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ON THE NODAL LINE
OF THE SECOND EIGENFUNCTION

OF THE LAPLACIAN IN R2

ANTONIOS D. MELAS

1. Introduction

A conjecture of L. Payne [8] states that any second eigenfunction of the
Laplacian with zero boundary condition for a bounded domain Ω c R2

does not have a closed nodal line. This is also asked by S.-T. Yau [10,
Problem 78] for Ω a bounded convex domain in R2 .

L. Payne [9] proved the conjecture provided the domain Ω c R2 is
symmetric with respect to one line and convex with respect to the di-
rection vertical to this line. Also. C.-S. Lin [7] proved the conjecture
provided the domain Ω c R2 is smooth, convex, and invariant under a
rotation with angle 2πp/q, where p and q are positive integers. Recently
D. Jerison [5] proved the conjecture for long thin convex sets. Without
any assumption on the smoothness of Ω he showed that the nodal line
has to intersect dΩ in exactly two points.

In this paper we prove the conjecture when Ω is a bounded convex
domain in R2 with C°° boundary.

To fix the notation for a bounded domain Ω C R2 with smooth bound-
ary we let u2 be a second eigenfunction of Ω, that is, u2 is a solution of
the Dirichlet problem

( Au2 + λ2u2 = 0 in Ω,
( U ) U 2 = 0 ondΩ,

where Δ = Σ2

i=ι(d2/dxj) and λ2 is the second eigenvalue of Ω.
The nodal line N of u2 is defined by

(1.2) N = {xeΩ: u2(x) = 0}.

The Courant nodal domain theorem implies that N must divide the do-
main Ω into exactly two components.

Our main result is the following:
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Theorem 1.1. If Ω CM2 is a bounded convex domain with C°° bound-
ary, then the nodal line N of any second eigenfunction u2 must intersect
the boundary dΩ at exactly two points.

Theorem 1.1 implies
Corollary 1.2. If ΩcR2 is a bounded convex domain, then the nodal

line N of any second eigenfunction u2 does not enclose a compact subre-
gion of Ω.

Proof Otherwise we can approximate Ω by a convex domain Ω with
C°° boundary for which the nodal line of a second eigenfunction of Ω
still encloses a compact subregion of Ω and this contradicts Theorem 1.1.

In §2 we show as in [7] that if Theorem 1.1 is false, then we can find a
bounded convex domain Ω with C°° boundary such that the nodal line
N of a second eigenfunction u2 intersects dΩ at exactly one point o.

In §3 we prove that the above situation is impossible and this proves
Theorem 1.1. To do that we introduce the functions υt = du2jdxχ + tu2

for t e R where the x{-direction is tangent to dΩ at o.
We show that for each t e R there exists exactly one subdomain Ωt

of Ω such that υt = 0 on dΩt. Since Δvt + λ2vt = 0 in Ω, it is
concluded that either vt or —υt is everywhere positive in Ω,. Then
defining A = {t e R: υt > 0 in Ω J and B = {t € R: vt < 0 in Ω J
we prove that A, B are closed subsets of R and finally that both are
nonempty. This gives a contradiction since R = A U B and A π B = 0 .

Also we need a technical lemma which allows us to control the singu-
larity of N on dΩ. It is because of this that we have to assume Ω has
C°° boundary. We will state this lemma in §2 but we prove it in §4.

2.

Let (C) be the proposition: "The nodal line of any second eigenfunc-
tion of Ω intersects dΩ at exactly two points." Then Theorem 1.1 means
that (C) is true for any bounded convex domain Ω with C°° boundary.
For such domains we have the following technical lemma.

Lemma 2.1. Let Ω c i 2 be a bounded convex domain with C°° bound-
ary, let q e dΩ, and rQ > 0, and suppose u satisfies

u + λu = 0 inΩ,

\ M = 0 in(dΩ)ΠD(q;r0),

where λ is a constant, and D(q, r0) denotes the disc of radius rQ centered



THE NODAL LINE OF THE SECOND EIGENFUNCTION 257

at q. Also assume that the xχ-axis is in the direction of the tangent of dΩ
at q. Then we have the following.

(i) u does not vanish of infinite order at q.
(ii) If the nodal line of u is N, and q e N, then N approaches q

nontangentially with respect to dΩ.
(iii) There exists an ε > 0 such that

\u\ + \du/dxχ\ > 0 inΩn{x: 0 < \x - q\ < ε}.

