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HYPERBOLIZATION OF POLYHEDRA

MICHAEL W. DAVIS & TADEUSZ JANUSZKIEWICZ

Introduction

Hyperbolization is a process for converting a simplicial complex into a
metric space with "nonpositive curvature" in the sense of Gromov. Several
such processes are described in [19, §3.4]. One of the purposes of this
paper is to elaborate this idea of Gromov. Another purpose is to use it to
construct the three examples described below.

Our approach to hyperbolization is based on the following construction
of Williams [32]. Suppose that X is a space and that / : X -> σn is a map
onto the standard λz-simplex. Suppose, also, that K is an ^-dimensional
simplicial complex. To these data Williams associates a space XAK, con-
structed by replacing each n-simplex in the barycentric subdivision of K
by a copy of X. The pair (X, /) is a "hyperbolized ^-simplex" if Xn

is a nonpositively curved manifold with boundary and / has appropri-
ate properties. (It is proved in §4 that hyperbolized simplices exist.) If
(X, /) is a hyperbolized ^-simplex, then XAK is nonpositively curved;
it is called a "hyperbolization of K."

In all three examples we begin with a polyhedral homology manifold
having a desired feature; a hyperbolization then has the added feature
of nonpositive curvature. The first example is a closed aspherical four-
manifold which cannot be triangulated. Taking the product of this exam-
ple with a A2-torus, we obtain an aspherical manifold of any dimension
> 4 which is not homotopy equivalent to a PL manifold. The second
example is a closed smooth manifold of dimension n > 5 which carries
a topological metric of nonpositive curvature, while its universal cover,
though contractible, is not homeomorphic to a Euclidean n-space Rn.
As we shall see, such a manifold cannot carry a PL or smooth metric of
nonpositive curvature. The third example is a further refinement: Mn

carries a topological metric of strict negative curvature and its universal
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cover Mn is homeomorphic to Rn , yet Mn cannot carry a PL or smooth
metric of strict negative curvature. The invariant in this case is the "ideal
boundary" of the universal cover.

The construction in the first example goes as follows. Let K4 be a tri-
angulation of the "E% homology four-manifold." (By this we mean the
polyhedral homology four-manifold formed by taking the smooth, simply
connected, four-manifold with boundary with the E% form as its intersec-
tion form and then attaching the cone on the boundary.) A neighborhood
of the cone point in K4 is isomorphic to the cone on Poincare's homol-
ogy three-sphere Σ 3 . For suitably chosen hyperbolized four-simplex X,
we will have that (i) XAK is an orientable polyhedral homology four-
manifold with vanishing second Stiefel-Whitney class, (ii) XAK has one
singular point, a neighborhood of which is isomorphic to the cone on Σ 3 ,
and (iii) the signature of XAK is 8. Since XAK is nonpositively curved,
it is aspherical, i.e., XAK is a K(π, 1). Properties (i) and (iii) imply that
XAK is not homotopy equivalent to a closed PL manifold (by Rohlin's
Theorem). On the other hand, XAK is homotopy equivalent to a closed
topological manifold, namely, the manifold N4 formed by replacing a
neighborhood of the singular point by a contractible manifold bounded by
Σ 3 . (This uses [16].) It follows from recent work of Casson that N4 is
not homeomorphic to a simplicial complex, i.e., it cannot be triangulated.

Before describing the remaining two examples we need to discuss some
properties of universal covers of nonpositively curved polyhedral homol-
ogy manifolds which are piecewise flat or piecewise hyperbolic (our exam-
ples are of this type). In the PL setting we reprove the following version
of the Cartan-Hadamard Theorem (Theorem 3b.2), the first part of which
is a result of David^Stone [31].

Theorem. Let Mn be a simply connected, nonpositively curved, piece-
wise flat {or piecewise hyperbolic), PL manifold.

(i) (Stone) Mn is homeomorphic to Rn .

(ii) The ideal boundary of Mn is homeomorphic to the (n - \)-sphere

This result is false for polyhedral homology manifolds which are not PL
manifolds; for example, the universal cover of the hyperbolization of the
Es homology manifold is not simply connected at infinity and its ideal
boundary is not S3 (it is not even an ANR). (It follows that the universal
cover of our example of a nontriangulable aspherical four-manifold N4 is
not homeomorphic to R4 .)



HYPERBOLIZATION OF POLYHEDRA 349

The fact that polyhedral homology manifolds which are not PL mani-
folds have something to do with exotic universal covers was first recognized
in [11], through the use of reflection groups. In the recent Ph.D. thesis of
G. Moussong [24], it is shown that some of the results of [11] on reflec-
tion groups can be recovered using nonpositive curvature. In particular,
Moussong proves that the natural contractible simplicial complex on which
a Coxeter group W acts properly with compact quotient can be given a
piecewise flat structure with nonpositive curvature. Sometimes this sim-
plicial complex is a polyhedral homology manifold and one can use the
results of §3 to see that its "fundamental group at infinity" can be nontriv-
ial. We should mention, in this regard, that Ancel and Siebenmann have
announced some related results concerning the ideal boundary of these re-
flection group examples; in particular, they have pointed out that the ideal
boundary need not be a sphere (or even an ANR).

It has been known since 1975 that polyhedral homology manifolds
which are not PL manifolds can unexpectedly and miraculously be topo-
logical manifolds; for example, the double suspension of any homology
n-sphere is homeomorphic to Sn+2. The definitive result is Edwards'
Characterization Theorem (cf. [13]): A polyhedral homology manifold of
dimension > 5 is a topological manifold if and only if the link of each
vertex is simply connected.

In our second example we hyperbolize a certain non-PL triangulation
of Sn , n > 5 . By Edwards' Theorem the resulting nonpositively curved
space Qn is a topological manifold. We show that the universal cover Qn

is not simply connected at infinity.
In our third example, we are concerned with the ideal boundary. When

the curvature is strictly negative the ideal boundary is a quasi-isometry
invariant. Hence, there is an obstruction for a manifold which admits
a topological metric of strict negative curvature to have a PL metric of
strict negative curvature: the ideal boundary of its universal cover must
be homeomorphic to a sphere (by the previously stated version of the
Cartan-Hadamard Theorem). As we shall see, the ideal boundary of the
universal cover is a finer invariant than its fundamental group at infinity.
We apply a "strict" hyperbolization procedure to the double suspension of
Σ3. ("Strict" means that the curvature is strictly negative.) The result is a
negatively curved topological five-manifold N5. The universal cover N
is simply connected at infinity, hence, by a theorem of Stallings [30], it is
homeomorphic to R5. However, its ideal boundary is not homeomorphic
to S4.
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The hyperbolization process is conceptually as simple as the reflection
group techniques of [11]; however, it is a more potent source of examples.
One reason is that hyperbolization provides more flexibility with charac-
teristic classes and characteristic numbers, while reflection group construc-
tions generally yield stably parallelizable manifolds. Thus, one cannot use
reflection groups to produce a four-manifold of nonzero signature as in
the first example. Another drawback of the reflection group techniques
is that it is impossible to use them to produce examples of manifolds of
strict negative curvature in dimensions > 30. (This follows from results
of Vinberg [33], as has been pointed out to us by Gabor Moussong.) Thus,
it would seem to be very difficult to find something like our third example
by means of reflection groups. On the other hand, an analog of the second
example can be produced using reflection groups.

A hyperbolization procedure is interesting as a purely topological pro-
cess. In this context it makes more sense to call it "asphericalization."
The first such asphericalization procedure is due to Kan and Thurston
[20]. They associate to each simplicial complex K a space a{K) and a
map fκ: a(K) —• K with the following properties.

(1) a(K) is aspherical.
(2) fκ induces an isomorphism on homology (with local coefficients).
As pointed out in [21], if K is ^-dimensional, then one can find such an

asphericalization of the form a(K) = XAK for an ^-complex X which
is suitably acyclic and aspherical. A basic problem with this type of as-
phericalization is that property (2) prevents such a procedure from taking
manifolds to manifolds; for example, no two-manifold asphericalization
of the two-sphere can satisfy (2). Suppose, however, that we weaken (2)
as follows.

(2') fκ.: HMK)) - KM i s i n t 0

Then one can produce hyperbolizations satisfying (1), (2') and the fol-
lowing additional properties.

(3) If K is an ^-manifold, then so is a(K).
(4) If AT is a manifold, then its stable tangent bundle pulls back (via

fκ) to the stable tangent bundle of a(K).
In the terminology of surgery theory (cf. [7]), properties (2'), (3), and

(4) mean that fκ is a "degree one normal map." These hyperbolization
procedures also have the following property.

(5) If AT is a manifold, then the normal map fκ: a(K) -+ K is normally
bordant to the identity.

Property (5) has the following interesting consequence.
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Theorem A. Let Ω̂  be any bordism theory of smooth or PL manifolds.
Then each element of Ωn can be represented by an aspherical manifold.

For example, Ω^ could be PL or smooth, unoriented, oriented, or
framed bordism, etc. Properties (2') and (4) have the following conse-
quence.

Theorem B. If K is a closed n-manifoldy then fκ: a{K) —• K induces
a surjection on any generalized homology theory.

The authors thank all of the referees for their thoughtful suggestions.

1. The Williams functor

The standard ^-simplex is denoted by σn . A space over σn is a pair
(X, f), where X is a topological space and / : X -> σn is a continuous
map. Suppose that K is an ^-dimensional simplicial complex and that
(X, /) is a space over σn . From these data Williams [32] constructs a
space XAK together with a map XΔK -> K.

Part (a) of this section consists of some preliminary material concern-
ing simplicial complexes. In part (b) we explain Williams' construction
and its naturality properties. In part (c) we list various conditions on
(X, / ) . In parts (d), (e), and (f) and we impose these conditions on
(X, /) and consider the effect on XAK. We are primarily interested in
the case where X is an oriented w-manifold with dX = f~\dσn) and
with / : (X, dX) -> (σn, dσn) a map of degree one (and with a similar
condition for each face of σn). In part (g) we discuss a relative version
of Williams' construction. Using this, we find that (when AT is a mani-
fold) XAK and K are bordant. Finally, in part (h) we show that XAK is
aspherical provided that X satisfies appropriate conditions of asphericity.

(la) Simplicial complexes over σn . A simplicial map is nondegenerate
if its restriction to each simplex is injective (i.e., if no edge is collapsed to
a vertex).

(la.l) Definitions. A simplicial complex over σn is a pair (L, π) ,
where L is an abstract simplicial complex and π: L —• σn is a nonde-
generate simplicial map. (This implies that dimL < n.) If (L , πχ)
and (L2, π2) are simplicial complexes over σn, then a nondegenerate
simplicial map g: Lχ -• L2 is a map over σn if the following diagram
commutes:

Lx l ^ L 2

n

σ
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Let X{σn) denote the category with simplicial complexes over σn as
objects and with the maps over σn as morphisms.

(la.2) Example. Let K be an abstract simplicial complex of dimen-
sion < n and let K1 be its derived complex. Let d: K -> {0, 1, , n}
be the function which assigns to each simplex its dimension. As an abstract
simplicial complex, σn can be identified with the poset of nonempty sub-
sets of {0, 1, , n} . The function d defines a simplicial map K1 —> σn .
Hence, the derived complex of any ^-dimensional simplicial complex is
naturally a complex over σn . Moreover, if g: K —• L is any nondegen-
erate simplicial map of n -dimensional complexes, then g': K1 —• ll is a
map over σn.

(lb) The construction. Suppose that (X, / ) is a space over σn and
that (L, π) is a simplicial complex over σn . The fiber product of X and
\L\ over σn will be denoted by XAL. (\L\ denotes the geometric realiza-
tion of L.) In other words, XAL is the subspace of X x \L\ consisting of
all pairs (x, y) with f(x) = π(y). The natural projections are denoted
by fL: XAL -+ \L\ and p: XAL ^X:

XAL — ^ \L\

Λ • G

f
(lb.l) Examples. Suppose that L is a boundary complex of an oc-

tahedron (so that L is a triangulation of the two-sphere). There is a
natural simplicial projection π: L —• σ . We will consider three dif-
ferent examples where X is an orientable two-manifold with boundary,
f~ι(dσ2) = dX, and f\dX is transverse to dσ2 it will then follow from
Corollary lf.2, below, that XAL is a closed orientable two-manifold.

(i) X is a surface of genus g with one hole and the map f\dX —• dσ1

is a homeomorphism. Obviously, XAL is then an octahedron with each
two-simplex replaced by a genus g surface, i.e., XAL is a surface of genus
8*.

