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A COMBINATION THEOREM
FOR NEGATIVELY CURVED GROUPS

M. BESTVINA & M. FEIGHN

1. Introduction

The question addressed in this paper is: When does a negatively curved
space (always in the sense of Gromov) result from glueing negatively
curved spaces? Since the theorem is somewhat technical, in this intro-
duction we give the corollaries and save the statement of the theorem for
§2.

Corollary (mapping torus of a free group automorphism). Let f be
an automorphism of the finitely generated free group (a{, , an). Then
the mapping torus Mf = (a{, , an, t\ta{t~

x — f(at) for i = 1, , n)
is a negatively curved group if and only if f has no nontrivial periodic
conjugacy classes.

The conjugacy problem is solvable for negatively curved groups [6] and
so it is solvable for the groups Mr considered above. As far as we know,
this is the first proof of that fact. The next corollary is a weaker version
of Thurston's fibering theorem [12], but the proof here is new.

Corollary (mapping torus of a pseudoAnosov). The mapping torus of a
pseudoAnosov homeomorphism of a closed surface of genus larger than one
is negatively curved.

The previous corollaries are special cases of the next one. Let / be
an automorphism of the negatively curved group G and let | | denote
the word metric with respect to some finite generating set for G. The
automorphism / is hyperbolic [5] if there is an integer m and a number
λ > 1 such that, for all g in G, we have λ\g\ < max{ |/ m ^ | , \f~mg\} . A
pseudoAnosov homeomorphism of a closed surface of genus larger than
one induces a hyperbolic automorphism on the level of fundamental
groups. Also, an automorphism of a finitely generated free group with
no nontrivial periodic conjugacy classes is hyperbolic [1].

Corollary (mapping torus of a hyperbolic automorphism). The map-
ping torus of a hyperbolic automorphism is negatively curved.
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Here is our (weaker) version of the final glueing step in Thurston's proof
of his hyperbolization theorem ([11]—[13]). Let F be an orientable incom-
pressible surface in the closed orientable three-manifold M. Let M1 be
the compact three-manifold resulting from cutting M open along F.

Corollary (final glueing). Suppose that M' is negatively curved and that
the inclusion of each component of dMf into Mf lifts to a quasi-isometric
embedding between universal covers. Then M is negatively curved if and
only if M is atoroidal

Finally we examine amalgams over virtually cyclic groups.
Corollary (amalgams over virtually cyclics). Free products and HNN

extensions of negatively curved groups over virtually cyclic groups are nega-
tively curved if and only if the resulting groups contain no Baumslag-Solitar
groups.

The main reference for negatively curved groups is Gromov's seminal
article [6]. There are also various sets of notes based on this article ([7]-
[9]). Cannon's beautiful early investigations [2] must also be mentioned.

The authors thank the Courant Institute of Mathematics for their hos-
pitality during the summer of 1988. The first author acknowledges the
support of the Presidential Young Investigator Award and the Alfred P.
Sloan Foundation. Both authors acknowledge the support of the National
Science Foundation.

2. Statement of the theorem

Next, we supply the definitions needed to state the theorem.
Graphs of spaces. Let X be a connected finite cell complex with fun-

damental group G and let p: X —• Γ be a map onto a finite graph Γ.
Denote the preimage under p of the midpoint of an edge e of Γ by Xe .
We require that Xe can be bicollared in X with the collaring respecting
the projection to the edge e. Consider the component containing v of Γ
cut open along the midpoints of edges. Let Xv denote the preimage under
p of this component. We further require that each Xe and Xυ be con-
nected and that their inclusions into X induce inclusions of fundamental
groups. There is an induced map p: X —• T from the universal cover of
X to a G-tree T such that T/G is isomorphic to Γ. (Throughout the
text, the symbol ~ will indicate universal cover.) We call X a graph of
spaces. The most familiar examples of graphs of spaces are constructed as
Eilenberg-Mac Lane spaces associated to graphs of groups [10], however,
the universal cover of a graph of spaces need not be contractible.
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Negatively curved spaces. Let Z be a finite cell complex. Assigning
each edge of Z a length of one induces a combinatorial metric on the
one-skeleton of Z which may be extended to a metric d~ on Z . There
is a similar notion of combinatorial area in Z . The cell complex is nega-
tively curved [6] if there is a constant A = A(Z) such that every inessential
circuit bounds a disk of combinatorial area less than A times the combi-
natorial length of the circuit. We denote combinatorial length in Z by lz

