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GENERALIZED YANG-BAXTER EQUATIONS,
KOSZUL OPERATORS AND POISSON LIE GROUPS

ZHANG-JU LIU & MIN QIAN

0. Introduction

The notion of Poisson Lie group was first introduced by Drinfel'd in
[2], Some recent work on this subject may be found in [3], [6], [8], and
[10]. General theories of Poisson manifolds may be found in [13]. It is
known that every connected Poisson Lie group arises from a Lie bialgebra
and an important class of Lie bialgebras, the coboundary Lie bialgebras
[3] are obtained by solving the generalized Yang-Baxter equations. The
solutions are called classical r-matrices.

In this paper, we first consider a class of generalized Yang-Baxter equa-
tions which are connected naturally with Manin triples of a Lie bialge-
bra [3] and give their solutions in terms of Koszul operators for all real
semisimple Lie algebras with a compact Cartan subalgebra (§2). In these
cases, the equation may be regarded as the integrability condition of an
almost complex structure on a homogeneous space. Consequently, we get
that every real semisimple Lie group with a maximal torus as the Cartan
subgroup is a nontrivial Poisson Lie group. In the compact case, we also
show that this Lie bialgebra structure is the same as that given by Lu and
Weinstein [8]. It will be seen that our approach is more convenient for
detailed studies because the expression for the r-matrix gives much infor-
mation on the algebraic structure. In §3, we discuss the symplectic leaves
and Lagrangian submanifolds of the corresponding Poisson Lie groups. In
§4, we generalize an involution theorem for Poisson Lie groups to compact
and noncompact symmetric spaces.

We would like to thank the referee for pointing out that our Theorem
4 has overlapped with Theorem 2 of [12].

1. Generalized Yang-Baxter equations and Manin triples

Let g be a real Lie algebra. A linear operator R e End(g-) is called a
classical r-matrix if the bracket given by
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(1.1) [X,Y)R

is still a Lie bracket on g. Such a pair (g, R) is called a double Lie
algebra. Moreover, if there is a nondegenerate invariant bilinear form
( , •) on g and R is skew-symmetric, then (g, R, ( , •)) becomes a Lie
bialgebra [3], [9]. It is known that (g, R) is a double Lie algebra iff the
bilinear map BR: g x g —• g, given by

(1.2) BR(X9 Y) = [RX, RY]-R([X, Y]R),

satisfies the equation

(1.3) [X, BR(Y, Z)] + [ 7 , BR(Z, X)] + [Z, BR{X, Y)] = 0

for all X, Y, Z e g, which means that bracket (1.1) satisfies the Jacobi
identity. In particular, the equation

(1.4) BR(X,Y) = a[X,Y], aeR,\/X,Yeg,

is called the generalized Yang-Baxter equation [6]. (1.4) is called the clas-
sical Yang-Baxter equation if a = 0 [1] and the modified Yang-Baxter
equation if a < 0 [9]. In this paper, we consider the equation

(1.5) BR(X,Y) = [X,Y].

A Manin triple (p9p{9 p2) consists of a Lie bialgebra p with a nondegen-
erate invariant scalar product on it and two isotropic subalgebras p{, p2

such that p = pxΘp2 as a vector space decomposition [3]. It will be seen
that (1.5) is naturally connected with Manin triples of Lie bialgebras.

Let us fix the notation as follows: g is a real Lie algebra equipped with
a nondegenerate invariant scalar product ( , •), and ~g = g + ig {i = V-ϊ)
is considered as a real Lie algebra.

Lemma 1. Suppose that R e End(g) is a skew-symmetric solution of
(1.5), i.e., (g, R, ( , •)) is a Lie algebra. Then we have the following.

(a) keri? = i(g^ Π g^_) is an abelian subalgebra of g, where g*± =
Im(i? ± /) c ~g denotes the images of the linear operators R±i: g —• g.

(b) ker(i?±i) = gng± = {0}. Consequently, ~g has decompositions

(1.6) I = g®g±.

(c) Both g± are subalgebras of ~g and isomorphic to gR, where the
symbol gR denotes the Lie algebra with bracket (1.1) on g.