(ii) X is a hexagon and the map / : X —• σ2 is a two-fold branched

cover (branched at the center of σ2). A pair of adjacent two-simplices in

L corresponds to a pair of hexagons in XAL which intersect in two edges

(opposite edges on each hexagon). The Euler characteristic / of XAL is

given by χ = 12 - 24 + 8 = - 4 so XAL is a closed surface of genus 3.

(iii) X is dσ2 x I and the map / restricts to the identity on each

component of dX. The Euler characteristic of XAL is easily computed



HYPERBOLIZATION OF POLYHEDRA 353

to be -12 hence, XAL is a closed surface of genus 7.

If K is any ^-dimensional simplicial complex, then put

XAK = XAK1,

where Kf is a complex over σn as in Example la.2.
Notation. If / is any subset of the standard simplex σn , then put

In particular, if a is a closed face of σn , then Xa is called a face of
X.

(lb.2) Definition. Suppose that (X,f) and ( 7 , g) are spaces over
σ* . A map p : X —• 7 is face-preserving if p(ΛΓα) C 7α for all faces α of

If ( L p π t ) and (L2, π2) are simplicial complexes over σ" and h:L{^

L2 is a map over σn , then the restriction of id^ x \h\: X x |Lj | —• X x |L 2 |

to XΔLj is denoted by I Ah: XAL{ -• XΔL2 . Similarly, if /:: A^ -• K2

is any nondegenerate map, then put lAk = 1ΔΛ:'. If φ: X —• 7 is a

map such that g o φ = f: X ^ σn , then 9? x id|L | : JΓ x |L| -> 7 x |L|

restricts to a map φA\: ZΔL -^ YAL. Even if $? is only required to be
face-preserving, then one can still define, for any simplicial complex K,
a map φA\: XAK -> 7 Δ ^ as in [32, p. 320]. It is then easy to see that
Williams' fiber product construction is functorial in both X and L. We
state this as the following lemma.

(lb.3) Lemma, (i) There is a functor (L, π) <* XAL from X{σn)
{the category of simplicial complexes over σn ) to the category of topological
spaces.

(ii) The construction is also functorial in the first variable. Thus, (X, / )
~*> XAL defines a functor from the category of spaces over σn and face-
preserving maps to the category of topological spaces.

The following result is also obvious.
(lb.4) Lemma. Let (X, /) be a space over σn . For any simplicial

complex (L, π) over σn let fL: XAL -» \L\ be the natural projection.
Thus, to each object (L, π) in 3£{σn) we have associated a continuous map
( = morphism of spaces) fL: XAL —• \L\. This is a natural transformation
from the functor XA( ) to the geometric realization functor \ | .

(lc) Conditions on (X, / ) . NP(CO) X is path connected and for each
codimension-one face a of σn , the face Xa is nonempty.

(Cl) X is a compact n-dimensional PL manifold with boundary. More-
over, for each Λ -dimensional face a of σ", Xa is a /:-dimensional PL
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submanifold of dX and d(Xa) = Xda. The map f: X -> σn is also
required to be piecewise linear.

A smooth n-dimensional manifold with corners X is a manifold with
boundary which is locally differentiability modelled on R" (= [0, oc)").
If φ: U —• R" , U c X, is some coordinate chart, and x e U, then the
number of zeros in the vector (φ{(x), , φn(x)) is denoted by d(x) it
is independent of φ . A k-dimensional stratum of X is the closure of a
component of {x e X\d(x) = k}. Let f: X -> Y be a smooth map be-
tween ^-dimensional manifolds with corners such that the inverse image
of each Λ -dimensional stratum F of Y is a union of Λ -dimensional strata
of X. The map / is transverse to F if for each x € f~l(F) the differen-
tial D/ χ induces a linear isomorphism TχX/Tχf~

ι(F) -> Tf{χ)Y/Tf(χ)F.

The smooth version of (Cl) is the following.
(Cl') X is a compact smooth n-dimensional manifold with corners.

Moreover, for each /c-dimensional face a of σn, Xα is a union of k-
dimensional strata. The map / : X —• σn is required to be smooth and
transverse to each proper face of σn .

(C2) X satisfies (Cl) (or (Cl')) and, in addition, the map / : (X, dX)
—• (σndσ) is degree one mod 2.

(C2;) X satisfies (Cl) and, in addition, X is oriented and the map
/ : {X, dX) -> (σn, dd") is degree one.

Notation. If X is a smooth or PL manifold, then let τχ denotes its
stable tangent bundle. (In the smooth case, τχ is the Whitney sum of the
tangent vector bundle with a trivial vector bundle. In the PL case, τχ is
the "stable PL tangent block bundle" (cf. [27]). It can be regarded as a
stabilized regular neighborhood of the diagonal in X x X.)

(C3) X satisfies (Cl) or (Cl') and τχ is trivial. (Note that (C3)
implies that X is orientable.)

We suppose that (L, π) is a connected complex over σn and consider
the effect of imposing our conditions on XAL. The proof of the next
lemma is left to the reader.

(lc.l) Lemma. Suppose that {X, /) satisfies (CO). Then

(i) XAL is path connected.

(ii) The homomorphism {fJ)ilt:πi(XΔL)-+πι(L) is surjective.

(Id) Homological surjectivity. Suppose that (X, f) satisfies (C2 ;).
Let a be an oriented Λ -face of σn . Since / is transverse to a, the orien-
tation on a induces one on Xa and the map f\x : (Xa, dXa) -» (α, da)
is of degree one. Let (XQ) denote the orientation cycle in Ck(Xa, ΘXa)
((Xa) is the sum of oriented /:-simplices in Xa in some triangulation
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of X in which Xa is a subcomplex.) Let γ be an oriented Λ -simplex

in L projecting to α in α" . Let (XAγ) be the corresponding orien-

tation chain (XAγ can be identified with XJ. Define a chain map

j : C^(L) —• C^(XAL) by sending an oriented /c-simplex γ to the k~

chain (JΓΔy) G Ck(XAγ) c C^ΛΓΔL). Obviously, the map j splits the

chain map (fL)#: Ck(XAL) -• QCL). Under the weaker assumption that

(X, f) satisfies (C2), similar remarks hold with Z/2 coefficients. We have

therefore, proved the following result.

(ld.l) Lemma [W, p. 323]. (i) // (X9 f) satisfies (C2), then the map

fL+: H^XAL Z/2) -> i/,(L Z/2) w <wita

(ii) // (X, /) Λiίiξ/ϊω (C2;), then fLn: /f,(XΔL F^A) - > # , ( £ ; A) is
onto, where A is any local coefficient system on \L\.

(le) Local structure of XAK. In this subsection we suppose that (X, f)

is a space over σn satisfying condition (Cl) or (Cl r ) . Let a be a

fc-face of σn and let a denote its relative interior. Then α has an

open neighborhood in σn which is homeomorphic to a product bun-

dle of the form a x Rn

+~k . Identifying the (n - A:)-simplex σn~k with

{(xx, , xn_k) £ K+~ \Σχi ^ ε) w e have a smaller product bundle

neighborhood of the form α x σn~k c a x R"~fc (analogous to a closed

disk bundle neighborhood of a submanifold). Since X is an w-manifold

with corners, it has a similar local structure to σn , i.e.,
(1) Xo has a product bundle open neighborhood in X of the form

Y " ^
αα

The transversality condition in (Cl') implies that the differential of

/ : X -+ σn induces a bundle map Xo x R ^ -+ a x R""^ which covers

f\Xo: Xo —• α and is a linear isomorphism on each fiber. Similarly, if
a a

(Cl) holds, then the fact that / is a PL map implies that it induces a
bundle map as above. Thus, if either (Cl) or (Cl') holds we may assume,
after possibly altering / by an isotopy, that the following holds:

(2) The map / takes X> x Rn

+~k to α x Rn

+~k by a bundle map of the

form g x id, where g = f\Xo.
Our goal in this subsection is to show (cf. Lemma le. 1, below) that

statements (1) and (2) imply that for any simplicial complex K, the spaces
XAK and K have similar local structures, i.e., "they have isomorphic
links."

Before stating this lemma we recall some basic notions from PL topol-
ogy. Suppose that a is a Λ>simplex in a simplicial complex K. The link of
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a in K, denoted by Link(α, K) is the abstract simplicial complex consist-
ing of all simplices β in K such that a < β . (If β in an w-simplex in K
and a< β, then Link(α, >ff) is isomorphic to an n-k-l simplex; thus,
the H-simplex β becomes an (n-k- l)-simplex in Link(α, K). The dual
cone of a in K, denoted by Dual(α, ΛΓ), is the cone on Link(α, K). The
open dual cone, denoted by Dual°(α, K) is the complement of Link(α, K)
in Dual(α, K). For example, if a is a λ -face of an ^-simplex σn , then
Dual(α, σn) s σn~k while Dual°(α, σn) s R^"*. From this it follows
that if a is any fc-simplex in a simplicial complex A, then a has an
open product bundle neighborhood of the form a x Dual°(o:, K).

(le.l) Lemma. Suppose that (X, f) is a space over σn satisfying
(Cl) or (Cl ; ), Λ̂αί L ΐs a simplicial complex over σn, and that a is a
k-simplex in L.

(1) The manifold Xo has a product bundle open neighborhood in XAL

of the form Xo x Dual°(α, L).

(2) The map fL: XAL -> L induces a bundle map

Xo x Dual°(o:, L) —> a x Dual(α, L)

/rom a neighborhood of Xo in XAL to a neighborhood of a in L. More-
ex.

over, this map has the form g x id, where g: Xo —• a is fL\Xo.

In other words the "link of a face in XAL" is equal to the link of the
corresponding face of L.

Proof Statements (1) and (2) in the lemma follow immediately from
the corresponding statements preceding the lemma.

(If) Tangential properties of XAK.
(lf.l) Definition. Let K be an w-dimensional simplicial complex.

Then K is a PL n-manifold if the dual cone of each k simplex is an (n -
fc)-cell, i.e., for each Λ>simplex β e K, Link(/?, K) is PL homeomorphic
to the standard (n - k - l)-sphere. The complex K is a homology n-
manifold if for each k simplex β e K, the homology of Link(/?, K) is
isomorphic to that of Sn~k~ι.

By an abuse of language we will say that A' is a smooth n-manifold if
there is a smooth w-manifold Mn and a smooth triangulation φ: |K\ -*
M\

From Lemma le.l we deduce the following.
(If.2) Corollary. Suppose X satisfies (Cl) or (Cl').

(i) If L is a homology n-manifold, then so is XAL.

(ii) If L is a PL n-manifold, then so is XAL.
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Part (ii) of this corollary can also be proved by a transversality argument.
This argument also yields a smooth version of (lf.2). The argument runs as
follows. Let Pn denote the image of σn x σn under the map σn x σn -» Rn

given by (u, υ) -> u - v . The set Pn , being the projection of a product
of two simplices, is a convex polyhedron. It obviously contains the origin
in its interior. Recall that XAL is the subset of X x \L\ consisting of
all (x,y) such that f(x) = π(y). Let φ: X x \L\ -> Pn be defined by

φ(χ > y) = f(χ) - π(y) so that

As φ: X x \L\ —• Pn is piecewise linear and transverse to 0, part (ii) of
the corollary follows. This argument also gives the following result.

(lf.3) Proposition. Suppose that X satisfies (Cl) and that L is a PL
n-manifold. Then XAL is an n-dimensional PL submanifold of X x \L\
and the normal bundle of XAL in X x L is trivial.

(If.4) Corollary. Suppose that X satisfies (C3) {stable tangential triv-
iality) and that L is a PL n-manifold. Then the stable tangent PL block
bundle of XAL is the pullback of the stable tangent PL block bundle of L,
i.e.,

TXAL = (Λ.) τL -

Proof. The restriction τXx\L\ to XAL is τχ^L plus the normal block

bundle of XAL. This normal block bundle is trivial. Hence, τ ^ ^ is
stably equivalent to the restriction of τXx^ . Since, by (C3), τχ is trivial
and since the following diagram commutes,

XAL <-+ Xx\L\

\L\

we have that τ^L is stably equivalent to the pullback of τL . q.e.d.
There are also following smooth versions of these results.
(lf.5) Proposition. Suppose that X satisfies (Cl') and that K is a

smooth n-manifold. Then XAK is a smooth n-dimensional submanifold
of X x \K'\ with trivial normal bundle.

Proof The map d: \K'\ —• σn takes a top dimensional simplex γn in
K, folds it onto a simplex in its barycentric subdivision, and then identifies
that simplex with σn . Thus d\γn can be identified with the orbit map of
the symmetric group Σπ+1 on yn . Since this orbit map can be regarded as
a smooth map, so can d. The map / : X -• σn is smooth by hypothesis
(Cl'). Hence, φ = f-d:X x \Kf\ -> Rn is smooth. If y e \Kf\ is an
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interior point of a Λ>simplex β of K1, then the differential of d: \Kf\ -+
σn at y takes Tyβ onto Td{y)d{β). Condition (Cl ;) implies that if

~ o

x G XΔ/?, then the differential of / at x is onto the normal space to
d(β) in σn. Thus, φ is transverse to O G K " .