(or just / if the space is understood). A graph of spaces X is called a graph
of negatively curved spaces if, for each vertex v of Γ, the space Xυ is neg-
atively curved. For such a space, set A(X) = max{A(Xυ)\υ e Vertex(Γ)} .
A group is negatively curved if it is the fundamental group of a finite neg-
atively curved cell complex.

The qi-embedded condition. The graph of spaces X is said to satisfy
the q(uasi)i(sometrically) embedded condition if there is a constant τ =
τ(X) such that d~ (a, b) < τ min{d~ (a, b), d~ (a, b)\ whenever v

Λe Λv Λw

and w are the endpoints of an edge e in T and a and b are points in
Xe. Equivalently, Xe is quasi-isometrically embedded in Xv and Xw .
(Here Xe is the subspace of X associated to the edge e. Note that Xe

is isomorphic to the universal cover of Xe,G. The analogous statement
holds for Xy .) It follows easily from the thin triangles characterization
of negatively curved spaces [6] that if X is a graph of negatively curved
spaces satisfying the qi-embedded condition, then the edge spaces Xe are
also negatively curved.

Hallways and annuli. Hallways and annuli in graphs of spaces will play
an important role in what follows. Let m be a positive integer. A disk
Δ: [—m, m] x / -> X is a hallway of length 2m if it satisfies the following
conditions:

(1) A~\\J{Xe\e € Edge(Γ)}) = {-m, -m + 1, • - , m} x / ,
(2) Δ is transverse, relative condition (1), to U ί ^ l * G E d g e (^)} > a n d

(3) Δ| ( . ) χ / is a geodesic in Xe{i), where Δ({/} x /) c Xe{i) for i e
{-m, -m+ 1, ••• , m } . (Throughout the text, "geodesic" means "length
minimizing path.")

Let λ > 1. The hallway Δ is λ -hyperbolic if

λ/(Δ({0} x /)) < max{/(Δ({-m} x /)), l(A({m} x /))}.

Suppose Δ([/, / + 1] x /) c Xυ{i). Then Δ is p-thin if dx (A((i, ή),

Δ((/+ 1,0)) < P f o Γ i e {~m> -m+l,' ,m- 1} and% e l . The
girth of Δ i /(Δ({0} x /)) . The hallway Δ is essential if Δ | f . M ] x { 0 } is
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not homotopic rel endpoints into Xe(^ for / € {-m, -m + 1 , . . . , m - 1}.
Note that the hallway Δ is essential iff the edge path e(-m)e(-m + 1 ) ,
••• ,e(m) never backtracks in T (i.e., e(i) Φ e(i + 1) for / e {-m,
- w + 1, ••• , m- 1}).

A map Δ: [-m, m] x Sι —• X is an annulus of length 2m in X if
the induced map Δ: [-m, m] x [0, 1] -+ X is a hallway of length 2m.
(Here Sι = R/Z.) The girt* of Δ is the length of Δ({0} x Sι). The
annulus Δ is respectively p -thin or λ-hyperbolic if the induced hallway
Δ is respectively /?-thin or /l-hyperbolic. The annulus Δ is essential if
Δ({0} xS 1 ) is essential in X and the induced hallway is essential. Notice
Δ({/} x Sι) is a geodesic in Xe^ possibly broken at Δ({/} x {0}).

Annuli flare condition. The graph of spaces X is said to satisfy the
annuli flare condition if there are numbers λ > 1 and m > 1 such that
for all p there is a constant H{p) such that any /?-thin essential annulus
of length 2m and girth at least H is λ-hyperbolic.

We can now state the theorem.
Theorem (combination theorem). Let X be a graph of negatively

curved spaces. Suppose that X satisfies the qi-embedded and annuli flare
conditions. Then X is negatively curved.

