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ON THE NODAL LINE
OF THE SECOND EIGENFUNCTION
OF THE LAPLACIAN IN R?

ANTONIOS D. MELAS

1. Introduction

A conjecture of L. Payne [8] states that any second eigenfunction of the
Laplacian with zero boundary condition for a bounded domain Q C R?
does not have a closed nodal line. This is also asked by S.-T. Yau [10,
Problem 78] for Q a bounded convex domain in R>.

L. Payne [9] proved the conjecture provided the domain Q C R® is
symmetric with respect to one line and convex with respect to the di-
rection vertical to this line. Also. C.-S. Lin [7] proved the conjecture
provided the domain Q C R? is smooth, convex, and invariant under a
rotation with angle 2np/q, where p and g are positive integers. Recently
D. Jerison [5] proved the conjecture for long thin convex sets. Without
any assumption on the smoothness of Q he showed that the nodal line
has to intersect dQ in exactly two points.

In this paper we prove the conjecture when  is a bounded convex
domain in R* with C* boundary.

To fix the notation for a bounded domain Q C R? with smooth bound-
ary we let u, be a second eigenfunction of Q, thatis, u, is a solution of
the Dirichlet problem

Au,+i,u, =0 inQ,
(1.1) { 2 272

u, =0 on 0Q,

where A = Zj."=1(az/axf ) and 4, is the second eigenvalue of Q.
The nodal line N of u, is defined by

(1.2) N ={x € Q: uy(x) =0}.

The Courant nodal domain theorem implies that N must divide the do-
main Q into exactly two components.
Our main result is the following:
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Theorem 1.1. If Q C R? is a bounded convex domain with C*° bound-
ary, then the nodal line N of any second eigenfunction w, must intersect
the boundary 9Q at exactly two points.

Theorem 1.1 implies

Corollary 1.2. If QC R’ is a bounded convex domain, then the nodal
line N of any second eigenfunction u, does not enclose a compact subre-
gion of Q. N

Proof. Otherwise we can approximate Q by a convex domain Q with
C* boundary for which the nodal line of a second eigenfunction of Q
still encloses a compact subregion of Q and this contradicts Theorem 1.1.

In §2 we show as in [7] that if Theorem 1.1 is false, then we can find a
bounded convex domain Q with C* boundary such that the nodal line
N of a second eigenfunction u, intersects € at exactly one point 0.

In §3 we prove that the above situation is impossible and this proves
Theorem 1.1. To do that we introduce the functions v, = du,/dx, + tu,
for t € R where the x,-direction is tangent to 9Q at o.

We show that for each ¢ € R there exists exactly one subdomain Q,
of Q such that v, = 0 on 9Q,. Since Av, + 4,v, = 0 in Q, it is
concluded that either v, or —wv, is everywhere positive in ,. Then
defining 4 = {t € R:v, >0 in Q} and B = {t € R:v, <0 in Q;}
we prove that 4, B are closed subsets of R and finally that both are
nonempty. This gives a contradiction sincce R=AUB and ANB=0J.

Also we need a technical lemma which allows us to control the singu-
larity of N on 9Q. It is because of this that we have to assume Q has
C™ boundary. We will state this lemma in §2 but we prove it in §4.

2.

Let (C) be the proposition: “The nodal line of any second eigenfunc-
tion of Q intersects 9Q at exactly two points.” Then Theorem 1.1 means
that (C) is true for any bounded convex domain Q with C°° boundary.
For such domains we have the following technical lemma.

Lemma2.1. Let QC R? be a bounded convex domain with C* bound-
ary, let q € 9Q, and ry > 0, and suppose u satisfies
2.1) {Au+lu—0 in Q,

u=0 in (0Q)ND(q;ry),

where A is a constant, and D(q, r,) denotes the disc of radius r, centered
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at q. Also assume that the x,-axis is in the direction of the tangent of 9Q
at q. Then we have the following.