(If.6) Corollary. Suppose that X satisfies (Cl ;) am/ (C3) and that
K is a smooth n-manifold. Then the stable tangent vector bundle of XAK
is the pullback of the stable tangent bundle of K, i.e., τXAK = (fκ)*τκ.

Remark. If the stable tangent bundle of X is trivial, then X is ori-
entable. Hence, if K is a orientable w-manifold, then so is XAK. More-
over, if (C2') holds, then the map fκ: XAK —• K is of degree one.
Corollaries If.4 and If.6 assert that fκ is covered by a map of stable tan-
gent bundles; hence, in the language of surgery theory, fκ is a "normal
map."

Remark. There is no hope that fκ: XAK —• K can be covered by a
map of unstable tangent bundles which is a fiberwise isomorphism. The
reason is that XAK and K may have different Euler characteristics and
hence, the Euler classes of their tangent bundles may differ.

(lg) A relative construction. Next we discuss a relative version of the
Williams functor K •*+ XAK. Suppose, from now on, that X satisfies
(Cl)or (Cl ; ) .

Let / be a subcomplex of K. Let R(J, K) denote the standard
derived neighborhood of / in Kf, R°(J, K) its relative interior, and
ΘR(J, K) = R(J,K)-R°(J,K).

Let K denote the simplicial complex formed by deleting the interior of
R(J, K) from K1 and attaching the cone on dR(J, K), i.e.,

K = (Kf - R°(J, K)) u Cone(dR(J, K)).

Let c0 denote the cone point. The complex K1 - R°(J, K) is a sim-
plicial complex over σn (cf. (la.2) moreover, under the map d: K —•
{0, 1, , n} of (la.2), no vertex of dR(J, K) is mapped to the vertex
0 in σn . Hence, the structure on K1 - R°(J, K) as a complex over σn

extends to a structure on K by sending c0 to 0. Consider a point ?;0 in
XΔΛΓ which maps to c0 in K. By Lemma le.l, υ0 has a neighborhood in
XAK of the form Cone(<9i?(/, K)). Remove the interior of this neigh-
borhood and paste in R(J, K). The result is denoted by XA(K, /) and
called the relative Williams construction on (K, / ) , i.e.,

XA(K, U) = (XAK - Dual°(c0, K)) U R(J, K).
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Remark. Suppose that K is a PL manifold. Then XAK is also a PL
manifold except at c0 . Since R°(J, K) is a PL manifold, we conclude
that XA(K, /) is always a PL Az-manifold (whether or not the subcomplex
/ is a submanifold).

(lg.l) Example. Suppose that K is a closed PL n-manifold. Extend
the triangulation to K x I (I = [0, 1]). Then XA(K x I, K x 1) is a
PL (n + l)-manifold with boundary. The boundary has two components
XA(K x 0) and K x I. Thus, XA(K x / , K x 1) is a bordism between
XAK and K.

(lh) Asphericalization. Another condition we can impose on (X, /)
is the following.

(C4) X is an aspherical CW-complex and if P is any subcomplex of
σn , then each component of Xp is aspherical and the inclusion /: Xp —• X
induces a monomorphism

(where the base point x0 can be chosen in any component of Xp).
(lh.l) Proposition. Suppose that (L, π) is a finite complex over σn

and that X satisfies (C4). Then XAL is aspherical. Moreover, if J is any
subcomplex of L over σn, then the inclusion induces a monomorphism
πx(XAJ) -> π{ (XAL) (again for any choice of base point).

Before discussing the proof, we recall some well-known results. A graph
of groups consists of a finite graph Γ with vertex set V and edge set E
together with groups Gv and He for each υ eV and e eE. Moreover,
whenever v is an endpoint of e, we should be given a monomorphism
<Pv,e' H e ^ G v Suppose that (Γ, {Gυ , He, φvy. He - Gυ}) is a graph
of groups. We construct a space Z as follows. Start with a disjoint union
of K(GV , 1), v e V, and K(He, 1) x [0, 1], e e E. The homomorphism
φv e has a geometric realization K(He, 1) —• K(Gυ , 1). Use these maps
to paste K(He, 1) x {0} and K(He, 1) x 1 to the appropriate K(Gυ , 1).
The resulting space is Z . For a proof of the following well-known lemma,
see [28, pp. 156-157].

(lh.2) Lemma. Let (Γ, {Gv,He, φυy. He -> Gv}) be a graph of
groups and let Z be the space constructed above. Then Z is aspherical.

The proof of Proposition lh.l follows from Lemma lh.2 by induction
on the number of simplices in I . If dimL = n, then in the inductive
step we are gluing a copy of X to (XAL) - X along a subspace of the
form XAJ. If the subcomplex / is connected, then we can apply (lh.2)
in the case where the graph is an interval, the vertex groups are πχ (X) and
π{(XAL - X), and the edge group is π{(XAJ). If / is not connected,
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then the graph has two vertices (with vertex groups as before) and one
edge for each component of / . If dim L<n, then the graph has a vertex
for each component of XAL - Xa and a vertex for each component of
XAa, where a is a top dimensional simplex of L, and an edge for each
component of XAJ.

In summary, if (X, f) is a space over σn satisfying conditions (CO),
(Cl), (C2'), (C3), and (C4), then the Williams functor K -> XAK is
an asphericalization procedure with properties (1), (2'), (3), (4), and (5)
listed in the Introduction. In §4 we construct such a space (X, / ) .

2. Spaces of nonpositive curvature

The concept of nonpositive curvature can be extended to metric spaces
more general than Riemannian manifolds (for example, see [2], [6], [24],
[31] and, in particular, [17], [19], and [5]). Much of the recent interest
in this area has been sparked by the spectacular collection of ideas in
[19]. Since the original version of this paper was written (in the summer
of 1988) several excellent expositions of parts of [19] have appeared in
preprint form, most notably [5]. In particular, the article by Ballman
(Chapter 10 in [5]) gives simple and clear explanations for the facts we
summarize in subsections (2a) and (2c), below.

In part (2a) we define the notion of "nonpositive curvature" via the
so-called "CAT-inequalities." In part (2b) we discuss the ideal boundary
(also called the "sphere at infinity" or the "visual sphere") of the universal
cover of a nonpositively curved space. Interesting examples of nonposi-
tively curved spaces are provided by polyhedra which are "piecewise flat"
or "piecewise hyperbolic." For the polyhedra, nonpositive curvature is
equivalent to the condition that all "links are large." These piecewise con-
stant curvature metrics on polyhedra are discussed in part (2c). In part
(2d) we define the important concept of the "infinitesimal shadow" of an
endpoint of a geodesic segment.

(2a) Basic definitions: the CAT-inequalities. A geodesic segment in a
metric space X is an isometric map from an interval into X. A triangle
in X consists of three points (the vertices) together with three geodesic
segments (the edges) connecting them. A metric space X is geodesic if
it is complete and if any two points in it can be connected by a geodesic
segment. A subset 7 of a geodesic space X is totally geodesic if, locally,
every geodesic segment in X with endpoints in Y is actually contained
in Y.
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FIGURE 1

For each real number ε, let M2(ε) be the complete, simply connected,
Riemannian two-manifold of curvature ε. If T is a triangle in X, then a
comparison triangle in M2(ε) is a triangle Γ' with the same edge lengths
as T. Of course, a comparison triangle is unique up to an isometry of
M2(ε). Comparison triangles always exist for any fixed ε < 0. If ε > 0,
then T has a comparison triangle provided T has perimeter < Iπjyfε.

Suppose that T is a triangle in X with vertices x 0 , x{, JC2 and that

y is a point on the geodesic segment [xx, x2] (see Figure 1). Let T1 be

a comparison triangle in M2(ε) with corresponding vertices x'Q, x[, Λ:̂

and let y be the point in [x[, x^l corresponding to y (i.e., rf(}>, x.) =

rf'Q/, x ) , i = 1, 2, where rf and d! denote the distance functions on X

and M 2 (ε), respectively). The pair (T,y) "satisfies CAT(e)" if d{xo,y)

< d(xQ9y'). The space X "satisfies CAT(ε)" if (Γ, y) satisfies CAT(ε)
for every triangle T in X and point y e T. (If ε > 0, then we only
consider triangles of perimeter < 2π/y/ε).

A smooth Riemannian manifold with sectional curvature < ε satisfies
CAT(ε) locally; if it is simply connected and complete then it satisfies
CAT(ε) globally (cf. [5, Chapter 3, §2]). This motivates the following
definition.

(2a. 1) Definition ([19, p. 107]). A geodesic space X has "curvature
< ε" if it satisfies CAT(ε) locally.

If X has curvature < ε, then, obviously, any totally geodesic subspace
of X also has curvature < ε.

A function λ: X —• R on a geodesic space X is convex if its restriction
to each geodesic segment is a convex function on the interval.

(2a.2) Remark. Suppose X is a simply connected geodesic space of
curvature < 0. Then according to [19], X satisfies CAT(O) globally
(see also [5, Theorem 7, Chapter 10, §1]). This implies that the distance
function d: X xX ^R is convex. Thus, if f.: \a{, Z? ] -> X, / = 1, 2, is
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a geodesic segment, then the function φ:[ax, bx]x [a2, b2] -• R defined
by φ(s, t) = d(fx(s), /2(0) is a convex function in the usual sense (cf.
[19, p. 119]).

The convexity of the distance function implies that X is contractible.
(For X a smooth Riemannian manifold this is the well-known Cartan-
Hadamard Theorem. In our context, Gromov [19, p. 119] attributes this
fact to Cartan, Hadamard, and Alexandrov.) Applying this version of
the Cartan-Hadamard Theorem to the universal cover of a nonpositively
curved space, we have the following result.

(2a.3) Theorem ([19, p. 119] or [5, Theorem 14, Chapter 10, §2]). A
nonpositively curved geodesic space is aspherical

(2a.4) Gluing Lemma ([19, p. 124] or [5, Corollary 5, Chapter 10, §1]).
Suppose that either

(a) X is the disjoint union of two geodesic spaces Xχ and X2 and that
Yt c X , for i = 1, 2, is a totally geodesic closed subspace, or

(b) X is a geodesic space and Yx and Y2 are two disjoint totally geodesic
closed subspaces.

Let f:Yι-*Y2 be an isometry and let X be the space formed from
X by identifying Y{ with Y2 via f. Then X, with the obvious metric,
is a geodesic space. If the curvature of each component of X is < ε, with
ε < 0, then the same is true for X.

Proof Only the last sentence of the lemma needs to be proved. Sup-
pose that T is a small triangle in X with vertices x0, xx, x2 and that y
is a point in the segment [xx, x2]. We must show that (T, y) satisfies
CAT(ε). Let Ϋ denote the image of Yχ (= image Y2) in X. The crucial
case is when x0 e Ϋ. If T is sufficiently small, then the segments [x0, xx]
and [x0, x2] can be identified with geodesic segments in X. The segment
[xχ, x2] might intersect Ϋ in some segment \yχ, y2], where y.eY. Con-
struct geodesies from y. to x0 and consider the triangles To, Tχ, T2 with
vertex sets {x0, yx, y2}, {x0, xx, yx}, {x0, x2, y2} , respectively. Let T1

and T\, i = 0, 1, 2, be comparison triangles in M2(ε) for T and T(

(see Figure 2).

The three triangles T'o, T'χ, and T2 fit together to give a pentagon S in
M2(ε), as indicated in Figure 2. It follows from arguments in [2, p. 19]
that the angles at y[ and y2 are not convex. (An English translation of [2]
by J. Stallings exists in preprint form.) Hence the distance from a point
on a side of S opposite to x'o is smaller than the distance between the
corresponding points of Tf. Since, by hypothesis, CAT(ε) holds for each
Tt, / = 0, 1, 2, it follows that it holds for T. This proves the lemma.
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FIGURE 2

(2b) The ideal boundary. Let us introduce the following notation. For
a point x in a metric space P, denote by Bχ{r) (respectively, Bχ(r) or
Sχ(r)) the open metric ball (respectively, closed metric ball or sphere) of
radius r about x.

Suppose P is a CAT(O) geodesic space. Since the distance function is
convex, any two points can be joined by a unique geodesic. Define a map
cr: P - Bχ(r) -> Sx(r), called geodesic contraction, by sending a point y
to the point on the geodesic joining x and y of distance r from x. It is
easy to see that for each r G (0, oc) the map cr is continuous deformation
retraction.

