Ωn c M{n~λ)

is chosen whose points are separated by distance 2ε or more. The details
of Ωn 's specification are given in §9. Also, a frame must be chosen at
each x e Ωn , and the details here are also relegated to §9.

Numbers λ,ε, and ε2 must also be assigned to each x e ΩΛ . Their
specification requires a constant μ0 e (0, 1) (whose value is a priori de-
termined by gM), and a constant Z > 2 which is determined by gj£~ι)

Given μ0 and Z , then εy, ε2, and λ are defined at x e Ω π by

(3.61) λ = μx-ε2, ε. = μx - Z " 1 . e, ε2=μx*ε.
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Here, 0 < μχ < 4μ0 . (Thus, λ/ε2 = ε is constant, as in all previous steps.)
The following proposition describes the Cokernel Step's result.
Proposition 3 14. There is a constant c > 0 with the following signif-

icance: Let M be a compact, oriented 4-manifold with metric gM. Fix
μ0 r > 0 and ε0 > 0 but small. Suppose that Step (n - 1) > 0 of the
iteration has been performed with Results 1, 2, 3. With Z fixed, when
ε = ε(n) < ε^+λ) is small enough, then the Cokernel Step can be per-
formed. This step results in an integer, JV(/z) > N^'^ , a conformed metric
[g{n)] on M#N{n)CF2, an open subset M{n) c M with embedding θ{n) into
Λ^ΛΓWCP 2 , and a metric g^ on M in [g{n)] on M{n). The preceding
data obeys

(1) 3T+[g{n)] is supported in θ{n)(M{n)).

(2) m = gff - gM obeys (3.54) with ε replacing ε0.
(3) For p>rt define \\-\\^ υ as in (3.36) using the metric gM. Then

(4) The l}-inequality

Proof of Proposition 3.14. With X{=M with the metric g{^~l), take

M{n) to be X[ in (3.37). Use Definition 3.9 to take θ{n) = θ and g{$ =

Assertion (1) of the proposition is now automatic from Definition 3.2
and assertion (2) follows using Proposition 3.10 and Lemmas 3.12 and
3.13. Assertions (3) and (4) are left as exercises for the reader using Propo-
sition 3.3.

(1) Summary. The following theorem summarizes the effects of Propo-
sitions 3.11 and 3.14. In the theorem, c is a universal constant.

Theorem 3.15. Let M be a compact, oriented 4-manifold with metric
gM. Given r , μ o , μ 1 > 0 and small ε0, iterate Proposition 3.11 some
large number of times using Zy large and ε small in each step. Apply
Proposition 3.14 's cokernel step using large Z and small ε and given μ 0 .
The result is

(a) an integer N > 0

(b) an open set M1 CM and an embedding θ: Mf -> M#NC^

(c) a conformal metric [g] on Λ f ^ C P 2 and a metric gM on M'.
This data obeys the following costraints:
(1) The support of WJ\g\ is in M'.
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(2) The restriction of [g] to M1 is [gM].
(3) m = g'M-gM obeys (1)-(3) of Proposition 3.10 with gχ = gM and

= εQ

( 5 ) For any p>r,

where the norm I H L ^ y is defined in (3.36) using the metric gM.
Remark. In each of Proposition 3.1 l's iteration steps, there is the free-

dom to specify the constant Zχ (= Zχ (/) in the /th step) to be large, and
to then specify the constant e (= ε(l) in the /th step) to be small. This
freedom will subsequently be exploited to add to Theorem 3.15's list of
[g] 's properties.

The summary of the preceding subsections continues with the following
alternate description of the conformal metric [g] on MN = M # N C P 2 .

One can give [g] by first specifying an open cover {ί/J^o of MN and
honest metrics g. on Ui which obey [gt\ = [g]\v These g. must obey

(3.62) gi^Ψij'gj onU.nϋj

for a positive function φ.. on Ui Π [/..

To specify {t/ , £ f} , remember that the attachment of each CP2 re-

quires the specification of positive numbers ε{, ε2, and λ. These num-

bers will be different for each CP2 (although ε = λ/ε2 is the same for

all CP2 's which are attached in the same stage of iteration in Proposition

3.11). To avoid clutter, the dependence of ε{, ε2, and λ on the particular

CP2 will not be indicated explicitly.
The attachment of a CP2 requires the choice of a base point, y0 e CP 2 .

Each open set Ui>0 corresponds to an attached CP2 (these are pre-
sumed to be labeled by {1, 2, , N}). With this understood, Ui with
its metric gt is isometric to the complement in CP2 (using the Fubini-
Study metric) of the ball of radius \6λ/εχ and center y0.

Meanwhile, Uo with its metric g0 is isometric to an open subset of M,
with the metric gM of Theorem 3.15. This open subset (also called Uo)
is the complement of N disjoint balls about N points, {jCj, - , xN} ,
in M. The ball about the zth point has g^-radius εχβ2.

Remark. Taking the ball about the zth point to have radius εχ still
gives a disjoint set of balls in M.

We will digress momentarily to discuss the set of points {xλ, , xN):
The set is given as the union of disjoint subsets {Ω/}/Λ

=l, with each Ω,
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containing some Nι points. The subset Ω, comes from the attachment

of the CP2 's of the /th iteration step as described in §3j and Proposition

3.11.

As remarked, the value of ε = ε(l) = λ/ε2 for all points in Ω ; . (Note:

ε(l) <ε(l)1.) Also, e(l) > ε{ for all points in Ω,, and the balls of radius

ε(l) about the points in Ω ; are disjoint.

End of the digression to consider the metric gM: For this purpose, fix

an orthonormal frame, f0 , for ΓCP2 \y . This gives a Gaussian coordinate

system, <p0, a neighborhood of y0 in CP2 which sends 0 to y0. Use gFS

to denote CP2 's Fubini-Study metric and

(3.63) ^o%s = ^ + m F S '

where raFS obeys (3.5).
Meanwhile, Definition 3.9 implies that the radius εχ ball about x. has

a coordinate system φi, which sends 0 to x. and which obeys

\x\4

(3.64) φ]g'M = gE + βει/256

]-^- Ψlm^,

where ψλ is given by (3.10), β by (3.14), and |JC| is the function on E 4

which measures the Euclidean distance to 0.
The reader can use (3.63) and (3.64) to verify that the data {£/-, £z }^0

indeed defines a conformal metric on MN. For this purpose, and for
others, it is important to note that

(a) t/.nt/- = 0 i f / , y > 0 ,
(3.65) ι_{

 J

 4

( b ) φi

ι(UinU0) = {xeR :ε[/32<\x\<ει/\6} if i > 0.

(m) Another metric on M. A metric g on M will be needed in §§6-9
which is in the conformal class [g] over more of M than is gM . It is the
purpose of this section to describe ~g .

Fix a number rQ < \ so that the radius r0 ball in CP2 with center y0

(measure with g^) lies in the coordinate chart φQ. Once r0 is chosen,
one can require (without loss of generality) that

(3.66) λ/eχ < ro/4O48

for each xt.

Let B(i) denote the radius λ/r0 ball in M with center xr Let B'(i)
denote the ball with center xέ, but with radius 2λ/rQ .

Notice that the charts {φ^ on M and φ0 on CP2 naturally identify

Λf\U,l?(/) as an open subset of Λ/#ΛΓCT2. This identification extends

the map θ of Theorem 3.15 and will also be denoted by θ.
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The metric ~g on M restricts to AΓ\|J|/?'(/) to be in the conformal

class [g] of Theorem 3.15. Also, ~g is flat on each B(i). In fact, # = g[
on t/0, and

ΦiS — g£ + Pklr* ,2 ^λm¥S

on the radius εχ ball about xi.
The following proposition describes how "g and gM differ.
Proposition 3.16. Let M be a compact, oriented 4-manifold with met-

ric gM. There exists a constant Z with the following significance. Let
r, μ0, μχ, and ε be as in Theorem 3.15. Then the conclusions of Theo-
rem 3.15 hold, and it may be additionally assumed that the metric ~g of
(3.67) obeys

(!) \g-gM\gM<cr2o
Also, fix p > r and use B(x) to denote the gM-radius p ball with center
x. Then

(2) ™»XeMJB{x)<i™lgM.\VgM(g-gM)\zJ(distgJx,.))2 < Z r 0 V+
c r\,

(3) suPjc€Λ/ fBix)dvolgM .\VgM(g - gM)\gJ(distgM(x, )f <crl
Proof of Proposition 3.16. Note that

(3.68) * - * * = < * - * ; , ) + < * ! , - * „ ) .
This fact and Lemmas 3.12 and 3.13 make the calculations simpler be-
cause it can be assumed a priori that m = g'M - gM already obeys the
assertions of Proposition 3.10. With this understood, it becomes sufficient
to prove the assertions of Proposition 3.16 with the metric gM replacing
everywhere the metric gM .

Given the preceding, the metrics ~g and gM differ only on the ball

about each xt of radius εχ. On this ball, Ίn = £ - gM obeys

for k = 0, 1, 2, . Here, ck is a fixed constant.
Proposition 3.16's first assertion follows directly from (3.69).
It proves useful for proving the second assertion to observe first that the

contribution of xi € Ωz to said integral is bounded by

(3.70) c λ2 r0

2 . (dist ώ (x, xf + λ/r2

Q)"\

The bound in the proposition's second assertion is obtained by summing
(3.70) over all /. The result can be recognized most readily by making
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some preliminary observations. First of all, dist^ (x, x.) < εJ2 for at

most one i. The contribution to the sum from this i is at most

(3.71) c-rj.

With (3.71) understood, implicitly ignore that one x. (if it exists) in all
future sums.

Next, group the points {xχ, , xN} into the subsets {Ω/}JI

=1. There
is at most one point x. £ Ω7 such that

(3.72) β 1 / 2 ώ ^

If such a point exists, then its contribution to the sum is bounded by

(3.73) c*λΎ.r\lz\<c.Zn^t{l)\

Here Zn_ι is a constant which depends on the metric g^~l). (Proposi-
tions 3.5 and 3.14 are used at this point to identify λ and εχ in terms
of ε = ε(l).) Since ε(l) can be made as small as one desires without
violating any of Theorem 3.15's conclusions, one may assume that (3.73)
is bounded by

(3.74) ε(ί) < εl

0.

This is the contribution to the sum for a point in Ω, for which (3.72)
holds.

When summing (3.70) over points xt in Ωι, one should now implicitly
delete that point (if it exists) which obeys (3.72). Let σι denote the said
sum of (3.70) over Ω7.

To bound σz for / < n - 1, one should recall from Proposition 3.5 that
λ2 = CQ2 vχ - ε(/)4. Remember also that the points in Ω7 are a distance
2 ε(l) apart at least. Finally, and most importantly, remember (3.30).

With β(/) made small, one should find (after all of the above reminis-
cences) that

(3.75) ° i < c - r p M

Furthermore, use Proposition 3.11 to bound the right side of (3.75) by

(3.76) σι<c*rl.{\-δ)l

This, of course, holds only for / < n - 1.
A similar argument shows that the Cokernel Step produces σn with the

bound σn < Z r^ p2 μ2

0 .
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With this last estimate understood, sum (3.76) over / = 1, , n - 1
and use (3.73) and (3.71) to find the following as a bound for the left side
of (2) in Proposition 3.16:

(3.77) Z . ^ + ^ - ^ . r J + Z.fio + c . v

For small e 0, this is the required estimate.
The proof of (3) in Proposition 3.16 can be made along similar lines

and is left to the reader.

4. Estimates for linear operators

Suppose that M is a compact, oriented, 4-dimensional Riemannian
manifold with metric g. As noted §2, a nonlinear equation for a traceless
section h of Sym2 T* is defined by requiring W+(g+h) = 0. The strategy
here will be to treat nonlinear equations as perturbations of linear equa-
tions. This then provides the motivation for studying linear differential
equations.

It proves simplest to treat linear equations (on 4-manifolds) first with
some generality before specializing to the particular examples which arise
from the linearization of W+{g + h) = 0 . The present section treats the
generalization, and the specialization is postponed to §5.

This section should provide the reader with a tool kit of sorts; the tools
are for application in subsequent sections. Thus, the reader can opt to
study this section concurrently with the subsequent sections which require
its tools.

(a) First-order operators. Let V, W —• M be vector bundles which
are associated to the orthonormal frame bundle of M. The Levi-Civita
connection on FM induces a covariant derivative V on sections of V
and of W. Assume that the metric on T*M also induces a covariantly
constant Euclidean inner product (denoted by ( , •) ) on both V and
W. Use this inner product to implicitly identify V with its dual, and W
likewise.

Suppose that

(4.1) σ e C°°(Hom(Γ* Hom(F W)))

is covariantly constant (V σ = 0) and obeys

(4.2) σ(ξ)*σ(ξ) = |f|J . Identity

for any ξ e T*.
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Examples of such σ appear as the principle symbols of various natu-
rally occurring first-order differential operators. The symbol of V is one
example. For a second example, take the symbol of the composition

(4.3) C°°(A2

±T*) 4 C ° ° ( Λ V ) A C°°{T*).

Conversely, any such σ as in (4.1), (4.2) defines the operator

(4.4) δ^σ{Vg):C°°{V)^C00{W).

Note that the operator δ has a formal L2-adjoint,

(4.5) δ* = -σ\Vg)

But the symbol σ* of δ* will not obey (4.2) unless σ is elliptic; that is,
unless dim(F) = dim(W).

(b) L2-theory for δ. For integer k > 0, let L2

k(V) denote the com-
pletion of C°°(V) using the norm

k r

(4.6) \\v\\ll=Σ dvolg\S?υ)v\2

g.
7=0 J λ ί

These L2

k spaces are the standard Sobolev spaces (see, e.g., [2]).

The following "Hόrmander" lemma is completely classical (see [2]).

Lemma 4.1. The operator δ extends to a bounded operator from L2(V)

to L2(W) and there is a constant z < oc such that

(4.7) | | ^ | | i 2 >| |V^ 2 -Z. | | ^ | | 2

L 2

for all veL](V).
The preceding is parlayed in a standard way to give
Lemma 4.2. The operator δ*δ extends to L2(V) as a closed, essen-

tially selfadjoint operator with dense domain L2

2{V). The spectrum of δ*δ
is on the nonnegative real axis. This spectrum is pure point with finite mul-
tiplicities and no accumulation points. If m>0, then δ*δ + m is invertible
and, for any fc>0, ( Π + m)" 1 restricts the map L2

k(V) isomorphically
onto L2

k+2(V).
For proofs of the preceding lemmas, see, e.g., [2].
One can deduce from the preceding lemma that there exists, for each

E > 0, a projector

(4.8) nE:
whose kernel is the span of the eigenvectors of δ*δ which have eigenvalue
less than E. It is a simple matter to check that δ*δ is invertible on

2
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This subsection ends with an estimate on the size of a solution u to the
equation

(4.9) δ*δu = Q.