Proof, (a) and (b) are easily checked by the definitions. For (c), notice
that the relation

(1.7) ( R ± R

is only a reformulation of (1.5), and (c) follows from (1.7). q.e.d.
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Now, we extend ( , •) from g to ~g = g + ig by real linearity, so
both arguments will be denoted by the same symbol. Let Im( , •> be the
imaginary part of ( , •)

Theorem 1. With the same notation and conditions as in Lemma 1, we
have Im( , •) also being a nondegenerate invariant scalar product on ~g,
with respect to which g, g± are ίsotropic subalgebras of ~g. Consequently,
both (g,g,g±) are Manin triples of the Lie bίalgebra (g, R, ( , •)).

Proof For any X, Y e g, we have

lm((R± i)X, {R±i)Y) = ±((ΛI5 Y) + (X, RY)) = 0

since R = -R* is skew-symmetric; thus both g± are isotropic with respect
to Im( , •). Obviously g is isotropic. Then from (b), (c) of Lemma 1
and the definition of the Manin triple, the theorem follows.

Remark. In general, it is difficult to study Manin triples of a Lie bial-
gebra g because the Lie algebraic structure to be defined on g θ g* is
complicated (see [8]). But, in our case, this becomes very clear, so we think
it is worthwhile to carry out a deeper study for the generalized Yang-Baxter
equation (1.5).

One of the advantages of the Manin triples (g9 g9 g±) is to describe
dressing actions of G± on G, the Poisson Lie groups with Lie algebras
g± and g respectively (see [8] and [10]). From the decomposition (1.6),
one gets a local (sometimes global) factorization

(1.8) G = GG*±,

and the dressing orbit through a point y e G is then given in the following
form of double cosets:

(1.9) Sy = Gn{G*± y G*±) = {xe G\ 3a,beG*±, s.t. c = ayb}.

It is also known that S c G is just the symplectic leaf of the Poisson Lie
group G through the point y £ G.

Furthermore, we can get a new Lie bialgebra (g,πR, Im( , •)) by means
of the Manin triple ("g, g, g+), where πR = π - π + , and π, π+ are
two projections from ]f to g, #* with respect to decomposition (1.6).
According to [10, Proposition 6], we get a symplectic structure on the
complex Lie group G with the nondegenerate Poisson tensor

(1.10) £K = lx*πR + r

x*
πR> xεG,

where lχ and rχ denote the left and right actions on G respectively.
In the case when decomposition (1.8) is global, one can identify G with
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CJ/(J* and G* with G\G. Then the natural projections

(1.11) G s G/Gl ^G-^ G\G s (7*

are Poisson maps (see [10]). In the next section, it will be seen that such
a symplectic structure always exists on a complex semisimple Lie group.

We end this section by noting that, if we extend R from g to ~g and
write Re( , •) as the real part of ( , •), then both (g, R, Re( , •)) and
(g,iR,Re(',-)) are Lie bialgebras, where iR satisfies the modified Yang-
Baxter equation (1.4) (a = - 1 ) . In §2, it will be seen that sometimes it
is possible to get a new Lie bialgebra g0 c ~g if gQ is /i?-invariant and
Re( , )| is nondegenerate.

2. Koszul operators as r-matrices

Let us first recall the definition of Koszul operators. Let G be a real
connected Lie group with the Lie algebra g and H c G, a closed sub-
group of G with the Lie algebra A. Moreover, suppose that g has a
decomposition such that g = h + m, [A, m] c m . Thus, the coset space
G/H is a reductive homogeneous space. KoszuΓs theorem states that the
coset space G/H has a G-invariant complex structure if and only if there
is a linear operator J on g (the Koszul operator, see [5]) such that