(2b. 1) Definition. The visual sphere of P at x is the set of geodesic
rays emanating from x. We denote it by S^oo).

Since every geodesic ray, beginning at x, intersects Sx(r) in a unique
point, we have the following tautological identification:

5^(00)= lim Sx(r),

where the maps defining the inverse limit are given by geodesic contraction;
to be precise, if rχ > r2, then we have a natural map cr | Sχ(r{): Sx(rx) —•
Sχ(r2). This gives a topology on the visual sphere, namely, the natural
topology on the inverse limit.

A notion which is closely related to the visual sphere is that of the "ideal
boundary," which we shall describe below.

Suppose that P is a CAT(O) geodesic space. Embed P into the
space C(P) of continuous functions on P (with the topology of uniform
convergence on compact sets) by sending x to the function dx, where
dx(y) = d(x, y). The divide C(P) by the linear subspace L of constant
functions. Let T denote the closure of the image of P in C(P)/L. The
ideal boundary of P is 7 - P. It is easy to show that 7 is compact (cf.
[6, §3]).
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Functions projecting to the points in 7 - P are called horofunctions.
To every geodesic ray g(t) emanating from a point x e P, we can

assign a horofunction, hg , defined by

hg(y)=lim[d(y,g(t))-t]

and called the ray function of g(t). In this way, by sending a geodesic
ray to its ray function, we get an injection ψ: Sχ{oo) —• P - P. It is
proved in [6, pp. 21-32] that ψ is a homeomorphism whenever P is a
simply connected, nonpositively curved, Riemannian manifold. It seems
likely that ψ is always a homeomorphism for any CAT(O) geodesic space;
however, we shall only need the following weaker result, the proof of which
is a modification of the argument in [6].

(2b.2) Theorem. Suppose that P is a CAT(O) geodesic space and
that P is a Riemannian manifold on the complement of a set ofcodimen-
sion 2. Then for any x e P, the natural map ψ: Sx(oo) -• P - P is a
homeomorphism.

(2b.3) Remarks. (1) The polyhedral homology manifolds of piece-
wise constant curvature, discussed in §3, are Riemannian manifolds on
the complement of a set of codimension 2.

(2) The theorem implies that the visual sphere Sx(oo) is independent
of the choice of basepoint x.

The proof is based on Lemmas and Corollaries 2b.4-2b.ll, below. In
all of these we only assume that P is a CAT(O) geodesic space.

(2b.4) Lemma. Suppose that X is a closed convex subset of P. Then

(i) For any point p e P, there is a unique point x € X which is closest
to p.

(ii) Let π: P -• X be the map which sends p to the closest point in
X. Then π is distance decreasing.

Proof (i) Suppose the xχ, x2 e X are of minimal distance from p .
Let y be the midpoint of the segment from xχ to x2 . If xx Φ x2, then
it follows from the CAT(O) inequality that d(y, p) < d(xi p) hence,
x{=x2. (Compare [6, p. 8].)

(ii) To prove the second statement one needs the concept of angle be-
tween two geodesic segments. Suppose that fx, f2: [0, 1] -* P are two
geodesic segments with /j(0) = /2(0) = p. Let θ(s, t) be the angle at
the point corresponding to p in a comparison triangle for pfχ(s)f2(t).
Since P is nonpositively curved, it follows from [2] that limt_^Qθ(s, t)
exists; this limit is denoted by θ and called the angle between fχ and
f2 at p. Now suppose that p, q e P and let / : [0, a] -+ P and
g: [0, b] —> P be geodesies from π(p) to p and π(q) to q, respec-
tively. Put φ(s, t) = d{f(s), g(ή). We must show φ(a, b) > φ(0, 0).
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This follows from convexity of φ once it is known that φ(t, t) >φ(0,0)
for small values of t. Consider the quadrilateral f(t)g(t)π(q)π(p). Since
π(p) is the closest point to p, the angle at π(p) is > π/2. Similarly, the
angle at π(q) is > π/2. By [2] the angles of any triangle in P are < the
corresponding angles in a comparison triangle. It follows that the angles
at f(t) and g(t) are < π/2. Let x = d(π(p), g(ή). Then, for small t,
we have that φ(t, t)2 + t2 > x2 > φ(0, 0)2 + t2 hence, φ(t, t) > φ(0, 0)
and the lemma follows.

(2b. 5) Lemma. Any horofunction h: P —• R Λαs the following prop-
erties.

(1) Λ w convex (i.e., the restriction of h to any geodesic segment is a
convex function).

(2) h(x)-h(y)<d(x,y).
(3) For any x e P and positive real number r, there exist points yλ

and y2 e Sx{r) such that h(yx) - h(y2) = 2r.
Proof These properties are clearly closed conditions and they hold for

distance functions dχ.
(2b.6) Lemma. Let h be a horofunction, x £ P, and r e (0, oo).

There is a unique minimum of h on Sx(r). If we normalize h so that
h(x) = 0, then the minimum value of h on Sx(r) is -r.

Proof By (2) and (3) of Lemma 2b.5 the minimum value has to be
-r. A point where such a minimum value is obtained is a point on the
convex set h~ι((-oo, -r]) which is closest to x, such a point is unique
by Lemma 2b.4(i).

(2b.7) Lemma. Let h be a horofunction, x e P, and r and R posi-
tive real numbers with r < R. The geodesic segment joining the minimum
of h on SR(x) to x intersects Sr(x) at the minimum of h on Sr(x).

Proof. This follows from the triangle inequality and the uniqueness of
the minimum.

(2b.8) Corollary. Let h be a horofunction. Then

(i) For any x e P there is a geodesic ray ch χ: [0, oo) -• P joining
x to the minima of h on the concentric spheres around x.

(ii) If y is a point on ch x, then the ray ch coincides with a forward
section of ch χ.

(iii) The restriction of h to the image of ch x is a linear function (es-
sentially the arc-length parametrization).

Two geodesic rays are asymptotic if they stay a bounded distance apart.
It is obvious that this is an equivalence relation and that two asymptotic
rays define the same ray function (up to a constant).
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h~\t)

FIGURE 3

(2b.9) Lemma. Let h be a horofunction and x, y e P. Then the
rays ch χ and ch are asymptotic.

Proof. By sliding y along its geodesic ray ch , we can assume h(x) =
h(y). We then have the quadrilateral pictured in Figure 3, where x and y
are projections onto the convex sets h~ι((-oo, -t]). By Lemma 2b.4(ii),
d{x , yf) < d(x, y) and therefore, the distance stays bounded, q.e.d.

The set {ch x}xeP is called the family of asymptotic rays associated to
the horofunction h.

(2b. 10) Lemma. Let gχ be a geodesic ray beginning at x. For any
y e P, there is a unique geodesic ray gy beginning at y and asymptotic
to gχ.

Proof. Uniqueness follows from CAT(O). If h is the ray function of
gx , then obviously ch χ = gχ and, hence, ch y will serve for gy .

(2b. 11) Corollary. Let h be a horofunction.

(i) The family of asymptotic geodesic rays associated to h is a single
equivalence class of asymptotic rays.

(ii) Let x e P and let g = ch χ. Then the horofunctions h and hg

define the same family of asymptotic rays.

Proof of Theorem 2b.2. We wish to show that the injection ψ: Sx{o6)
—• P - P is a homeomorphism. We show ψ is onto. Let h be a horo-
function corresponding to a point in the ideal boundary. Let g = ch χ . It
follows from the above lemmas and their corollaries that the restrictions
of h and hg to any ray asymptotic to g differ by a constant (a priori, the
constant depends on the ray). On the smooth part of P the level surfaces
of h and hg are both orthogonal to the family of asymptotic rays. It
follows that h and hg are equal up to a constant on the smooth part of P
which is open dense in every path component. Hence the map ψ takes the
point in S (oo) corresponding to g to the point in T-P corresponding
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to h . Thus, ψ is onto. It is straightforward to see that it is continuous
and hence, a homeomorphism. q.e.d.

For space satisfying CAT(ε), with ε < 0, the ideal boundary has a
strong invariance property.

(2b. 12) Theorem. Any coarse quasi-isometry between CAT(ε) spaces,
ε < 0, extends to a homeomorphism of the ideal boundaries.

According to [17] this is due to Efremovich and Tichomiriva [14]. We
will only use the following significantly weaker fact.

(2b. 13) Corollary. If X and Y are compact geodesic spaces of curva-
ture < ε, with ε < 0, then the lift of any homeomorphism f: X -> Y to the
universal coverings extends to a homeomorphism of the ideal boundaries.

(2c) Polyhedra of piecewise constant curvature. Let Mn(ε) denote the
complete, simply connected, Riemannian manifold of constant sectional
curvature ε. Suppose that K is an ^-dimensional, locally finite, abstract
simplicial complex with vertex set V. Suppose further that we have a
function ψ: V —• Mn(ε) such that if a is any /:-simplex in K, then ψ
maps the vertex set of a to k + 1 points in Mn(ε) spanning a geometric
/c-simplex (denoted by ψ(a)) in Mn(ε). The function ψ gives us a way
of identifying each simplex in K with a geometric simplex in Mn(ε).
This allows us to define arc-length: the length of a curve is the sum of
lengths of its intersection with each simplex. Let P denote the geometric
realization of K. Using arc-length one defines a metric d on the poly-
hedron P: the distance from x to y is the infimum of the lengths of
all curves connected x to y. (This is called the intrinsic metric on P.)
The polyhedron P together with the metric d is called a polyhedron of
piecewise constant curvature ε. We say that P is piecewise spherical piece-
wise flat, or piecewise hyperbolic as ε is -hi, 0, or - 1 , respectively. The
simplicial complex K together with the function ψ is called a geometric
triangulation of P.

Basic facts about polyhedra of piecewise constant curvature can be
found in [10], [24], [31], and [5, Chapter 10, §3].

Next we want to establish that links in such polyhedra have a natural
piecewise spherical structure.

Suppose that a is a geometric tt-simplexin Mn(ε) and that υ is a ver-
tex of a. The set of unit tangent vectors to geodesic rays, which emanate
from v and enter a, is naturally parametrized by a spherical (n - 1)-
simplex, denoted by Link(i;, a). More generally, if >ff is a /c-face of a
and x e β, then the intersection of a with the normal space to β at x
is a geometric ( n - λ )-simplex, denoted by β1'. The spherical (n-k-l)-
simplex Link(x, β±) will be denoted by Link(/?, a).
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Let P be a polyhedron of piecewise constant curvature with geometric
triangulation K and let β be a simplex in K. An (n - k - l)-simplex in
the abstract simplicial complex Link(/?, K) is an ^-simplex a e K with
β < a. In the preceding paragraph we saw how to identify this (n - k -
l)-simplex with a spherical simplex. Hence, Link(/?, K) is naturally a
piecewise spherical simplicial complex.

Suppose that β c Sk is a spherical λ>simplex and γ c Sι is a spher-
ical /-simplex. Regard Sk and Sι as the unit spheres in the orthogonal
subspaces R*+1 and R/+1 of R*+ / + 2. The orthogonal join of β and γ is
the spherical (k + l + l)-simplex in sk+M spanned by the vertices of β
and γ. The l-fold suspension of β is the orthogonal join of β and Sι,
i.e., it is the union of all geodesic segments in S + + 1 from a point in S
to one in β .

If a is an ^-simplex in Mn(ε) and x e α, then Link(x, a) is the
convex subset of Sn~ι defined as the set of unit tangent vectors to geodesic
rays emanating from x and going into a. If x belongs to the relative
interior of a λ -face β, then Link(x, α) is the (k - l)-fold suspension of
the (n- k - l)-simplex Link(/?, a).

Using the above notions it makes sense to define Link(jc, P) for any
point x in a polyhedron P of piecewise constant curvature. (One might
call Link(jc, P) the "sphere of radius 0" about x and denote it by Sχ(0).)

(2c. 1) Definition. A piecewise spherical polyhedron L is large if any
two points x and y in L with d{x, y) < π can be joined by a unique
geodesic segment in L.

For example, if L is homeomorphic to a circle, then L is large if and
only if its circumference is > 2π.

(2c.2) Remark. Suppose that L is a piecewise spherical polyhedron.
For a point v in L let Bv(π) denote of open ball (in L) of radius π
about v. If L is large, then each point w in ^ ( π ) is connected to v
by a unique geodesic in L. It follows that Bv(π) is contractible.

A piecewise spherical polyhedron L is large if and only if its /-fold
suspension is large. From this, one can deduce the following.