Lemma 4.3. There exists a constant z with the following significance:
Let E > 0 and Q e C°°(V) be given. There exists a unique u e
(UEL2{V))nLl(V) obeying δ*δu = UEQ. Also, u e C°°(V) and

(4.10) dyolg(u,Q)i

Proof of Lemma 4.3. Existence and uniqueness follow from Lemma
4.2, and (4.10) follows from (4.7).

(c) Some useful norms. Lemma 4.3's estimate for u is obviously in-
complete. The typical completion replaces the right-hand side by (1 + §)
IMIz,2

 WQWL2 Such an approach turns out to be insufficient for the appli-
cations which follow. Indeed, the foreseen applications require estimates
on u and Q which "see" their point-to-point behavior.

The discussion of local estimates is facilitated with the introduction of
some additional norms on C°°{V).

Definition 4 4. Let p > 0 be given. If x e M, let B(x) c M denote
the ball of radius p and center x.

(a) Introduce the norm || j)^ and || | ] 2 + on C°°(V) by assigning to
u the numbers

(4.11)

and

(4.12)

= sup |w|
x€JU

| |«||2. = sup
x€λf JB(X)

K
1/2

(b) Introduce the norm

(4.13)

*(disy*, ))2

II Q,O on C°°(V) by assigning to u the number

The norm || | | ^ 0 will be of particular interest after its augmentation.
F°r> IHIĵ o is not quite strong enough for application to the Weyl curvature
problem. The norm 3?® will be strengthened with the addition of a
seminorm || | | ^ i , whose definition appears below.

This seminorm || | |^i is relatively complicated and its definition re-
quires a preliminary digression to introduce two additional notions. The
first notion is notation: Use &*(V) c C°°(V) to denote the subset of v
with ||v||_g,o = 1.
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For the second notion, begin the digression by fixing / e FM to define
a Gaussian coordinate chart (as in (3.3)-(3.5)) with center x = π(f). If
p > 0, but small, this identifies the ball B{x) (of radius p and center x)
with the standard radius p ball in E4 .

Use the Euclidean coordinates to identify sections of Γ*R4 with maps
from I 4 to R 4 .

Let S3 c R4 denote the standard sphere, and promote a map from
S3 to R4 to one from R4\{0} to R4 by requiring said promotion to be
independent of the radial coordinate.

For k e {0, 1, 2, } , let L2

k(S3) denote the usual Sobolov space of
functions on S3 with square integrable derivatives of order up through
k. (Use the standard metric on S3.)

Let Γ denote the subset of smooth, Revalued functions φ on S3

which have i^-norm \\φ\\Li = 1.

With all of the above understood, and the digression, we have
Definition 4.5. Fix p > 0 as in Definition 4.4, but make p small. The

seminorm || H t̂ on C°°(V) associates to u the number

(4.14) ||w||«i = sup < sup I, {v,φ®u)
dvol, —

B{x)

Here is a rough explanation for the choice of these norms: First of all,
the norms require the choice of p > 0. The number p is a measure of
the locality of the norms; both || | |^o and || | |^i measure some sort of
averaged behaviors on a ball of radius p. (In contrast, the L2

k -norms of
(4.6) average behavior over all of M.)

The norm || || clearly measures u 's pointwise size and || | |^o there-
fore measures the size of u and of its derivative.

The seminorm |] \\^\ will always be employed in one of only two
contexts:

Definition 4.6. Define norms || | | ^ and || ||^ on C°°{V) by assigning

to u the numbers

(4.15) \\u\y = IMI^O + \\δu\\<?i, IMls = IMU + IMLs"

The reader will see in the subsequent sections that the norm || \\^ is
stronger than || \\^o in that the addition of || \\#\ allows it to measure
aspects of the second derivative. Likewise, the seminorm | |V^M|| Λ will
also prove to be a useful measure of second derivatives.
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The last remark in this subsection concerns the factors dist^(x, •)"
\-3and dist^(JC, •) which appear in (4.11) and (4.14). The point is that the

function dist^(x, )"2 was chosen for its resemblance to the Laplacian's

Greens function with pole at x . (So dist^(x, )~3 resembles said Greens

function's derivative.)
Lemma 4.7. There exists a constant Z < oo with the following signif-

icance: Fix x € M and let G(x, •) e C°°(Ilom(V\χ; V\M\X)) denote the

Greens function with pole at x for V* Vg + 1: C°°(V) -+ C°°{V). Then

(1) | G ( x , 0 -

(2) \VgG(x,
Proof of Lemma 4.7. Use [2, Proposition 4.12, Theorem 4.13, and

(4.17), (4.18)]. The estimates are simple in Gaussian coordinates.
(d) Estimates for δ*δu = Q. Suppose that E > 0 and p > 0 have

been chosen, with p small. Suppose that Q e C°°(V) obeys (l-ΠE)*Q-
0. Also, suppose that Q can be written as

(4.16) Q = q + bχ V bv

Here, b2 is a section of some vector bundle Y —> M, and bλ is a section
of C°°(Hom(y ® Γ* F)) . Meanwhile, <? € C°°(F). Measure ^ with

(4.17)
X€MJB{X) (diSt^(ΛT, •))

with 2?(JC) denoting the ball of radius p around x .
Proposition 4.8. There is a constant Z with the following significance,

let p>0 be small, and let E > 0 be given. Let q,bλ,b2 be as described
above, so that Q of (4.22) obeys (1 - Π£) Q = 0. Let u e Π £ C°°(V)
be the unique solution to δ*δu = Q. Then u obeys

(2) \\u\\^0 < Z (l + p~6E~ι)-(\\q\\φ + ||&ill_2''θ||62||jj).
Before embarking on (4.18)'s proof, it proves useful to fix a smooth

α: [0, oo) -> [0,1] which equals 1 on [0,1] and which vanishes on
[2, oo) when x e M is specified:

(4.19) aχ( ) = a(p~l dist (JC , •))-

(e) The proof of Proposition 4.8. Equation (4.2) for the symbol of δ
can be used to derive the following Weitzenbach formula for δ*δ :

(4.20) <J*(ί = V*V + A:,
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where AT is a section of End(K) which is constructed from the Riemann
curvature tensor.

Contract both sides of (4.9) with u and use (4.20) to find that

(4.21) (u,K u)g = (u, Q)g.

Fix x e M and multiply both sides of (4.21) by aχ • G(x, •), where
G{x, •) is the Greens function for d*d with pole at x. Integrate the
result over M. After integrating by parts in the appropriate places, one
sees (with Lemma 4.7) that

f
JB(X)

\u\\x)+ f dvol
J

(4.22) d\ol \u\r + Z / ί/vol
'(x) g g JB'(X) *

h'(x)
dvolgaxG(x,-)-(u,Q)lgax

Here, B\x) is the ball of radius 2 p with center x.
Evidently, (4.22) bounds ||w||^o by the supremum as x varies in M

of the right-hand side of (4.22). So, at issue is the size of the right-hand
side of (4.22). With this understood, observe that this side of (4.22) is a
sum of three terms; and each will be estimated in turn.

Term 1 in (4.22). Begin by bounding this term by

(4.23) dvo\g{u,Q)Q

This last bound is obtained with (4.10). To estimate the integral in (4.23),
first break Q as in (4.16). Then, after an integration by parts,

/„dvolg(u,Q)g

(4.24)

Here,

(4.25) -'-L dvo\g\q\g.g\q\g.

This last norm of q can be estimated in terms of \\q\\+ by covering M
by a finite set of balls of radius p. It is important to know that such a
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cover can be found for which the number of balls is bounded a priori by

Z p~~A . With this understood, one has

(4.26)

A similar construct shows that

(4.27) \\Vu\\L2<Z-p-

Therefore, (4.23), (4.24), (4.26), and (4.27) estimate Term 1 in (4.22)
by

(4.28) /ΓVl l ia < Z p~6E~i
 | |M||^O (\\q\l + \\bι \\^> \\b2\\2J.

Term 2 in (4.22). This is the easy one: Term 2 can be bounded by

(4.29) Z

Term 3 in (4.22). This case is the most subtle, for here the || ||_g,ι norm
of b2 appears. However, the construction of the bound begins mundanely
by breaking Q as in (4.16). The part with q is bounded by

(4.30) U

This uses Lemma 4.6.
Treat the part with bι Vgb2 by first integrating by parts to find it equal

to

- / dvolg{aχ . G(xy •). ((Vgu9 brb2)g 4- (ii, Vgbrb2)g)
JB (x)

(4.31) + ( r f ( o χ . G ( x , . ) ) ® « ^ i * 2 M

Bound the first two terms in (4.31) (using Lemma 4.7) by

(4.32) z I

The third term in (4.31) is the tricky one. Begin its analysis by replacing
d(aχ (G(xy •))) by rf((2π)"1 (dist^(jc, ))~2) The error can be estimated
with Lemma 4.7, it only adds to the constant in (4.32). Now, go to Gaus-
sian coordinates with center x and then replace d({2π)~x(disXAx y -))~2)
by

(4.33) (2^-^(1/1.1^) .

The error incurred by this replacement will only contribute to (4.32). (Use
(3.3)-(3.5) to prove this.)

Notice that (4.33) can be written as

(4-34) φ/\.\3

gE
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with φ e C°°(S3 R 4 ) . With this understood, the third term in (4.31) can
be bounded by

(4.35) Z . (|M|^o . \\bγ\\^ • | |6 2 | | 2 , + \\u ® bx\\^. \\b2\\^).

Given (4.35), the third term in (4.31) is bounded by

(4.36) z IN^ IIMI^ IÎ IU
when one appeals to

Lemma 4.9. Let V, W -+ M be vector bundles. Then

Proof of Lemma 4.9. This is an exercise for the reader, q.e.d.
To finish the \\u\\^o estimate, put (4.28), (4.30), and (4.36) together to

bound

,0 < Z

(4.37) + ( 1 + J _ ) . Hwll̂ o . (\\g\l + ll^ll^o . | | ^ | | ^ )
)

The final bound on \\u\\^o in (4.18) follows directly from (4.37) if Zp2 <
1/2.

(f) First-order operators again. If w e C°°{W) is given and u e L2

γ(V)
obeys

(4.38) δu^w,

then estimates for u in terms of w can be had by applying (4.18) to the
equation

(4.39) δ*δu = δ*w.

Indeed, write δ* = -σ*(Vg) and then set bx = -σ* and b2 = w in (4.18)
to conclude

Lemma 4.10. There is a constant Z with the following significance. Let
p>0 be small and E > 0. Let w e C°°{W) and M E Π £ C°°{V) be
given to satisfy (4.38). Then

(4.40) IMI^o < Z (/Γ2||w||L2 + \\w\\J < Z . (1 + p~βE'ι)\\w\\^

If it; = 0 in (4.38), then estimates for u can still be found, but the

L2-norm of u must enter. These estimates are standard:
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L e m m a 4 . 1 1 . For each integer k , there exists Zk such t h a t ifue
C°°(V) obeys δ u = 0, t h e n

(g) Estimating the || ||^t-norm. In this subsection, assume that the
symbol σ (in (4.1)) of δ is elliptic. (Thus, for all x e M and ξ € T \ ,
σ(ζ): v\x -> w\x

 i s a n isomorphism.) Suppose that w e C°°(W) obeys

(4.41) δ*w = Q9

with β as described in (4.16). (Note δ* is also elliptic.)
Proposition 4.12. There exists a constant Z , with the following signif-

icance: Fix p > 0, but small Suppose that Q is as described in (4.16)
and that w obeys (4.41) with δ* elliptic. Then

(4.42) IMI^i < Z (| |ί 11̂  + ||6j ll^o \\b2\\^ + |M| 2 *)

This proposition will be proved by integrating both sides of (4.41)
against a suitably chosen test function. The estimate in question will result
after a by-parts integration and some straightforward manipulations. The
key to (4.42) is the construction of the test function.

The test function's construction requires the following short digression
whose culmination is Lemma 4.13, below.

Let VQ and WQ be vector spaces of the same dimension, and let σ e

Hom(R4; H o m ( ^ ; WQ)) be such that σQ(ξ) is an isomorphism for all

nonzero ξ e R 4 . Require σo(£)*cro(<ί;) = \ξ\2 1 as well.

Let {yvΫV:=zX be Euclidean coordinates on R4 and let Vo =

Σu=\(dl®χV) ® dxv denote the Euclidean covariant derivative. Then

(4.43) So = σo(Vo)

is a first-order, elliptic constant coefficient operator on R which maps
^-valued functions to H^-valued functions. Likewise, it maps ( J Q Θ Un-
valued functions into {WQ 0 W^-valued functions.

One more remark before Lemma 4.13. Since Wo is a Euclidean vector
space, End( WQ) is naturally identifiable with WQ ® WQ . Use I eWQ<g>W0

to denote the identity endomorphism.
Lemma 4.13. Let ψ e C°°(S3) be given, thought of as a radially con-

stant function on R4\{0}. There exists a unique s € C°°(F0 0 Wo\^)

{thought of as a radially constant, {VQ ® WQ)-valued function on R4\{0})
which obeys

(4.44)
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Furthermore,

(4-45) IWIco + l l ί l ^ ^ c l l r l l ^ , ,

where c is a universal constant and the norms ^ψ\\L2,s^ are the standard

Sobolev norms over S3.
Proof of Proposition 4.12. Fix x e M and a Gaussian coordinate sys-

tem with center x. Make p small enough so that the Gaussian coordinates
identify B(x) with the ball B(0) c M4 of radius p.

The first step in the proof is to remark that a bound for ||w||^>i will
result by bounding

(v, φ®w)Q

(4.46) rfvol

for all φ e Γ and υ e *S*( W <g> Γ*).
Indeed, the difference between (4.46) and its twin with gE replaced by

g can be bounded by \\w\\2^.
The Gaussian coordinate system trivializes T* \B^, for it identifies

B(x) with B(0) and the latter has coordinates {yvΫv=γ. With respect

to the basis {dyuγy_x for T*, write

4

(4.47) v = Σv*9dyv
ι/=l

The Gaussian coordinate system also identifies V\B,x) and W\B,χ. with
5(0) x Fo and B(0) x M ô, respectively. Here Vo = Kl, and Wo = WΓ^.

Introduce σ0 = α | Λ , where σ is the principal symbol of δ. Then
define δ0 as in (4.43) and note that Lemma 4.13 applies. Use said lemma
to construct {sv}*=1 to obey (4.44) using {ψ = φuΫv=tX. Here {φu} are
the components of φ .

Note that

(4.48)

is a section over 2?(ΛΓ) of V. The test function for multiplication against
both sides of (4.41) is going to be ax-s, with ax( ) the bump function
of (4.19).

Multiply ax s against both sides of (4.41), then integrate by parts to
find

(4.49) f dvol(δ(ax B),w)=ί dvol(aχ s,Q)
JB'(X) g 8 JB\X) S g
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This last equation will give an estimate for (4.46) after some massaging.
Analyze first the left-hand side of (4.49). For this purpose, note that

4

(4.50) δs = Σ ^ " T ^ + ro >
i ^ = l I * *gE

where

ί Id \T7 v\ \s\ \V I

Thus, the left-hand side of (4.49) can be written as

<4 52)

where

(4.53)

The derivation of (4.53) is straightforward but for Lemma 4.13. It allows
the replacement of pH^ and I M I ^ ^ by z IIPIILJP3)

. Equations (4.52) and (4.53) prove that (4.49)'s left-hand side can be
used to estimate (4.46).