This lemma will be proved in §4.
The following lemmas are from [7].

Lemma 2.2. Suppose p e dΩ and that Ω has C1 boundary. Then
(du2/dv)(0) = 0 if and only if p e N, where du2/dv is the outward
normal derivative of u2 on dΩ.

Lemma 2.3. Let u2 be a second eigenfunction of Ω. If du2/dv > 0
on dΩ, then up to multiplication by a constant, u2 is the only second
eigenfunction of Ω.

Theorem 2.1. Suppose Ωo is a bounded convex domain with C°°
boundary such that (C) fails for Ω o . Then there exists a convex bounded
domain Ω with C°° boundary and a second eigenfunction u2 of Ω such
that du2/dv has exactly one zero on dΩ.

Proof This was proved by C.-S. Lin [7]. We sketch the proof here
for completeness. Let Ω(t) be a smooth deformation with Ω(0) = Ωo

and Ω(l) a disc such that Ω(t) is a bounded convex domain with C°°
boundary. Since (C) fails for Ωo and obviously holds for Ω(l), we
may define t0 = sup{ί e [0, 1]: (C) fails for Ω(t)} and we have 0 <
tQ < 1. Thus there exist sequences t., ?. with t{ < t0 < tt and t.,
ί. -> t0 as / —• +oo and such that there exist normalized eigenfunctions
w., δ. of Ω(^), Ω(f.) respectively such that dujdv > 0 on 0Ω(f.) and
dΩύJdp has at least two zeros on dΩ(^). Since the second eigenvalue
of Ω(t) is a continuous function of t, [3], we can by elliptic estimates get
subsequences of {wj and {ώj converging to u0, ύ0 so that u0, ύ0 are
second eigenfunctions of Ω(t0), and moreover dujdv > 0 on dΩ(t0),
and dύjdv has at least one zero on dΩ(t0). By Lemma 2.3 we may
assume u0 = ύQ. Hence dujdv has at least on zero on dΩ(t0) and does
not change sign on dΩ(tQ). But from Lemmas 2.1(ii) and 2.2 it follows
that zeros of duo/dv on dΩ(tQ) are isolated. Since the nodal line of u0

divides Ω(£o) into exactly two components and uQ has opposite signs on
each of them, the set of zeros of dujdv on dΩ(t0) is connected. Hence
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duQ/du has exactly one zero on dΩ(t0). This proves the theorem with
Ω = Ω0(ί0) and u2 = u0.

3. Proof of Theorem 1.1

By Theorem 2.1 we conclude that Theorem 1.1 follows from:
Theorem 3.1. / / Ω c i 2 is a bounded convex domain with C°° bound-

ary, and u2 is a second eigenfunction of Ω, then du2/dv cannot have
exactly one zero on dΩ.

Proof. Assume dujdv vanishes at exactly one point o e dΩ. We
choose the coordinate axes so that o is the origin, the Xj-axis is tangent
to dΩ at o, and the JC2-axis is in the direction of the inward normal to
dΩ at o. Let Ω+ = {x e Ω: u2(x) > 0} and Ω~ = {x e Ω: u2{x) < 0} .
By Lemma 2.2, N n dΩ = {o}. Also since by the maximum principle
u2 has to change sign near any point in N Π Ω, we may assume that
dΩ~ = N, and it is easy to see that Ω~ is simply connected.

Since Ω is convex, the set of points p on dΩ, where the tangent to dΩ
at p is parallel to the jq-axis, consists exactly of two closed line segments
/ , / (which may be points) parallel to the Cj-axis. Assume o € / and let
Γ+ and Γ~ be the two open subarcs of dΩ, which form dΩ \ (I U / ) .
Since u2 is nonnegative near dΩ\ (I U J) by Hopfs boundary point
lemma we may assume that

(3.1) du2/dx{ > 0 in Γ+ and du2/dx{ < 0 in Γ~ .

Also it is obvious that

(3.2) du2/dx{=0 onlUJ.

For any ί e l w e define vt on Ω by

(3.3) vt(x) = e-
tx^(etx>u2(x)) = ̂ (x) + tu2(x).

