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A LIPSCHITZ DECOMPOSITION
OF MINIMAL SURFACES

JOHN B. GARNETT, PETER W. JONES & DONALD E. MARSHALL

1. Introduction

Let Γ be a simple closed rectifiable curve in Euclidean space Rn . We

say that Γ is an M chord-arc curve if l(z, w) < M\z -w\ for all z, w e

Γ, where l(z, w) denotes the length of the shorter subarc of Γ joining

z to w. Let ψ{eιt), 0 < t < 2π, parametrize such a curve Γ with

\ψ'(eu)\ = /(Γ)/2π, where /(Γ) denotes the length of Γ. Then for 0 <

t - s < π, we have

<•••) '.s ""ft iff"**ft i
with c2/cχ < \M. In other words, Γ is a bi-Lipschitz image of the unit
circle. Conversely, if (1.1) holds for some parametrization of Γ, then

(1.2) l(ψ{eu)9 ψ{eis)) < {^f M\ψ{eU) - ψ(eis)\

)2
and thus Γ is a ( f ) 2 M chord-arc curve.

By a minimal surface with boundary Γ we mean the image F(B) of
the open unit disk D = { z e C : | z | < l } under a continuous map

from the closed disk to Rn such that

(1.3) F\dΌ is a homeomorphism of dD onto Γ,

( i . 4 ) / η D i s C 2 ,

dF. ΘF.
(1.5) /. = —-± - i—1-, 1 < j < n, z = x + iy, is analytic in
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and

(1.6)
7=1

Condition (1.5) says that each component Fj of F is a harmonic func-
tion in D, and (1.6) says that the map F is angle preserving except at the
(isolated) common zeros of {f.}. By a famous theorem of Douglas [1]
every simple closed curve Γ bounds at least one such minimal surface. We
refer to Osserman's beautiful book [4] for further background on minimal
surfaces.

By a partition of a domain Ω c O, we mean a family {Dj} of simply
connected subdomains of Ω such that

(1.7) DjΓ\Dk = 0, Ϊϊjφk,

and

(1.8) Ω

We will call such a partition locally finite if each compact subset of D meets
at most a finite number of D . In this paper, we prove the following:

Theorem. There is a universal constant M such that if Γ is a rectifiable
simple closed curve in Rn and F(D) is a minimal surface with boundary
Γ, then there is a locally finite partition {Dj} of D such that

(1.9) F is a homeomorphism ofD. onto F(D.),

(1.10) F(d(Dj)) is an M chord-arc curve,

and

(1.11) ^2lF(d(Dj))<Ml(Γ),

where l(E) denotes the linear measure {or arc length) of the set E.
The only hard part of the theorem is inequality (1.11). Otherwise we

could simply take each D. to be a small square. When n = 2, Fx + iF2

is a conformal map to a plane domain with rectifiable boundary, and then
the theorem is a recent result of Jones [3]. Our proof is a refinement of
the argument from [3], where the estimate (1 - | z | 2 ) | / / | / | / | < 6 is used in
an essential way. When n > 2, the gradient / = (f{, , fn) can have
zeros in D, and the example f(z) = (1, - / , Nz, -iNz) shows that the
above estimate can fail even if / does not have zeros. In the proof we
will obtain curves that are actually better than M chord-arc. They can be
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taken to be arbitrarily close to planar M-Lipschitz curves, as defined in
[3]. This improvement will be described in §5. We write

n
ι2ι/ι= Σ i//

\j=ι

and
f1 = (fi ... Λ

Throughout the paper c, Cj, C, etc. stand for universal undetermined
constants.