Turn now to the right-hand side of (4.49). It has two parts, which
correspond to the breaking of Q in (4.16). Here is how to bound these
terms:

Term 1. Since \s\ < z | |^ | | L 2, the first term is bounded by

(4.54) z . pil^ . | |β |L < z

Term 2. After integration by parts, the second term on the right in
(4.49) is bounded by

(4.55)
!B\X)

The first term above is bounded by

(4.56) ^-IkllooΊMloo

which can be replaced by

(4.57)

As for the second term in (4.55), it can be replaced by (4.57) plus

(4.58)
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This last term appears as the upper bound for

(s-v®d\.\ge,brb2)g£

207

(4.59)

and also

(4.60)

JB(X)
ύfvol

JB(x)
ίίvol

•V,
'SE

Replace \\s\\L2{S^ in (4.58) by Z . \\φ\\L2{S>} and then (4.52)-(4.54),
(4.57), and (4.58) lead directly to the assertion of Proposition 4.12.

Proof of Lemma 4.13. The operator δ0 has a Green's function, p (•),

with pole at p € E4, given by

(4.61) pp(y) =
\y-p\

SE

Here c is a constant. Thus, (4.44) has the formal solution whose value at
p eB4 is

(4.62) ψ(y)

Ml'
Here, y = y/\y\ € S . As long as p Φ 0, the integral in (4.62) converges.

When p Φ 0, write /? = /V|/?| and (4.62) can be rewritten (by rescaling
the integration variable y —• \p\ -y) as

nip)(4.63) η(p) =
\P\]

Thus, with s(p) defined to be η(β) with η as in (4.62), one sees that
(4.44) has a solution of the appropriate form. The estimates for s (and
uniqueness) are obtained by writing (4.44) as a differential equation for s
on S 3 . The equation in question is readily seen to be elliptic, and standard
elliptic theory gives the estimates in (4.45).

(h) The projection Π £ . This subsection will consider the projection

Π F for the operator on C°°(F). Of particular interest will be
ΠE Q with Q as in (4.16) and an estimate for ||(1 - ΏE) βl^ in terms

of Hill, and | | ^ o |IM2*

With this goal in mind, set πE = (I -UE). A description of πE re-

quires the choice of an L2-orthonormal basis {i/

J }^1 , for the span of
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the eigenvectors of V*V^ with eigenvalues less than E. With this basis

N(E)

(4.64) * * β=

Estimating | | π £ β| |* is facilitated by adopting notation which distin-
guishes the norm in (4.17) as defined by p with the same norm as defined
by a number r Φ p . Use || \\^ p and || \\+ r to make this distinction.

Likewise, use || | | 2 J | [ ^ and || ||2^ r to distinguish (4.12) as defined by
p and r. And, similarly introduce || ||^o and || ||^o r for (4.13).

Here is this subsection's principle result:
Proposition 4.14. There exists a constant Z with the following signifi-

cance: Fix E > 0 and p, r > 0. Lei (? be as in (4.16). Then

\\πE β | | φ , < Z . £-(l + r 2 ^ 7 ) . ( | |^| |^ r + Wb^o Jb2\\2^r).

The remainder of this section is occupied with the proof of this propo-
sition.

To prove the proposition, it is first necessary to state some basic facts
about eigenfunctions of V* V . The next two lemmas make a digression
for this purpose.

Lemma 4.15. Let M be a compact, 4-dimensional manifold with met-
ric g. Let Y -* M be a vector bundle which is associated to M 's orthonor-
mal frame bundle. Fix n > 0 and assume there is a constant Z which
makes the following true: Let E be an eigenvalue of V*V on C°°(Y)
and let v be an eigenfunction obeying \\v\\Lι = 1. Then

Proof of Lemma 4.15. The n = 0 assertion follows from (4.18) using
δ = Vg and Q = E - u. Take p smaller than the injectivity radius.
Given the assertion for n = k > 0, one can obtain the n = k + 1 case
by differentiating both sides of V2w = E u /2-times to get V2(Vmu) =
E V0Λw + Σ L o ^ / V0 ίw, where 31 { is constructed from the curvature
of g and its derivatives to order n — i. Apply (4.18) to this last equation,
q.e.d.

The next lemma concerns the totality of eigenfunctions of V* V with
eigenvalue less than E.

Lemma 4.16. Let M be a compact, 4-dimensional manifold with met-
ric g. There are constants Z and Eo with the following significance.
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(1) The rank of πE obeys N{E) < Z . (E + I ) 2 .
(2) Fix x e M and define r2: C°°{V) -> V\χ by restriction. Then

rx: πE C°°{V) -+ V\χ is surjective for each x e M.

(3)°Also, rχoVg: πE C°°{V) -> (T*®V)\χ is surjective for all xeM.

Proof of Lemma 4.16. The first assertion is well known (see, e.g., [4]).
For the second assertion, fix x e M and choose a smooth section s of V
with s(x) = 1 and ||s||£2 = 1. One can assume that ||V^s||L2 < Zg . The
expansion of s in terms of eigenfunctions of V* V converges pointwise,
a fact which follows from Lemma 4.2. Hence, there exists Eχ such that
rχ is surjective upon restriction to πE - C°°(V). Lemma 4.15 implies that

this surjectivity is true for rχ,: πE C°°(V) -> V\χ< if x is near to x.
This fact and the compactness of M completes the argument. Assertion
(3) is proved with an analogous strategy.

Proof of Proposition 4.14. With r small, invoke Lemma 3.8 using X =
M and ε = r. Let Ω c M be a set of points for which properties (l)-(3)
of Lemma 3.8 hold.

For x € M, define aχ( ) by (4.19) using n r instead of p, with n as
in Lemma 3.8. Define

(4.65) Σ

so that {aχ = « x/«} x e Ω is a partition of unity which is subordinate to
the cover {Bn.r(x)}xen of M. Note that there is a constant c so that

(4.66) I V α J ^ c r"1.

Now, write

(4.67)

Since πE is linear, an estimate of πE Q follows from estimates of

{nE (aχ Q)}xeΩ.
To estimate πE axQ, choose an L -orthonormal basis {̂ ,},=1 for

πE C°°(V) so that the following conditions are met:

(1) M ί T C nE C°°(V).
(4.68) ' 1 = 1 °

(2) If i > ΛΓ(£0), then rxvi = 0 and rχ o Vguj = 0.
The existence of such a basis is insured by Lemma 4.16.

If i < N(E0), then

(4.69) I f dvolg(ui,aχQ)g < Z • r2(||g||φf(. + |IMI^>,Γ \\b2\\2,,r)
IJ Af
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Here, Lemma 4.15 is used to bound v. and VIA uniformly. (This is possi-
ble because each IA is a linear combination of eigenvectors with eigenvalue
N(E0) or less of which there are at most Z (Eo + I) 2 .) In deriving (4.69),
integration by parts is used to remove the derivative from b2 .

Now, for i > N(E0), one has in Bln.τ(x)

(4.70) |i/.| < Z r2E3, \Vgv.\ < Z r £ 3 .

This means that when i > N(E0),

(4.71) / dvol (ι/ , a.Q) < Z - r4E3 - (\\q\\ + | | 6 I | | O Λ II^IU* r ) -
\JM

 g g '

Meanwhile, when / < N(E0), one has

(4.72) I K I L f P < z p2,

and for i > N(E0) one has

(4.73) ||i/.|| < Z - p2 E .

Together, (4.69) and (4.71)-(4.73), with Lemma 4.15, estimate

2 2 2 7

(4.74) ||π£ α χ Q|j# < Z /? r (1+τ £" ) (||^||s)t r+ll^ill^° Γ

#ll^2li2* r)

Since the number of points in Ω can be bounded by Z r~4, equation
(4.74) gives the required estimate.

5. Linear theory for W^

Suppose that M is a compact, oriented, 4-dimensional manifold with

metric g. Specify a section Q of the bundle of symmetric, traceless

endomorphisms of Λ2 T*M. Consider the equation below for a section

h of Sym2 T*:

Equation (5.1) is a linearization about g of the equation for prescribing
W* (5.1) is the subject for this section.

(a) Solving for h. With g fixed, W+{g + h) depends analytically on
h as long as \g\g < 1 everywhere. Thus, the left-hand side of (5.1) defines
a second-order, linear, differential operator Lg .

The operator Lg takes a section of the bundle of symmetric endomor-

phisms of T*M and gives a section of the bundle V+ of symmetric, trace
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zero endomorphisms of A2

+ = A2

+T*M. (Simplify notation here and use

A2 for A%T*M.) Thus,

(5.2) Lg: C°°(Sym2(r*)) - C°°(F+).

There is, of course, always a cokernel obstruction to solving L h = Q
for general Q. This obstruction will eventually be dealt with, but for now
it is convenient to circumvent the whole cokernel issue by considering the
equation

(5.3) nE-Lgh = nE Q.

Here, £ > 0 a n d Π £ : C°°(V+) -* C°°(V+) is the iΛorthogonal projec-

tion onto the span of the eigenvectors of V* V with eigenvalue E or
o o

greater. (Note that ΠE is not defined by L L*!)
To measure solutions to (5.3), use || ||^o , || | |^i , and || | |Λ

to indicate that the norms in Definition 4.6 have been defined using the
parameter p > 0. Likewise, use || \\m p for (4.17).

Proposition 5.1. Let M be a compact, oriented 4-manifold with metric
g. Let Y —• M be a vector bundle. There exists Z which makes the
following true:

(1) Fix E > Z and assume that there is a continuous map
H: C°°(V+) -> C°°(Sym2 T) for which h = H[Q] obeys (5.3).

(2) Suppose that Q = q + b{ -Vb2, where b2 e C°°(Y) and bx e

C°°(Hom(y β Γ* K+)). If p, r obey Epn > Z " 1 and r2EΊ < Z then

(5.4) ί ^ j

(5.5) <β>, =

The remainder of this section is occupied with the proof of this propo-
sition and with a special case (Proposition 5.7). However, properties of
the solution h to (5.3) are derived along the way.

Before turning to the proof, here is a word of explanation for the use of
ΠE : The analysis of (5.3) using Π^., as opposed to Lgϋg 's projection,
seems easier to the author. The reason being that V* V̂ , is a second-order
operator while L V is a fourth-order operator. There are disadvantages
to the use of ΠE , but they prove to be of little consequence.
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(b) The linearization of W^ . The metric g defines the orthgonal de-
composition

(5.6) Sym2 f - M θ ( Λ 2 ^ Λ 2 ).

The first factor corresponds to multiples of g. With respect to (5.6), Lg

sends f g (with fe C°°{M)) to / 2r; .

On a section of Λ2_0Λ^5 the operator Lg is identical to the orthogonal
projection,

(5.7) s: End(Λ2) - Λ 2 0 Λ 2

+ ^ F + ,

of an operator Lg: C°°(Λ2 ® Λ 2) -> C°°(Λ2 ® Λ 2 ) . This Lg has the
form

(5.8) Lg=dlgd_g+Bg.

The various terms in (5.8) are as follows: First, Bg e C°°(Hom(Λi Λ2))
is the traceless Ricci tensor in (1.2). Second* d± are defined as follows:

Take the composition *rf: C°°{A2

±) -> C°°(r*) of (4.3) and extend it to

(5.9) d±g: C°°(A2

±®A2

+) - C°°(ΓΦ ® Λ^)

using the Levi-Civita connection on Λ2 . Finally, d± is the formal, L2-
adjoint of d± . Thus,

(5.10) d*±gι C°°(T* 0 Λ 2 ) - C°°(Λ^ 0 Λ 2 )

is the covariant extension (using the Levi-Civita connection) of the com-
position

(5.11) C°°(Γ*) ^ C° ° (Λ 2 r ) PΛ C°°(Λ2

±),

where the P± are the orthogonal projections for (1.1).

The factorization of L as in (5.8) appears in [7],
(c) The extensions of d±g . Neither of the d±g in (5.9) are elliptic, but

both have injective symbols which obey (4.2). (Much of the discussion in
§4 will be applied here to d±g.) Both d±g come as part of naturally
occurring elliptic operators,

(5.12) D±g: C°°(A2

± ® Λ 2) θ C°°(Λ2) - C ° ° ( r ®Λ 2 ).

Here,

(5.13) D±g(u,uQ) = d±gu + Vgu0.
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Use D*±g = {d*±g, V*) to denote the formal iΛadjoints of D±g .
Since D±g are elliptic, there is the usual "Hodge theorem":

Lemma 5.2 Each a £ C°°(T* <g> Λ+) has a unique decomposition
a = υ±+ά±, where v± e ker(D^) and ά± e lm(D±g).

(d) A change of view. When u € C°°{V+), then d+gu € C°°{T* ® A*)
and one can use Lemma 5.2 to decompose

(5.14) d+gu = v_+d_gh + Vgφ,

-YOO / A 2

addition, u obeys
where v_ e ker£* A G C°°(Λi ^ Λ 2 . ) , and φ G C°°(Λ^). If, in

(5.15) s 9* 9+ w-s(d* v_+d^ V ί?)+s ^ -h = Q,

then A obeys (5.1), that is,

(5.16) Lsh = Q-

The point of view that will be stressed here and henceforth is that (5.15)
is an equation for u with h, φ, and v_ implicit functions of u which
are determined by (5.14) and Lemma 5.2.

The replacement of (5.16) (an equation for h) by (5.15) (an equation
for u e C°°(V+)) can be justified at two levels. First, (5.16) is a second-
order equation without injective symbol. It has been replaced by (5.14)
and (5.15). The former, an equation for h, φ y and v_ , is an elliptic,
first-order equation. The latter, (5.15), is a second-order equation whose
symbol is that of the Laplacian, ξ e T* »-> \ξ\2 1. In particular, the
machinery of §4 is designed for (5.14) and (5.15).

The second justification for (5.15)'s replacement of (5.16) is not so prac-
tical, but theologically much more satisfying: To understand this second
justification, one must realize that the failure of Lg 's symbol to be injec-
tive is the linear manifestation of the natural equivariance of the equation
W+(g+h) = Q under the action of Diff(Λ/). Indeed, Lg is a zerotA-order

operator upon restriction to the linear subspace of C°°(A2_ e Λ^) which
is tangent to the orbit through g of Diff(Λf). (This subspace is the image
of C°°(Γ*) under the map

(5.17) C°°(T*) ^4 C°°(T* <g> Γ*) -^ C°°(Λ^ θ λ j ) ,

where p is orthogonal projection.)

The degeneracy of Lg 's symbol implies that there is an infinite-dimen-

sional ambiguity in L~ι since L will have an infinite-dimensional kernel.
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To contrast, an elliptic operator has at most a finite-dimensional kernel,
so a finite-dimensional ambiguity to its inverse.