(i) u does not vanish of infinite order at q .
(ii) If the nodal line of u is N, and q € N, then N approaches q
nontangentially with respect to 6Q).
(iii) There exists an ¢ > 0 such that

|u| +10u/ox,| >0 inQN{x:0<|x—q|<e}.

This lemma will be proved in §4.

The following lemmas are from [7].

Lemma 2.2. Suppose p € 0Q and that Q has C? boundary. Then
(0u,/0v)(0) = 0 ifand only if p € N, where du,/0v is the outward
normal derivative of u, on 0Q.

Lemma 2.3. Let u, be a second eigenfunction of Q. If du,/ov >0
on 9Q, then up to multiplication by a constant, u, is the only second
eigenfunction of Q.

Theorem 2.1. Suppose Q, is a bounded convex domain with C*
boundary such that (C) fails for Q. Then there exists a convex bounded
domain Q with C* boundary and a second eigenfunction u, of Q such
that du,/0v has exactly one zero on OS).

Proof. This was proved by C.-S. Lin [7]. We sketch the proof here
for completeness. Let €(f) be a smooth deformation with Q(0) = Q,
and Q(1) a disc such that Q(¢) is a bounded convex domain with C*°
boundary. Since (C) fails for Q, and obviously holds for Q(1), we
may define ¢, = sup{t € [0, 1]: (C) fails for Q(#)} and we have 0 <
ty < 1. Thus there exist sequences ¢;, ii with ¢, < ¢, < ii and ¢,
f, =ty as i — +oo and such that there exist normalized eigenfunctions
u,, i1, of Qt;), Q(i;) respectively such that du;/dv > 0 on 9Q(¢;) and
dQi1;/9, has at least two zeros on 9€(Z;). Since the second eigenvalue
of Q(¢) is a continuous function of ¢, [3],-we can by elliptic estimates get
subsequences of {u;} and {i,} convergingto u,, i, sothat u,, i, are
second eigenfunctions of €(f,), and moreover du,/dv > 0 on 9€(¢),
and 0i,/0v has at least one zero on 9€(f;). By Lemma 2.3 we may
assume u, = il,. Hence du,/0v has at least on zero on 9(¢,) and does
not change sign on 9Q(t,) . But from Lemmas 2.1(ii) and 2.2 it follows
that zeros of duy/dv on 8€Q(t,) are isolated. Since the nodal line of u,
divides Q(f,) into exactly two components and u, has opposite signs on
each of them, the set of zeros of du,/dv on 0€(¢)) is connected. Hence
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du,/dv has exactly one zero on 9Q(¢,). This proves the theorem with
Q=Qy(t) and u, =u,.

3. Proof of Theorem 1.1

By Theorem 2.1 we conclude that Theorem 1.1 follows from:

Theorem 3.1. If Q C R? is a bounded convex domain with C* bound-
ary, and u, is a second eigenfunction of Q, then du,/dv cannot have
exactly one zero on 6S).

Proof. Assume Ou,/dv vanishes at exactly one point 0 € Q. We
choose the coordinate axes so that o is the origin, the x,-axis is tangent
to 0Q at o, and the x,-axis is in the direction of the inward normal to
0Q at 0. Let Q" = {x € Q: u,(x) >0} and Q = {x € Q: u,(x) < 0}.
By Lemma 2.2, NN9JQ = {o}. Also since by the maximum principle
u, has to change sign near any point in N N Q, we may assume that
0Q = N, and it is easy to see that Q" is simply connected.

Since Q is convex, the set of points p on 8Q, where the tangent to dQ
at p is parallel to the x,-axis, consists exactly of two closed line segments
I, J (which may be points) parallel to the x,-axis. Assume o € I and let
I'" and T~ be the two open subarcs of Q, which form 9Q\ (JU J).
Since u, is nonnegative near dQ \ (/ U J) by Hopf’s boundary point
lemma we may assume that

(3.1) du,/dx,>0 inI" and  9u,/dx, <0 inT".
Also it is obvious that
(3.2) O0u,/0x;, =0 onlUJ.