2. Preliminaries

The proof of (1.11) rests ultimately on the next lemma, an F. and
[. Riesz theorem for mini

of g, analytic on D, with
M. Riesz theorem for minimal surfaces. The Hardy space Hλ is the set

= sup / \g{reι )\dθ<oo.
O<r<lJθ

Lemma 2.1. If F(D) is a minimal surface with rectifiable boundary Γ,

then fj = dFj/dx - idFj/dy e Hx, \<j<n, and

(2.1) sup
0<r<l Jθ

Proof By (1.5) each F. is the Poisson integral of its boundary values,

and since Γ is rectifiable, each Fj(eιθ) is of bounded variation. Hence

there are finite signed measures μ on dB so that dμ. — (dFj(eιθ)/dθ)dθ
and the vector measure μ = (μx, , μn) satisfies

" • , 2

= sup < Σ / hj dμ-: h is continuous and

ιθThen dFj(z)/dθ, where z = reιθ , is the Poisson integral of μ., so that

sup / ^ ( - ^ | ) dθ = l(Γ).
0<r<1.

But by (1.5) and (1.6),

and so (2.1) holds, q.e.d.
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As an aside, we note this consequence of the lemma: If F(B) is a
minimal surface with rectifiable boundary Γ, and if G- is analytic with

G' = / and G (0) = F.(0), then F. = ReG and by the lemma G
j J J ___ J J J J

is continuous on D and has bounded variation on <9D. Hence G =
(Gλ, , Gn) is an analytic map of D into Cn , G is a homeomorphism
of 9D onto the rectifiable curve G(0D), and
(2.2) /(G(dE>)) = \/2/(Γ).

Therefore F(D) is the projection onto Rn of the analytic variety G(D)

in Cn = R2n for which (2.2) holds.
A measure σ on D is a Carleson measure if there is a constant B such

that for all θ0 and all s, 0 < s < 1,

(2.3) σ({reiθ:l-s<r<l, θ0 < θ < θ0 + s}) < Bs.

The Carleson norm ||σ|| of a is the least such B. By Carleson's theorem
(see p. 62 of [2]), there is a constant A (independent of σ) so that (2.3)
implies

ί\g\dσ<A\\σ\\\\g\\Hi

for all g e Hι.
Our strategy will be to partition D into regions D. so small that / is

almost constant on D., yet so large that arc length on |J dD. is a Car-
leson measure. Constructions of this type are well known; they stem from
Carleson's proof of the corona theorem and are based on the following
decomposition of D.

For m > 1 and 1 < j < 2 m + 1 , form the dyadic squares

Qmj = {'*"'• U ~ ! ) 2 " m π < θ < j2~mn; 1 - π2~m < r < 1}

(when m = 1, we require r > 0), and their top halves

Fix an integer N > 1 and refine the dyadic grid by defining small squares

= {reiθ: 2~mπ\U - 1) + (q - 1)2""] < θ < 2~mn[U - 1) + q2~N]

1 - 2-mτr[i + p2~N] < r < 1 - 2 " m π [ i + (p - 1)2""]},

where m, j , p, and q are integers with m > 1, 1 < j < 2m+ι, 1 <
q < 2N, and 1 < p < 2N~X. In other words, each T(Qm y) is to be
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divided into 4^/2 small squares S with edge length l(dS) approximately

4π2~m~N. When E is any subset of D, let E* = {eiθ: reiθ e E for

some r > 0} denote its projection on 9 P . For S a small square define

Q(S) = {reiθ: eiθ e S\ 1 - π2~m~N < r < 1} as the dyadic square

having Q(Sγ = S*, and define B(S) = {rew: eiθ e S* infz€S \z\ < r <
1 - π2~m~N} as the tower which includes S but not Q(S). Note that

the aspect ratio l(dB(S))/l(S*) is essentially constant, once JV is fixed.

A region of the form

(2.5) ® = Q\ (J

where <S?{Q) is some subcollection of small squares, has boundary an MQ

chord-arc curve, where MQ depends on N but not on the subcollection
^(Q). This is because each maximal B(S) U Q(S) not in 2J is either
adjacent to a larger tower not in 3 or at a distance at least 1{S*) from
any larger tower not in 3f. Moreover, such regions 3f satisfy

l(ΘDnQ')<Kl(dQ')

for every dyadic square Qf, where K is a constant depending only on N.
Thus, by Carleson's theorem,

(2.6) f \g\ds<Aκf \g\dθ
Jd9ί JOB

for all g e Hι, where ds is arc length measure.

3. Chord-arc curves

In this section we give three ways to obtain chord-arc curves in Rn .