3. More on negatively curved spaces

In a negatively curved space all the geodesic triangles are uniformly thin.
More precisely there is a δ > 0 such that the ^-neighborhood of two sides
of a geodesic triangle contains the third side. Here is a generalization of
the statement that all geodesic triangles in a negatively curved space are
ί-thin.

Proposition (Gromov [6, 6.3, Lemma, p. 183, and 72.A] resolution of a
quasigeodesic polygon). Let Z be negatively curved and let τ > 1 be a
constant. There is a function B(x) = O(log c) ("big oh" notation) and a
linear function C(x) each depending only on Z and τ with the following
property. If Δ: D2 —> Z is a disk with boundary a k-sided τ-quasigeodesic
polygon, then there is a finite R-tree S and a map r: D2 —• S such that:

(1) the number of valence one vertices of S is k,

(2) for a and b in Sι, dz(A(a), A(b)) < ds(r(a), r(b)) + B(k),

(3) r " 1 ^ ) is a property embedded finite tree in D2 for s e S,

(4) // E is an edge of S, then r restricted to r'^Interioril?)) is an
I-bundle.
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FIGURE 1. SHADED REGION = r ι(Interior^)).

(5) for aχ, b{ (respectively a2, b2) in the same side of the polygon and
satisfying r(aχ) = r(a2) e E and r(b{) = r(b2) e E, we have

l(A(the circular arc a{bχ in an edge of the polygon))

< C(l(A(circular arc a2b2 in an edge of the polygon))).

We call such a map r a resolution of the quasigeodesic polygon. A
singular fiber of a resolution is a fiber that is not isomorphic to / (see
Figure 1).

Isoperimetric inequalities. Recall that a finite complex Z is negatively
curved if it satisfies a linear isoperimetric inequality. In fact, Z need only
satisfy a subquadratic linear inequality.

Theorem (Gromov [6, 2.3.F], [7] subquadratic is enough). Let D: R -+
R have subquadratic growth. Let Z be a finite complex and assume that
each inessential circuit c in Z bounds a disk of area no more than D(l(c)).
Then Z is negatively curved.

Olshanski has also announced a proof.
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4. Proof of the weak combination theorem

This section is devoted to a proof of an a priori weaker combination
theorem where the annuli flare condition is replaced by a hallways flare
condition. In a later section, the two conditions are shown to be equivalent.

Hallways flare condition. The graph of spaces X is said to satisfy the
hallways flare condition if there are numbers λ > 1 and m > 1 such that
for all p there is a constant H{p) such that any /?-thin essential annulus
of length 2m and girth at least H is Λ-hyperbolic.

Theorem (weak combination theorem). Let X be a graph of negatively
curved spaces. Suppose that X satisfies the qi-embedded and hallways flare
conditions. Then X is negatively curved.

Throughout this section, X is a space satisfying the hypotheses of the
weak combination theorem and A — A(X). Also let B(x) = O(logx)
and linear C{x) be functions that satisfy properties (l)-(5) of resolutions
simultaneously for each of the vertex spaces of X.

We may assume that the constant λ in the hallways flare condition is
any number larger than one by concatenating hallways. We take λ to be
four. Let c: Sι -> X be a circuit. We may assume c is transverse to and
has nonempty intersection with U ί ^ l ^ e Edge(Γ)}

Good disks. There is a disk Δ: D2 -> X with boundary c that is

transverse to L K ^ k € Edge(Γ)} and thus dividing D2 into regions which

map into the negatively curved Xυ's. Set W = A~\\J{Xe\e e Edge(ί)}).
We may assume Δ has the following properties.
(1) The set W consists of properly embedded arcs in D2 .
(2) The length of Δ(|J W) in X is minimal over all disks satisfying

(1).
(3) The closures of the components of A(D2\(\J W)) have areas bound-

ed by A times the length of their boundaries.
(4) Define 2* to be the set of closures of the components of

Sι\(Sι Π \JW). Since a bigon in a negatively curved space bounds a
disk of area bounded by a constant times the length of the longer side, we
may assume that c restricted to each element of 2? is a geodesic in the
appropriate Xv . We now view c as a polygon whose sides are elements
of J ? . Notice the number of sides of c is not more than l(c) (see Figure
2).