For any 7 € R we define v, on Q by

(3.3) v,(x) = e_'x‘—a—(e'x‘ Uuy(x)) = 0

u
2
ax, 9%, (X) + tuy(x) .

Then we have
(3.4) Av, +i,v,=0 in Q,

where 4, is the second eigenvalue of Q.

Let N, = {x € Q: v,(x) = 0} be the nodal line of v,. By (3.1) we have
N,noQ CTuUJ. Also v, =0 on IUJ. The basic lemma about N, is
the following:

Lemma 3.1. For every t € R there exists at least one subdomain Q, of
Q such that 0Q,C N,UIUJ.
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Proof. Clearly the gradient of u, vanishes at every point of NN Q,
where N is not C'. By Lemma 2.1(i1), (ii1) (for u = u,, ¢ =0) N
approaches o nontangentially with respect to 9, and there exists ¢ > 0
such that du,/0x, has no zeros in N N {x: 0 < |x| < ¢}. Hence there
exists # > 0 such that if 0 <% < and % = {(x;, x,): 0 < x, < 7},
then N N Eﬁ isa C' one-manifold with boundary on the line x, = 7,
and such that its tangent is never parallel to the x,-axis. Hence N N Zﬁ
does not contain embedded circles or arcs with both endpoints on x, = 7.
Also NNoQ = {0}, and N divides Q into exactly two components.
Thus NN Zﬁ consists of two simple arcs each of which has one endpoint
on x, =7 and approaches o. Hence NN Zﬂ consists of two simple arcs
which approach o, and every line x, =7 for 0 <7 < 5 intersects each
of them exactly once. Let y, be one of these arcs.

Now suppose there exists £, € R such that there exists no subdomain
Q' of Q with Q' C N, UIUJ . Then from (3.1), (3.2) and the fact that
I'", '™ are connected, it follows that Q\ (N, UTUJ) has exactly two
components so that the sets U = {x € Q: v, (x) >0} and U™ = {x €
Q: vto(x) < 0} are both connected. We may assume that y, lies in the
interior of U*. Since T, N8U" = {0} and y, is a simple arc, U*\ y,
is connected. So if x = (x,,n) €y, and y = (y,, n) € I'", we may join
x and y by a simple polygonal path y, such that y,\ {x, y} lies in the
interior of U™ \y,. Let y, be the subarc of I'"UI with endpoints o and
y. Then y = y, Uy, Uy, is a simple closed curve, hence by the Jordan

curve theorem there exists a unique bounded domain W with oW =y.
Since Q is simply connected, we have W C Q. Since v, >0 on y,

I'nW =g, and U~ is connected, we have v, > 0 in W, so by the
maximum principle v, > 0in W.

Since y, does not meet the line x, = 0, there exists 7, with 0 <n, <7
such that y, does not meet the line x, = #, . This line meets y, at exactly
one point ¥ and I'" at exactly one point y. Hence the line segment
[X, 7] intersects the curve y = W at exactly X and y. Since points on
[¥, 7] which are near I'" must be in W, we conclude that [x,y] lies
in W. On the other hand, e*"'u,(x) vanishes on X and ¥, hence by
(3.3) there exists z in the open segment with endpoints X and y such
that 'uto(z) =0. But then z € W and this is a contradiction since v, > 0
in W.

Lemma 3.2. For every t € R we have the following:
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(i) There exists exactly one subdomain Q, of Q such that 0, C
NuluJ.
(ii) Either v,>0 in Q, or v,>0 in Q,.

(iii) 4,(Q,) = A,, where 4,(RQ,) is the first eigenvalue of Q, with respect
to the Dirichlet boundary condition.

(iv) Q, is simply connected.

(v) There exists p > 0 depending only on A, such that Q, contains a
disc of radius p.

Proof. Fix t € R. (i) Assume there exist two distinct subdomains of
Q whose boundary is contained in N,UJ/UJ . Then there are two disjoint
subdomains Q,, Q,, of Q such that v, = 0 on 9Q, UJQ,. Since
Av, + 4,v, =0 in Q, UQ, and A, is the second eigenvalue of €, this
yields a contradiction as in the proof of Courant’s nodal domain theorem.
Hence (i) follows from Lemma 3.1.