Lemma 3.1. Suppose that γ is an M chord-arc curve in D, and

that there is a zQ e D. with \f{z) - f(zo)\ < δ\f(zo)\ for all z e γ,

where δ < l/(\/2M). Then F(γ) is an Mχ chord-arc curve, where Mχ =

(π/2)3((l + y/2δλf)/(l - y/2δM))M.

Proof. Suppose ψ{eιt) is a parametrization of γ with \ψ\eιt)\ =

l(γ)/(2π) for all t. Fix s and t. By a rotation we may suppose ψ{eιt) -

ψ{eιs) e R.By (1.5), (1.6), and the definition of M chord-arc curve,
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\F(ψ(eu)) - F(ψ(eis)) - Re{f(zo))(ψ(eu) - ψ{eis))\

= ^Rc[(nΨ(eiu))-f(zo))ψ\eiu)ieiu]du

<δ\f(zo)\l(ψ(eu),ψ(eis))

<δV2\Ref(zo)\M\ψ(eU)-ψ(eίs)\.

We conclude

By (1.1) and (1.2), F(γ) is an Mχ chord-arc curve with

^ / π \ 2 1 + V2δM
< I •=-) 7= M. q.e.d.M l " V27 1 - V2<5MJ

Near a zero of / , we cannot have an inequality like that required in
Lemma 3.1. If /(0) = 0, write

(3.1) f(z) = azm + O

where a e Cn, a Φ 0. Let Dr = {z: \z\ < r} and D. r = {seiΘ e
Dr: (j - l)π/(m + l)<θ< jπ/(m + 1)}, for j = 1, , 2(m + 1).

Lemma 3.2. Suppose f has the form (3.1). If r is sufficiently small,
then F(dDj r) is an M chord-arc curve with M independent of a and
m and

l(F(dDjr))<2l(F(dDr)).
7=1

Proof Let ψ(z) = z 1 / ( m + 1 ) and consider G = Foψ on the boundary
of the half disk D+ = {z : \z\ < rm+ι

 y Imz > 0} . Then g = ( / o ψ)ψ' =
a/(m + 1) -I- O ( z 1 / ( m + 1 ) ) . So if r is sufficiently small, then

m + 1
a

m+ 1

Since the boundary of a half disk is an Mχ chord-arc curve by Lemma 3.1,
F(dDlr) is a 4Mχ chord-arc curve if δ is sufficiently small. By rotating
ψ, the same is true for F(dD. r ) , 2 < j < 2(m = 1). Moreover

/(F(βZ). Γ)) = / \g\ds < 2 f \g\ds = 2/(F(βZ), rnβZ)Γ)).

Summing over j completes the proof, q.e.d.
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The third method of constructing M chord-arc curves follows the ar-
gument given in [3, §2].

Lemma 3.3. Given η > 0 there is a constant M depending only on η,
so that if η < \f\ < 1 on a simply connected domain 3ί c P, then there is
a partition {Sfλ of Sf such that

(3.2) each F{dSfj) is an M chord-arc curve

and

(3.3)

Moreover, ifeach component of d2J DP is smooth, then the partition
can be taken to be locally finite.

Proof Let G = F o ψ and g = (f o ψ)ψ , where ψ is a conformal
map of P onto 2J . By Green's theorem,

dxdy f iθ,{dθ= Ug(e %
and by the Cauchy-Schwarz inequality,

1*1 \g? - \s\
Hence we obtain the inequalities

We also need the estimate

|g| ^\{f°ψ)'\ , \Ψ"\
\g\ ~~ \f°ψ\ \ψ'\ " l - | z | 2 '

where K is a constant depending only on η it follows because log ψ
is in the Bloch space with Bloch norm independent of ψ and because

η<\f°ψ\<l.
We now repeat the stopping time argument of §2 of [3], slightly modified

to ensure that our partition of P is locally finite. For a dyadic square
Q, we define a subregion 3fQ as follows: If there is a z e T(Q) with
\g{z) - g(zQ)\ > j\g(zQ)\, where zQ is the center of T(Q), stop and let
3fQ = T(Q). In this case we say 3r