W / | A = 0, J 2 | m = - 1 ,
(ii) ad(X) o / = /oad(ΛΓ), VXeA,

(iii) [JX, JY] - J([JX, Y] + [X, /Γ]) = [X, 7] (modA), VX, 7

Notice that (iii) is the integrability condition of an almost complex
structure on G/H, which is just (1.5) if the term (mod A) is ignored.
So our idea is to take Lie algebras g, h in a suitable way such that (iii)
becomes (1.5). First of all, A being abelian is a necessary condition for
(iii) becoming (1.5) by part (a) of Lemma 1. On the other hand, it is also
known that the coset space G/H is a homogeneous Kahler manifold if g
is a compact semisimple Lie algebra and A is a Cartan subalgebra of g
(see H. C. Wang's theorem in [5]). Actually, we can prove the following:

Theorem 2. Let gbea compact semisimple Lie algebra, and A a Cartan
subalgebra ofg. Then the Koszul operator J making G/H a homogeneous
Kahler manifold is skew-symmetric with respect to the Killing form ( , •)
ofg and satisfies equation (1.5), i.e.,

[JX, JY] - j([jχ, Y] + [X, JY]) = [X,Y] vx,Yeg.
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Thus, J is a classical r-matrix and (g, J) is a Lie bialgebra. Consequently,
every compact semisimple Lie group G is a Poisson Lie group with (g, /)
as the tangent Lie bialgebra.

Proof. Let m = h± with respect to the Killing form of g. Then one
has ad(Λ)m c m . To see the skew-symmetry and explicit expression of
/ , consider the complexification of g, gC = g + ig, which has an or-
thonormal decomposition gc = hc φ mc corresponding to the orthogonal
decomposition g = A Θ m . Let Jc represent the natural extension of /
to gc. Since mc is an invariant subspace of Jc and (/C) 2 |mc = - 1 ,
rac has the root space decomposition

c + — c
(2.1) m = n Θn such that / |Λ± = ±i.
By property (ii) of / , both n ± are ad(A)-invariant subspaces and n+ =

n~ , where the overbar denotes the complex conjugate on g c . Let

(2.2) ί C = *C ί

be the root space decomposition of the complex semisimple Lie algebra
gc with respect to the Cartan subalgebra hc . However, one can choose a
set of the simple roots in Δ such that

± v ^ c

Notice that, for every X € n+ , both Z = X + Ύ and Z' = i(X - ~X) are
in meg, and JZ = Zf, JZ1 = —Z . Furthermore, it is known that, for
every a e Δ, one can choose 0 / Xa e g^ such that (see [4])

(23) ( ) [ « ' / > ϊ

(c) the set {Za = Xa-X_a, Z'a = i(Xa + X_J}a€A+

forms an orthonormal basis of m.

Thus we get the following explicit expression for / under the orthonormal
basis of m given by (2.3):

/ 0 0 Oλ /I
(2.4) / = 0 0 / , / =

Vo -/ o ; Vo
Consequently, / is skew-symmetric. Next, we verify that J solves (1.5).
For every Leh and X, Y em, one has

(L, [JX, JY]) = (J[L, X], JY) = (L,[X, Y])
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by use of properties (i), (ii) and (2.4) of / as well as the fact that
ad(Λ)m c m. Thus

[JX,JY]-[X,Y]em VX,Yem.

By combining this with identity (iii), it is easy to check that / satisfies
(1.5) for all X, Y eg. q.e.d.

In [8], Lu and Weinstein give a Lie bialgebraic structure for every com-
pact semisimple Lie algebra by means of Iwasawa's decomposition and
Manin's triple. From Theorem 1 and the following lemma, we see that it
is equivalent to ours given by the Koszul operator / . Notice that g is a
compact real form of gc and can be expressed as

(2.5) ? = A θ ^ E ( I - X_a) θ £ Ri(Xa + X_a).
αGΔ+ α€Δ+

Write

(2.6) k = £ R(Xa - X_J, p = h θ ] Γ Έd(Xa + X_a)
α€Δ+

and

(HUT, + RiΛΓJ, rξ =

(2.7)

ho = ih, b = Λo θ n , bQ = h0Θ n0 .

Now, let ~g = g^ be considered as a real Lie algebra as in §1. Then
(2.5)-(2.7) are all subalgebras of g and have the relations shown by the
following diagram:

h c g c ' g D b ± D n ±

u u u u
(2.8) k c g0 D b± D <

u

K
where

(2.9) #0 = k θ ip

is a real split semisimple Lie algebra (a normal real form of # c ) .
Lemma 2. With the notation as above, let the symbol gj denote the

Lie algebra: the vector space q equipped with the bracket

j VX,Yeg.

