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A SIMPLE CONSTRUCTION OF
ATIYAH-SINGER CLASSES AND PIECEWISE

LINEAR TRANSFORMATION GROUPS

SYLVAIN CAPPELL & SHMUEL WEINBERGER

The main purpose of this paper is to provide a simple transparent con-
struction of the Atiyah-Singer classes associated to semifree PL actions of
finite groups with manifold fixed sets, such as the locally linear actions.
These classes are so named because they enter into nonsmooth versions
of the (/-signature formula. We shall also see how they enter into ex-
istence and classification problems for group actions in a way that the
smooth characteristic classes of [4] do not. Other papers which, in some
cases implicitly, deal with these classes or some analogue of them (or their
use in constructing actions) are, [6], [9], [10], [16], [18], [21], [26], [27],
[30], [43]; they define them by a wide variety of techniques from homo-
logical surgery to sheaf theory to analytical methods more in the spirit of
Atiyah and Singer. We hope that the present self-contained treatment in
the simple contexts of semifree PL and of PL locally linear actions will
help readers to understand the other treatments as well.

Actually there are some subtleties due to local linearity not present for
more general PL actions. These are basically due to the fact that unre-
stricted coning is not permitted in this category. For instance, for G = Z 1 6 3

[40] (or G = Zn for n divisible by several primes [42]) the range of the
G-signature map is different for PL locally linear actions than it is for gen-
eral PL actions. Closer to the point of this paper, there is an additional
obstruction for a submanifold of the sphere to be a semifree PL locally
linear fixed set beyond those necessary for it to be a PL fixed set [41].
For this, the refinements obtained in this paper (not available in the cited
papers) are crucial.

Thus approach is based on the analysis and comparison of classify-
Γ G

ing spaces BSRNk (respectively, BSPLk) for oriented equivariant PL
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(respectively, oriented equivariant PL locally linear) neighborhoods of
codimension k of manifolds (cf. [19]). In §1 Quinn's geometric formu-
lation of surgery [24], Sullivan's method of analyzing F/PL [34], and
calculations of Wall [37] are used in proving:

Theorem 1. BΊΪPLG

k -> BSPLk x Ls

k(G) ® Z[l/\G\], k > 2, and

BSRN° -> BSPLk x £J(G) ® Z[l/\G\], k > 2, are Z[l/\G\] equiva-

lences.
In each case the first factor forgets the group action and the second is

the PL Atiyah-Singer class. Away from 2, the localization theorem [3]
for KOG can be used to view these classes as, after suitable localizations,
lying in KOG{M) for any PL manifold M with semifree PL G action
with manifold fixed set. (This may suggest the connection to more analytic
treatments.) The main application of Theorem 1 given in §2 is:

Theorem 2 {Hard extension across homology collars). Let (Wn d+,d_)
be a manifold triad with π{ W = π{(3 ) = 0, n>6, and

Suppose G acts orientation-preserving, semifreely and PL {respectively, lo-
cally linearly) on d__ with fixed set L of codimension larger than two. Then
there is a PL {locally linear) extension to such an action of G on W with
fixed set a given properly embedded PL submanifold K {e.g., KΓ\d_ = L)
if and only if

2. Σi-^^i^W, dJ/H^K, L)] = 0 e K0{ZG), where σ is the
Swan homomorphism; and

3. the Atiyah-Singer classes of L extend to classes on K.
Moreover if an extension exists, then extensions are classified by their
Atiyah-Singer classes and an element of Wh(G).

Condition 1 is a result of Smith theory. The idea that one can often
deduce converses to Smith theory was forcefully demonstrated in the out-
standing paper of Jones [17] that has exerted enormous influence in trans-
formation groups. In condition 2, σ denotes the Swan homomorphism
from (Z/|(j|)* -• KQ{Z[G]) obtained as the connecting homomorphism of
algebraic Λ>theory from the standard quadrad for analyzing Z[G], and
the expression is essentially a calculation of a finiteness obstruction. Con-
dition 3 is a computable bundle extension obstruction.

Theorem 2 immediately leads to a classification of orientation preserv-
ing PL locally linear semifree actions on the disk with fixed set of codi-
mension Φ 2. (See the discussion in [18] of nonlocally linear actions.
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Theorem 2 above answers a question posed there.) It also leads, less im-
mediately, to similar classification for ZpT actions on spheres.

Finally, it is possible to analyze the obstruction to concording a non-
locally linear action with given fixed set to a locally linear one. The ob-
structions are mod 2-cohomology classes, introduced in §3, which we call
Rothenberg classes after the coefficients of the cohomology in which they
lie. They are used to complete the discussion of BSRN^ .

In future papers we shall use the results developed here to analyze group
actions on general manifolds, far removed from disks, spheres, and homol-
ogy collars, and shall also deal with continuous groups.

Some of the results of this paper were described in the survey [38]. (This
paper is a simplification of reference [CW2] of that paper.)

The second author would like to thank the mathematics department of
Notre Dame for their hospitality during a useful visit many years ago and
the Courant Institute for its continuing support.