Q is of type 0. Otherwise, let {β y } be
those dyadic squares inside Q, which satisfy

sup \g(z)-g(zQ)\>δ\g(zQ)\
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and define 3Q = Q\\JJLiQj - W e saY s u c h a ®Q

 i s o f *yPe ι i f

l(dΏ> Π d3Q) > £/(0O Π d β ) , and we say 3Q is of type 2 otherwise.
The reason for using § is that if ζ e dB and ψ(ζ) e D, then g is
continuous and nonzero at ζ, so the stopping time argument near ζ will
eventually yield a dyadic square β on which \g(z) - g{zQ)\ < δ\g(Zg)\,
i.e., ^ β = β .

Since each component of g may have a zero in D, we avoid the use of
g 1 / 2 used to prove (2.8) of [3] by the following slight modification of the
argument therein: As in [3], there is a δ1 depending on δ and K such
that for type 2 regions

\g-g(zQ)\2dω= ί \g'\2& (z)dxdy,
u J®Q e

where 2?z is Green's function in 3Q with pole at zQ , and dω =

is harmonic measure on d^Q for the point zQ. As in [3], the latter
quantity is at most

Hence

d9fQ

where K{ is a constant depending on δ'.

The stopping time argument (so modified) in §2 of [3] can now be re-

peated to yield a partition 3. of D such that each 2'. is an Mχ chord-

arc curve, \g{z) - a.\ < δ\a.\ on 21 for some a. £ Cn , and, by letting

j)) < Mχl(G(dB)) = M\l(F{d3)).
j j

By Lemma 3.1, each F(3j) = G{3.) is an M chord-arc curve.

4. When / is small

In this section, we remove the hypothesis that | / | > η > 0 in Lemma
3.3.

Lemma 4.1. There is a constant M so that if \f\ < 1 on a simply
connected domain 3 c D, then there is a partition {^} of 2 such that
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(4.1) each F(d3j) is an M chord-arc curve

and

(4.2) Σ ι(F(dSfj)) < Ml{83).

Moreover, ifeach component of d2J(ΊD is smooth, then the partition {&}
can be taken to be locally finite.

Notice that (4.2) is a weaker conclusion than (3.3).
Proof Our strategy will be to divide 3 into good regions and bad

regions. Lemma 3.3 will apply to the good regions, and / will be small
on the bad regions. The process will be restarted on each bad region 3S
with / replaced by // sup^, | / | . Let φ be a conformal map of D onto
3 . We will subdivide certain dyadic squares Q into two cases:

Fix a > 0, ε > 0, and an integer N, where a, ε and TV7 are to be
chosen later, with ε < α/2.

Case 1: supΓ ( Q ) \f°φ\ < α/2. Define descendent squares Q. to be the
maximal dyadic squares contained in Q, for which

sup \foφ\ > α ,
T(Qj)

and let 3S = 3B{Q) = β\ U β 7 be called a bad region of the first kind.
Note that \foφ\<a for all z e& .

Case 2:\f oφ\ > α / 2 . Let <9*(Q) be the set of small squares S c Q

such that

and such that its projection S* and its tower B(S) are maximal. The
descendent squares {Qj} are defined to be {Q(S): S e S?{Q)}. Each
component 3. of Q\\J{B(S) U Q(S): S £ <9"(Q)} is declared a good
region of the first kind. Inside the towers B(S), S e S?{Q) , we must
define other good and bad regions. By a very small square we mean a
square of the form given in (2.4) with TV replaced by N + Nf. So if
S1 is a very small square contained in a small square 5 , then l(dSf)
is approximately 2~N l(dS). There are 4^ such very small squares Sf

in each small square S. Let ^ ' ( S ) be the set of very small squares
S* C B(S) that either contain a zero of foφ or touch a very small square
containing a zero of / o $?. In other words, 5^\S) = {Sf: Sf c 5(5) and
S ; Π S" ^ 0 for some S" containing a zero of foφ , where S' and S"
are very small squares}. Each Sf e 5^'(S) will be declared a 6αrf regίo/i of
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the second kind, and each S' <£ S^(S) with Sf c B(S) will be declared
a good region of the second kind. If Nf is sufficiently large, by Schwarz's
lemma | / o φ \ < a on each Sf e S*'(S), since S' is near a zero of foφ.
Thus | / o φ\ < a on all bad regions.