(ii) follows from (i).

(iii) follows from (i) and (ii) since Av, +4,v, =0 in Q,.

(iv) follows from (i) and the fact that Q is simply connected.

(v) follows from (iii) and (iv) by using Hayman’s inner radius theorem
[4].

Lemma 3.3. There exist C,, C, >0 such that v, >0 in Q, for every
t>C, and v,>0 in Q, for every t < —C,.

Proof. Let z € I". Since du,/0x,(z) > 0, there exists > 0 suffi-
ciently small such that du,/dx, >0 in QN D(z;d), and moreover since
z € Q" , we may assume that D(z;d)NQ =@. Let K =QnD(z; ).
Then using AI(Q+) = A, and the monotonicity principle for eigenvalues,
we have /?.I(Q+ \ K) > 4,. Hence by the continuity of the first eigen-
value under continuous deformations of the domain [3] we can choose a
sufficiently large compact subset E of Q" such that 4,(Q\(KUE)) > 4,.

Let M = sup{|0u,/0x,(x)|: x € Q} and a = inf{|u,(x)|: x € E} > 0.
Now fix any ¢ such that ¢ > o 'M. Then

v,>0 in K and v,<0 inE.

Hence N,UIUJ C Q\ (KUE), and since Q\ K is simply connected
we have Q, C Q\ K. Also from Lemma 3.2(iii) it follows that 1,(Q,) =
Ay < A(Q\(KUE)) sothat Q, C Q\(KUE). Hence Q,NE # O,
and since v, <0 in E by Lemma 3.2(ii) we must have v, <0 in Q, if
t>a'M= C, . Similarly we can find C, >0 such that v, <0 in Q, if
t<-GC,.
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Lemma34. Thesets A={teR:v,>0in Q} and B={teR:v, <
0 in Q,} are closed.

Proof. Assume t; € A, t, — 1, as J — oo but t{, ¢ A. Then
v, >0 in Q, andbyLemma32(11) v, <0 in Q ByLemma33( )

we can find dlSCS D(x p) C Q Taklng a subsequence we may assume

X; =Xy € Q. It follows then that D(x,; p) C Q and v, >201in D(x,; p).
By the maximum principle, vo( X,) > 0. Since v, < 0 in Q , Lemma
3.2(i) implies that N does not separate x, from oQ\ (Iu J ) Hence

there exists a curve C [0, 1] — Q such that {(0) = Xy, (1) € 0Q, and

C*ﬂ(N UIuJ) =2, where (" is the image of . Since x, € D(x;; p) C

Q for sufficiently large j, ¢*n (N UTUJ) # . Therefore there exist

¥ e {* such that v , (v j) =0. Agaln by taking a subsequence we may
I

assume that y; — y, € ¢*. Then vto(yo) = lim,__ v, (y;) = 0, hence

J—o00 t].

Yo € N, UIUJ which is a contradiction since &'n (N, UuIuJ) =
Thus A is closed. The proof for B is similar. q.e.d.

Now we can finish the proof of Theorem 3.1. By Lemma 3.4, A and
B are closed subsets of R. By Lemma 3.2 we have AN B = & and
AUB =R, and by Lemma 3.3 both 4 and B are nonempty. This is a
contradiction since R is connected. Hence Theorem 3.1 is proved, and
now Theorem 1.1 follows from Theorems 2.1 and 3.1.

4.

Proof of Lemma 2.1. (i) From the boundary regularity of elliptic dif-
ferential equations it follows that # is C™ up to the boundary near gq.
Let H = {(x,, x,): x, > 0} be the upper halfplane. Let f: H - Q be a
conformal mapping of H onto Q. By a theorem of Kellogg [6] f extends
C® to the boundary of H, and we may assume f(0)=g. Let v =uo f
in H. Then there exists sufficiently small 7, > 0 such that v is C*° up
to the boundary in D(0;7,)NH and v =0 in D(0; 7)) NdH . By (2.1)
we have |Av| = |Au)of||f4|2 < Clv| in D(0;7y)NH for some C. Define
© on D(0;7,) by
v(X,, X,) ifx, >0,

-v(x,, —x,) ifx,<0.