Then we have
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(a) gj is isomorphic to b± and both (g,g,b±) are Manin triples of
the bialgebra (g, J).

(b) Pj is a subalgebra of g3 and isomorphic to b^ .
Proof From (2.4), (2.6), and (2.7), one can check that

Im(/ ± /) = b±, Im(/ ± i)\p = b* , [p, p]7 c p.

Thus, from Theorem 1 the lemma follows.
Remark. Notice that ~g = g θ b+ = g θ h0 e n+ is just Iwasawa's

decomposition of ~g so that the bialgebra (g, /) is the same as that given
in [8].

To get the Lie bialgebraic structure for noncompact semisimple Lie al-
gebras by the Koszul operator, let θ e Aut(g) be an involutive automor-
phism of g such that θ o / = / o θ. Thus one has the decomposition

(2.10) g = ke+pe; 0|*. = i d , 0|p# = - i d ,

and obtains a noncompact real semisimple Lie algebra

(2.11) gθ=kθ + ipθ;

(2.11) gives a Cartan decomposition of gθ . Since / is commutable with
θ it can be reduced from g to gθ . Using the same symbol to denote /
reduced on gθ, it is easy to see that / still satisfies (1.5) and is skew-
symmetric with respect to the Killing form of gθ. Thus, we get a non-
compact Lie bialgebra (gθ, / ) . Particularly, by property (ii) of the Koszul
operator / , for any x e H = exp h such that x2 is in the center of G (a
distinct subgroup of G), we get an involutive automorphism Xάχ e lnt(g)
satisfying Adx oj = J o Ad^ . In this case, one has

(2.12) h c kθ (θ = A d J =* r a n k ^ = rankλ^,

where kθ is a maximal compact subalgebra of gθ, and A is a compact
Cartan subalgebra of gθ . On the other hand, it is known that every real
noncompact semisimple Lie algebra with a compact Cartan subalgebra may
be realized by this way (see [4, p. 424]), so we have

Theorem 3. Every real noncompact semisimple Lie algebra with a com-
pact Cartan subalgebra has a Lie bialgebraic structure mentioned above.
Moreover, if we let gθ denote such a Lie algebra, and g the corresponding
compact semisimple Lie algebra as given in (2.10)-(2.12), then the dual Lie
algebra of gθ is isomorphic to the dual Lie algebra of g, i.e., b+ given
in (2.8).

Proof. The first part is proved above. By Lemma 1, gΘJ is isomorphic
to (/ + i)(gθ), a subalgebra of ~gθ = ~g. It is easy to check that

(J + i)(gθ) = (J + *)(g) = b+
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by means of the facts h c kθ, (J + i){h^) = n+, and in* = n* . Thus
the theorem follows.

According to the classifications of the classical simple Lie algebras, we
see that the classical noncompact simple Lie algebras in the table have the
same rank as their maximal compact subalgebras (see [4, Chapter X, §2]).

Sθ

su(n, m)

so(2n, 2m + 1)

sp(n, R)

sp(«, m)

so(2n, 2m)

so*(2n)

su(n) x su(m) x u(l)

so(2n) x so(2m+ 1)

u(π)

sp(/i) x sp(m)

so(2n) x so(2m)

U(#!)

Type

AΠI

B

CI

CΠ

DI

Dili

Rank

m + n - 1

n + m

n

n + m

n + m

n

Remark. Notice that so(2«, 2m) (n + m > 2) is only a part of Type
DI.

We see that sp(«, R), so(2n, 2n + 1), and SO(2AZ , 2ή) are the normal
real forms of sp(«, C), so(4« + 1, C), and so(4«, C) respectively. In
general, / cannot be reduced from a compact real form to the normal
form g0 given by (2.9). But one can check that g0 is also a bialgebra
with the r-matrix JQ = iJ. Write pQ = ip then g0 = k + pQ is the
Cartan decomposition of g0 with the Cartan subalgebra h0 c p0. It is
easy to see that

(2.13) = h0 Θ n+ Θ n~ , J0\n± = ± 1 ,J0\n
= 0.