With the above understood, take comfort in the fact that the replace-

ment of (5.16) (with its great indeterminacy as an equation for h) by

(5.15) (with its small indeterminacy as an equation for u) can be thought

of as a choice of a particular resolution of (5.16)'s indeterminacy. Indeed,

given any h satisfying (5.16), one can find u,v_, and φ to solve (5.14)

and (5.15) z/one is willing to allow u to be a section of A2

+ <8> Λ^ rather

than a section of F + c Λ 2

+ ^ Λ ^ . (Apply both ± versions of Lemma 5.2

to prove this.) Now,

(5.18) Λ ^ Θ Λ ^ - P

where the last two terms correspond to the skew-symmetric endomor-
phisms of Λ^ and the multiples of the identity, respectively. On the
symbol level, the composition

(5.19) C (Y ) —• C (Λ_0Λ + ) —> C (Λ+(gιΛ+)

is an isomorphism owro the last two summands in (5.18). This means that,
up to a finite-dimensional vector subspace, any h solving (5.16) can be
adjusted by adding elements in the kernel of Lg to insure that the resulting
u solving (5.14) and (5.15) lies everywhere in V+ .

(e) Equations (5.14) and (5 15) for u. Having said all of the above,
return to (5.14) and (5.15) as an equation for u G C°°(V+). To bring
(5.15) into better focus, remark that the symbol for d*d+g is a multiple
of the identity. This means that

(5.20) d*du = V*

where &0 e C°°(Hom(V+, Λ^ <8>Λ̂ .)) is a linear function of the Riemann
curvature tensor. (In fact, it depends only on W^ and s of (1.2).)

Also, the symbol sequence for

(5.21) C°°(Λ^) I ί C°°(T* +

is exact. This (and (5.2)) allows (5.15) to be rewritten as

(5.22) V j V ^ + fi.(a^t;

where 31 χ is a section of Hom(Λi ®Λ̂ _ eΛ^_ Λ^ <8>Λ+) which is a linear
function of the entries W+ , s , and B in (1.2).

Together, (5.22) and (5.14) define an elliptic, second-order pseudo-
differential equation for u. The equation's solvability cannot generally
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be insured without modifications which avoid any cokernel to the adjoint
equation. The simplest way to avoid these cokernel obstructions is to
choose E > 0 and replace (5.22) by

(5.23) v;V ί i ι + Π £ . B . ( β ; g i ; . + Λ o .

Note, If u satisfies (5.23) with (w_ , A, φ) determined by (5.14), then
A satisfies (5.3).

(f) Existence and uniqueness for (5 23) The analysis of (5.23) is rooted
in the following basic result:

Proposition 5.3. Let M be a compact, oriented 4-manifold with metric
g. There exists Z such that when E > Z, the following is true: Specify
Q e C 0 0 ^ ) and (5.23) has a unique solution u when subject to the addi-
tional constraints that u e ΠE C°°(V) and that (A, φ) be L2-orthogonal
to kerZ> . Furthermore, this association defines a continuous, linear map
from C°°(V+) to Π£C°°(F+).

Proof of Proposition 5.3. A weak solution to (5.23) has u in L2,
(A, φ) e L2, and v_ € C°° . Elliptic regularity (see Lemma 4.2) implies
that w, A, φ are smooth.

The L2 solution will be found after rewriting (5.23) as a fixed point
equation on Π £ L2 (F + ). Existence and uniqueness will follow using a
contraction mapping argument.

To begin the rewriting of (5.23), consider (5.14) to be an equation for
determining (A, φ) and t/_ in terms of u e L\(V+). Hodge theory pro-
vides that there is a unique (A, φ) and v_ solving (5.14) provided that
(h,φ)ekeτD_g.

Lemmas 4.1 and 4.2 estimate

(5.24) 11* J L j < Z |MIL2

and

(5.25) ||(A

These last estimates can be bootstrapped to show that the assignment
of (A, φ) and v_ to u gives a bounded, linear map from Lk(V+) to

l l g
With (5.14) understood, turn to (5.23). With u € L\, one has

i n

Lemma 4.3 provides a unique w € Π^ L\(V+) which obeys

(5.26) V* V w = - Π £ s (d* v_ + ^ 0 w + ̂ ,(A, φ)).
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Lemma 4.2 implies that the assignment to u e L2(V+) of w[u] € L\{V+)
is linear and continuous.

Meanwhile, Lemma 4.3 also provides a unique uQ € Π£C°°(F+) which
obeys

(5.27) v ; v Λ = Π£ β.

With (5.26) and (5.27), one can rewrite (5.23) as the following fixed

point equation on ΠEL\(V+):

(5.28) u = w[u] + uQ.

This equation will have a unique solution if w[>] is a contraction map-
ping from HEL2

X(V+) to itself. The L^-norm of w is estimated using
(5.26), Lemma 4.3, and Holder's inequality:

(5.29) \\w\\L2<Z E-ι/2\\u\\L2.

If E > Z2, then (5.29) implies that (5.28) is a contraction mapping.
Therefore, Proposition 5.3 is a consequence of (5.29).

(g) Local estimates for u in (5.23). Fix E so that Proposition 5.3
holds. With p > 0 fixed, the purpose of this subsection is to estimate the
size of u as measured by

(5.30)

(Refer here to Definitions 4.4-4.6.)
Proposition 5.4. There exists a constant Z which makes the following

true: Fix E > 0 so that Proposition 5.3 holds, and let ueΏEC°°(V+) be

the solution to (5.23) given by said proposition. Suppose p, r > 0 but that

P6E > Z~x, p< Z~ι, and 2EΊ < Z . Then

(5.31) \\u\\j?9P<Z ((Q)p + p2/r2 (Q)r)9

where {Q)p is defined in (5.5).
Here is how the proposition will be proved: First, Propositions 4.8 and

4.14 be used to bound the || \\^ p norm of u in terms of (Q)p , (Q)r,
and ||(A, φ)^ . Second, Lemma 4.10 will be used to bound ||(A, φ)]]^
in terms of \\u\\# p. Third, ||V^w||^i will be bounded in terms of
{Q)P9 {Q)r-> a n d IMI.S* p using Proposition 4.12. Steps 1-3 will give a
bound on | | M | | ^ p in terms of {Q)p, {Q)r, and | | tt | |^ f / > again. Finally,
when the bounds on /?,£"> and r are obeyed, this last bound will be
parlayed into (5.31).

To set up the first step, one must write (5.23) as

(5.32) v;v^tt = Π£.(β + ί

/),
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where

(5.33) q = - s . ( a ; ^ _ + ̂ 0 u + ̂  (Λ, «>)).

An appeal to Proposition 4.8 requires an estimate for \\ΠE q'\\^o .
This number can be estimated using Proposition 4.14 from a bound on
Wq'W^ p and Htf'H, r . These, finally, are estimated by

Lemma 5.5. There exists Z such that if u obeys (5.23) and p, r > 0,
then

(5.34) \\q\\^r < Z r 2 (l + /Γ V " 1 ' 4 ) | |w| |^^.

This lemma is proved below. With Lemma 5.5, the proof of Proposition
5.4 requires one additional result:

Lemma 5.6. There exists Z such that if u obeys (5.23), then for
ρ,r>0,

II V l l ^ i < Z (1 + p~βE~l). ({β}^ + ^ ( 1 + r V ) (Q)r + (1 + r V )

(5.35) - (/>2 + / Γ 1 * - 1 7 4 ) | |« | |^ f p) + Z . \\u\\^op.

This last lemma is also proved below.
Proof of Proposition 5.4. Plug (5.34) into Propositions 4.8 and 4.14 to

find that

( 5 ' 3 6 )

Meanwhile, Lemma 5.6 bounds ||V κ| |^i by the same expression as on

the right in (5.36) but for the addition of Z ||u\\#o p . Multiply both sides

of (5.36) by 2 Z and add the result to (5.35). This yields Proposition

5.4's asserted bound when p6E > > ~ [ , p < Z " 1 , and r2EΊ < Z .

Proof of Lemma 5.5. As

(5.37) lltfΊL^Z.Λlltf'll^,

it is sufficient to estimate the L°° norm of each of the three terms in

(5.35).
Term 1 in (5.33). Use Lemma 4.11 to conclude that

(5.38) llβV-lloo^Z.INI^^Z.N

Term 2 in (5.33). This term is bounded by

(5.39) Z-IML.
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Term 3 in (5.33). This term is bounded by Z ||(A, ̂ )| |o o which must
now be estimated. For this purpose, write ψ - (A, φ). Since D_gψ —
d+gU - v_ , Lemma 4.10 can be applied if E in said lemma is taken to be
the first nonzero eigenvalue of D*_ Z) _. Use the first estimate to bound

(5.40) | | (A,^) | |^<Z.(^A,^) | | £ 2 + | |V^) .

To estimate the L2 norm of ψ = (h, φ), pick λ > 0 and write ψ =
(//λ + 1/7A , where ^ = ΠA v/, with Π^ the projection onto the span of the
eigenvectors of D*_ D_9 which have eigenvalue λ or greater. One has

o S

(5.41) \\ψλ\\L2 < -^\\D_gψλ\\Li < ^\}u\\L2.

As for ||vj|£2, one has

(5.42) \\Ψι\\2

Li < Z • \\D_gΨi\\2

L2 < Z f dwo\g(D_gΨλ, d+gu)g.

The last term on the right of (5.42) can be bounded by

(5.43) I I ^ I N L 2 < Z A . | | ^ A 1 INIL2

Together, (5.41)-(5.43) imply that

(5.44) L

Now, set λ = £ 1 / 4 . This gives

(5.45) ||(A, φ)\\^p < Zg

Equations (5.38), (5.39), and (5.44) give Lemma 5.5.

Proof of Lemma 5.6. The estimate for ||Vgu\\^\ will come from

Proposition 4.12. To invoke said proposition, set w = Vg u. Note that

(5.32) describes V*gw. Meanwhile,

(5.46) dlgw=a2-u,

where &2 e C°°(End V+) is a linear function of the components of W+
and s. Thus,

(5-47) D * + g w = ( < % 2 . u , U E ( Q + q ) ) ,

with D+g as defined in (5.13).
As D+g is elliptic, Proposition 4.12 can be invoked and it yields

(5.48) IMI^, p < Z (1 + p~6E-1). {{Q)p + ̂ (1 + r V )
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This last expression gives (5.35) with the realization that \\w\\2i¥ <

\\u\\&\r

(h) Proof of Proposition 5.1. The h in said proposition is the same as

that in (5.14) when u is given by Proposition 5.3.

The oS*°-norm of h is estimated in (5.45) by

(5.49) \\h\\<?oy() < Z . (1 + / Γ 3 i Γ 1 / 4 ) . \\u\\#9μ.

Meanwhile, the .2" *-norm of V h is estimated using Proposition 4.12 and
gives

(5.50) I I V ^ I I ^ ^ ^ Z . d l V ^ ^ + HAIÎ )̂.

Since \\Vgu\\^p < | | w | | ^ and \\h\\2^p < \\h\\^op, these last two equa-
tions imply (5.4).

(i) The example of CP2 and S4 The manifolds S4 (with its round
metric) and CP2 (with its Fubini-Study metric) provide examples for
Proposition 5.4 where the projection Π £ is unnecessary.

Proposition 5.7. Let M be a compact, oriented, Riemannian 4-mani-
fold whose metric g obeys F + = 0, B = 0, and s > 0. {Refer to (1.2).)
There is a constant Z > 2 for which the following is true.

(1) There is a continuous map H: C°°(F+) -> C°°(Sym2 Γ*) for which
h = H{Q) obeys Lgh = Q.

(2) // Q is as described in Proposition 5.1, then

(5.51) W\^p=ι<Z

Proof of Proposition 5.7. Begin with the observation that s ^ = 0 in

(5.22). This is due to the vanishing of W+ and B . Thus, (5.23) couples

to (5.14) only through the v_ term. This term is, in fact, zero for the

following reason: The metric orthogonally splits the bundle T* <g> Λ2 ~

Γ* θ W+. (Here, W+ is the kernel of a dual to T* <s> T* -> Λ2Γ* -•

Λ2 .) When B = W^ = 0, the components of v_ with respect to the

splitting T* ® λ2

+ ~ Γ* θ H +̂ are separately annihilated by D l g . Use

the Weitzenboch formula for D_gD*_ to prove this. When s > 0, this

same Weitzenboch formula shows that the component of v_ in W+ must

vanish. As for the other component, the composition of d+g followed by

s is identically zero. Thus, no v_ term appears in (5.23) as claimed.
As for the term s ^ 0 u in (5.23), it is a positive, constant multiple

of u. Indeed, ^ 0 is linear in the scalar curvature (s) as W+ = B = 0
it can only be a multiple of the identity. As the Bianchi identity insures
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that s is constant, one need only check that $ &0 is a positive multiple
of the identity. This task is left to the reader.

The operator V* V has strictly positive spectrum also. Indeed, Vgu =
0 implies u — 0 which can be proved by considerations of [V^, V^]w.

With the preceding understood, the projector Π £ in (5.23) is the iden-
tity on C°°{V+) whenever E is small, say Eo > E > 0.

Since (5.23) and (5.14) are uncoupled. One can take E = E0/2 in
(5.23) and still draw Proposition 5.3's conclusions. Likewise, Proposition
5.4 holds for E = E0/2 and so Proposition 5.1. The conclusions of
Proposition 5.1 imply those of Proposition 5.7.

6. Linear theory on connect sums

The estimates so far have involved a fixed manifold M and a fixed
metric g on M. In particular, the constants in most of the inequalities
of §§4-5 depend implicitly on this metric g.

However, estimates are ultimately needed for manifolds of the form
MN = M#^CP 2 with N arbitrarily large. Furthermore, the sorts of met-
rics (see §3) that show up can have arbitrarily small injectivity radius, and
arbitrarily large curvatures. This means, of course, that the results in the
preceding sections cannot be directly applied on MN. The purpose of this
section is to begin the development for the analysis on MN by considering
the linear aspects of the analysis. §8 deals with the nonlinear aspects.

(a) Conformal solutions to L h = Q. Start with a compact, oriented
Riemannian manifold X with smooth metric g. As remarked, W+ trans-
forms covariantly under conformal transformations of g. Indeed, as a
section of Λ2 0 Λ^ ,

(6.1) y;(/ *) = / ar;(*)
for smooth / > 0. Equation (6.1) implies that

(6.2) Lf.g(f h) = f-Lgh

for h € C°°(Sym2 T*). (Warning: The inclusion in (5.6), tg: A2_ <g>Λ2 ->

Sym2 Γ*, is not conformally invariant. Rather, tfmg = f-tg.)
The point of this digression on conformal transformations is that the

equation Lgh = Q can be made sense of without the specification of an
honest metric; only a conformal metric is needed. Here is why: Let [g]
be a conformal metric on X, which has been specified by giving an open
cover {ί/J of X and a metric gt on each Ui, subject to

(6.3) gi = φij-g on U ΠUj
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for φ.. a positive, smooth function on Ui Π U..