(2c.3) Lemma. Let P be a piecewise constant curvature polyhedron
and let K be a geometric triangulation of P. Then the following statements
are equivalent:

(i) Link(jc, P) is large for all xeP.
(ii) Link(/?, K) is large for each simplex β of K.

If either condition of the lemma holds then we say that UP has large
links."
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(2c.4) Lemma (Gromov [19, p. 120] and Ballman [5, Chapter 10, §3]).
Suppose that P is a polyhedron ofpiecewise constant curvature ε < 0.
Then the curvature of P is <ε if and only if P has large links.

(2d) Infinitesimal shadows. Suppose that P is a piecewise constant
curvature polyhedron and that we have a geodesic segment with endpoint
x e P. If Link(x, P) is small, then it may be impossible to extend
the geodesic past x. If Link(x, P) is large then, unlike the case of a
smooth Riemannian manifold, the local extension of the geodesic may not
be unique. In other words, a point can cast a "shadow." The nonunique-
ness of geodesic extension is measured by a certain subset of Link(x, P),
which we shall define below and call it the "infinitesimal shadow" of x
with respect to the geodesic segment.

Suppose that g: (-δ,δ) -• P is a geodesic with g(0) = x. The
geodesic defines two points in Link(x, P), an incoming direction g_
and an outgoing direction g'+ (called the "incoming and outgoing unit
tangent vectors"). Let v be a point in Link(x, P). The infinitesimal
shadow of x with respect to v , denoted by Shad(x, v), is the subset of
all w e Link(x, P) such that there is some geodesic g with g'_=v and
g'+ = w . For example, suppose x is a nonsingular point, i.e., suppose that
Link(x, P) is isometric to the standard sphere Sn~ι. If υ is any point
in Sn~ι, then Shad(x, v) is the antipodal point. For another example,
suppose that Link(x, P) is a circle of length 2π + θ. Then Shad(x, υ) is
the circular arc of length θ centered at -υ , i.e., Shsid(x9υ) is the com-
plement of the open ball of radius π centered at v . From this example,
one can deduce the following lemma.

(2d. 1) Lemma. Suppose that P is a piecewise constant curvature poly-
hedron, that x e P, and that υ e Link(x, P). Then Shad(x, υ) is the
complement of Bv(π) in Link(x,P) where Bυ(π) denotes the open ball
of radius π centered at v e Link(x, P).

Proof To each spherical /c-cell σk c S and real number ε, one
can associate a convex polyhedral cone, well defined up to isometry, in
Mk+ι(ε) and denoted by Cone ε σ. (Recall that Mn(ε) denotes the sim-
ply connected Riemannian manifold of constant curvature ε.) Conee σ
consists of all geodesic rays emanating from a base point and with initial
tangent vector lying in σ. (If ε > 0, only consider the geodesic segments
of length < π/y/ε.) If L is a piecewise spherical polyhedron, then let
Coneβ L be the space of piecewise constant curvature ε formed by past-
ing together the Conee σ, σ e L. Suppose P has piecewise constant
curvature ε. The point x e P has a neighborhood iV which is isometric
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to a neighborhood of the cone point in Coneε Link(x, P). Suppose Γ is a
geodesic segment in Link(.x, P) with endpoints v and w . Then Coneε Γ
is a totally geodesic subspace of N. It follows that if /(Γ) < π, then there
is no geodesic through x, with incoming direction v and outgoing direc-
tion w , that is to say, Shad(jc, v) c Link(jc, P) - Bυ(π). If /(Γ) > π,
then there is a geodesic through x in Coneε Γ with incoming direction v
and outgoing direction w . Hence, Link(x, P) - Bυ(π) c Shad(x, v) .

3. Homology manifolds of piecewίse constant curvature

The purpose of this section is to discuss the properties of universal
covers of nonpositively curved, piecewise constant curvature, polyhedra
which are PL manifolds or (more generally) homology manifolds. The
basic definitions are given in part (3a); the PL case is discussed in part
(3b), and in part (3c) we review some material on cell-like maps and prove
Theorem 3b.2. This result states that the universal cover of a nonpositively
curved piecewise constant curvature PL manifold is PL-homeomorphic to
Euclidean space. In part (3d) we discuss the non-PL case.

(3a) Basic definitions. An (n-1 )-dimensional piecewise spherical poly-
hedron L is a PL-sphere if it is PL homeomorphic to Sn~ι.

Suppose that Pn is a piecewise constant curvature polyhedron and that
it is an ^-dimensional homology manifold. A point x € P is metrically
nonsingular if Link(x, P) is isometric to the standard (n - l)-sρhere; it
is a PL nonsingular point if Link(x, P) is a PL (n - l)-sphere. P is
a PL n-manifold if its PL singular set is empty. For the remainder of
this section Qn will denote a simply connected, homology ^-manifold of
piecewise constant curvature ε < 0, with large links. In other words, Qn

satisfies CAT(ε), with ε < 0. We shall be interested in investigating the
topology of metric spheres and balls in Q, as well as the topology of the
visual sphere.

(3b) The PL case. First, we consider the case where Q is a PL n-
manifold.

(3b. 1) Lemma. Suppose that L is a large piecewise spherical polyhe-
dron which is a PL n-manifold. Then for any υ e L and r e (0, π),
~Bv(r) is homeomorphic to the standard closed n-ball {in Euclidean space).
Consequently, Bυ(π) is homeomorphic to an open n-ball.

(3b.2) Theorem. Suppose that Q is a PL n-manifold {and that Q is
a simply connected, piecewise flat polyhedron with large links).

(i) (Stone [31]) For each x e Q and r e (0, oo), ~Bχ(r) is homeo-
morphic to the standard n-ball.
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(ii) (Stone [31]) Q is homeomorphic to Rn .

(iii) The visual sphere Sx(oo) is homeomorphic to Sn~ι.

(3c) Cell-like maps. Our proof of the above results makes use of a
well-known theorem concerning the approximation of cell-like maps by
homeomorphisms. Before stating the Approximation Theorem, we need
to recall some terminology. (A nice exposition of this material is given in
[13].)

A compact metric space C is cell-like if there is an embedding of C
into the Hubert cube 7°° so that for any neighborhood ^ of C in 7°° ,
the space C is null-homotopic in %. A cell-like subspace of a manifold is
cellular if it has arbitrarily small neighborhoods homeomorphic to a cell. A
compact subset of Sm is pointlike if its complement is homeomorphic to
Rm . A pointlike subset of Sm is cellular in Sm . A continuous surjection
φ: X —> Y is cell-like if each point inverse image is cell-like. The following
theorem is due to Siebenmann [29] for n > 5, Quinn [25] for n — 4,
Armentrout [4] for n = 3, and R. L. Moore [23] for n = 2 (see [13] for
further discussion).

(3c. 1) Approximation Theorem. Suppose that φ: Mn -• Nn is a cell-
like map of topological n-manifolds, if n = 3, further assume that φ is
cellular (i.e, each point inverse image is cellular). Then φ can be approxi-
mated by a homeomorphism.

Proof of Lemma 3b. 1 and Theorem 3b.2. Let (Ln) denote the state-
ment of Lemma 3b. 1 in dimension n , and (Tn) the statement of part (i)
of Theorem 3b.2 in dimension n. By a theorem of M. Brown [9], part
(i) implies part (ii) of Theorem 3b.2. The proof of part (i) will also show
that geodesic contraction Sχ(r) —• Sχ(s), r > s, is a cell-like map. By
Theorem 3c. 1 such a map is approximable by a homeomorphism, i.e., it is
a near homeomorphism. According to another theorem of M. Brown [8],
an inverse limit of near homeomorphisms is a near homeomorphism (see
[3] for a short proof). Hence, the visual sphere 5^(00) is homeomorphic
to the standard sphere, i.e., part (iii) of Theorem 3b.2 will be true.

We shall prove these results according to the inductive scheme (Ln_{) =>
(Ln) and (Tn). To simplify terminology we shall only show that (L/I_1) =>
(Tn), the proof of (Ln_x) => (Ln) being entirely similar. Obviously, (Lλ)
and (Γj) are true.

Suppose, by inductive hypothesis, that (Ln_x) is true and that dim Q =
n . Let x e Q. We consider the metric ball ~Bχ{r). We first claim that
this is an AZ-manifold with boundary (the boundary being Sx(r)). This
is obvious except near a point y € S (r). Since the distance function is
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convex, Bχ(r) is a totally geodesic subspace of Q. Let g(t) be a geodesic
from y to a point in ~Bχ(r). Let υ e Link(y, Q) be the outgoing direction
of the geodesic from y to x, let w e Link(y, Q) be the outgoing direction
of g(t), and let a be the distance from υ to w in Link(j;, Q). It follows
from the CAT(O) inequality and the law of cosines that r > d{g(t), x) >
(r2 + t2- 2rtcosa)ι/2. Therefore, 2rcosα > t and, consequently, α <
π/2. Conversely, if w e Link(j;, Q) is of distance < π/2 from υ , then
there is a geodesic with outgoing direction K; which remains in ~Bχ{r) for
some positive time s(w), where s(κ ) —• 0 as the distance from w Xo v
goes to π/2. Let Έυ{π/2) denote the closed ball of radius π/2 about v
in Link(y, (?). Let X be the subset of ~Bv{πj2) x [0, β) consisting of all
(w, ί) such that t < min(β, s(w)). Then Γ̂ is an interval bundle over
2^(π/2) with the interval collapsed to 0 over Sυ(π/2). Let ^ be the result
of collapsing Έυ(π/2) x 0 to a point. It follows from the above discussion
that there is a small neighborhood of y in 5 x (r) homeomorphic to X. By
(L / I_1), Bυ(π/2) is homeomorphic to a standard (w-l)-ball; hence, X is
a standard n-ball and, therefore, the metric ball Έx{r) is an n-manifold
with boundary near y.

The easiest way to understand the remainder of the proof is to consider
the "annular region" between {Sχ(r) and Sx(s), where s > r > 0, de-
fined by Ars = ~Bχ(s) - Bχ(r). Define a map φ: Ars —• Sx(r) x [r, s] by

^(y) = (cr(y) 9 d(y, JC)) , where cr: Q-Bχ(r) -• S^r) denotes the geodesic
contraction. The point inverse images under φ are closely connected to
the nonuniqueness of geodesic continuations. If a geodesic segment is con-
tained in the geometric nonsingular set, then the infinitesimal shadow at
the endpoint is a point. Similarly, if the segment is contained in a stra-
tum of the geometric singular set, then the infinitesimal shadow is again
a singleton (since the link is a spherical suspension). It follows that on
any geodesic ray the set of points with nontrivial infinitesimal shadows is
discrete. Assume that we have chosen s close enough to r so that any
geodesic ray emanating from x has at most one point in Ars with nontriv-
ial infinitesimal shadow. If z € Sχ(r) and z is a point on a geodesic ray
from x through z with nontrivial shadow, then φ~ι(z9 t) is a point for
t>d(x, z ) , whi le for t>d(x, z ) , φ~ι(z, t) 3 S h a d ( z ' , υ ) . By ( L n _ χ )
this shadow is cellular; hence, φ is cell-like. From this, it follows easily
that Bχ(r) is homeomorphic to the «-disk Dn . (For example, by using a
composition of such maps we can find a cell-like map ~Bx{r) -> Dn .)

(3c.2) Corollary. Suppose that M is a piecewise flat PL n-manifold
with large links. Then the universal cover of M is homeomorphic to Rn .
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(3d) The non-PL case. We return to the general situation where Q is
a polyhedral homology manifold.

A polyhedral n-manifold L is a generalized homology n-sphere if it
has the same homology as does Sn .

An inverse sequence of groups {ft: G —• G ^ } is said to satisfy the
Mittag-Leffler condition if, for each j , the descending chain G D fi+ι (G/+1)
D fi+2(Gi+2) D satisfies the descending chain condition (i.e., it even-
tually stabilizes). Suppose that a space X can be written as a countable
increasing union of compact subspace, X = \JCi9 where C{ c C2 c
• . Then X is one-ended if the inverse limit of the inverse sequence
{πo{X - C )} consists of one element. Suppose that X is one-ended.
Then one can choose the C( so that each X - Cz is path connected. The
space X is semistable at infinity if the inverse sequence {πx(X - C )}
satisfies the Mittag-Leffler condition.

(3d.l) Theorem. Suppose that Q is a polyhedral homology n-mani-
fold and that Q is a simply connected, piecewiseflat polyhedron with large
links. Then for each x e Q and r e (0, oo), ~Bχ(r) is a contractible
homology n-manifold with boundary, its boundary being Sx(r). From this
we deduce the following:

(i) Sχ(r) is a generalized homology (n - \)-sphere.
(ii) If s > r, then geodesic contraction cr: Sχ(s) —• Sχ(r) is a map of

degree one. Hence, the induced map on fundamental groups is surjective.
(iii) Q is semistable at infinity.
(iv) The "fundamental group at infinity" of Q is the inverse limit

π~=limπι(Sχ(r)).