From (2.13), we can verify that Jo is skew-symmetric with respect to the
Killing form of g0 and satisfies the modified Yang-Baxter equation

(2.14) BJQ(X, Y) - -[X, Y], VX, Y e g0,

where Bj is definded by (1.2). Consequently, we have

Proposition 1. Every real split semisimple Lie algebra g0 is a Lie bial-

gebra with the r-matrix Jo satisfying the modified Yang-Baxter equation

(2.14). Moreover, ή^ and p0 are subalgebras of g$ = g0J .

In [9], a number of properties of the r-matrix which satisfies (2.14) were

discussed in detail. Here we only point out that the Cayley transformation
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of Jo is equal to the negative of the identity map on the Cartan subalgebra
h0. Notice that, in this case, there is no simple method to realize Manin
triples for the Lie bialgebra (g0, /0) in ~g = g0 + ig0 as for (g, / ) , since
Jo does not satisfy equation (1.5).

3. Symplectic leaves and Lagrangian submanifolds

In this and the following section, let the corresponding capitals ϋ , G,
GΘ,GO, H, Ho, B±, B* , N* , N* , Kθ, and K denote the connected
Lie groups with their Lie algebras given in §2, where θ = Ad̂ . for x e
H c Kθ an involutive automorphism of both g and gθ .

From the Lie bialgebras (g, / ) , (gθ , / ) , and (g0, / 0 ) , one can get
the corresponding Poisson Lie groups (G, Ω), (GΘ,ΩΘ)9 and (Go, Ωo)
(see [3], [6], [8]), where the multiplicative Poisson tensor Ω is given by

(3.1) Ω=l*J-r*J:TG-+TG Vx € G

(similarly for Ωo and Ωθ). Here lχ and rχ denote the left and right
actions on the Lie group G and we identify TχG with TχG as g = g*
by use of the Killing form ( , •) of g, which is also considered as an
invariant Riemannian metric on G.

By Theorem 3, the solvable subgroup B+ = H0N* of G is the dual
Poisson Lie group of both G and Gθ . For the pair (G, B+), the corre-
sponding decomposition (1.8), G = GB = GH0N

+, is just the Iwasawa
decomposition of the real semisimple Lie group G, so it is global. But,
for (Gθ, B+), G = GΘB+ is only a local decomposition. Notice that since
G=T*G there is a "natural" symplectic structure on G, from [7], which
seems the same as those mentioned above for the pair (G, B+).

Now we begin to discuss symplectic leaves of the Poisson Lie groups
G, Gθ, and Go. First we give some results for the compact Poisson Lie
group G.

Lemma 3. Let Sχ denote the symplectic leaf through a fixed point x e
G. Then for any a, b eH, we have

and laorb: Sχ^> Saχb is a symplectic diffeomorphism.
Proof By property (ii) of the Koszul operator / , we have Adα o J =

J o Adfl for all a e H. This means that Ωa = 0 for all a € H by
expression (3.1). On the other hand, because Ω is multiplicative, i.e.,

(3.2) Ωχy = lχ.Ωy + ry+Ωχ, Vx, y e G,
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one has

(3.3) Ωaxb = la. orb.aχ, VxeG, a,beH.

This means that la°rb: Sχ —• aSχb is a symplectic diffeomorphism. Fi-
nally, since axb e Saχb n aSxb, we have Saxb = aSxb. q.e.d.

To distinguish the symplectic leaves of G, we consider the Weyl group
W c K for the orthogonal symmetric Lie algebra (g, k) (fix a rep-
resentative of W in A") [4]. Let w* £ W be the element such that
Ad^* n+ = n~ , i.e., ω*Δ+ = Δ~ . It can be checked that the formula

(3.4) Ad~ίo/oAdω* = - /

holds on g since Jc\n± = ± Ϊ and / | Λ = 0.
Lemma 4. W7ίA ί/ẑ  notation as above, we have

dim5^* = 2 dim fc, dimSw < 2 dim k, Vw e W\{w*}.