In order to apply Lemma 3.3 to each good region, we need to see that
|/op I is not too small there. On each good region of the first kind \foφ\ >
ε by construction. To obtain a similar estimate for good regions of the
second kind, we first estimate the number of zeros of / o φ near a tower
B(S), S e &{Q). Suppose infz € 5 |z | > inf z e Q |z | . Then \f o φ\ > ε
on the top edge, {ζ e 5 : |ζ | = infz€5 \z\] of B(S), and hence there is a
unit vector w = (u{, , MΛ) SO that the function g = f o φ u satisfies
1^(01 > ε for some ζ on the top edge of B(S). Let B(S) = \J{S: S
is a small square with dist(5, B(S)) < l(dS)/S} and let Z(S) = {zy e
B(S): g(zυ) = 0} . By p. 288 of [2] again,

(4.3) Σ lmzy<C32
Nl{dS)logl/ε.

Since lτnzv > l(dS)/16, we see that there are at most K(ε> N) = 1 +
C42

Nlogl/ε points in Z(S), counting multiplicity. Since \g\ > ε at
some point on the top edge of B(S), Harnack's inequality shows that if
z belongs to a good region Sf c B(S), then

(4.4) |^(z) |>/c(7V)^ ( e ' i V ) = //>0,

where k(N) is a constant depending only on N , and δ = 2~iv2~ΛΓ is
a lower bound for the pseudohyperbolic size of a "very small" square. If
infz € 5 |z | = inf z € Q |z | , inequality (4.4) persists since l(dS) and l{dQ)
are comparable and sup Γ ( β ) \g\> OL/2 > ε for an appropriate unit vector
u. Thus we conclude that η <\fo φ\ < I on good regions of either kind.
This argument also shows that there are at most C5K(ε, N) bad regions
of the second kind in each B(S).

We note that the bad regions can be slightly increased and the neighbor-
ing good regions decreased, so that no zero of foφ occurs on the boundary
of a bad region, and we still have \foφ\<a on each bad region.

We apply the processes described in Cases 1 and 2 as follows. Begin-
ning with each Qχ k, as defined in §2, apply the appropriate Case 1 or
Case 2 obtaining (in particular) descendent squares Q . To each descen-
dent square, apply the appropriate case, obtaining the next generation of
descendents. Continue this process indefinitely.

We need the following proposition.
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Proposition 4.2. Given a > 0, we can choose an integer N and an
εQ> 0, so that for each Case 2 dyadic square Q, if ε <ε0 then

(4.5) Σ{l(dQj): Qj is a descendent of Q} < l(dQ)/lOO.

Proof Since Q is a Case 2 square there is a unit vector u =
(u{, , un) so that the function g = foφ u satisfies supΓ ( Q ) \g\ > α/2.
By Schwarz's lemma, we can choose N sufficiently large, depending on εQ,
so that if inf5 \g\ < ε then sup^ |# | < 2εQ. Thus Theorem 3.2 on p. 334
of [2] shows we can choose an ε0 , depending on a, so that if ε < ε0

: S c Q and inf \g\ < εj < /(β*)/100,

which gives (4.5). q.e.d.
Since each descendent of a Case 1 square is a Case 2 square, this propo-

sition yields that for any dyadic square Q', we have

(4.6) £ l(d^nQf)<Kl(dQf),
% good

where AT is a constant depending on N and Nf. The proposition also
implies that for Nf sufficiently large,

(4.7) Σ l(d^nQf)<C6l(dQf),
&i bad

where C6 is a universal constant. To see this, note that if 38 is a bad
region of the first kind, coming from a dyadic square Q, then I{d3§) <
21 (dQ). Furthermore, if S is a small square in ̂ (Q), then our bound
on the number of zeros near B(S) gives