If [Q] = {Q; G C°°{V+\V)} has been specified, with {Q.} obeying (6.3)

too, then it is reasonable to say that [h] = {^ G C°°(Sym2 Γ*|^)} solves

^ ω [Λ] = [ί2] if-

(a) L t Λ = Q ^ 0 onC/,,

(b) h^φirh. onUiΠUj.

An [A] obeying (6.4) is a conformal solution to ir«i[Λ] = [β]
(b) Conformal metric on MN. A conformal metric [g] on Λ/̂  =

Λf^CP 2 is constructed in §3 and some of its properties are summarized
in §31. In particular, §31 describes [g] a la (6.3) by giving an open covering
{^J^LQ of MN with an honest metric g. on each Ui. Please reread §31
now.

In particular, the φtJ in (6.3) can be found by noting that

in φ;\u^UQ).
(c) Cokernel issues. Just as there are obstructions to solving Lgh = Q,

there will be obstructions to (6.4)'s solvability. The equation Lgh = Q was
generalized to (5.3) in order to postpone the discussions of obstructions.
Equation (6.4) has an analogous generalization which will be described
shortly. Suffice it to say now that Proposition 5.7 allows for an avoidance
of this cokernel issue by a method which treats Uo and Ui>0 differently.

(d) Conformal solutions on M γ .

In writing down and in solving (6.4)'s generalization, it proves useful to

write the {Λjjlo

 i n t e r m s o f {̂ /}/Io w h ί c h extend over M (when i = 0)

or over CP2 (when / > 0). When / > 0, hi is a section over CP2 of

Sym2 Γ* and it obeys

(6.6) L^h, = β,

for a suitable section Qi of V+\Cψ2.

Meanwhile, h0 is a section over M of Sym2 T*M where it obeys

(6.7) Π £ - L ^ A 0 = Γ V Q 0

for a suitable Qo, section of V+ (as defined by gM) over M. Here, ΠE

is the iΛorthogonal projection (using the metric gM) onto the space of

the eigenvectors of V* V' which have eigenvalue E or greater.
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To recover {AJ^Q from {Λ.} , it is necessary to fix rχ £ (0, 1) so that

the radius r{ ball about y0 in CP2 lies in the chart φ0.

With rχ specified, set A. = hi on the compliment in CP2 of the ball of
radius r{ with center y0 . Inside said ball, set

\x\4 * *?
(6.8) φohi = ^0A, H- (1 - βr / 4 ) —j- * ψλ φ{ n0.

Meanwhile, set hQ = hQ in the compliment in M of the union of the
balls about each JC of g^-radius ε{. Inside the ball about x. of gM-
radius ε{, set

(6.9) Λ = ̂ Λ0 + ( l-£ i / 4 )«

Notice from (6.8) and (6.9) that

• ,4

(6.10) „*/, = U _ γ

~l(where βj/32 < |JC| < εj/16 i.e., on φ~l(Ui n t/0).

To define {Qf.}, it is necessary to choose rQ e (0, 1) so as to invoke
Proposition 3.15. Make r0 < r{/8. Its precise value will be specified in
Theorem 6.3.

When / > 0, make Q. = Q. on the compliment in CP2 of the radius
rχ ball about y 0 . Inside this ball, set

(6.11) - βΓ(>μ(P+(gE + m F S ) L r

where

(6.12) ^ o = ( 1 _ ^ / 4 ) . W ! .

and the metric ~g is defined in §3m.
As for Qo, on the compliment in M of the union of the balls with

center x. and g-radius ε{, set

(6.13) Qo Ξ P+(gM) Qo + gM ^

On the ball with center x. and J-radius equal to εχ, set

<Go = β^x/r0 91(P+(SM) Go) + fi,jt9*pM

(6.14) + f ; ( ^ - i >

+ ( A
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Here,

(Remark that the domain of #>*<20 's definition has been extended to where

λ/r{ < \x\ < By/32 by defining it to be equal to \x\4ψχφlQj/λ2 there.)

The preceding expressions for {<2/}jlo are justified in part by:

Proposition 6.1. Let M be a compact, oriented 4-manifold with metric

gM. Construct the conformal metric [g] on A/#NCP2 as described in §31.

Having chosen r0 subject to Proposition 3.16 's constraints, let ~g be the

metric on M that is given in §3m. Cover M#NξT_ by the open sets

{U]}f=o as described above, and introduce the metrics gt on Ui as above.

Let Qt be given sections over Ui of V+ (defined with g.) which obey

(6.3). Suppose that {A }*0 obey (6.6) and (6.7) with {βj j lo given by

(6.11)—(6.15). Require additionally that

// {Λ^ϋo is given by (6.8) and (6.9), then L[g][h] = [ β ] ; i.e., equation
(6.4) is satisfied.

The proof of Proposition 6.1 requires the following:

Lemma 6.2. Orient R4 with an isomorphism Λ4M4 ~ R. Let g} and

g2 be positive definite inner products, and use P±(gx 2 ) : Λ 2E 4 ~> Λ2R4 to

denote their associated self-dual and anti-self dual projections. If P+{gx)

ω = P_(g2) -ω = 0, then ω = 0.
Proof of Lemma 6.2. The first condition implies that ω Λ ω = c with

c < 0 unless ω = 0. The second condition implies that c > 0 or ω = 0.
Proof of Proposition 6.1. The verification of (6.4b) is left to the reader.
As for (6.4a), it is automatic on the compliment to the ball of radius

r0 about y0 on each CP2 . It also holds on the compliment in M of the
union of the balls with center xi and ~g radius ε{ . This follows using
(6.13) and Lemma 6.2.

To see (6.4a) on the remainder of UQ, focus attention on the J-radius

βj ball about one xr Since φ*0Qj = 0 for |JC| < ro/32, it follows that

φlLgJίt = 0 for |JC| < ro/32 and therefore LJpi = 0 for 32Λ/r0 < |JC| <

£j/4. Thus, on B{/64 < \x\ < ε{, the condition that LgJι^ = Qo reads

(6.16) * ; ( P + ( * Λ , ) ) L , ^
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This is (6.4a) on the relevant part of UQ . (Use Lemma 6.2.) To see (6.4a)
on the remainder of the Ui, remark that

(6-17) V o = /W o βo

on the radius ε,/8 ball about x.. This means that

(6.18) Lψ:Ψ;ΊP* = (ψlβmirJ-ψlQι>

where 8A/ε, < |* | < rQ/4. In turn, (6.18) allows ^ β z in (6.11) to be
written as

where Sλ/εχ < \x\ < r 0 . Equations (6.3), (6.8), and (6.19) imply (6.4a)
on the remainder of Ui.

(e) Existence and uniqueness. To make a precise existence statement
about (6.6) and (6.7) it is necessary to introduce C°°(V+) to denote the
set

n

j=0

for which

(6.20) φ Qo = ψ

on Ψ^UQ Π ί/) c M4 . (The choice of a metric g on MN in [g] will give

a natural isomorphism C°°(F+) ~ C°°(K+|A/# c p 2 ) . )

When measuring [Q], it will be assumed that each Q. has the following
form: For / > 1, assume that

(6.21) (OX/32) Qi = 9, + *i .Fsjij >

as in (4.16). For Qo, assume that

(6.22) [
L/=i

Given (6.21) and (6.22), set

(6.23) Δ,. = H^ll. r = 1 + 116,^11^ .^ , l l* 2 ) , | | , , > r = 1

then, with p > 0 given, set

(6.24) Δ o . ^ l M . + ll^.oll^.p ll̂ .oll,,,,-

Here, the norms for q0, bχ 0 , and b2 0 are defined using the metric gM

on M, while those for q.,bλi,b2 . are defined using g^ on C P 2 .
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Solutions {h.}*=0 to (6.6) and (6.7) will be measured using ||A0 | |^

and ||A.\\^ r = 1 with the former norm again defined by the metric gM on

M and with the latter defined by gFS on CP2 .

If Ao, hi>0 are defined only on Uo and Ui>0, respectively, and obey
(6.4a), extend the definition of Ao to the complement in M of the union
of the balls about x. with ^-radius λjrχ. (Use the formula φ*hQ =
\x\ ψ^φ^hjλ on the ball of radius ε{ about x..) With this extension
implicit, measure [A] = (Ao, A > 0 ) by
(6.25)

Γ N

L/=i

Here is the precise existence statement for (6.6) and (6.7):
Theorem 6.3. Let M be a compact, oriented 4-manifold with metric

gM. There is a constant Z > 1 so that when E > Z , the following is true.
The constructions o/§3 achieve

(1) Given μ0, μλ > 0, small ε > 0, and r = Z~ιE~~1/2, the conclusions
of Theorem 3.15 hold.

(2) With ro = Z~xE~Ίjl, the conclusions of Proposition 3.16 hold.
(3) In addition, there is a continuous, linear map

H: C°°{V+) -> C°°(Sym2 T*M) x"^ C°°(Sym2 Γ*CP2)

so that H([Q]) = (Ao, Al>0) obeys (6.6) and (6.7).

(4)7/ p = Z'iE'l/l2

9 then

(5) If [A] = { Λ ^ Q is defined by (6.8) and (6.9),

(6) If M = S4 with its standard metric, or if M = CP2 mϊA ^ F S

(l)-(5) above hold with έ = 1 and with ϊlE absent in (6.7). In particular,
[A] oforw (6.4).

7. Estimates on connect sums

The proof of Theorem 6.3 will employ the following strategy: Treat
(6.6) as an equation which specifies A. as a functional of two variables,
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h0 and Q.. That is, select a section h0 of Sym2 T*M and a section (λ

of VJV and solve (6.6) for A. = Λ.[Λ0, β.], a section of Sym2 Γ*CP2 .

Having understood hi in this way, (6.7) becomes a linear equation for
h0 with an inhomogeneous term which is a functional of Qo and £λ .

But for a slight modification, Proposition 5.7 will be used to find hi,
while Proposition 5.1 with some perturbation theory will find hQ . Thus,
the proof of Theorem 6.3 begins on CP2 and ends on M.

(a) Solutions on CP2 . Once hQ € C°°(Sym2 T*M) is specified, then
(λ in (6.11) becomes well defined. Invoke Proposition 5.7 to find

(7.1) / = H(Qt) € C°°(Sym2 Γ*CP2).

Now, / is not h. it must be suitably modified. The modification is
given first. The geometry behind the modification is described afterwards.

The description of / ' s modification requires the following auxiliary
lemma.

Lemma 7.1. Use p: ® 2 Γ*R4 -• Sym2 Γ*E4 to denote the symmetriza-
tion map. Let g be a metric on K4. There exists a continuous, linear map

v: C°°(Sym2:rV) -+ C°°(Γ*R4)

which has the following characteristics:
(a) (
(b) ^ ^ 0

(c) Let φ be a Gaussian coordinate chart for the metric g which is
centered at O e l 4 . Write φ*h - haβdxa ® dxβ and write φ*Vgh =

ΦgKβy dx<X ® dχβ ® dχϊ Then

(7.2) {φ~\v = haβ{Q)xadxf + caβfx
axβdx7,

where &caβγ = 0 and {caβγ} are linear combinations of {{Vgh)(Q)aβγ}.
Proof of Lemma 7.1. All of the assertions follow by assuming (7.2) and

using linear algebra to solve for {caβγ} in terms of {{Vgh)(0)aβγ} . q.e.d.
With Lemma 7.1 understood, here is hi: On the radius r0 ball about

y0, set

(7.3) Λ s ^ / + p V f t + l i l B (( l- i ί r o / 1 2 8 ) . t ;) f

where υ = v(φ*of) is given in Lemma 7.1. On the compliment of said
ball, set h{ = / .

Here are ht *s properties:
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Proposition 7.2. There is a constant c which makes the following true.

Fix r0 to invoke Proposition 3.16, and let Qi be a section of V+ over the

compliment in CP2 of the radius rQ/32 ball about y0. Suppose Q. obeys

(6.21). Let hQ e C°°(Sym2 T*M) be given and define Q{ by (6.11).

Define f by (7.1) and A. by (7.3). Then

(2) If p> ε{, then

(3) Let B c CP2 denote the radius ro/64 ball about y0. Then

KM -c ' ( Λ A
Here, Δ w defined in (6.23).

There is a promise to keep before proving this proposition—namely a
justification for / ' s modification in (7.3). The ability to make such a
modification and still claim the proposition's first assertion follows from

Lemma 7.3. Let X be a 4-manifold with metric g having W^ = 0.
Then Lg{p . Vgv) = 0 for all v e C°°{T*X).

Proof of Lemma 7.3. This is the infinitesimal version of the fact that
the equation W+ = 0 is covariant under the action of X 's group of dif-
feomorphisms. q.e.d.

Thus, Lemma 7.3 says that equation (7.3) is a permissible modification
of / . But why change / at all? Here is a heuristic justification for
this change: Remember that the conformal metic [g] in Theorem 3.14
was constructed by carefully tailoring the coordinate systems in Definition
3.1 to the ambient metrics on M and CF 2 . (Try recovering Theorem
3.14 without Gaussian coordinates.) One should expect that a change in
the ambient metrics should produce a corresponding change in the connect
sum coordinate systems. Now h0 and hi>0 are only changes in the metrics
gM on M and gΈS on CP2 . With this understood, v in (7.3) is the
linearization of the predicted change in the connect summing coordinates.
(Remark that (a) and (b) of Lemma 7.1 are linearizations of (3.5).)

(b) Estimates for / . The estimates for hi in Proposition 7.2 obviously
follow from estimates of ||/H_g^r=1 and of the derivatives of / in the ball
B. Indeed, Proposition 7.2 is a corollary to

Proposition 7.4. There is a constant c with the following significance.
Make the same assumptions as in Proposition 7.2. Then f 0/(7.1) obeys

(1) h
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(2) supB WgJ\grs < c • (r~ιAt + \\h^J.

(3) supfi | V j V | ^ < c • (r-2Δ,. + In^/r.) | |A0 | |^,).

The proposition's proof has two parts. The first part estimates the
|| | | ^ j-norm of / . The second estimates / ' s derivatives.

Proof of Proposition 7.4. \\f\\^ {: The dependence of | | / | |^ ι on the
β-norm follows directly from Proposition 5.7. At issue is the dependence

The dependence of | | / | |^ { on h0 can be seen after observing that the
second term in (6.11) has the form

(7.4) Q' Ξ k2 • vJ2

s(/?ro/8/>o) + k,VgJβroβpo) + βrJi V o

Here, {ka}a=0 χ 2 are smooth with compact support where ^ < |JC| <
rι/2. Furthermore, if 0 < n < a, then

The analysis of (7.4) can be made in one swoop; even so, a different
tack will be taken. (The different tack simplifies the derivative estimates
in the next subsection.)

To define this new tack, introduce K as the smallest integer which
makes

(7.6) 2'κrx < ro/8.

Thus,

(7.7) 0 < K < c ln(ro/r{ + 2).