Notice that, for any x e G , l e g , one has

(3.5) Y = L.XeTrG and Ω Y = IΛJX- Ad"1 o/oAd X).

This means that Ω ^ m = 0 for all w € JV 9 because J\h = 0 and

Adwhch. For ty* e V , l e t

Then we get Ω ^ 7 = 2 7 α and Ω ^ T , = - 2 7 by (3.4), i.e.,

rank Ω *̂ = dim g - dim h = 2 dim A:.

Consequently, dim 5^* = 2 dim A:. Using straightforward computations,
one can check that dim Sw < 2 dim A: for all w e l¥\{w*} . Obviously,
Se = {e} for the unit element e of G. q.e.d.

Notice that the orthogonal symmetric Lie algebras (g, g) and (g0, k)
have the same Weyl group W as for (g, k). Now we can use the Bruhat
decomposition of a semisimple Lie group (see [4]) to prove the following
theorem.

Theorem 4. With the notation as above, we have the following

(a) G = \JaeH,wewSaw
(b) The set ί)aeHSaw* is a dense open cell of G, and Saw* Φ

Sbw* (Saw* nStw* = 0 ) foraU aφbeH.
(c) Write LW=KΠSW, Law = aLw for every weW, aeH.

Then we have Law is a Lagrangian submanifold of Saw . Moreover, Law Π
Lbw = 0 for all weW, aφbeH.
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Proof. From (1.9) and Lemma 2, we see that, for any jceG, Sχ may
be written in the form

(3.6) Sχ = Gn{B+xB+).

For any w e W, it is easy to check that

HB+wHB+ = HB+HwB+ = HB+wB+.

Thus the Bruhat decomposition of G corresponding to the decomposition
~g = g Θ b+ has the form

G = U HB+wHB+ = U H{B+wB+).
wew wew

By (3.6) and the fact if c G, we get

G = GίΊG= U H(GnB+wB+) = \J HSW.
wew wew

Thus (a) follows from Lemma 3.
For (b), the fact that \JaeHSaw* is dense and open in G is immediate

from the Bruhat decomposition. The others may be verified by the fact
that w*B+w*~ι = B~ and H Π B+B~ = {e}, where B~ c G is the Lie
group with the Lie algebra b~ .

Now we turn to the proof of (c). Here we only give a detailed proof
for w* G W, since the others are similar but with more complicated com-
putations. Notice that the real semisimple Lie group Go has the Bruhat
decomposition in the form

(3.7) Go =
wew

corresponding to the decomposition g0 = k θ b^ . Thus, K n (BQW*BQ)

is a dense open set in K. This means that

dimϋ: Π (B+W*BQ) = dim A:.

On the other hand, from Lemma 4 and the relation

Kn (B+w*B+) cKn {B+W*B+) = Lw* c K,

we get dimL^ = dim A: = \άimSw*. In fact, Lw* is also an isotropic
submanifold of the symplectic manifold Sw* because it can be checked
that

(3.8) (ΩχX9 Y) = 0 VxeK, VJT, Y € TχK

by means of the facts

Jkcp, p = k±, [k,p]cp.



410 ZHANG-JU LUI & MIN QIAN

Here, g = k Θ p is given as in (2.5)-(2.6). Consequently, Lw* is a
Lagrangian submanifold of Sw*. From Lemma 3, Law* = aLw* c Saw*
is also a Lagrangian submanifold for every a e H. Since Lw c K and
/ f n ϋ : = M 5 w e g e t I ^ n l i u ; = 0 for all aφb eH, w e W. Thus,
(c) follows.

Remarks. (1) In [8], the Bruhat decomposition is used, for the first
time, to study the Poisson structure on an Ad-orbit (also see §4). The
authors named it the Bruhat-Poisson structure.

(2) For any w e W\{w*}, it is possible that Saw = Sbw for some
aφb eH, but (c) shows that Law and Lbw are also two nonintersecting
Lagrangian submanifolds in it.