Σ i d ^ : & i s a b a d r e g i o n o f t h e second kind c B(S)}

< C2N{logl/ε)2~NΊ(dS) < l{dS)

for Λ̂ ' sufficiently large.
By Carleson's theorem, we obtain

(4.8) Σ ί \f\ds= Σ I \f°ψ\\ψ\ds

<Cκί \foφ\\φ'\ds = CK ί \f\ds

and

(4.9) Σ I \ψ\ds<CCβί \φ'\ds = CΊl{d9f).
JrXLΛha, JOBb a d " ^ - dB
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We continue our subdivisions now at a second level. For each bad
region 33t, let ψ. be a conformal map of D onto 33t and let g =
(foφo ψ.)/ sup^, | / o φ\. If there is only one zero ζ of / o φ in 3Si,
we choose ψ. so that ^Λ(O) = ζ. In this case, we choose r so small that
Lemma 3.2 applies to {foφo ψ^φ o ψ.)' and F o φ o ψ.. Since

/
./|z>\z\=r

the small sectors from Lemma 3.2 will at most double the total length esti-
mates. For notational convenience, we will call these sectors good regions.
The initial regions Gχ . are replaced in this case by G{ j\{z'- \z\ < r},
7 = 1, , 4.

Replacing φ with φ o ψ. and f o φ with g, we apply the process

described above to obtain a second level of good regions ^ ( 2 j and bad

regions Sβf^.. Then by (4.6) and (4.9), we get

Σ Σ I o ^ \f\ds

bad ^(2j good i J

• Σ Σ /„
Λ(

(1> bad S^> good " / β -

bad

= CK Σ [ \foφ\\φf\ds<CKCΊal(d2>).
&\λ) bad '

Furthermore, a use of (4.7) and (4.9) yields

o oψ.\ψ'.\ds <CΊ ] P / {φ'vψiWψ1^

Σ
For each bad region at the second level, we repeat this process obtaining
third level good and bad regions. Continue this subdivision indefinitely.
We obtain a partition of 2J into regions τk(&k)9 where each ^ is a good
region at some level, and τk is a conformal map of P into 2 . Indeed,
I/I < otm on τk(β), where 33 is a bad region at level m , so each point
of 2\{z\ f(z) = 0} is in at most finitely many bad regions. Each zero of
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/ is eventually in a region τk(£%) where Lemma 3.2 is applied to / o τk

on 3§. Choose a so that CΊa < 1. Then

I/I ds < CK[\ + C7a + (C 7α) 2

In order to make our partition locally finite, we reduce the size of each
good region ^k slightly, so that each component of ^ ( ^ j Π D is smooth.
Indeed, we can find almost square regions 3f'. c &k so that

(i) for each j , there is an a e Cm with \foτk — a.\ < δ\a.\ on 3f'.,

(ii) Σl(d^)<5l(d^k),

(iii) each d2J'. is a 5 chord-arc curve, and

(iv) S£ = 8?k\\J&j has each component of {ζ e d&k: τk(ζ) G i } a
smooth curve.

Moreover, since each component of {ζ e d2/k: τk(ζ) e D} consists of
radial line segments and arcs of circles centered at the origin, the compo-
nents Of', can be chosen so small and so close to squares that

\τ'k(z)\\dz\<5 [ \τ'k(z)\\dz\.

The [β'j] look like a one-cell thick skin around (most of) d&k, with
variable sized cells. Thus

We now apply Lemma 3.3 to each &k . By (4.10) and (4.11) we have
the desired partition of 2 .

To see that the partition is locally finite when each component of
is smooth, first note that at each level the good regions have {i
locally finite. This is because if ζ e dΏ and τk(ζ) e D, then / o τk is
continuous at ζ, so our stopping time argument either ends with a bad
region of the first kind containing a neighborhood of ζ in E, i.e., when

< a/2, or with a Case 2 good region of the first kind containing
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a neighborhood of £ in B, i.e., when \f(τk(ζ))\ > a/2. Each partition
within a good region is locally finite by Lemma 3.3. Since \f\ < am at
the mth level, each point ζ e B\{z: f(z) = 0} is in at most finitely many
τ{β), 3S 2ί bad region, and each zero of / is eventually the only zero in
τ{βl), for some conformal map τ and bad region 38. For each zero ζ
of / , then, the process terminates near ζ with the good regions generated
by the application of Lemma 3.2. We conclude that our partition is locally
finite.