Next, consider the partition of unity

(7.8) i = βrJ2+f α - βrι/r)βΓι/r+ί + (i - β
«=2

Multiply Qf by (7.8) and it decomposes as

w h e r e Q'{n) has support w h e r e rχ/2n~λ <\x\< rχ/2n+ι.
Since the map H in Proposition 5.7 is linear, / has the corresponding

decomposition
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where f{n) ΞΞ H{Qί{n)) and f{0) is H{(φ~ι)(l - Ψχβι6λ/r) Qf).

Lemma 7.5. For n > 1, Je^nβ / * fey (7.10) wί7A Q. . given by

(7.4H7.9). ΓA^ i

Note that Proposition 7.4's first assertion is a direct consequence of this
lemma. (Sum over n .)

Proof of Lemma 7.5. This Q('Λ) has the same form as (7.4) but with
ka,(n) Γ e P l a c i n S K a n d ̂ Λ ί1 ~ ̂ r1/2"-1) * ̂ /2"+^0 Ξ Pθ.(ιi) r e P l a c i n S

j?Γ / 8 p 0 . Here, ka ( π ) obeys (7.5) and has support where r{/2n+l < \x\ <

Γ . / 2 - 1 .
With the preceding understood, write

where

and

(7.13) bx^k2{n) gJ0Λny

Having written Q' as in (7.11), Lemma 7.5 follows from
Lemma 7.6. With q, b{t and b2 defined above,

(1) Il«il,,r=1<c 2-2n r ί . p o | | ^ .

(2) IIMbo ; r = 1<c2-2"-ri.

(3) \\b2\\h!r=i<c \\K\^,p-
Proof of Lemma 7.6. Assertion (2) is a useful exercise for the reader.

To prove (1), note first that \pQ\ < c HAQH^ . Thus,

(7.14) ί dvol h(n)\

is bounded by c 2~~2nr\ . H/y^ . Note second that

(7.15) \\KΛn)V

gJθΛn)\l,r^<^^2nrr\^gJθΛn)h^^

using Holder's inequality. (The norm || \\2m^r is defined in (4.12).) Now,

the || \\2m Γ = r n o r m and the || | |^i r = 1-norm of V^ s P O f ( Λ ) can be esti-

mated by using ψλ to change coordinates from an integral over an annulus

^ C 14\{O} to one over ψλ{&) c l 4 \ { 0 } . This latter integral is readily
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bounded with the || \\^ -norm of h0 . The details provide an exercise
for the reader.

(c) Derivative estimates for / . The derivative estimates for / are ob-
tained by summing bounds for the derivatives of the {f^}n>0 in (7.10).
The latter are found after the following considerations: Recall that each
f{n) is constructed from a u{n) e C°°(V+) using (5.14). For CP 2 , this
means that

since both v_ and φ in (5.14) necessarily vanish. (Indeed, (5.14) on CP

implies that V* Vo φ = 0 so Vo φ = 0.)
#FS #FS #FS

Meanwhile, w(n) is determined by the corresponding β(Π) via

with c > 0 a constant.
For each n, Qf

{n) vanishes if |* | < d{n). Here, d{ϋ) = ro/32 and if

Λ > 1, rf(Λ) = rχ/2n+ι which is no smaller than rQ/32. This means that

«(Λj and all of its derivatives to order A: on the radius ro/64 ball about >̂ 0

are determined a priori by dZΪ llw^JI^ using standard techniques (see,
e.g., [2]). Note that Proposition 5.4 bounds

Meanwhile, (7.16) determines f,n, and its derivatives to order k on the

radius ro/128 ball about yQ in terms of d~^ H/^H^ and the derivatives

of w(n) to order k + 1. The argument is also classical [2]. (Or, appeal to

§4, here, to use only u,n) 's derivatives to order k.) Note that 11/̂ )11̂  is

bounded by H / ^ l b v ^ .
Working out the details is a straightforward exercise that gives (for

n>\)

For n = 0, the right side above is replaced by c - r^A. and c r~2Ai,
respectively.

Sum (7.19) over n to get the final two assertions of Proposition 7.4.
(Use (7.7).)
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(d) Solutions on M Equation (6.7) will be treated by invoking Propo-
sition 5.1. To do so, assume E is large enough to invoke said proposition.
Consider now that (6.7) is solved by h0 obeying the fixed point equation

(7.20) Λo = H ( β o [ Λ o , β o , Q ]).

Here, Qo from (6.13)—(6.15) should be treated as a functional of QQ,

Qi>0, and h0. The dependence on Qi>0 and hQ is implicit through

{hi>0} . Here it is assumed that rQ has been chosen so that Proposition

7.2 can be officially invoked to construct {hi>0} .

With rQ chosen for Proposition 7.2, let U C CP2 denote the com-
plement of the radius rQ/32 ball about y0 and let U' c M denote the
complement of the balls about the xi>Q with radii λ/rQ.

Proposition 7.7. Let M be a compact, oriented A-manifold with metric
gM. A constant Z > 1 exists so that when E > Z , then the following is
true: §3's constructions achieve

(1) Given μQ, μι > 0 and small ε > 0, the conclusions of Theorem 3.15

hold using r = Z"~xE~112.

(2) Using r0 = Z~{E~Ίj2, Propositions 3.16 and 12 can be invoked.
(3) With E as above, Proposition 5.1 can be invoked.
(4) In addition, with Qo as defined on (7.20) 's right side, a continuous,

multilinear

HQ: C°°(VJϋt) χf=1 C°°(F+ |α) - C°°(Sym2 T*M),

exists with the property that hQ = HQ(QQ, Qi>0) obeys (7.20).

(5) If p = Z~ι - E~lfl2, then

with Ai>Q and ΔQ as defined in (6.23) and (6.24).
The proof of this proposition occupies the next three subsections.
(e) The contraction mapping theorem. Let 3S be a Banach space with

norm || || and let (9 c SB be a closed subset. A Lipschitz map T\@ -+ @
is said to be a contraction if a < 1 exists so that \\T(x)-T(y)\\ < a-\\x-y\\
for all x, y e (9.

The contraction mapping theorem asserts that such a contraction, T,
has a unique fixed point on (9 (see, e.g., [15]).

In the present case, the Banach space in question is the space S* which
is obtained by completing C°°(Sym2 T*M) using the norm || \\^iP.
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(Different choices of p give commensurate norms on C°°(Sym T*M).)

The closed domain in question will be J ? itself and the map T is H Q0.

Since H-Qo is a linear map, the verification that H Q0 is a contraction

requires only an appropriate estimate of \\H Qo\\^ p -

(£) The size of H Qo. In (6.13)-(6.14), Qo is presented as the sum

of three terms. The first term is

(7.21) Q' EE | ί W V / ]| Wo] * PMQo

According to Proposition 5.1, when p and r are appropriately constrained
in terms of E, one has

(7.22) \\H(Q')\\j?yP < Z{\p + p2/r2 \ r ) .

The second term, Q" , of QQ has support only in an annulus about each
xi>Q. In the radius e/2-ball about x., this piece is

(7.23) *;<ίM β l /8**+(*,) Λ Γ Ϊ ^

The || ]\g> -norm of H{Qn) will be estimated using Proposition 5.1

with pt given in (6.15).

by

(7.24) ||#(β")IU,f, < Z - ί||βΊl.f p + ^ l l β \ i Γ J -

The norm \\Q"\\+ p is estimated by
Proposition 7.8. Let M be as in Proposition 7.7 with its metric gM.

A constant Z exists so that the constructions in §3 achieve the following:
(1) Given r, μ 0, μχ > 0 and small ε > 0, the conclusions of Theorem

3.15 hold
(2) Choose r0 to invoke Propositions 3.16 and 12. Use (7.23) to

define Q". Then for all p>r, one has, in addition, that

||<2"IL,, < Z P2 {ln(ηΛo) IIM^.p + Γo"2~PΔ/}

This proposition is proved in §7h.
The final part of Qo is

(7.25) ^-(i f a - ' + (ίΛ^

Use Proposition 5.1 to estimate \\H{QIΠ)\\^ with the help of
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Proposition 7.9. With the same assumptions as in Proposition 7.8, one

can assume the following in addition to said proposition's conclusions: De-

fine Qnt by (7.25) and it has a decomposition as q + bχ*V b2 for which

This proposition is proved in §7i.
(g) Proof of Proposition 7.7. Set E to invoke Proposition 5.1, and set

r0 to invoke Propositions 3.16 and 7.2. Take p, r to obey Proposition
5.Γs constraints:

(7.26) P<Z~\ pUE > Z" 1 , EΊr2 < Z.

Now, observe that (7.22), (7.24) and Propositions 5.1, 7.7, and 7.8
imply that

!

2 2

r r0 i>o

+ [/>2.ln^)+(/>2 + r0

2)(l+(r2/r2))]

\\H(Qo

(7.27)
4- I n1 .In ί 11 \ 4- in* A- rZ\(\ +(r*/r

Z))\ \\ho\\ -

Thus, H(Q0) is a contraction mapping if, for instance,

(7.28) p2 ln(riy/r0) + (p2 + rj)(l + rj/r2) < I.

Equations (7.26) and (7.28) are readily seen to be compatible; choose
E > Z , p = (2Z£)~ 1 / 2 , and r = ^ ( Z " 1 ^ " 1 ) 2 7 7 . This will satisfy (7.26).
Take ro = r and (7.28) is then satisfied for large E .

Thus, with these choices, H(Q0) is a contraction mapping and so (7.20)

has a unique solution in Jϊ?. This solution is in fact smooth because Qo is

smooth automatically. (This is because hi is smooth on the radius ro/32

ball about y0 since Qt vanishes there no matter what h0 is.)

(h) Proof of Proposition 7.8. First observe that φ*Q" has support on
the annulus ε 1 / 8 < |x| < εχ/2. Second, observe that Proposition 7.2's
third assertion implies that

(7.29) αn(r 1 /r 0 ) . | |Λ 0 | | ^ / , + r0-
2Δ/).

The next step calculates | | β / ; | L ^ f r o m (7.29). For this purpose, note
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that Q" contributes to

(7.30) I

not at all unless

(7.31)

And, when (7.31) is obeyed, then (7.29) implies that Q" contributes no

more than

(7.32) c-λ2 - (ln(rj/r0) | |A 0 | |^^ + r o " % ) ' ((dist^(x, *,•))* + ^ Γ * .

Add up these contributions from the xi>0 by copying Proposition 3.16's

proof from equation (3.70) on. The only changes are cosmetic. The result
is Proposition 7.8.

(i) Proof of Proposition 7.9. This proposition is actually a corollary to
Proposition 3.16 since one can write β '" as follows with the introduction
of m~J~gM\

Q = kQ(m) - (m <8> X? Λo) + kχ{m) (Vg m<g>nQ)

(7.33) + ^ 2 ( m ) ' ( ^ m®Vg h0) + k3(m)({Vg m)®2®A0).

Here, /:α(w) is a tensor which has an expansion
CO

(7.34) ^α(Λ) = ZL̂  Ca n'a

that is absolutely convergent for \a\g < 1. The coefficient tensors {ca n}

are universal, covariantly constant tensors.

With (7.33) understood, write β" as q + bx Vg b2 with ^ being the

last two terms in (7.33). Meanwhile, set

b{ = {kQ{m)®m,kχ{m)®hQ),

and

(7.35)

(j) Proof of Theorem 6.3. Only the theorem's final assertion needs prov-
ing, as the other assertions follow from Propositions 7.2 and 7.7.

The norms for {AJ/ > 0 are bounded with the aid of the bounds for the

norms of {A ;} ί>0. Start with / > 1. The || | | ^ r = 1-normof φ$ι βr m'^i ^s

less than the sum of the norms of h. and βr p2'(
ι~~βr μ)'\x\4ψχ9*ho/λ2

The || | | ^ r = 1 - n o r m of the latter is uniformly bounded by the || | | ^ -norm

of Ao . One can prove this by mimicking Lemma 7.6's proof.
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As for h0 , the || H^^-norm of [ Π £ I ( P Γ ! ) * / * W / Γ 1 'K c a n b e bounded

by considering the separate contributions of h0 and {βu,r (1 - βε / 4)

\x\AψχΨohi/λ2}i>{ to the integrals which enter the || \\^ ^-norm's defini-
tion. By considering separately the contribution of

(7.36) ] ^

to said integrals, one arrives at the same sorts of considerations which
appear in Proposition 7.8's proof. That is, one ends up summing over i
expressions of the form

(7.37) c λ2 . (ln(r{/r0). | | λ o | | ^ + /-"%.) ((dist^(x, xtf + λ2/r2

0)~\

(One considers here those x. for which dist^ (x, x.) < p + ε{.) The eval-
uation of a sum over / of terms as in (7.37) is accomplished by mimicking
Proposition 3.16's proof.

The details here are straightforward and omitted except to note that the
derivation of (7.37) and (7.36) is facilitated by writing (7.36) as the sum
of

(738) ^

and

(7.39)

Then, (7.38) is analyzed using Proposition 7.2 to bound the «th (« =
0 , 1 , 2 ) derivative of (7.38) by

(7-40) c • β64λ/ro (1 - fi,ίfl) φs'(i* (^) Λll*,, + 'o

Meanwhile, integrals of (7.39) and its first derivative should be evaluated
by using the strategy in Lemma 7.6's proof.

Assertion (6) of Theorem 6.3 follows by replacing references to Propo-
sition 5.1 in this section with references to Proposition 5.7.

8. Prescribed W+

Invoke Theorem 3.15 to describe MN = Λ/#ΛΓCP2 with its conformal

metric [g].
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The purpose of this section is to consider aspects of the prescribed
curvature equation on MN :

(a)
[ ' ' (b) hi = φijhj ontΛΠt/..

(Refer back to §31 for notation.) It is assumed that [q] = {qi € COC(F+|{7)}
in (8.1) has been a priori specified, and that

Qi onUt,, « - ( )
1 ' ^ (b) qi = φij qJ on U, Π Uy

(a) Quasi-solutions to (8.1). In general, small eigenvalues obstruct (8.1)
the way small eigenvalues obstructed (6.4). Remember: In §6, small eigen-
value problems were avoided at the expense of the TlE factor in (6.7). The
small eigenvalue issues in (8.1) will be avoided with a similar strategy.

Here is how to avoid small eigenvalues: First, relate (8.1) to (6.4) by
rewriting (8.1) as

(8.3) V ' = β<*
where

(8.4) β, = q( - *2(Λ,.) (A,. ® V®%) - *,(*,.) (V, A,)®2.

Here, {kQ(h)}as=ι 2 are tensors whose values at x are analytic functions
of h(x) as long as |A(JC)|A < 1. (Expand P+{gW+{g + h) - W+{g) in
powers of h .)

Fix E and consider (6.6) and (6.7) with Qt defined in (6.11) and (6.14)
using Qi in (8.4). Here, one must consider {A.} in (8.4) as being given
in terms of {ΛJ by (6.8) and (6.9).