Proof As in the proof of Theorem 3b.2, we prove by induction that,
for each large, piecewise spherical, homology manifold, the ball of ra-
dius r, r < π, is a contractible homology manifold (and therefore, that
each infinitesimal shadow is acyclic). It follows, as before, that Bχ(r) is
a contractible homology manifold with boundary. By Poincare-Lefschetz
duality, Sχ(r) has the homology of Sn~ι. Consider the geodesic contrac-
tion cr: Ars —• Sχ(r). This is a deformation retraction. Also, the map
φ: Ars -> Sχ{r) x [r, s] has acyclic point inverse images, hence, its re-
striction to Sx(s) (which is cr: Sx(s) -> Sx(r)) induces an isomorphism
in homology. Thus, cr is degree one and, therefore, surjective on funda-
mental groups. This proves (ii). The statement that Q is semistable at
oc means that the inverse system {πχ(Q - Bχ(r))} satisfies the Mittag-
Leffler condition. This follows since Q-Bχ(r) and Sχ(r) are homotopy
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equivalent and, therefore, πx(Q - Bχ(s)) ->πλ(Q- Bχ{r)) is onto by (ii).
Statement (iv) follows, since by definition π™ = lim π{(Q - Bx(r)).

(3d.2) Corollary. Suppose Q is as above. If there exists a point x e Q
and a real number r such that Sx(r) is not simply connected, then Q is
not simply connected at oo.

In many cases we can say more about metric spheres in Q.
(3d.3) Proposition. Let Q be as above (Q is a simply connected,

piecewise flat, homology n-manifold with large links). Suppose that the
PL singular set of Q is discrete. Let sx, , sk denote the PL singular
points in Bχ(r) and suppose that r is such that Sx(r) does not contain any
PL singular points. Then Sχ(r) is homeomorphic to the connected sum

Sχ(r) = Link^ , β)# #Link(^, Q).

(Note that each Link(s., Q) is a PL (n - l)-manifold with the same

homology as Sn~ι.)
Proof. Consider the annular region between Sx(r2) and Sχ(rχ), rχ >

r2 . Suppose that we have chosen rχ and r2 so that the only PL singular
points in the annular region lie on the inner sphere Sx(rx). Let xχ, xι

be these singular points. The intersection of a small neighborhood of
xt with Bχ{rχ) is homeomorphic to the cone on Bυ(π/2), where v e
Link(x., Q) is the outgoing direction of a geodesic segment from x. to
x and Έv(π/2) is the ball of radius π/2 in Link(x/5 Q). By Lemma
3b.l, Bv(π/2) is a standard (n - l)-ball. The point x. e Sχ(rχ) has a
neighborhood homeomorphic to the cone on Sv(π/2). (This cone is an
(n - 1) disk.) Replace this neighborhood by the thickened shadow,

C(xi) = Link(xi,Q)-Bv(π/2).

The effect on Sx(r{) is to take the connected sum with Link(xz, Q),
/ = 1, , /. Call the resulting homology sphere Σχ(rχ). We can factor
geodesic contraction cr\ Sχ(r2) -> Sχ(rχ) as cr = θoλ, where λ: Sχ(r2) —•
ΣΛ.(r1) is given by

[vi ifcrι(y) = xi,

where υ. is the direction of an incoming geodesic segment y to x.. The
map θ: Σχ(rx) -+ Sx(r{) is the natural collapse. As in Theorem 3b.2, the
map λ is cell-like. Hence, Sx(r2) is homeomorphic to ΣJC(r1).

(3d.4) Corollary. Suppose that Q is as above; only now assume that
each component of the PL singular set is compact and convex. Let S{, ,
Sk be the components of the singular set in Bχ{r) and suppose that the
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sphere Sx{r) does not intersect the singular set Let Ri be a standard
derived neighborhood of St contained in Bχ(r). Then Sχ(r) is homeo-
morphic to the following connected sum ofhomology spheres:

= dRι# -#dR
k

Proof Collapse each component of the PL singular set to a single
point. The resulting piecewise flat polyhedron Qf satisfies the hypothesis
of the previous proposition. If si is the collapse of S , then Link(Sz, Qf)

(3d.5) Remark. The first examples of aspherical manifolds with ex-
otic universal covers were constructed in [11] using reflection groups. These
examples can also be understood via Proposition 3d. 3. We recall the con-
struction of [11]. Let (W,S) be a Coxeter system and let Nerve(ίF, S)
be the abstract simplicial complex with simplices the nonempty subsets T
of S such that the subgroup generated by T is finite. Let K(W, S) de-
note the cone on the derived complex of Nerve(W, S). As in [11] one can
paste together copies of K{W, S) (one for each element of W) to get a
contractible polyhedron K(W, S) with W-action. If W is a right-angled
Coxeter group, then Gromov [19, §4.6] has shown how to give K(W, S)
the structure of a piecewise flat polyhedron with large links. This result has
been extended to arbitrary Coxeter groups in the Ph.D. thesis of G. Mous-
song [24]. Given an arbitrary simplicial complex / , one can find a Coxeter
system (W, S) with Nerve(JF, S) = f (cf. [11, Lemma 11.3]). Suppose
that Nerve(W, S) is a nonsingular, homology ^-sphere, n > 3, and that
it is not simply connected. ("Nonsingular" means that (Nerve(W, S)) is
a PL manifold.) Then K(W, S) is a homology (n + l)-manifold with iso-
lated PL singularities at the cone points. It follows from Proposition 3d. 3
that K(W, S) is not simply connected at infinity. Let C be a compact
contractible manifold with ΘC = |Nerve(ίF, S)\ and let M be the (n+1)-
manifold formed by pasting together copies of C. The identity map on
|Nerve(W, S)\ extends to a homotopy equivalence C -> K(W, S). This
induces a proper homotopy equivalence M -> K(W, S). It follows that
M is also not simply connected at infinity; hence, M is not homeomor-
phic to R*+ 1.

4. Hyperbolized simplices

(4a) Basic results and definitions. Suppose that (X, /) is a space over
σn . We can impose the following condition.
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(C5) X is a geodesic space of curvature < 0. Moreover, for each
connected subcomplex J of σn , the subspace X3 is totally geodesic.

(Notice that condition (C5) implies condition (C4) of §(lh).)
(4a. 1) Lemma. Suppose that (L, π) is a finite simplicial complex over

σn, that (X, /) is a space over σn, and that {X, f) satisfies (C5). Then
XAL (with the intrinsic metric) is a geodesic space of curvature < 0.
Moreover, if P is any connected subcomplex of L, then XAP is a totally
geodesic subspace of XAL.

Proof First observe that if L is the union of two subcomplexes Lλ

and L2 over σn , then XAL = {XΔLχ)U{XAL2) and {XALx)n{XAL2) =
XA(Lχ n L2). Suppose that each piece XALt, i = 1, 2, is a geodesic
space of curvature < 0 and that each component of XA(L{ n L2) is
totally geodesic. Then it follows from the Gluing Lemma 2a.4, that the
union XAL also has curvature < 0. Using this observation one proves
the lemma by induction on the number of simplices in L. The argument
is similar to the proof of Proposition lh.l. At each stage we glue a copy
of XAω to XAL{ along a space of the form XAJ, where ω is a simplex
in L, Lj is a subcomplex of L, and J = dωί)Lι. (If dimω = n, then
XAω = X.) By induction, XΔLj is nonpositively curved. By (C5) each
component of XAJ is totally geodesic; hence, ^Δ(LjUω) is nonpositively
curved and, therefore, so is XAL. The argument also shows that the last
sentence of the lemma is true.

(4a.2) Definition. Suppose that (X, /) is a space over σn . Then
(X, /) is called a hyperbolized n-simplex if it satisfies conditions (Cl)
(from §(lc)) and (C5). It is strictly hyperbolized if its curvature is strictly
negative.

We shall often want to impose other conditions on a hyperbolized sim-
plex, for example, we shall say that (X, /) is degree one if it satisfies
(C2 ;), that it is tangentially trivial if (C3) holds, and that it is piecewise
flat if it is a piecewise flat polyhedron.

(4a.3) Theorem. Suppose that (Xn, /) is a hyperbolized n-simplex
which is degree one and tangentially trivial For any n-dimensinal simpli-
cial complex K, put a(K) = XAK. Then a(K) is an asphericalization
procedure satisfying (1), (2'), (3), (4), and (5) of the Introduction.

Proof Properties (1) (2'), (3), (4), and (5) follow from Proposition
lh.l, Lemma lc.l(ii), Corollary lf.2, Corollary lf.4, and Example lg.l,
respectively.

Remark. The condition of being a hyperbolized simplex is very strong.
Under weaker conditions on (X, / ) , XAK might still be a hyperboliza-
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tion procedure. For example, if X is a hexagon as in Example lb.l(ii),
then for any two-complex K, XAK is a piecewise flat, nonpositively
curved polyhedron. The hexagon, however, does not satisfy (C5). This
example works because a regular hexagon has angles 2π/3 and thus all
links are large. It would be interesting to find similar "link conditions" in
higher dimensions.

The purpose of this section is to show that hyperbolized simplices, as in
Theorem 4a.3, exist in every dimension. We give two constructions. Both
constructions yield a piecewise flat, nonpositively curved, hyperbolized n-
simplex. Both constructions are by induction on n . The first construction,
the simplest, is not degree one. It is described in part (4b). The second
construction, which is due to Gromov [19, §3.4], is degree one. Neither of
the constructions presented is strict.

(4b) Cartesian product with an interval. Suppose, by induction on n,
that (Xn, /) is a tangentially trivial, hyperbolized n-simplex. (We can
take Xx to be the one-simplex.) Apply the Williams functor to get a
"hyperbolized w-sphere" Yn =XnA(dσn+ι). Put Xn+ι = Yn x [0, 1].

We need to define the map / : Xn+ι -• σn+ι. The restriction of / to
the boundary (= Yn x {0, 1}) is defined to be two copies of the natural
projection Yn -* dσn+x. This is then extended arbitrarily to Xn+ι -*
σn+ι (σn+ι is contractible). Then (Xn+ι, f) clearly does the job. (In
dimension 2 this construction was described in Example lb.l(iii).)

(4c) Gromov's construction. We modify the previous example to be of
degree one. To do this we need the idea of a "reflection" on a space and
using this a "cylinder construction."

Reflections. Suppose that A is a topological space and that B is a
subspace. The double of A along B, denoted by D(A, B), is defined as

where the equivalence relation ~ is defined by (a, ε) ~ (a , ε) iff a e B
and a = a , or (a, ε) = (a , ε). Denote the equivalence class of (a, ε)
by [a, ε]. Identify A with the image of A x 1 in D(A, B). There is
a natural involution on D(A, B) which sends [a, ε] to [a, - ε ] . The
subspace A is a fundamental domain for the involution (in the strong
sense that it intersects each orbit in exactly one point). The fixed point
set of the involution is B. If A is a geodesic space and B is a closed
totally geodesic subspace, then the metric on A induces one on D(A, B)
(the distance between two points is the infimum of the lengths of curves
connecting them); by the Gluing Lemma (2a.4), D(A> B) is a geodesic
space and the canonical involution is an isometry.
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Suppose that Y is a topological space and that r:Y->Y is an invo-
lution. The involution r is a reflection if there are subspaces A c Y and
B c A such that B is in the fixed point set of r and so that the natural
map g: D(A, B) -• 7 given by

a ifβ = + l ,

r(α) ifε = - l ,

is a homeomorphism. We shall say that A is a half space for r on Γ. If
y is a geodesic space, if Λ and 5 are totally geodesic subspaces, and if
g: D(A, B) —• Y is an isometry, then r is an isometric reflection. If y
is a manifold and 4̂ is a manifold with boundary J?, then r is called a
/0cα//y /ύtαzr reflection.

(4c. 1) Lemma. Suppose that A is a manifold with boundary B, that
Y = D(A, B), and that r is the canonical locally linear reflection on Y.
Then the following statements are equivalent:

(i) The stable tangent bundle of Y is trivial.
(ii) The stable tangent bundle of A is trivial.

(iii) The stable tangent bundle of Y is Z/2-equivariantly trivial.

Moreover, the set of trivializations of τA is naturally bijective with the
set of equivariant trivializations of τγ.