Then we have

(3.4) Aυt + λ2υt = 0 in Ω,

where λ2 is the second eigenvalue of Ω .

Let Nt = {x e Ω : ^ ( J C ) = 0} be the nodal line of vt. By (3.1) we have
Nt Π dΩ C / U / . Also vt = 0 on IUJ. The basic lemma about Nt is
the following:

Lemma 3.1. For every t e R there exists at least one subdomain Ωt of
Ω such that dΩt CNt\Jl\jJ.
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Proof. Clearly the gradient of u2 vanishes at every point of iVίlΩ,
where N is not C 1 . By Lemma 2.1(ii), (iii) (for u = u2, q = 0) N
approaches o nontangentially with respect to dΩ, and there exists ε > 0
such that du2/dx{ has no zeros in N Π {x: 0 < \x\ < ε}. Hence there
exists η > 0 such that if 0 < Tj < η and Σ̂ - = {(x{, jt2): 0 < x2 < Tj},

then N ΓiΣ^ is a C 1 one-manifold with boundary on the line x2 = η,
and such that its tangent is never parallel to the Xj-axis. Hence N Γ)Σ-
does not contain embedded circles or arcs with both endpoints on x2 = Tj.
Also NΠdΩ = {o}, and N divides Ω into exactly two components.
Thus N n Σ^ consists of two simple arcs each of which has one endpoint
on x2 = η and approaches o . Hence NnΣη consists of two simple arcs
which approach o , and every line x2 = Tj for 0 < Tj < η intersects each
of them exactly once. Let γ{ be one of these arcs.

Now suppose there exists t0 e R such that there exists no subdomain
Ω' of Ω with <9Ω' c Nt UluJ. Then from (3.1), (3.2) and the fact that

Γ+ , Γ~ are connected, it follows that Ω\(Nt U / U /) has exactly two

components so that the sets U+ = {x e Ω: vt (x) > 0} and U~ = {x G

Ω: υt (x) < 0} are both connected. We may assume that γ{ lies in the

interior of U+ . Since ΓιΠdU+ = {o} and yχ is a simple arc, U+ \ γ{

is connected. So if x = (xχ, η) e γχ and y = (y{, η) e Γ+ , we may join

x and y by a simple polygonal path γ2 such that γ2 \ {x, y} lies in the

interior of U+\γ{. Let γ3 be the subarc of Γ+ U/ with endpoints o and

y. Then γ = γχ U γ2 U y3 is a simple closed curve, hence by the Jordan

curve theorem there exists a unique bounded domain W with d W = γ.

Since Ω is simply connected, we have W c Ω. Since v, > 0 on γ,

Γ~ n TF = 0 , and [/"" is connected, we have υt > 0 in W, so by the

maximum principle vt > 0 in W.

Since y2 does not meet the line x2 = 0, there exists τ/j with 0 < η{ < η
such that γ2 does not meet the line x2 = η{. This line meets γ{ at exactly
one point x and Γ+ at exactly one point y. Hence the line segment
[x, y] intersects the curve γ = d W at exactly x and y . Since points on
[JC , y] which are near Γ+ must be in W, we conclude that [x, y] lies
in W. On the other hand, et{)Xχu2(x) vanishes on x and y, hence by
(3.3) there exists z in the open segment with endpoints x and y such
that v# (z) = 0. But then z eW and this is a contradiction since υ# > 0
in W.

Lemma 3.2. For every t eR we have the following:
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(i) There exists exactly one subdomain Ωt of Ω such that dΩt C

NtUl\JJ.
(ii) Either vt>0 in Ωt or υt > 0 in Ωt.

(iii) λχ(Ωt) = λ2, where λχ(Ωt) is the first eigenvalue of Ωt with respect
to the Dirichlet boundary condition.

(iv) Ωt is simply connected.
(v) There exists p > 0 depending only on λ2 such that Ω/ contains a

disc of radius p.

Proof Fix ί e R. (i) Assume there exist two distinct subdomains of
Ω whose boundary is contained in NtUlUJ. Then there are two disjoint
subdomains Ωχ, Ω 2 , of Ω such that υt = 0 on dΩχ U <9Ω2. Since
Aυt + λ2υt = 0 in Ωj U Ω2 and λ2 is the second eigenvalue of Ω, this
yields a contradiction as in the proof of Courant's nodal domain theorem.
Hence (i) follows from Lemma 3.1.