A disk is good if it satisfies (1) through (4).
Resolving good disks. Let & denote the set of closures of the compo-

nents of D2\\JW. For each P e &, the map Δ restricted to dP is a
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FIGURE 2

τ-quasigeodesic polygon in some Xv and so we can use Proposition {reso-
lution of a quasigeodesic polygon) to resolve P. By glueing the resolutions
of the P e & , we obtain a map r: D2 —• S where S is a finite tree.

Let w e W e W. A y$er segment of length / starting at it; is an
embedding σ: [0, /] —• D 2 satisfying:

(1) σ(0) = w,
(2) σ([0, /]) is contained in a fiber of r, and

(3) ( χ - 1 ( 5 1 u ( U ^ ) ) = {0 ? . . ,/} .
The fiber segment σ is singular if σ((0, *')) meets a singular fiber of

the resolution of some P e & and nonsingular if not. Call w a sin-
gular point of W if there is a singular fiber segment of length no more
than m starting at w . The singular points of W decompose W into a
union of closed segments. Denote the set of these segments by Ψ'iW).
Set T = \J{V(WW € W}. For each V e T, we now have a map
(?κ : t~ α F > V I x ^ ~y D2 (pick one of the two orientations) such that for
t in the interior of / , the maps Qv restricted to \-av, 0] x {t} and Qv

restricted to [0, bv] x {t} are nonsingular fiber segments of length at most
m . Further, if av < m, then Qv{{-av} x /) c Sι and if bv < m , then

Qv(ibv} x 7 ) c S1 R e c a 1 1 t h a t f o r t h e resolutions of the P e ^ the dis-
tance between the image under Δ of the endpoints of nonsingular fibers
is no more than J9(the number of sides of P) < B(l(c)). (The polygon c
has at least as many sides as P and the length of the image under Δ of
each of these sides is at least one.) See Figure 3, next page.

It will be important that the size of Ψ is controlled.
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F I G U R E 3. S U P P O S E m = 1. T H E BOLDER LINES IN-

DICATE THE SINGULAR FIBERS OF Γ. o = A SINGULAR

POINT OF THE SEGMENT W{ \ THESE SINGULAR POINTS

BOUND A SEGMENT V. THE SHADED REGION IS

Qv(l-av > M x 7) H E R E av = K = ι

Lemma (cardinality of T). Cardinality (JT) = 0{l{c)).
Proof. The number of edges in the resolving tree for P € & is

0(number of sides of P) and so the number of edges in the tree S
is 0(number of sides of c) = O(l(c)). Thus, the number of compo-
nents of {F\UVertices(F)|F is a singular fiber of r} is 0{l{c)). For
F e ^ , each component of Qv([-a, b] x dl) meets an element of
{F\|JVertices(JF)|iΓ is a singular fiber of r} or a vertex of c. Further,
each element of {/7\|JVertices(iΓ)|iΓ is a singular fiber of r} meets at
most 8m elements of {Qv{[-av, bv] x dI)\V e T). The lemma now
follows.

Key inequality. For VeT', define lo(V) = l(AQv({0}xI)) = l(A(V)).

Also define /+(K) = /(Δ((L)3Γ) Π β κ ({6 κ } x /))) and l+(V, c) =

l{A(Sι Π Qv({bv} x /))). Similarly define l_(V) and /_(F, c).
Lemma (key inequality). There is a linear function M(x) and a func-

tion N{x) = O(logx) 5WcΛ that ifV G ^

Before proving the key inequality, we show how the proof of the weak
combination theorem follows from the key inequality.