For the noncompact Poisson Lie group GΘ, Lemma 3 is obviously

true, and the symplectic leaves can also be written in the form Sx =
Gθ Π (B+xB+) for any x e Gθ. Moreover, Gθ has the symplectic leaf
decomposition

aβH

wew

Notice that if w £ Gθ , then Gθ Π (B+wB+) = Sθ

χwy for some x, y e B+

such that xwy e Gθ .
Now we turn to the study of symplectic leaves of the noncompact Pois-

son Lie group (Go, Ω o ) . Notice that W is also the Weyl group for the
pair (GQ, K). From the proofs of Lemmas 3 and 4, it is easy to see

Lemma 5. All the results of Lemmas 3 and 4 are still true for the Poisson
Lie group (Go, Ωo) (use Go, HQ, Jo, and Ωo instead of G, H, J, and
Ω).

But, since JQ does not satisfy (1.5), the symplectic leaves of Go can-
not be realized in the form (3.6). However, we can use the infinitesimal
dressing transformations, i.e., the dressing vector fields, to obtain some
information on the symplectic leaves and the Lagrangian submanifolds.
For any X e g0, let Xι, Xr e χ(G0) be the left and the right invariant
vector fields on Go . Then, the left and right dressing vector fields on Go

are defined as ([10], [14])

(3.9) Z/(x)

If Sχ denotes the symplectic leaf of Go through a point x e Go, it is

known that Sχ consists of all the orbits of the flows of the left or right

dressing vector fields. Now, we can get
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Theorem 5. With the notation as above, both the cosets N^w* and

w*N* are contained in S°w*, and I?w* = K n S^. is a Lagrangian sub-

manifold of s£ .
Proof To see that w*iV0

+ c S° , notice that

(3.10) Xι(x) = lx.(JQX-Ad-ιojQoAdxX) VxeG0,Xeg0

by (3.1) and (3.9). Now let X e n+, y e N+, i.e., x = w*y e w*N+.

Since Ad^* n* c «J and JQ\n± = ± 1 , in this case (3.10) becomes

where /^ Λj -> cΛβ" = w*ytζ = w * ^ and X € /£ = ΓeiV0

+. This

means that w*N^ consists of all the orbits of the left dressing transfor-

mations of the Lie group JVjJ", which is a subgroup of the dual Lie group

GQ because ή^ is a subalgebra of g^ = gQJ . Thus we have w*N£ C S^*

since w* e w*N^ n 5^*. With the same reason, we have N^w* c 5^* .

By similar methods, we can prove that L^* = K nS^* consists of all
the orbits of the dressing transformations of the Lie group Po* with the
Lie algebra p0J c g 0 / , which is a dense open set in K. Thus one has

dimL^* = dim/c = ^dimS1^* . Finally, one can check that L^* c S°w+
is an isotropic submanifold by the same method used in the proof of
Theorem 4-(c). Hence the theorem follows.

4. Reductions on the Poisson Lie groups

Let (G, Ω) and (Go, Ωo) be the two Poisson Lie groups given in §3.
Notice that both their Lie algebras have the Cartan decompositions

(4.1) g = k+p, go = k+po.

Thus, both the coset spaces G/K and GJK are symmetric spaces. Let
π: G —• G/K and π 0 : Go —> GJk denote their projections. Then we have

Lemma 6. Both the symmetric spaces G/K and GJK are the Poisson
manifolds with the reduced Poisson structures such that π and π0 are
Poisson maps.

Proof Lemma 2 and Proposition 1 tell us that both p and pQ are sub-
algebras of g* and #Q , the dual Lie algebras of the Lie bialgebras (g, /)
and (g0, / 0 ) . The lemma follows from a general reduction theorem [11]
and the fact that the decompositions (4.1) are orthogonal decompositions
of g and g0 with respect to the Killing forms, q.e.d.
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It is known that the noncompact symmetric space Go/K may be re-
garded as a submanifold of GQ, i.e.,

GJK ~P0 = exp/?0,

by the global decomposition Go = P0K, where exp: g0 —• Go denotes
the exponential map. Thus, (Po, Ω0\p ) is a Poisson manifold such that
π 0 : Go —• Po is the Poisson map. But, in general, PQ is not a Pois-
son submanifold of the Poisson Lie group Go because the inclusion map
τ: Po —• Go is not a Poisson map.