(ii) follows from (i).
(iii) follows from (i) and (ii) since Avt + λ2vt = 0 in Ω,.
(iv) follows from (i) and the fact that Ω is simply connected.
(v) follows from (iii) and (iv) by using Hayman's inner radius theorem

[4].

Lemma 3.3. There exist Cx, C2 > 0 such that vt > 0 in Ωt for every
t > Cj and vt > 0 in Ωt for every t < -C2.

Proof. Let z e Γ + . Since du2/dxχ{z) > 0, there exists δ > 0 suffi-
ciently small such that du2/dxχ > 0 in ΩπD(z δ), and moreover since

z e dΩ+ , we may assume that D(z δ)ΠΩ~ = 0 . Let K = ΩnD(z δ).
Then using λχ(Ω+) = λ2 and the monotonicity principle for eigenvalues,
we have λχ(Ω+ \K) > λ2. Hence by the continuity of the first eigen-
value under continuous deformations of the domain [3] we can choose a
sufficiently large compact subset E of Ω~ such that λι(Ω\(KuE)) > λ2 .

Let M = s\xv{\du2ldxχ(x)\: x e Ω} and a = inf{\u2(x)\: x eE}>0.
Now fix any t such that t > a~ιM. Then

vt > 0 in K and vt < 0 in E.

Hence Nt U / U / c Ω \ (K U E), and since Ω \ K is simply connected
we have Ω, c Ω \ K. Also from Lemma 3.2(iii) it follows that ^ ( Ω ^ =
λ2 <λx(Ω\(Kυ E)) so that Ωt C Ω\(KuE). Hence Ω̂  n E φ 0,
and since υt < 0 in E by Lemma 3.2(ii) we must have ^ < 0 in Ω( if
t > a~ιM = Cχ . Similarly we can find C2 > 0 such that υ, < 0 in Ω, if
t < -C2.
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Lemma 3.4. The sets A = {t eR:vt>0 in Ωt} and B = {t e R: vt <
0 in Ω{} are closed.

Proof. Assume t. e A, t. -> t0 as j' -• oo but tQ £ A. Then

vt > 0 in Ω, and by Lemma 3.2(ii) υt < 0 in Ω( . By Lemma 3.3(v)

we can find discs D(χ. \ p) cΩt . Taking a subsequence we may assume

Xj -• x0 e Ω. It follows then that D(x0 ; / ) ) c Q and v > 0 in D(x0 />).

By the maximum principle, υt (x0) > 0. Since vί < 0 in Ω, , Lemma

3.2(i) implies that Nt does not separate x0 from 3Ω \ (/ U / ) . Hence

there exists a curve ζ: [0, 1] -*> Ω such that ζ(0) = x 0 , ζ(l) e dΩ, and

ζ*Π(Nt U/U/) = 0 , where ζ* is the image of ζ . Since x0 e D(Xj p) c

Ω. for sufficiently large , C* n (iV. U / U /) / 0 . Therefore there exist

y. e C* such that vt{yj) = 0. Again by taking a subsequence we may

assume that y. -^ y0 £ ζ*. Then vt (yQ) = l i m ^ ^ vt (yt) = 0, hence

yn e Nt U / U / which is a contradiction since £* n (Nf U / U /) = 0 .

Thus (̂ is closed. The proof for B is similar, q.e.d.
Now we can finish the proof of Theorem 3.1. By Lemma 3.4, A and

B are closed subsets of 1 . By Lemma 3.2 we have A n B = 0 and
^ U 5 = R, and by Lemma 3.3 both A and B are nonempty. This is a
contradiction since R is connected. Hence Theorem 3.1 is proved, and
now Theorem 1.1 follows from Theorems 2.1 and 3.1.

4.

Proof of Lemma 2.1. (i) From the boundary regularity of elliptic dif-
ferential equations it follows that u is C°° up to the boundary near q .
Let H = {(xχ, x2): x2 > 0} be the upper halfplane. Let f:H-+Ω be a
conformal mapping of H onto Ω. By a theorem of Kellogg [6] / extends
C°° to the boundary of H, and we may assume /(0) = q . Let υ = u o /
in H. Then there exists sufficiently small rQ > 0 such that υ is C°° up
to the boundary in D(O;ro)nΉ and υ = 0 in Z>(0; r0) Π dH. By (2.1)
we have |Δv| = |Δw)o/ | | / | 2 < C\v\ in D(O;ro)nΉ for some C. Define
β on Z)(O;ro) by

M I X

(4.1) v(x1,x2) \
1 z I V(JCJ , -JC2) if x2 < 0.