Proof Since A is a submanifold of codimension 0 in Y, (i) =Φ (ii).
One way to see that (ii) =*• (iii) is to notice that Y is a fiber product
according to the diagram

Y > R

A > [0,oo)
g

where φ(t) = t2 and g: A —• [0, oo) is any map which is transverse to 0
and has g~ι(0) = B. We then have that Y is embedded as a two-sided
submanifold of A x R hence, (ii) => (iii). The implication (iii) =* (i) is
obvious as is the last statement of the lemma.

The cylinder construction. Suppose that r is a reflection on a space
Y, that A is a half-space, and that B = A Π r{A) is the fixed point
set. Following [19, p. 116], we let Ω(Y, A, r) be the space formed from
Y x [-1, 1] by gluing r(A) x (-1) to r{A) x (+1) (via the identity map
of r(A)). The image of A x {±1} in Ω ( 7 , Λ, r) is denoted by <9Ω; it
is naturally identified with D(A, B) and hence, with 7 . We list some
properties of this construction in the following proposition.
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(4c.2) Proposition. Suppose that r is a reflection on a space Y and
that A is a half-space for r. Put Ω = Ω(Γ, A, r).

(1) Suppose that Y is an n-dimensional manifold and that the reflection
r is locally linear. Then Ω is an (n + l)-dimensional manifold with bound-
ary; its boundary is dΩ, which is naturally identified with Y. Suppose fur-
ther that the stable tangent bundle of A is trivial and that ψ: τA —• A x-RN

is a trivialization. Then ψ extends to a trivialization τ Ω -+ Ω x RN+ι (in
particular, the stable tangent bundle of Ω is trivial).

(2) Suppose Y isaspherical. Then Ω is aspherical. Moreover, nλ(Y) —•
nx(Ω) is an injection.

(3) Suppose that Y is a geodesic space and that r is an isometric reflec-
tion. Then the induced metric on Ω (that is, the metric induced from the
product metric on Y x [-1, 1]) makes Ω into a geodesic space and dΩ
is a totally geodesic subspace. Suppose further that the curvature of Y is
< 0. Then the curvature of Ω is nonpositive.

Proof. (1) The only part of (1) which requires proof is the statement
about stable tangent bundles. Another way to describe the construction
of Ω is as follows. Take Γ x S 1 and "slit it open" along A x point.
Since τA is trivial, so is τγ (by Lemma 4c. 1). Since τYxSι = τ y x τsι,

the stable tangent bundle of Y x Sι is trivial, so the stable tangent bundle
remains trivial when we slit it open. If ψ is a trivialization of τA , then
it extends to an equivariant trivialization of τγ. We can then take the
Cartesian product with some standard trivialization of τsι. Restricting
back to A x point, we obviously recover ψ.

(2) This statement follows from Lemma lh.2.
(3) This statement follows from the Gluing Lemma 2a.4.
Remark. If A is a piecewise flat polyhedron, then so are Y and Ω

(since Sι is flat).

We now follow the same inductive procedure as in part (b). Assume, by

induction, that (Xn , /) is a piecewise flat, tangentially trivial, degree one,

hyperbolized n-simplex. We construct Xn+ι. Put Yn =XnA(dσn+ι).

The automorphism group of σn+ι is Σn+2, the symmetric group of degree

n + 2. It acts on the derived complex (dσn*1)' through automorphisms

over σn and the natural map π: (dσn+ι)' -• σn can be identified with

the orbit map Sn -• Sn/Σn+2 = σn. Also, Σn+2 acts on dσn+ι as a

group generated by isometric reflections. By functoriality of the Williams

construction, Σ π + 2 acts on Yn and the natural map Yn -• (dσn+ι) is

Σn+2-equivariant. Suppose r is a transposition in Σn+2. The complement
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of the fixed set of r on (dσn+ι) has two components. It follows that the
same is true for the fixed set of r o n 7 " , and hence, that r acts on Yn (a
smooth manifold by Proposition If.5) as a smooth reflection. Let An be
a half space for r on Yn . Finally using the cylinder construction defined
above, we put

Xn+ι =Ω(Yn,An,r).

Extend the natural map dXn+ι = Yn -> dσn+ι to / : Xn+ι -> σn+ι by
choosing a collared neighborhood of dXn+ι in Xn+ι and then using the
fact that σn+ι is the cone on dσn+ι. It follows from Proposition 4c.2
that this gives a hyperbolization procedure with all the right properties.
The hyperbolized simplices constructed above are piecewise flat and have
curvature < 0 . For constructions of hyperbolized simplices with curvature
strictly less than zero, see [19, §§3.4B and 4.3A].

5. Applications

In this section we give the details for the three examples discussed in
the Introduction.

(5a) A nontriangulable aspherical manifold. Our goal is to prove the
following result.

(5a. 1) Theorem. There is a closed aspherical topological four-manifold
N4 with the following properties.

(i) N4 is not homotopy equivalent to a PL four-manifold.

(ii) TV4 is not homeomorphic to a simplicial complex.

(iii) The universal cover N4 is not simply connected at infinity (and

hence, N4 is not homeomorphic to R4).

We recall some basic facts and examples from four-dimensional topol-

ogy.

Let M4(E%) denote the smooth, simply connected, four-manifold with

boundary, constructed by plumbing eight copies of the tangent disk bundle

of S2 according to the Dynkin diagram E% (see [7, pp. 116-126]). The

boundary of M4(E%), denote by Σ 3 , is Poincare's homology three-sphere

(i.e., dodecahedral space). The intersection form on H2(M4(E^) Z) is

then nonsingular over Z, even, and of signature 8. Choose a smooth

triangulation of M4(ES) and let K(ES) denote the four-dimensional sim-

plicial complex formed by attaching the cone on Σ 3 to M4(ES). The

complex K(E%) is a polyhedral homology four-manifold; it has one singu-

lar point (the cone point). Let w (K(Es)) denote the /th Stiefel-Whitney
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class of K(ES) (defined via Wu classes as in [22, p. 132]). The homology
four-manifold K(E%) has the following properties:

(a) K(E%) is orientable.
(b) w2(K(Es)) = 0 (i.e., K(ES) is "spin").
(c) The signature σ(K(Es)) of the intersection form is 8.
A famous theorem of Rohlin (cf. [26]) asserts that these three properties

imply that K(E%) is not homotopy equivalent to a PL a four-manifold. On
the other hand, Freedman proved in [ 16] that Σ 3 does bound a contractible
four-manifold topologically; it follows that K(ES) is homotopy equivalent
to the closed topological four-manifold formed by gluing this contractible
manifold onto M4(ES). This topological four-manifold will be denoted
by M 4 ( £ 8 ) . Recent results of Casson (on his new invariant for homology
three-spheres) imply that any four-manifold satisfying properties (a), (b),
and (c) above cannot be triangulated (see [1, p. (xvi)]). Thus, M4(ES) is
not homeomorphic to a simplicial complex.

Next we apply our hyperbolization procedure to the simplicial com-
plex K(ES). Let (X4, /) be the hyperbolization of the four-simplex con-
structed in §(4b). Put

(5a.2) P4 = X4AK(ES).

We list some of the properties of P4 in the following lemma.
(5a.3) Lemma. Let P4 be the polyhedron defined by (5a.2).

(i) P4 is a piecewise flat, nonpositively curved, polyhedron (and hence,

P4 is aspherical).

(ii) P4 is a polyhedral homology four-manifold. Moreover, it is a PL
four-manifold except at one singular point xQ.

(iii) P4 is orientable.

(iv) w2(P4) = 0.

(v) σ(P4) = 8.
(vi) The universal cover of P4 is not simply connected at infinity.

Proof. Property (i) follows from the fact that X4 is a hyperbolized

four-simplex and the Gluing Lemma 2a.4. Property (ii) is the fact that P4

and K(ES) have the same links (cf. Lemma le.l). The point x0 is the

"cone point," i.e, it is the unique point in P4 with link Σ 3 . The stable

tangent bundle of K(ES) - x0 is trivial; it follows from Corollary lf.4

that the same is true for P4 - x0. Properties (iii) and (iv) follow. Using

the relative version of the construction on K(ES) x / , we get an oriented
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bordism of homology manifolds from P4 to K(ES). Hence, σ(P4) =

σ(K(E%)) = &. Property (vi) follows from Proposition 3d.3. q.e.d.

We are now in a position to construct the topological four-manifold

N4 needed to prove Theorem 5a. 1. Let N4 be the four-manifold formed

from P4 by removing a neighborhood of the cone point (i.e., a cone on

Σ3) and replacing it with a contractible four-manifold. Obviously, N4 is

a closed topological four-manifold homotopy equivalent to P4. Thus, N4

is aspherical (since P4 is). Moreover, from Lemma 5a.3, we have that

(a') N4 is orientable.

(b') w2(N4) = 0.

(c') σ(N4) = S.

It follows, as before, from Rohlin's Theorem that N4 is not homotopy

equivalent to a PL four-manifold and from Casson's results that TV4 is not

homeomorphic to a simplicial complex. A homotopy equivalence N4 -+

P4 induces a proper homotopy equivalence N4 —• P4 of universal covers.

Since P4 is not simply connected at infinity, neither is N4 . In particular,

N4 is not homeomorphic to R4 . This concludes the proof of Theorem

5a. 1.

The following corollary improves results of [12].

(5a. 4) Corollary. In every dimension n>4, there is a closed aspher-

ical n-manifold which is not homotopy equivalent to a PL n-manifold.

Proof. We claim that N4 x T is not homotopy equivalent to a PL

manifold. Suppose, to the contrary, that / : Mn —• N4xTk is a homotopy

equivalence, where Mn is a PL w-manifold, k = n-4. First suppose that

k = 1. Let g: M5 -> Sι denote a PL approximation of the composition

of / with projection to the second factor, let x0 be a regular value for

g9 and let M4 = g"ι(xQ). Then wχ(M4) = w2(M4) = 0 and a simple

algebraic argument shows σ{M4) = σ(N4) = 8, contradicting Rohlin's

Theorem. If k > 1, then we can use FarrelΓs Fibering Theorem [15] to

decompose Mn as M5 x Tk~ι, where M5 is homotopy equivalent to

N4 x Sι and, hence, again contradict Rohlin's Theorem.

(5b) Nonpositively curved topological manifolds which are not covered by
Euclidean space. In [17, p. 187], Gromov asks the following question.

Question. Are there convex geodesic spaces which are topological man-
ifolds different from RnΊ

Here "convex" means that the distance function is convex (cf. Remark
2a.2). A generalized Cartan-Hadamard Theorem [19, p. 119] asserts that a
simply connected, nonpositively curved, geodesic space is convex. Hence,
the following result supplies an affirmative answer to Gromov's question.
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(5b.l) Theorem. For each n > 5, there is a piecewise flat, nonposi-
tively curved, polyhedron Qn with the following properties:

(1) Qn is a closed topological n-manifold.
(2) The universal cover Qn is not simply connected at oo and, hence,

not homeomorphic to Rn .
The manifold Qn will be constructed by applying hyperbolization to

certain non-PL triangulations of Sn .
Let An~x be a compact acyclic smooth manifold with the following two

properties:
(1) nΛdAn'x)^πΛAn~x) is onto.

(2) The double of An x (a homology (n - l)-sphere) is not simply

connected.

It is fairly easy to construct such An~x for n - 1 > 4. For example,

suppose that Hn~2 is any nonsimply connected homology (n - 2)-sphere,

that Cn~2 is the complement of an open (n - 2)-ball in Hn~2, and that

An~x = Cn~2 x I. Since dAn~x is then the double of Cn~2 , it is obvious

that (1) holds. The double of An~x is homeomorphic to the boundary of

An~x x I. Since An~x xl = Cn~2 x l x l = Cn~2 x D2 , we have that πχ

(double of An"x) = nx{d{Cn~2 x D2)) = π{(Cn~2) φ 0 ; hence, (2) holds.

Suppose that An~x satisfies (1) and (2). Let D(A, dA) denote the dou-
ble of An~x {dA and D{A, dA) are both homology spheres). Choose a
PL triangulation of An~x and let Zn~x be the simplicial complex formed
by attaching the cone on dA to An~x. (Thus, Zn~x is a homology mani-
fold with the homology of Sn"x.) Let ΣZ denote the suspension of Zn~x.
The geometric realization of ΣZ is homotopy equivalent to Sn . The PL
singular set of ΣZ is an interval (the suspension of the cone point in
Zn~x). The link of any vertex in ΣZ is either a PL (n-l)-sphere, the sus-
pension of dA, or Zn"x (at the suspension points). Thus, every vertex has
simply connected link. It follows from Edwards Polyhedral-Topological
Manifold Characterization Theorem in [13, p. 119] that |ΣZ| is a mani-
fold, hence, an n-sphere {n > 5). Let Rn be a standard derived neighbor-
hood of the singular interval in ΣZ . Clearly, dRn = {An~xxdI)U{dAxI),
i.e., dRn =D{A,dA).