Proof of the weak combination theorem given the key inequality. By
good disk property (3), the area of Δ is bounded by A - (2l(A(\JW)) +

We need to bound /(Δ(|J 3Γ)) in terms of /(ΔflJ-S*)) = l(c).
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Notice that each w e \J W which does not lie on a singular fiber of r is

in Qv{{-av, bv} x /) for at most two V eT'. Also note each point of

Sι is in Qv{{-av, bv} x I) for at most m of the V e ^ . Thus,

_(V, c) + /+(K, c))

+ M(ml{c)) + W(/(c)) Cardinality^),

where the sums range over F e f . We now see that /(Δ(|J3Γ)) =
0(/(c)log/(c)). By Theorem (subquadratic is enough), X is negatively
curved.

Proof of the key inequality. The key inequality will follow from a series
of lemmas. The next lemma, which states that the inequality holds for
V e *V such that Qv({-av, bv} x /) meets Sι, follows easily from
property (5) of resolutions of quasigeodesic polygons.

Lemma ( β / s near boundary are controlled). There is a linear function

M{x) such that if Qv({bv} x /) c Sι, then lQ(V) < M(/+(K, c)).

If Qv({-av, bv} x /) does not meet Sι, then av — m = bv and AQV

is a hallway of length 2m. In order to apply the hallways flare condition,
we need to know that some of these hallways are essential.

Lemma (large girth hallways are essential). Suppose AQV: [-m, m]x

I -> X is a hallway. Suppose also that l(AQv({i} x /)) > τB{l{c)) for all

i e {-m, , m}. Then AQV is essential.
Proof Suppose e(i) = e(i +1) for some / e {-m, -m -f 1, , m -

1} . By property (2) of resolutions of quasigeodesic polygons, we have

rf~ (AQv((i, 0) , Δβ κ((/ + 1, 0)) <
Λv(i)

Thus, rf? (AQv((i, 0) > ΔQF((/+ 1, 0)) < τ5(/(c)). An obvious surgery

then reduces l(A(\JW)), contradicting property (2) of a good disk.

Lemma (large girth hallways are hyperbolic). Suppose AQV: [-m, m] x

/ -• ̂  is a hallway. Then there is a function N(x) = O(logx) such that

if lo(V) > N(l(c)), then AQV is three-hyperbolic.

Proof Fix an / e {0, 1, , m - 1} and set R = AQV restricted to

[i, / +1] x / . Relative to the endpoints, homotope the edges R([i, /+ 1] x

dl) to be geodesies in Xv{ί). Now R is a quasigeodesic quadrilateral in

Xv{i) and so may be resolved. That is to say, there is a map rR: [/, / + 1]

xl -> SR, where SR is a finite R-tree with exactly four valence one ver-

tices and with rR satisfying properties (1) through (5) of resolutions (see
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geodesic homotopic
rel endpoints

Shaded region = R(r~\ER))
/^(singular fibers of r )

FIGURE 4. Λ([i, / + 1] x J) = AQv{[i, ί + 1] x J ) .

Figure 4). Denote the edge of SR not containing a valence one vertex
by ER . Consider the set defined to be r~ι(ER) if the fibers of r~ι(ER)
run between {/} x / and {/ + 1} x / , and the empty set if not. This set
fibers a portion of [/, / + 1] x / and any extension to a fibration of all
of [/, i + 1] x / satisfying (1) below also satisfies (2) and (3) below. For
the duration of the proof of this lemma, [/, / + 1] x / denotes the new
product.

(1) [/, / + 1] x dl in the new structure equals [/, / + 1] x dl in the old
structure.

(2) Let L(j) = d^JAQv((j,ή),AQv({j}xdI)) for j e {/, /-f 1} and

suppose L(i) > CB(l\c)). Then rR((i, ή) e ER and so Δβκ((/+ 1, t)) G

Xe{M) and d~^(AQv((i, t)),AQv((i+l9t)))<B(4).