If the resulting nonlinear equation for {Λ ;}^0 has a solution, use (6.8)

and (6.9) to construct {AJ^0 from said solution.
Call the resulting [h] an E-quasi-solution to (8.1).
To be somewhat more precise, introduce C°°(Sym2 T*MN) as the

Frechet space of [h] in X^0C°°(Sym2 7*1/,.) which obey (8.1b). (The
choice of a metric in [g] 's conformal class identifies this space with
C°°(Sym2rMN).)

Next, use (6.8)-(6.9) to define a linear map,

(8.5) *: C°°(Sym2 T*M) x ^ , C°°(Sym2 T*CF2) - C°°(Sym2 T*MN).

With E specified, let HE denote the map in Theorem 6.3.
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Definition 8.1. An £-quasi-solution [h] e C°°(Sym2 T*MN) to (8.1)
solves

(8.6) [h] = t HE([Q])9

where [Q] = {£•[*]}£<) is given by (8.2).
Note. An £"-quasi-solution to (8.1) may be an honest solution under

certain precise circumstances:
Proposition 8.2. Fix E to invoke Theorem 6.3. Let [Q] be given by

(8.2) and let [h] obey (8.6). {So, [h] is an E-quasi-solution to (8.1).)
Then [h] is a bona-fide solution to (8.1) if

Here, {δ.}£0 = HE{[Q([h])]) and Qo is given by (6.14) using Qo and

Chi}f=o 0s above.
Remark that (8.7) is a finite-dimensional system of equations, and so a

quasi-solution fails in only finitely many ways to solve (8.1).
Proof of Proposition 8.2. This follow from Proposition 7.1. q.e.d.
Theorem 8.3, below, is an existence theorem for quasi-solutions.

To state this theorem, reintroduce C°°(V+) as defined prior to Theorem

6.3. When p > 0 has been specified, defined a norm on C°°(V+) by

assigning to [q] = {q;}f=0 the number

N
- 1 >(8.8)

If d > 0 has been specified, set

(8.9) ap%d = {[q] e C°°(V+): \\[q]\lp < d}.

This space is an open subset of the Frechet space C°°{V+) so a Frechet
manifold, k

Theorem 8.3. Let M be a compact, oriented 4-manifold with metric
gM. There exists Z > 1 so that when E>Zf the following are true.

(1) Given μ0, μχ > 0, small e>0, and r = Z~ιE~7/2, the conclusions
of Theorem 3.15 hold.

(2) With r0 = Z~ιE~Ί/1, the conclusions of Proposition 3.16 hold.
(3) With E as given, the conclusions of Theorem 6.3 hold.
(4) In addition, with d = Z " 1 and p = Z~ιE~ι/n, a smooth map

T\3B d-+ C°°(Sym2 T*MN) exists with the property that T[q] = [h] is
an E-quasi'Solution to (8.1) in Definition SA's sense.
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(5) With p as above, define ||[A]||_g, p as in (6.25) and then

(6) If M = S4 with its standard metric, or if M = CP2 with g^, then
(l)-(5) hold except that [h] is an honest solution to (8.1).

The remainder of this section is occupied with the theorem's proof.
(b) Contraction maps again. Here is how to prove Theorem 8.1: Com-

plete C°°(Sym2T*MN) using the norm \\[-]\\j?t/f of (6.25). Use & to
denote the resulting Banach space. Find a solution in S? using the con-
traction mapping theorem, and then prove that said solution is C°° .

The contraction mapping theorem (see §7e) can be invoked on a closed
domain in 5? where toHE([Q{-)]) is a contraction.

Lemma 8.4. Let M be a compact, oriented 4-manifold with metric

gM. Theorem 6.3 has one further conclusion: Suppose that [Q] is given by

(8.2). Then the map t o HE([Q(-)]) is smooth, and a contraction mapping

on the closed domain 0 = {[h] e<9>: \\[h\\\# p <Z~1}.

Proof of Lemma 8.4. Introduce Q*. = Qi - q.. Then write out

Q/(A + m) - Qfo) as

ra,Λ) ( r a 0 V - A)+ j 1 (ra, A)(A 0 V. ra) + sJm9 A)(V. m 0 V. A)
7 v &i * Si ' 3y / κ g( %i

( 8 1 0 ) + 54(m, A)(m 0 (V^.Λ)02) + J 5 (m, A) - (A 0 (V^ m)®2).

Here, {ία(fl, £)} are tensors which, at x, are analytic functions of a{x)

and ό(x) when \a\^ + |6|^ < 1. Indeed, each 5α has an absolutely

convergent (for \a\^ 4-16|̂  < 1) expansion of the form

(8.11) sa(a,b) =

with ^(/z') universal, covariantly constant tensors.

With (8.10) understood, write Q^h + m) - βJ(A) for / > 0 as

#z + ^i ,Γ ^zPij' where #. denotes the last three terms in (8.10), while

(o.izj Dι j = {SQ(m9 h) <g> m 9 s{(m, h)<& h)

and

(8.13)

For / = 0, one must write Q'0(h + m) - QO(Λ) as ^ 0 + i j 0 V^ 6 2 0 ,

where bιQ and fc2 0 are given by (8.12) and (8.13), but where q0 is'given



ANTI-SELF-DUAL CONFORMAL STRUCTURES 239

by the last three terms in (8.10) plus an additional term:

*o (™ ® (V,o - W ) + s,[h 9 (V-o - V j V ^ m ) .

With q.9 blti, and b2 . so defined, introduce the numbers Δo and
Δ using (6.23) and (6.24). A direct calculation (use Lemma 3.13 and (3)
of Theorem 3.15 to estimate V. - Vσ ) shows that

(8.14) Δ o + supΔ,. < c• \\W\\<? p • \\[m]\\<?

Equation (8.14) and assertion (5) of Theorem 6.3 imply that

(8.15) | | t HE(Q([hx])] - t. HE(Q([h2]))\\j?,p <Z-v \\[hx - h2]\\^)P

w h e n Wh^p + Wh^^v <{.
Lemma 8.4 follows from this last equation since Theorem 6.3's fifth

assertion also gives

(8.16) l|ί ^£([ί])ll^ f /,<z ll[ϊ]IL .̂

(c) Proof of Theorem 8.3. When the conditions of Theorem 6.3 hold,
Lemma 8.4 asserts that t o HE{[Q]), with [Q] in (8.2), is a contraction
mapping on the indicated closed domain (9 c 5?.

The contraction mapping theorem and (8.16) provide a constant Z
(depending on M and gM only) so that when (8.16)'s right side is Z " 1

or less, the map toHE{[Q]) becomes a contraction mapping on the domain
(9 in Lemma 8.4.

Thus, when (8.16)'s right side is less than Z"*1, (8.5) has a unique
solution [h] in (9.

The fact that [h] is smooth can be proved by applying some classical
regularity theory to (5.23) and (5.14). These techniques can be found
in Chapter 6 of Morrey's treatise [17] and the reader will be spared the
details.

By the way, the same techniques (and almost the same argument) proves
that h varies in C°°(Sym2 T*MM) analytically when q varies in C°°{V+).

This establishes the first five assertions of the theorem. The last assertion
follows by the identical arguments, but augmented with assertion (6) of
Theorem 6.3.
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9. The small eigenvalues

Theorem 3.16 constructs a conformal metric on MN = M#NCP whose

Wχ is supported on the open set Mι. Since [g'M] = [g] on M', W^\g\

can be measured using

(9.1) I I ^ ] I L ; , Ξ | T O ^ ] | | , , , ; Λ , ' >

where the latter norm is defined in (3.36) using gM for gχ .

With respect to the notation in §31, ^\gM\ = ^ [ £ o l o n t h e ° P e n s e t

c/0, while r + [ y = o.
Understand the preceding, and the following becomes a simple corollary

of Theorems 3.15 and 8.3.
Proposition 9.1. Let M be a compact, oriented, 4-manifold with metric

gM . There exists Z > 1 with the following significance. Fix E to invoke
Theorem 8.3, and fix μ > 0. If N is large and [q] is given by

(9-2) [4] = {<!i = -'r+l&$lt»

then (8.1) has an E-quasi-solution [h] which obeys

(9-3) \\[h]\\<?,p<Z \\W+[g]\l p<μ.

Here, p = Z-χE
Note. Were [h] above a bona-fide solution to (8.1), then the data

(9-4) [S + Al-te + Λjilo
would define a conformal metric on MN (N > Nμ) which has W+ = 0.
Proposition 8.2 gives precise conditions when the quasi-solution is a bona-
fide solution.

Proposition 8.2 suggests the following question: Can §3's constructions
insure (8.7) when [q] is given by (9.2)? Here is the answer:

Theorem 9.2. Let M be a compact, oriented 4-manifold with metric
gM. There is a constant Z o > 1 with the following significance. Fix
E>Z0.If

(a) the number of Proposition 3.11 's iterations is large,
(b) the parameters (Z{, ε) for each iteration are chosen with Zx large

and ε small, and
(c) the data for §3k's Cokernel Step is chosen appropriately,

then Proposition 9.1 can be invoked using [g] from Theorem 3.15 and
the resulting [h] is such that W[g + h] = 0.

Remark that Theorem 9.2 is superfluous when M = CP2 and gM =
grs. In this case, assertion (6) of Theorem 8.3 and Theorem 3.15 yield
Floer's theorem [7]:
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Theorem 9.3. For any N>0, #ΛΓCF2 has metrics with W+~0.
The remainder of this section is occupied with Theorem 9.2's proof.
(a) The strategy. The proofs first stage breaks (8.7) into a sum of

pieces which are small but one. This one large piece comes from W^g\.

To state the precise result with minimal notation, agree henceforth to

identify W+[g] for the conformal metric [g] from Theorem 3.15 with

^[gtf] 's restriction to Mf. Likewise, after / iterations of Proposition

3.11, one can identify W+lg^] with W+[g{l)ys restriction to M(/). With

this understood, one can measure ^+[g^] by declaring

(9-5) W+\g(l)]\l>p^W+[gM^l^^'

where (3.36) defines the latter norm using gM for gχ.
The first stage of Theorem 9.2's proof results in
Proposition 9.4. Let M be a compact, oriented A-manifold with metric

gM. There is a constant Z with the following significance.

(a) Fix E to invoke Proposition 9.1 using μ < E~%. Then

\\nE • (LgMh0 - Qo) + πE-P+(gM).W+[g]\lp < Z-E'W W+[g]\lp.

Here, p = Z " 1 £ " 1 / 1 2 .
This proposition will be proved shortly; accept it now so that the second

stage of Theorem 9.2's proof can be described.
For the purposes of such a description, introduce

(9.6) W = P+[gM]

Given g{n~1^, remark that W is completely determined by the choice
of parameters for the Cokernel Step. These parameters are: (1) The set

ΩΛ c M{n~l), (2) a ^Γ^-orthonormal f r a m e Λ i n τ*M{n~X)\χ at each
x € Ωn, and (3) the choice of A, ε{, ε2 at each such x. With (3.61)
understood, this last choice is a choice for ε , Z 5 and μ0 in (3.61) plus
choosing {μχ € (0, 4/*0]}x e^ .

The second stage of Theorem 9.2's proof shows that nE W can be
the dominant contribution to nE - P+(gM) ^[g] This second stage also
analyzes the dependence of nE W on the parameters of the Cokernel
Step. To summarize the result of said second stage, introduce

(9.7) <δd Ξ I v € Range(π^): sup \v\ < d \.

Here is the promised summary:
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Proposition 9.5. Let M be a compact, oriented 4-manifold with metric
gM. There is a constant Z o > 1 with the following significance: Make E
large and then make μ0, μχ small. If

(a) there is a large number, say (n - 1), of iteration steps in Proposition
3.11,

(b) the parameters (Zχ, e) in each step are chosen with Zχ large and e
small, and

(c) in (3.61), Z is large and ε = e(n) is small,

then, the points Ωn c M{n~ι)

 f the frames {/# € FM{n~x)\χ}χeςin can be

chosen, and a smooth map

(9.8) A:

can be defined so that when

(9.9)

in (3.61), then

(1) { n l

(9.10) (2) ^ p ^

(3) \\πE W-μ0.v\liP<E-l.ZQ.μ0-\\vlp.

Here, p^Z^ιE'ι/ι2.
Accept this proposition for now. Here is the final stage of Theorem

9.2's proof.
(b) Proof of Theorem 9.2. The proof follows quite readily from Propo-

sitions 9.4 and 9.5 if one is given
Lemma 9.6 Let M be a compact, oriented A-manifold with metric

gM. There is a constant Zχ such that if E > 0 and p > 0 are given, and
if v € Range(^), then

Given this lemma, to prove Theorem 9.2 pick E large enough and
μ 0, μχ small enough to invoke Propositions 9.1, 9.4, and 9.5.

Now, introduce p = Z^XE'X^X1 as in said propositions and set

(9.11) 0E = {v e Range(π£): \\v\lp < ^p2Z~^Z;x . £ " 4 } ,

with Z o { given by Proposition 9.5 and Lemma 9.6, respectively. Note
that Lemma 9.6 insures

(9.12) ^ c » z - ,
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with S3Z-, as in (9.7). Thus, μ of (9.8) is defined on 0E .

With g(n~- determined, and with the Cokernel Step's parameters de-
termined via Proposition 9.5, with the choice of v e @E , then the confor-
mal metric [g] from Theorem 3.15 and [h] from Proposition 9.1 become
continuous functions on &E. In particular, the assignment to v e @E of

(9.13) F{v) = μ-o

x.πE{LgMhϋ-Qϋ)

gives a continuous map from ffE to Range(π£).

Propositions 9.4 and 9.5 can be interpreted to say that

(9.14) F(v) = u+R(u),

where

(9.15) \\R(u)\l < Z2 • E~IP (\\v\\ + % 2 ) + £ V

Here, Z 2 is determined a priori from the metric gM on M. (Take
2

Now, take E > (8Z2)7 and require that

(9.16) ^ i < T 6 # ^ o * z o z i # j f e '

with Z o { as in (9.11). These choices insure that R maps 0E to itself.
Furthermore, if v is on the boundary of @E , then

(9.17) l l ^ |

) I L > / ? < ^

Equation (9.17) with the Brouer Fixed Point Theorem (cf. [8]) insures that
F in (9.14) has a zero on &E, i.e., F'\θ) φ 0 . This proves Theorem
9.2.

The current subsection ends with the
Proof of Lemma 9.6. Let {ua} be an zΛorthonormal basis for

Range(π^). Write v = £ α ca ua . Then

( 9 J 8 ) IÎ Hoo - Σ lCαl H^αlloo - ^IMIz, 2 "
α

This uses Lemmas 4.15 and 4.16. Then,

(9.19) \\u\\2

L2 < Ili/H^ - \\u\\Lι <Z.p-2- M^ | | i/ | | . ^ .