We continue as in part (5a). Let Xn be a hyperbolized n-simplex.
Put Qn = Λ^ΔΣZ. Then Qn is a piecewise flat, nonpositively curved,
polyhedron. Since Qn and ΣZ have the same links (Lemma le.l), the
PL singular set of Qn is also an interval; its derived neighborhood can be
identified with Rn and Qn is a topological n-manifold.



384 MICHAEL W. DAVIS & TADEUSZ JANUSZKIEWICZ

Let Qn denote the universal cover of Qn. We note that each com-
ponent of the PL singular set is a convex interval. (It is convex since
the one-skeleton of Kn is a totally geodesic subspace of its hyperboliza-
tion, Qn.) It follows from Theorem 3d.l and Corollary 3d.4 that Qn

is semistable at infinity and that its fundamental group at infinity is the
"projective free product" of an infinite number of copies πx(D(A, dA)).
This proves Theorem 5b. 1.

(5b.2) Remark. Theorem 5b. 1 can also be proved using reflection
groups. With notation as in Remark 3d.5, let (W, S) be a Coxeter
system with Nerve(ίf, S) = Z ' (where Z is the generalized homology
(fl-l)-sphere constructed above). Then Z is simply connected. As above,
K(W, S) is a topological manifold and is not simply connected at infin-
ity. The quotient of K(W, S) by a torsion-free subgroup of W is another
example which satisfies properties (1) and (2) in Theorem 5b. 1.

We note that the above example provides a counterexample to Theorem
16.1 in [11]. There it is claimed that if Nerve(W, S) is a generalized
homology (n - l)-sphere, then K(W, S) is simply connected at infinity
if and only if Nerve(^, S) is simply connected. However, all that is
proved is that if Nerve(W, S) is not simply connected, then K(W, S)
is not simply connected at infinity. The above construction provides a
counterexample to the stronger claim.

(5c) A negatively curved topological manifold with no negatively curved

PL metric. The example of part (5b), with its universal cover being non-
simply connected at infinity, does not carry a nonpositively curved PL
metric (although it is homeomorphic to a PL manifold). We shall now
construct another example of this type: a PL manifold manifold carrying
a strictly negatively curved (K < 0) continuous metric, but no PL, K < 0,
metric.

Let Σ 3 be a nonsimply connected homology three-sphere, with finite
fundamental group, and with triangulation K3. Its double suspension (or
equivalently, its join with a circle) is homeomorphic to S5 however, the
double suspension of K3 is not a PL triangulation: links of one simplices
in Sι (the suspension circle) are not simply connected.

Hyperbolize Sι * K3 with a strictly hyperbolized five-simplex and call
the result N5.

(5c. 1) Theorem. Let N5 be the strictly negatively curved polyhedron

constructed above and N5 its universal cover. Then

(i) N5 is a topological manifold.
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(ii) N5 is homeomorphic to a smooth five-manifold.
(iii) N5 is homeomorphic to R5.
(iv) The ideal boundary S{oo) of N5 is not a manifold.
(v) N5 does not carry a strictly negatively curved PL metric (i.e., there

is no strictly negatively curved polyhedral metric on N5 so that the under-
lying polyhedron is a PL manifold).

Proof Statement (i) follows from Edwards' Theorem. Since N5 -> S5

is covered by a map of stable tangent bundles, the stable tangent bundle of
N5 is trivial. Hence, (ii) follows from smoothing theory. The metric on
N5 has strict negative curvature. The subset Sι c N5 (the hyperbolization
of the suspension circle) along which we have PL singularities is totally
geodesic. Thus, in the universal covering N5, we see unbounded geodesies
of PL singular points and no other singularities. An argument similar to
those in §3 shows that the sphere of radius r, Sy{r), about a nonsingular
point y is homeomorphic to a (nonsingular) connected sum of copies of
the suspension of Σ 3. Hence Sy(r) is simply connected; it follows that

N5 is simply connected at infinity and, therefore, PL homeomorphic to
R5 (cf. [30]). This proves statement (iii).

We note that (iv) implies (v). Indeed, suppose that N5 carried a strictly
negatively curved PL metric. By Theorem 3b.2(iii), S(oo) would be home-
omorphic to S4 and we would get a contradiction to the Efremovich-
Tichomirova Theorem (Corollary 2b. 13).

It remains to prove (iv). By Theorem 3d.l, £(00) is a simply con-
nected homology four-manifold with the homology of S4 . Hence, if 5(oc)
were a manifold, then, by the four-dimensional Poincare Conjecture (cf.
[16]), it would be homeomorphic to S4. We will show that S(oo) is not
homeomorphic to S4 by finding two points γ+ and γ_ in S(oo) so that
S(oo) — {γ+, γ_} is not simply connected. The points γ+ and γ_ are
endpoints in S(oo) of a singular geodesic γ. Since S(oo) is indepen-
dent of basepoint, choose the basepoint x to lie on a singular geodesic γ.
Then Sx(r) - y is not simply connected (its fundamental group is πχ (Σ3)).
Let ηr be a noncontractible loop in Sχ(r) - γ. As preimages of points
under geodesic contraction are connected, we can construct a curve η^
in 5(00) which projects to ηr under geodesic contraction. We claim that
η^ is nontrivial in πχ(S(oo) - {γ+, γ_}). Suppose not. Then η^ can
be homotoped to zero in the complement of some open neighborhood of
{ϊ+ 5 7_} Such an open set is a full preimage of some open set U in
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SX(R) - γ, for some large radius R> r. Therefore, we can push the ho-
motopy forward and kill the image of η^ in πχ(Sχ(R) - y). We try to
push the homotopy forward to Sχ{r). Unfortunately the geodesic contrac-
tion cr\ SX(R) —> Sχ(r) does not map Sχ(R) - γ to Sx(r) -γ. However,
we have the following.

(5c.2) Lemma. Let γ+ and γ_ be the points where γ intersects Sχ(r).

Both the geodesic contraction cr: Sχ(R)-c~\{γ_, γ_}) —> Sχ(r)-{γ_ , γ}

and the inclusion i: SX(R) - c~ι({γ_ ,γ_}) -• SX(R) - γ induce isomor-
phisms on fundamental groups.

Proof. Both Sχ(R) and Sχ(r) are nonsingular connected sums of sev-

eral copies of the suspension of Σ 3 . After collapsing extraneous copies

of this suspension to points we see that the restriction of cr to Sχ(R) -

c~1({y+, γ_}) is cell-like, hence, a homotopy equivalence. This proves

the assertion concerning cr. Denote by Z>+ and D_ the sets c~ι(γ+)

and c~\γ_). Then Z)+ and D_ are acyclic subcomplexes. By exci-
sion, (Sχ(R) - γ, Sχ(R) - (Z>+ U D_)) is acyclic; hence, the inclusion
/: Sχ(R) - (Z>+ U ΰ _ ) -^ SX(R) - γ induces an isomorphism on homol-
ogy. The range of /, Sχ(R) - γ, is homotopy equivalent to Σ 3 x (0, 1).
If iφ is not surjective on π{, then it factors through some covering of
Sχ(R) - γ, contradicting the fact that it induces an isomorphism on H3.
The map i^, being a surjection between two isomorphic finite groups, is
therefore an isomorphism, q.e.d.

From the lemma, we see that the image of ^ in π t (Sχ(R) - (D+ UD_))
is nontrivial; hence, η^ is not contractible, completing the proof of (iv)
and, thereby, Theorem 5c. 1.

Remark. Similar considerations apply to a strict hyperbolization of the
double suspension of any smooth homology sphere with nontrivial finite
fundamental group. Thus, Theorem 5c. 1 holds in any dimension > 5.

References

[1] S. Akbulut & J. D. McCarthy, Casson's invariant for oriented homology 3-spheres, Math-
ematical Notes 36, Princeton University Press, Princeton, NJ, 1990.

[2] A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications,
Proc. Steklov Inst. Math. 38 (1951) 5-23.

[3] F. D. Ancel, An alternative proof of M. Brown's theorem on inverse sequences of near
homeomorphisms, Geometric Topology and Shape Theory (Dubrovnik, 1986), Lec-
ture Notes in Math., Vol. 1283, Springer, Berlin, 1987.

[4] S. Armentrout, Cellular decompositions of 3-manifolds that yield 3-manifolds, Mem.
Amer. Math. Soc. No. 107 (1971).



HYPERBOLIZATION OF POLYHEDRA 387

[5] W. Ballman, E. Ghys, A. Haefliger, P. de la Harpe, E. Salem, R. Strebel & M. Troyanov,
Sur les groupes hyperboliques d'apres Mikhael Gromov, Progress in Math., Vol. 83,
Birkhauser, Stuttgart, 1990.

[6] W. Ballman, M. Gromov & V. Schroeder, Manifolds of nonpositive curvature, Progress
in Math., Vol. 61, Birkhauser, Stuttgart, 1985.

[7] W. Browder, Surgery on simply connected manifolds, Springer, Berlin, 1972.
[8] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer.

Math. Soc. 11 (I960) 478-481.
[9] , The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12

(1961) 812-814.
[10] J. Cheeger, W. Muller & R. Schrader, On the curvature of piecewise flat spaces, Comm.

Math. Phys. 92 (1984) 405-454.
[11] M. Davis, Groups generated by reflections and aspherical manifolds not covered by Eu-

clidean space, Ann. of Math. (2) 117 (1983) 293-325.
[12] M. Davis & J.-C. Hausmann, Aspherical manifolds without smooth or PL structure, Al-

gebraic Topology, Lecture Notes in Math., Vol. 1370, Springer, Berlin, 1989.
[13] R. D. Edwards, The topology of manifolds and cell-like maps, Proc. ICM Helsinki, 1978,

111-127.
[14] V. Efremovich & E. Tichomirova, Equimorphisms of hyperbolic spaces, Izv. Akad. Nauk.

SSSR Ser. Mat. 28 (1964) 1139-1144.
[15] F. T. Farrell, The obstruction to fibering a manifold over a circle, Indiana Univ. Math.

J. 21(1971) 315-346.
[16] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geometry

17 (1982) 357-453.
[17] M. Gromov, Hyperbolic manifolds, groups and actions, Riemann Surfaces and Related

Topics, Annals of Math. Studies, No. 97, Princeton University Press, Princeton, NJ,
1981, 183-215.

[18] , Infinite groups as geometric objects, Vol. 1, Proc. ICM Warszawa, 1982, 385-391.
[19] , Hyperbolic groups, in Essays in Group Theory (S. M. Gersten, ed.), Springer,

Berlin, 1988, 75-264.
[20] D. M. Kan & W. P. Thurston, Every connected space has the homology of a K(π, 1),

Topology 15 (1976) 253-258.
[21] C. R. F. Maunder, A short proof of a theorem ofKan-Thurston, Bull. London Math. Soc.

13 (1981) 235-237.
[22] J. Milnor & J. Stasheff, Characteristic classes, Annals of Math. Studies, No. 76, Princeton

University Press, Princeton, NJ, 1974.
[23] R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer.

Math. Soc. 27 (1925) 416-428.
[24] G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, The Ohio State University, 1988.
[25] F. Quinn, Ends of maps. Ill: dimensions 4 and 5, J. Differential Geometry 17 (1982)

503-521.
[26] V. A. Rohlin, New results in the theory of ^-dimensional manifolds, Dokl. Akad. Nauk

SSSR 81 (1951) 19-22 (Russian).
[27] C. P. Rourke & B. J. Sanderson, Block bundles. I, Ann. of Math. (2) 87 (1968) 1-28.
[28] P. Scott & C. T. C. Wall, Topological methods in group theory, in Homological Group

Theory (C. T. C. Wall, ed.), London Math. Soc. Lecture Notes, No. 36, Cambridge
University Press, Cambridge, 1979.

[29] L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11
(1973)271-294.

[30] J. Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos.
Soc. 58 (1962) 481-488.



388 MICHAEL W. DAVIS & TADEUSZ JANUSZKIEWICZ

[31] D. Stone, Geodesies in piecewise linear manifolds, Trans. Amer. Math. Soc. 215 (1976)
1-44.

[32] R. F. Williams, A useful functor and three famous examples in topology, Trans. Amer.
Math. Soc. 106 (1963) 319-329.

[33] E. B. Vinberg, Absence of crystallographic groups of reflections in Lobachevskii spaces of
large dimension, Functional Anal. Appl. 15 (1981) 128-130.

THE OHIO STATE UNIVERSITY

UNIVERSITY OF WROCLAW, POLAND