5. When / is large

To remove the boundedness restriction on / , we apply the following

decomposition. Choose rQ < 1 so that if Cθ is the (open) convex hull of

eιθ and {z: \z\ < rQ}, then T(Q) c Cθ whenever Q is a dyadic square

with eiθ e Q* (in fact, r0 = Λ/4/5 will work). Let

/*(#) = sup{ |/(z) | :zeC,} .

Using the Hardy-Littlewood maximal theorem and Lemma 2.1, we obtain

Ioπ\f(θ)\dθ < C\\f\\Hι = CΛ/2/(Γ). NOW suppose that Q is a dyadic

square with 2m~ι < supΓ ( Q ) | / | < 2m, where m is an integer. Define

descendent squares Qk c Q to be the maximal dyadic squares contained

in Q for which supΓ ( Q } | / | > 2m. Let 9Jm = β\UQ^ Note that

forV* € Q\ |/*(0)| >2m-\ l(d£fm) < 6/(β*), and | //2 m | < 1 on
3Jm . Begin with each Qλ . forming the associated regions 3fm . For each

descendent Qk , repeat the process by forming regions &m+ι. Continuing
the process indefinitely, we obtain a decomposition of D into regions of
the form 9Jm = Q\\J~Q^, where sup^ \f/2m\ < 1. We may reduce the
regions 3 at each stage slightly, as we did in the proof of (4.11), so that
d3m Π ID) is smooth. By Lemma 4.1 applied to F/2m , we can partition
each 2Jm into regions 2™ with

<Mχ2
ml[d2m).

Regions 9Jm formed from Qk, where 2Jm = Q\Qk, have m > m.
Thus

m\{θ: f*(θ) > 2m-l}\ < M2C\\f\\Ht = Λfl(Γ)
m,i

and the theorem is proved in full generality.
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Finally, we note that the regions {F(3f™)} of the above partition are
better than M chord-arc. By the proofs of Lemmas 3.2 and 3.3, each such
2J is the image under some conformal map τ of a region Ω, bounded
by an M chord-arc curve, with

(5.1) | ( / o τ ) τ ' - α | < < y | α | , z e Ω ,

for some a eCn . The Ω 's coming from Lemma 3.2 are half disks and the
Ω 's coming from §2 of [3] are called M-Lipschitz curves. Namely, each
such Ω after a translation, notation, and dilation can be parametrized
by (r(θ)cosθ, r(0)sinθ), 0 < θ < 2π, where 1/(1 + M) < r < 1 and
\r{θx)-r{θ2)\ <M\θχ-θx\ for all θx and θ2. We define an M-δ Lipschitz
curve in Rn to be a curve parametrized after a translation, rotation, and
dilation by

(γ(eiθ) = (r(θ)cosθ, r(θ)sinθ,x3(eiθ), .. , xn(eW)), 0 < θ < 2π,

where 1/(1 +M) < r{θ) < 1, \r(θχ)-r(θ2)\ < M\θχ-Θ2\ and \Xj(e

iθι)-

Xj{eWl)\ < δ\θχ - Θ2\ for all δ0 > 0, we can arrange that δ < δQ in (5.1) .
Thus by Lemma 3.1, given any δ > 0, we can find an Mχ < oo so that D
can be partitioned into regions Ό. so that dF(Dj) is an Mχ-δ Lipschitz
curve and (1.11) holds. These Mχ-δ Lipschitz regions are images of M-
Lipschitz regions Ωy with the property that any two points in Ω can
be connected by a path γ consisting of a radial line segment, followed
by a circular line segment, followed by another radial segment, where the
radial segments are no longer than their distance apart. By the proof of
Lemma 3.1, Foτ. must be one-to-one on Ω.. These regions F(Dj) thus
look like small perturbations of planar M-Lipschitz curves that have been
translated, rotated, and dilated in RΠ . This concludes the proof of the
theorem.
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