(3) If L(ί) > ( max{C5(/(c)), 3τB(l{c))} , then

L(i + 1) > d~vJAQv((i + 1 , 0 ) , Δ β F ( { / + 1} x dl))

> L(i)/τ - 5(4) -
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Similarly refiber [j, j + 1] x / for all j e {0, 1, , m - 1} and
analogously refiber [j - 1, j] x / for all j e { 0 , - l , - , -ra + 1} to
obtain a new product structure on [-m, m] x I. Set

# = (3τ)m max{CJ?(/(c)), 3τB(l(c))}.

Consider the subsegment [sQ, t0] of / defined by t e [s0, t0] if and only if
d~^(AQv{{0, ή), AQv({0} x dl)) > K. By (2) and (3), the hallway AQV

restricted to [-m, m] x [sQ, ί0] is 5(4)-thin, and by Lemma (large girth
hallways are essential) applied to AQV it is also essential. Thus, AQV

restricted to \-m, m] x |> 0, tQ] is four-hyperbolic as long as /(ΔβF({0} x
[so,to]))>H(B(4)).

Assume lQ(V) -2K = l{AQv({0} x [sQ, t0])) > H(B(4)). By hyperbol-
icity, we may assume 4l(AQv({0} x [s0, ί0])) < l(AQv({m} x [J 0 , tQ])), so
that

} x /)) = /(Δ({m} x ([0, s0] U [ί0, 1]))) + /(Δβ({m} x [s0, ί0]))

>4(/ 0 (K)-2A:).

If /0(F) > 8Λ:, then /(Δ({m} x /)) > 3/0(K). Thus, we may take N{l{c))
to be max{8Λ^, H(B(4)) + 2K} . This completes the proof of Lemma
(large girth hallways are hyperbolic).

We now see that the functions M(x) from Lemma ( β / s near bound-
ary are controlled) and N(x) from Lemma (large girth hallways are hy-
perbolic) are the functions needed in the key inequality. The proof of the
key inequality and therefore also the proof of the weak combination is
concluded.

5. Some corollaries

Before showing the equivalence of the flare conditions, we prove the
corollaries about hyperbolic automorphisms.

Recall that an automorphism / of a negatively curved group G is said
to be hyperbolic if there is an integer m and a number λ > 1 such thai,
for all g in G, we have λ\g\ < max{ |/ m #|, \f~mg\}. Since different
finite generating sets give rise to quasiisometric metrics, the hyperbolicity
of an automorphism is independent of the choice.

Corollary (mapping torus of a hyperbolic automorphism). Let f be
a hyperbolic automorphism of the negatively curved group G. Then the
mapping torus M, of f is negatively curved.
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Proof. Fix a finite presentation for G and let Z be the standard com-
plex associated to it. Choose a metric on Z as in the subsection on nega-
tively curved spaces. The identification of G with the zero-skeleton Z ( 0 )

of Z is then an isometry. A group is negatively curved if and only if a
finite index subgroup is also. This allows us, by taking powers, to assume
that / is hyperbolic for λ = 3 and m = 1.

Let h, respectively k, be a cellular self-map of Z inducing / , re-
spectively f~ι, on G. The mapping torus Th has the structure of a
graph of spaces where the graph has one vertex and one edge. The edge
space is Z . The vertex space is obtained from the mapping cylinder
Ch = Z x / u Z/(z, 1) ~ hz by attaching a collar to (the top) Z . For
finite complexes, if Z{ c Z 2 induces an isomorphism of fundamental
groups, then Zχ c Z 2 is a quasi-isometry [6]. Thus, the graph of spaces
Th satisfies the qi-embedded condition.

The one-skeleta C^ and C^ are equal and may be identified with

Γ(G)x{0, 1}U{[(£,O), (fg, l)]\geG}9 where Γ(G) is the Cayley graph

of G. Thus, there are obvious retractions pf: C^ -> Γ(G) x {1} and

prx: C{

h

ι) -* Γ(G) x {0} . If a is an edge path in C{

h

{), then l([pf(a)]) <

\f\l{a), where [Pf(a)] is a geodesic in Z ~ Z x {1} that is homotopic rel

endpoints to pΛά) and |/ | = max{|/e|, \f~ιe\ for e in the generating
set on G} . An analogous inequality holds for pf-\ .

That Mf satisfies the hallways flare condition with λ = 2 and m = 1
follows easily from the following. Since / is hyperbolic with λ = 3 and
m = 1, if c is a geodesic in Z then 3/(c) < max{/([Λc]), l{[kc])}. Let
αέα'Z/ be a loop in C^1} composed of four segments with the segment
a geodesic in Z x {0} and the segment a geodesic in Z ~ Z x {1}.
Suppose 3/(α) < l([ha]). Then

3/(α) < l([ha]) = l([pfa]) < l(a = [p/]) + /([/>/>]) + l(\pfb']).