These last two equations give the lemma.
(c) Proof of Proposition 9.4. Note first that Proposition 4.14 estimates

the || ||^ ^-norm of πE Q in terms of the || ||^ r-norm of Q.
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With the preceding understood, start the proof by decomposing β 0 =
Q' + Q» + Q'" 9 where Q', Q", and β'" are given in (7.21), (7.23), and
(7.24), respectively. The estimate of Q* requires bounds for {\tP, Δy} .
The latter are obtained from (8.2), (8.13) (with [m] = [-A]), and (9.2):

(9.20) Δ ^ Z

"ΊGiven (9.20), Propositions 7.8 and 7.9 bound ||<2"ll..r and \\Q" ι u r „,

(9.21) Z r2 ln(r,/r) (||2T;||.f/> + (1 + 1/r2) ||IΛ]|£>Γ).

Meanwhile,

(9.22) \\Q' - P+(gM) ψ +[g)\ltr < Z • \\[h]\\lr,

which can be derived directly from (9.2).

Plug in Theorem 8.3's values for r and p (r2 = Z~ιE~η and

p2 = Z~ιE~ι/ι2) to find

As for πE Lg Λo, one must remember first that Λo is computed from

u (= ώ0) using (5.14), where u is given by (5.22) using Qo for Q. Since

nE - u = 0, one has πE - L - hQ = πE q', where <?' is given by (5.33).

Lemma 5.5 estimates ||#'m r in terms of ||w||^ , while Proposition 5.4

estimates ||w||^ in terms of β 0 . Work through the details to find

(9.24) \\nE-LL\\<E-l/6-(

too.
Proposition 9.4 is established by (9.23) and (9.24).
(d) Choosing points Ωn . This subsection begins the task of specifying

the Cokernel Step's parameters. For this purpose, one should assume that
some large number (n — 1) of Proposition 3.1 Γs iteration steps have been
completed. The values of (Z 1 , ε) in each of these steps should be taken
so that Z1 is large and ε is small.

The set ΩΛ will be determined a priori from another finite set, Ω' c

M^n"ι). Choose Ω ; by picking a small number ε(n) > 0 and then invok-

ing Lemma 3.8 using ε = 200 ε(n) (and the metric g{^~l)) to obtain a

set Ω c M. Finally, set

(9.25) Ω ' = { X G Ω: { \



ANTI-SELF-DUAL CONFORMAL STRUCTURES 245

Each y e Ω' wiU spawn 30 points, {x\y) , , χf$} c Ω π . Each

x{y) will lie inside the ^ " ^ - r a d i u s 100 e(n) about y. Meanwhile, the

{ ^ } o i i wiU be separated by a ^~ 1 }-distance 2e(n) or more. Thus, ε
in (3.61) is equal to ε(n).

In fact, choose { Λ £ } α = 1 in any convenient manner, subject to the pre-
ceding two constraints.

(e) 3 x 3 symmetric, traceless matrices. The choice of frames for the
points in Ωn requires a preliminary digression concerning the vector space,
V, of 3 x 3 traceless, symmetric matrices.

To begin the digression, remark that SO(3) acts irreducibly on V by
conjugation.

A convenient basis for V is given as

(9.26)

Note that this basis is orthonormal using the (SO(3)-invariant) inner prod-
uct \tx{vxv2).

The preceding basis has the following added properties:
Lemma 9.7. For any pair (i, j), the matrices e{ and e. are conjugate

by SO(3). So are et and -ej.
Proof of Lemma 9.7. This is an exercise, q.e.d.
Now, reintroduce the matrix

(-2 0
(9.27) Ao = 0 1 0

V o o l
which appeared in §3 as conjugate by SO(3) to the value of W_{g^) at

e SO(3).

The {^}/=1 are related to Ao via
Lemma 9.8. For each i, both 3 ei and -3-et are conjugate by the

SO(3) action to 2 Ao + α0 • Ao a^1.

Proof of Lemma 9.8. Calculate that 3 e5 = 2 Ao + aQ Ao a~ι and

then use Lemma 9.7.

any point

(9.28)

of CT2. Also introduce

( °
I o

1
0
0

0
0
1
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(f) Choosing frames. The specification of Ω' required the choice of a
constant ε(n) > 0. This ε(n) will be very small, and, in particular, small
enough so that 200-ε(w) is much less than g^"l) 's injectivity radius. With
this understood, the radius 200ε{n) ball about y e Ω' can be assumed to
lie well within a Gaussian coordinate chart with center y .

Choose a ^Γ^orthonormal f r a m e Λ € F™{n~X)\y
 t 0 d e f i n e s u c h a

coordinate system with y as center. (Use the metric g{^~X) here.) Use
this coordinate system to trivialize the bundle V^[g^~ι)] over the radius
200 ε(n) ball about y.

Note that if x is within this radius 200 ε(n) ball, a ^" 1 } -orthonormal

frame / for TM{n~ι)\χ gives an element a(f) e SO(3) by comparing / ' s

trivialization of Λ^ with f 's. (Thus, a{fy) — Identity.)

To choose frames for TM{n'ι) at the points in {x^}^ , one must

}sfirst break this set into ten subsets, {#±i}
s

M 9 of three points each. Label

the points in #±i as {x±i bΫb=ι -

Choose the frame f±iJ) for TM{n~x) at x±ib so that

(9.29) ±3e, =

with {e j^j as in (9.26). The solvability of (9.29) is insured by Lemma
9.8.

(g) The map μ. Before defining μ, one must note that the choice of

a gĵ "" -orthonormal frame g for TM\χ at some x defines an isometry

(use g$-»),

(9.30) Af:γ^V+\χ.

If one thinks of V+ as a subbundle of End(Λ2 TM), then Λy maps V
into End(/\2 TM)\χ.

If E has been specified, define

(9.31) i: Range(τr£)-> X V

by setting
5

(9.32) t(v)y = S(y). Yfriy), A
y = S(y). Yfriy), Af ej

i-l y

where {s{y) > 0}yeO> will be specified shortly.
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With t understood, define μ(v) by fixing y e Ω' and then setting

(9.33) Mv)χ±itb

 s ^o ( ( ! ' » / + ̂ ) l / 4 ± 'H,/ ) 1 / 2 >

where

(9.34) /(i/)^ . = 1 trC f̂Ci/)̂ ) = s(y) • (i/(y), A^-eJg-n.

Note that a bound for

(9.35) sup s(y) = ζ
yea'

means that the map μ can be defined on ©rf==*-i in (9.7).
These mysterious {s{y)}y€a and (Z,ε) in (3.61) are further discussed

in the next proposition.
Proposition 9.9. Let M be a compact, oriented 4-manifold with metric

gM. There is a constant Z o > 1 which has the following significance: Fix
E > Z 0 , μ{>0, μQe (0, 1), and then

(a) run Proposition 3.11 's iteration steps a large number (say n — 1)
ί/raes1 w5/>ẑ  Zj > Z o ί/i ^αcΛ step and ε small in each step;

(b) choose Z large in (3.61) (E and g^~1^ determine a lower bound)
and ε small.

A choice of {s(y)}y€a' in the interval (0, ZQ) can be made so that
when the Cokernel Step's parameters are as described above, and when μ
is defined as above on ® r f = = z-i, then assertions (l)-(3) of Proposition 9.5
hold.

Remark that Proposition 9.9 usurps Proposition 9.5.
(h) The size of || W\\m p. The purpose of this subsection is to prove

Proposition 9.5's first two assertions for Proposition 9.9.
With this said, remark that the proposition's first assertion is a conse-

quence of Proposition 3.11.
The complete proof of the second assertion requires an a priori bound

for ξ in (9.35). Such a bound a forthcoming. With no such bound, it will
be shown here that

(9.36) ll»ΊI.,,<f z./vlM|. t,,
with Z determined a priori from gM .

To prove (9.36), remark that y € Ω' contributes nothing to

(9.37) /
v ' Jdis

ύfvoΓ
)Y
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unless y has gM-distance from x which is less than 2p. (This requires
small ε in (3.61) and all n - 1 iteration steps.)

If dist (x, y) < 2p, then y contributes at most

(9-38) μ0

 C"{"l'S(3?'(l

to (9.37) unless dist^ (Λ,y)< 200 ε(n). Only one y can possibly obey

this last condition, and such a y contributes at most

(9.39) ζ.Z.μo.ε(n)2

to (9.37). Since this last can be ignored for small e, one can estimate the

value of (9.37) by summing (9.38) over all y € Ω' obeying d i s t^(x, y) <

Ip. The result, for small ε{ή), is bounded by

(9.40) cμo ξ\ε(n)
Jάii

dvol
)<2p

Equation (9.40) follows from (9.38) using Lemmas 4.15 and 4.16 with
Taylor's theorem with remainder.

(i) The evaluation of πE W. The evaluation of πE W is a step-by-
step procedure which begins below with Lemma 9.10. In the statement of
said lemma, {va} is an ίΛorthonormal basis for R a n g e ^ ) . Also, I is
defined in (3.15), Ao in (9.27), and Af in (9.30).

Lemma 9.10. There is a constant c > 0 with the following significance:
Let M be a compact, oriented 4-manifold with metric gM. Given δ > 0
and E, then Z in (3.61) can be chosen so that when ε = ε{n) > 0 is
small, then x e ΩM contributes

n

(9.41) o/Vε

to πE-W. Here, the error rχ obeys

(9.42) 1/ dyol

gJ
1/a^rχ)gM <δ'βχ'^-

Proof of Lemma 9.10. This follows directly from Proposition 3.3 and
Lemma 4.15 using Taylor's theorem again. Q.E.D.

Given this lemma, the computation of πE W can be done by inserting
the appropriate values for {μx}xeQ and {fx}xeQ . Here is the result:

Lemma 9 11. Let M and gM be as in the statement of Proposition
9.9. Given E, then Z in (3.61) can be chosen so that the following is
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true: Suppose {s(y)}yea> obeys (3.35). For ε = e(n) small, define μ
o n ςβd=ξ-] tising (9.33) and (9.34) and define the frames {fx}xea by
(9.29). Then

(9.43)

where \\r\lp < S " 1 ^ £ {\\v\\^p + ε(n)).
Proof of Lemma 9.11. The derivation of the first term on the right in

(9.43) uses (9.41)'s first term. This is just linear algebra and is left to the
reader. The error term r is estimated by summing the {rχ}xeCk in (9.41)
using (9.42). The summation yields

(9.44)

Now, take δ < E 4 in the last line of (9.44) to finish the argument, q.e.d.
(j) An approximation formula. The final determination of s(y) requires

a digression which concerns πE . Begin the digression by fixing E and then
d — (E + I)" " 1 0 . Now, invoke Lemma 3.8 using d for ε. Let Ω denote
the resulting point set, and let {ΨX}X€Q be a partition of unity for M
which is subordinate to the cover of M which Lemma 3.8 provides.

For each x £ Ω, set

(9.45) p(x) =

Lemma 9.12. Given M and gM, there is a constant Z such that with

E and p>0 given, and d = (E + I ) " 1 0 , one has

v —
v-4 -2,

Proof of Lemma 9.12. Use Taylor's theorem with Lemmas 4.14 and
4.16 plus (9.18) and (9.19).
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(k) Proof of Proposition 9.9. The proof of the proposition will be re-
duced here to the choice of {s(y)}y€Ω>, a task which occupies the final
subsection.

To begin, fix E large and choose d = (E+1)~10 as in Lemma 9.12. Let
Ω be the point set as described above, and let {ψx}x€Ω be as described
above too.

Rewrite the first term on (9.43)'s right side as

(9.46) , v Σ I Σ Σ ψx{y) siy)-*4-(»>

Now, one can replace (u , va)g (y) in (9.46) with {y, va)gM(x) for * e Ω

for which ψx(y) Φ 0. These replacements make (9.46) equal to

(9.47)

where rχ obeys

(9.48) lk i l1 . t ,<Z J

Indeed, Taylor's theorem gives

\rλ\<cμo.ξ.d. [Σdl^Hoc Klioo + II^ILBVi/JIJ.ii/jj.

Then use Lemmas 4.15 and 4.16 to bound this by Z -μ-ξ-d E9 | |i/||+ β

and plug in d = {E + 1 ) ~ 1 0 .
Note that Proposition 9.9 will follow (9.36), (9.47), (9.48) and Lemma

9.12 if {s(y)}y€Ω> can be found so that

(1) for each x e Ω, ] Γ ψx(y)s(y) e4 = p(x),

(9.49) yen'

(2) j ( y ) € ( 0 , Z 0 ) ,

where p(x) is given in (9.45) and Zo here is determined a priori only by
M and gM.

(1) Choosing j (y). There is a solution to (9.49) which can be found
with the help of the next lemma. The proof of this lemma is deferred to
the subsection's end.

Lemma 9.13. Let M be a compact, oriented 4-manifold with metric
gM . There is a constant Z with the following significance: In Proposition
3.11 's iteration, at every step, choose Proposition 3.7'5 parameter Z0>Z
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and then, given d > 0, choose the ε parameter small Then, in addition
to Proposition 3Λ\'s other conclusions, one can assume that

(9.50) VolgM(BnM{l))/Yo\gJB) > \

for any ball B c M of gM-radius d and any / = 0, 1, .
Given this lemma, here is how to choose {s(y)} to satisfy (9.49): First,

take d = (E + I)" 1 0 in Lemma 9.13. Second, remark that the balls of
radius d about the points in Ω are disjoint. Third, choose s(y) = ε(n)
if dist^ (y, Ω) > d. Fourth, given x e Ω, set

(9.51) pf(x) = yolgM(Bd(x)nM{n~l)),

where Bd(x) is the radius d ball with center x .
It follows from Lemma 9.13 that

(9.52) * £ >

for some universal constant c.
Fifth, by taking ε = ε{n) small, it follows from Lemma 3.8 that one

can require

(9.53) p\x)-χ. *

for some universal c > 0.
Finally, take

<9 5 4 »

when distj (y,x)<d.
It is an elementary exercise for the reader to verify (9.49) from (9.54).

Proof of Lemma 9.13. To prove the lemma, note that M{1) c M{ι~x)

as the compliment of the union over x € Ω(/) of the g^1 -radius ε{ ball
about such an x.

This radius ε{ ball sits inside the radius ε = ε(l) ball about x, and
these radius e balls are mutually disjoint. Thus

(9.55) Vol ( /- 1 ) (5πM ( / " l ) )-Vol < (B Π M{1)) < ^π2 V ef,

where Br is the radius 2 d ball with the same center as B. Here, it has
been assumed that ε < d.
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Now, Proposition 3.5 relates ελ to ε and allows the right side of (9.53)
to be bounded by

(»•*> 4?- Σ -ί -
^ C 0 χeQ(ΠB'

Use (3.21) to write the preceding sum in terms of the L2-norm of

^+[gM~l)] indeed, for small ε the right side above is bounded by

(9.57, £

Then, use Proposition 3.11 to bound (9.57) by

(9.58) ^2 0 - < * / " '

Iterate (9.53) using (9.58) to get

^ / ) ^ ^ ΛTrΛ ( t>\ ? \\<W \rr 111 . A4

(9.59) V o l t f ( * Π M{1)) > Vol^(B) - φ^ . WW^g^ d\

This last equation with Proposition 3.10 imply Lemma 9.13 if

(9.60) Z2>2 j(l
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