(4.1) (X, X,) = {

Then it is easy to check that é?v/é?x1 , 00/0x,, 0 'v/ax sz, and
0 v/ax1 are continuous on D(0; 7;), and moreover O ’u/axl =0 in
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D(0;7)) NdH since v = 0 on D(0; r7,) N 9H. From the inequality
|Av| < Clv| in D(0;7,) N H, it follows that 8°#/dx] is also continu-
ous in D(0;7,). Since v is C* up to the boundary in D(0;7,) NnNH,
we conclude that ¥ is C>'! in D(0;7,), and moreover |A?| < C|?| in
D(0; Fy). Thus by Aronzajn’s unique continuation theorem [1] ¥ does
not vanish of infinite order in L'-mean at 0. Since v is C® up to the
boundary in D(0; 7,) NH v does not vanish of infinite order at 0. Hence
u does not vanish of infinite order at ¢ .

(i1) Assume g = 0. By (i) we may write
(4.2) u(x) =p, (x)+O0(x|"™"),  |x|small, x€Q,
where p,, # 0 is a homogeneous polynomial of degree m . Since Au+iu =
0 in Q we have

(4.3) Ap,(x) = O(x|"™") in Q for small x.

Since Ap,,(x) is homogeneous of degree m —2 and the x,-axis is tangent
to 9Q at 0, we conclude that Ap, (x) =0 in H = {(x;, x,): x, > 0},
provided that the x,-axis is in the direction of the inward normal to 9Q
at 0. Since u =0 on D(0; r,)N9Q, by (4.2) we also have that p, (x) =0
on 0H , so that reflection p,, is a harmonic polynomial vanishing on 0 H .
Thus introducing polar coordinates, we have

(4.4) p,(r,0)=cr"sinmf, wherec#0.

For r > 0 sufficiently small let 0 < 87 (r) < 87(r) < n be the unique
angles with (r, 0%(r)) € 9Q. If (r, 0) e QNN and r < r,, then

u(r, 0 (r) =u(r,0) =u(r, 0 (r))=0 and 6<0<6 (r).

Therefore there exist ¢, and 6,, 6 (r) <0, <60<0,< 6% (r), such that
ou/o0((r, 6,)) =0 for i =1, 2. By (4.2) and (4.4) we conclude that

|cosm@,| < C,r for some constant C, and i =1, 2.

If r< (ZCI)_1 , ¢, =n/4m >0,and ¢, = —n/4m < m, then 6, > ¢,
and 6, < c,, and thus we have the following: If (r,6) € QN N and
r<(2C) ', then 0 < ¢, < 0 <c, <n. Hence if 0 € N, then N
approaches 0 nontangentially with respect to 0Q.

(ii1) Clearly there is nothing to prove if 0 ¢ N. So we assume that
0 € N. Then by (ii) there exist ¢,, ¢,, 0<¢, <c¢, <m,and J >0 such
thatif (r, 6) isin QNN and 0<r <J, then ¢, <0 < ¢, and therefore
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sin 6 > ¢, , where ¢; = min{sin6,, sin6,} > 0. Also from (4.2) and (4.4)
it follows that
(4.5) —ai(r, 0) = mer™ ' sin(m — 1)6 + O(r™).
0x,

If (r,60) isin Q and Ou/dx,(r,6) = u(r,0) = 0, then |sinmf| <
C,r and [sin(m — 1)0| < C,r for some constant C,. These imply that
|sinf] < 2C,r.

On the other hand, if 0 < r < J and u(r, 6) = 0, then sinf > c,.

Hence if ¢ = min{d, (2C,)"'¢c;} > 0, we have |u| + |u/dx,| > 0 in
QU{x:0< |x| <e}.
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