So, if /(6) and l(b') are both no more than p and if I (a) > 2\f\p, then
2/(0) < /(fl;). Similarly, if 3/(α;) < /([ikα']), l{b) and /(6;) are both no
more than p, and l(a) > 2\f\p, then 2l(a) < I (a).

A pseusoAnosov homeomorphism of a closed surface of genus larger
than one induces a hyperbolic automorphism of the fundamental group.
An automorphism of a finitely generated free group with no nontrivial
periodic conjugacy classes is hyperbolic [1] as well. (Such automorphisms
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abound [4].) Since a finite cell complex is negatively curved if and only if
its fundamental group is negatively curved [6], Corollary {mapping torus of
a free group automorphism) and Corollary {mapping torus of a
pseudoAnosov) now follow.

6. Equivalence of flare conditions and

proof of the combination theorem

In this section we establish the equivalence of the annuli flare and hall-
ways flare conditions. Since X is compact, we obtain:

Lemma (finitely many arcs). Fix a number. There are in X only finitely
many combinatorial arcs of length no more than the fixed number.

Proposition (annuli flare condition iff hallways flare condition). The
space X satisfies the annuli flare condition if and only if it satisfies the
hallways flare condition.

Proof The " i f direction of the proposition is clear. The idea for the
other direction is to show that a long hallway is nearly a concatenation of
annuli. We assume that any (p + 2)-thin essential annulus of length 2m
and girth at least H is eight-hyperbolic. Choose M large enough so that
any collection of M arcs in X of length no more than 2m(p + 2) has
two arcs that are the same. This is possible by Lemma (finitely many arcs).
Let Δ: [-m, m]xl -» X be a p-thin essential hallway of length 2m and
girth at least 4HM. There are 0 < s0 < tQ < sχ < tχ < < sκ < tκ < 1
such that:

(1) Δ([/\ j + 1] x {st}) and A([j, j + 1] x {t.}) are homotopic rel
endpoints for j e {-m, ••• , m} (here we tacitly use the extra 2 in
the (p + 2)-thin condition to enable us to assume {Δ({-m, ••• , m} x
{Si}), Δ({-m, , m} x {ί.})|l < i < K} c Vertices(Z)),

(2) /(Δ({0} x[s.9 /.]))> H, and
(3) Σ{/({0} x [0, s0]), /({0} x [ί0 ,sx)), /({0} x [t{, s2]), , /({0} x

By (1) and (2), Δ restricted to any one of [-m, m] x [st, tt] represents

a (/?+2)-thin essential annulus of girth at least H which we will denote by

Ai:[-m,m]xSι -> X for / e {1, , K}. Let ^ c {1, ••• , K} be

the set of indices determined by / e J^+ if and only if /(^.({ra} x S1)) >

8/(^f ({0} x S1)). Denote the complement of J ^ + c {1, , A:} by J"~ .

We may assume

^ x Sι))\i e <S+} > Σ{/μf.({0} x Sι))\i e S'}.
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Then

Now

l(A({m} x /)) > ^{/(Δ({m} x [s., ί.]))|i € {1, , K}}

x I))-HM) > 3/(Δ({0} x /))

if l(A({0}xI))>4HM. q.e.d.
Theorem (combination theorem) is a consequence of the last proposition

and Theorem (weak combination theorem).

7. More corollaries

In this section, we collect corollaries of the combination theorem.
Corollary (no long annuli implies hyperbolic). Let X be a graph of

negatively curved spaces. Suppose that X satisfies the qi-embedded condi-
tion and that there is an upper bound to the length of essential annuli in
X. Then X is negatively curved.

Three-manifolds. Let F be an oriented incompressible surface in the
closed oriented three-manifold M. Using F, the three-manifold M has
an obvious graph of spaces description where the graph is a circle with
one vertex or a segment with two vertices. Let M' be the compact three-
manifold resulting from cutting M open along F. Let C(M) denote
the characteristic submanifold of M. The following proposition can be
proved using standard three-manifold techniques.