In most situations, involution theorems are important for studying a
Poisson manifold and the integrable Hamiltonian systems defined on it.
For a Poisson Lie group, say (G, Ω), there is the following well-known
involution theorem ([3], [10]): If

φ,ψe C°°(G)9 φ(χyχ~ι) = φ(y), ψ(χyχ~ι) = ψ(y),

for all x, y e G, then

{φ9 ψ} = Ω{dφ,dψ) = 0.

Now we reduce this theorem to the symmetric space P o , noticing that, for

any x e K and y e Po, one has xyx~ι e Po because Ad(K)p0 = p0.
Theorem 6. Lei Po be the Poisson manifold given above, and let φ, ψ e

C°°(P0) both be K-invariant. Then φ and ψ are in involution.

Proof. Extend φ to a right ΛΓ-invariant function on GQ by the decom-

position GQ = P0K 9 which is also left AΓ-invariant because φ(xyx~ι) =

φ(y) for all x e K, y € Po. This means that

(4.2) < V Λ

i.e., both ry*dφ(y), ly*dφ(y) e p0 = k1- if we identify ,?* with g0 by
the Killing form. The same is true for ψ. From formula (4.2), one has

{φ, Ψ}(y) = (Joly-Ux> ly~Uγ) ~ (Jory-**x> ry-*J)>

where X = dφ{y) and Y = dψ(y). Formula (4.2) and the fact that
JQPQ Ck=p^ imply {φ, ψ) = 0.

Remark. Obviously, a similar involution theorem holds for all left K-
invariant functions on the right coset spaces G/K and Go/K.

Recall that a Poisson Lie subgroup U of a Poisson Lie group G is si-
multaneously a Lie subgroup and a Poisson submanifold of G. An equiv-
alent condition for this is that u1' c g* is an ideal, where u is the Lie
algebra of U (see [8], [10]). Notice that K c G (resp. Go) is not a
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Poisson Lie subgroup because k1' = p (resp. pQ) is only a subalgebra of
g* — gj (resp. £Q) instead of being an ideal.

Lemma 7. Let (g,R, ( , •)) be a Lie bialgebra, and u an R-invariant
subalgebra of g such that u + u± = g. Then, w x is an ideal of gR if it
is a subalgebra of gR.

Proof We only need to show [u,uL]R c w"1. SinceR is skew-

symmetric, Ru c u means i?w± c uL. For any 1 , 7 C M and Z G M 1 ,

we see that

(X, [Y, Z]R) = ([X, RY], Z) + ([X, Y],RZ) = 0,

which means that [u, u±]R c u±. Hence the lemma follows.
Now, we give a theorem for the Lie bialgebra (g, / ) , which is also true

for (g0, / 0 ) . Such a theorem was proved in [8] by use of the dressing
transformation.

Theorem 7. With the same notation as used before, let A eh be fixed
and let gA be the centralizer of A in g. Then gA is an ideal of gj.

Proof By property (ii) of the Koszul operator / , we have ad^ oj =

/ o ad^, i.e., gA is a /-invariant subalgebra of g. By Lemma 7, we only

need to verify that [gA , gA]j c gA , i.e.,

(&dχoj-joadχ)YegA VXegA, YegA.

In fact, we can prove that [ad χ , J]|^± = 0 for any X e gA. Let GA be
the connected Lie group with Lie algebra gA . It is known that the coset
space G/GA is also a homogeneous Kahler manifold (see [5]). Let JA

be the corresponding Koszul operator which satisfies [adx, JA] = 0 for
every X e gA. Then the relation J\ ± = JA implies [ad χ , /] = 0 for
every X e gA. Thus, the theorem follows.

Remarks, (a) Obviously, the same holds for the Lie bialgebra (gQ, JQ).
(b) In [8], the induced Poisson structure on the homogeneous space

G/GA is called the Bruhat-Poisson structure.
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