Then it is easy to check that dϋ/dx{, dϋ/dx2, d2ϋ/dxχdx2, and

d ϋ/dx{ are continuous on D ( 0 ; r 0 ) , and moreover d2ϋ/dx^ = 0 in
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D(0; f0) Π dH since v = 0 on Z>(0; rr0) n dH. From the inequality

|Δv| < C|v| in D(0; TQ) nΉ, it follows that d2ϋ/dxl is also continu-

ous in Z>(0; r 0 ) . Since υ is C°° up to the boundary in D(0; r0) nΉ,

we conclude that β is C 2 ' 1 in D(0; r 0 ) , and moreover \Aϋ\ < C\ϋ\ in

D(0;?0). Thus by Aronzajn's unique continuation theorem [1] ϋ does

not vanish of infinite order in zΛmean at 0. Since v is C°° up to the

boundary in D(0 ;70)nH υ does not vanish of infinite order at 0. Hence

u does not vanish of infinite order at q .

(ii) Assume q = 0. By (i) we may write

(4.2) U(x)=pm(x) + O ( M m + 1 ) 5 M small, x e Ω,

where Vmφ§ is a homogeneous polynomial of degree m . Since Au+λu =
0 in Ω we have

(4.3) 4PWOO = O ( | J C Γ - 1 ) in Ω for small x.

Since Δ/?w(.x) is homogeneous of degree ra-2 and the x t -axis is tangent
to dΩ at 0, we conclude that Δpw(x) = 0 in if = {(Xj, JC2): x2 > 0},
provided that the ;c2-axis is in the direction of the inward normal to dΩ
at 0. Since u = 0 on D(0 ro)ndΩ, by (4.2) we also have that pm(x) = 0
on dH, so that reflection p m is a harmonic polynomial vanishing on dH.
Thus introducing polar coordinates, we have

rm
(4.4) pm(r, θ) = crm sinmθ, w h e r e c ^ 0 .

For r > 0 sufficiently small let 0 < θ~(r) < θ+(r) < π be the unique
angles with (r, (9±(r)) e <9Ω. If (r, θ) e Ω n Λ̂  and r < r0, then

M(r, θ"(r)) = M(Γ, β) = u{r, θ+(r)) = 0 and θ < θ < θ~{r).

Therefore there exist θχ and θ2, θ~(r) < θ{ < θ < Θ2< θ+(r), such that
du/dθ{(r, 0.)) = 0 for / = 1, 2. By (4.2) and (4.4) we conclude that

I cos mθ^<Cχr for some constant Cχ and / = 1, 2.

If r < (2C{)~1, q = π/4m > 0, and c2 = π - π/4m < π, then θχ > c{

and θ2 < c2, and thus we have the following: lΐ (r, θ) e Ωn N and
r < (2Cj) - 1 , then 0<c{<θ<c2<π. Hence if 0 £ N, then ./V
approaches 0 nontangentially with respect to dΩ.

(iii) Clearly there is nothing to prove if 0 φ N. So we assume that
0 e N. Then by (ii) there exist cx, c2 , 0 < cχ <c2< π, and 5 > 0 such
that if (r, θ) is in ΩniV and 0 < r < δ, then cx < θ < cχ and therefore
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sin θ > c3 , where c3 = min{sin θχ, sin θ2} > 0. Also from (4.2) and (4.4)
it follows that

(4.5) | ^ ( r , θ) = mcrm~ι sin(m - 1)0 + O(rm).

If (r, 0) is in Ω and du/dxx{r9 θ) = u(r, θ) = 0, then \sinmθ\ <
C2r and |sin(m - 1)0| < C2r for some constant C 2 . These imply that
|sin0| <2C2r.

On the other hand, if 0 < r < δ and u(r9 θ) = 0, then sin0 > c 3 .

Hence if ε = min{5, (2C2)"1c3} > 0, we have \u\ + | 9M/9XJ > 0 in

Ω U { J C : 0 < |JC| < ε } .
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