Proposition (no long annuli in M). Suppose M is atoroidal and dM1

is not contained in C(M'). Then there is a bound to the length of an
essential annulus in the graph of spaces M.

If M is atoroidal and dM1 is contained in C(Mr), then M is a map-
ping torus of a pseudoAnosov homeomorphism. So, Corollary (mapping
torus of a pseudoAnosov), the previous proposition, and Corollary (no long
annuli implies hyperbolic) imply Corollary (final glueing).
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Baumslag-Solitar groups and amalgams. We now look at splittings of
negatively curved groups over virtually cyclic subgroups. Virtually cyclic
groups are precisely the negatively curved groups that do not contain a free
group of rank two [6].

It follows from Gromov [6, Corollary 8.2.C] that if, in a negatively
curved group, an element s has infinite order and m and n are nonzero
integers, then the equation tsmt~ = sn implies that the subgroup gener-
ated by s and t is virtually cyclic. In particular, \m\ = \n\ and we say
t nearly commutes with a power of s. Therefore, the Baumslag-Solitar
group of type m, n, BS(ra, ή) := {x, t\tsmt~ι = sn), cannot occur as a
subgroup of a negatively curved group [3].

Corollary (free products over virtually cyclics). Let G = A*CB, where
A and B are negatively curved groups and C is virtually cyclic. Then the
following three conditions are equivalent:

(1) G contains no Z φ Z .
(2) For x e G, define C(x) := {c e C\xcx~ι e C}. At least one of

(a) or (b) below holds:
(a) For all x e A\C, C(x) is finite.
(b) Forall xeB\C, C(x) is finite.

(3) G is negatively curved.

Proof. Construct a complex for G by assembling C x [-1, 1] and
standard complexes for A and B (with C embedded).

(1) implies (2): Suppose, for x e A\C and y e B\C, both C(x) and
C(y) are infinite. Since C(x) and C(y) are then infinite subgroups of
the virtually cyclic group C, there are infinite order elements c e C(x)
and d e C(y). The equation xcx~ι e C implies x nearly commutes
with a power of c. Similarly, y and a power of d nearly commute.
Thus, there is a common power z of c and d such that x and y both
nearly commute with z. It is easy to see that the subgroup (xyxy, z) is
isomorphic to Z Θ Z, a contradiction.

(2) implies (3): Assume C(x) is finite for all x e A\C. We will use the
combination theorem to show that G is negatively curved. Let p > 0 be
given. Let S be the set of all elements of A\C with word length in A no
more than p. Let H be larger than the length in A of any element of the
finite set LKQ *)!-* e $} There are no /?-thin essential annuli of length
2 and girth at least H because the waist curve would be an element of
\J{C(x)\x € S} of length in A at least H, a contradiction. Since virtually
cyclic subgroups of negatively curved groups are always quasiisometrically
embedded [6], the combination theorem now applies.
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(3) implies (1): This follows from the comments preceding the state-

ment of this corollary, q.e.d.

For infinite order x e A, C(x) is infinite if and only if some power of

x is in C. Thus if G is torsion-free, condition (2) is equivalent to:

(2') At least one of (a) or (b) below holds:

(a) If some nontrivial power of x e A is in C, then x is in

C .

(b) If some nontrivial power of x e B is in C, then x is in

C.

We now have the following strengthening of a result of Gromov [6, §3.3].

Corollary (torsion-free products over Z) . Let G = A * z B, where A

and B are negatively curved torsion-free groups and Z is a maximal cyclic

in at least one of A or B. Then G is negatively curved.

Similar considerations yield:

Corollary (HNNs over virtually cyclics). Let G = A,, where A is neg-

atively curved, and φ: C —• C' is an amalgamating isomorphism between

virtually cyclic subgroups. Then the following conditions are equivalent:

(1) G contains no BS(ra, ή).

(2) The set {c e C\xcx~ι e C1} is finite for all x e A .

(3) G is negatively curved.
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