1. Actions on bundles

This section analyzes partially the (unstable) difference between equi-
variant and unequivariant bundle theories to complete the proof of Theo-
rem 1 in the locally linear case. These results are also important for other
problems in the theory of PL group actions (see, e.g., [12], [38], [41]). Here
we work in the PL-locally smoothable (or locally linear) category, which
means that in some equivariant triangulation all orbits are PL equivari-
antly homeomorphic to linear orbits. It is well known that all smooth
actions have such a structure, but this is not the most general PL action.
For instance, in this category all fixed point sets are necessarily manifolds,
while coning often produces PL actions with nonmanifold fixed point sets.
However, even if all fixed point sets are submanifolds, the action need
not be locally linear. (We shall analyze this latter type of PL action in
§3.) Still the locally linear category is flexible enough to permit geometric
constructions yet rigid enough to permit the usual tools of, say, regular
neighborhood theory. (This is different from the topological locally linear
category which has neither existence nor uniqueness of regular neighbor-
hoods.) In fact this local rigidity is necessary for Reidemeister torsion
calculations which seem central to even the existence proof for odd order
groups and is certainly necessary for the classification results.

If M is a manifold, we use the simplicial groups (rather Δ-groups [32]

SPL(M) and Aut(Af), whose /c-simplices consist of orientation preserv-
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k k

ing PL homeomorphisms (autohomotopy equivalences) Δ x M —• Δ x M
preserving blocks and homotopic to the identity. In our examples, M =
Sn Ip, where p is a free representation of a finite group G (the putative
normal representation to the fixed point set). The relevance here is that:

Proposition {see, e.g., [32]).BSPL(Sn/p) is the classifying space of n-
dimensional oriented equivariant "abstract regular neighborhoods" which
are locally modeled on the representation p.

Of course there is a map BSPL{Sn/p) -> BSPL{Sn) obtained by
forgetting the action on the regular neighborhood, or equivalently lifting
homeomorphisms via covering space theory. It would be useful to have a
splitting of this map, but that does not exist in general; this can be seen
from calculations of homotopy groups. However, we will show:

Theorem. If p: G —• SO(n + 1) is a free representation, then

BSPL(Snlp)[\l\G\] -> BSPL{Sn)[\l\G\] splits.
Moreover, we will identify the fiber away from \G\ so as to classify

actions on a regular neighborhood. The methods used include blocked
surgery theory [24], [5], Sullivan's analysis of F/PL (see, e.g., [20]), and
calculations of surgery groups [36].

Our starting point is the identification of the fiber
SAa\{Sn/p)/SPL{Sn/p)

of BSPL(SnIp) -> BS*Aut(Sn/p) with the identity component of the
(simple) structure space of Sn/p, &0(Sn/p). (The other components cor-
respond to actions locally modeled on PL representations simple homotopy
equivalent to p see [5]). We will henceforth ignore problems involving
components. Now we have the surgery fibration structure sequence [36]

S(Sn/p)-+(F/PL)ιsr/p)->Ls

n{G),

where L*(G) is the nth Quinn (simple) surgery space. (Denote the re-

duced version of this space by ϊfn(G).) Using the fact that S(Dn) is con-

tractible (Poincare Conjecture) it follows that S(Sn/p) ~ S(Sn/p) ,where
o

Sn I p denotes Sn/p punctured by removing an open disk, yielding a fi-
bration

Ls

n+ι(G)->S(Sn/p)-+(F/PLf/p.
This is already^interesting for n > 2, G = trivial group, where one obtains
SAut(Sn)/SPL(Sn) ~ F/PL which is the Haefliger-Casson-Sullivan sta-
bility theorem under slight disguise. Elsewhere we will discuss equivariant
generalizations of this theorem (and its failure to extend in general) and
various applications of these.
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Now there is a commutative diagram induced by passing to covering
spaces:

> (F/PLf/p

i
• F/PL

o n

Claim. (F/PL)S lp -• F/PL is a homotopy equivalence away from

|G| so that the fiber of S{Sn/p) -> S{Sn) is ϊ?n+ι(G) away from |G | .
The proof is a straightforward calculation. Evaluation at a base point

* produces a fibration

(F/PL, *)(^>'*) -> (F/PLfΊp) - F/PL,

the fiber being weakly contractible l/\G\ by the Federer spectral sequence
[15] E*'9 = Hp(Y;πq(X))^πp_q{{X,*){γ>*)) for the homotopy groups
of (components of) function spaces of based maps. We now obtain:

Proposition. Away from \G\ there is a fibration

Ls

n+ι(G) - BSPL(Sn/p) -> BSPL{Sn).

Proof. Another two applications of the Federer spectral sequence shows
that

BSAut{Sn/p)[l/\G\] -> BSA\x\{5n)[\/\G\\

is a homotopy equivalence, and the result follows from the previous
claim, q.e.d.

G

To finish the proof of Theorem 1 for BSPL^ we show that this fibration
is a product away from \G\ by giving a section to LΛ + 1 (G). The homotopy
structure of Ln + 1 (G) has been established by L. Jones and (independently)
by L. Taylor and B. Williams. Away from 2 it is a wedge of BO spectra
and at 2 it is a wedge of Eilenberg-Mac Lane (EM) spectra. We will not
use thei££esults, but rather rederive them partially in producing a map
from BSPL(SnIp) to the BO and EM spectra models in such a way that
composition with the map L*+1(G) -• BSPL(Sn/p) will be a homotopy
equivalence [ 1 /|C?|]. The map to the EM spectra at 2 for G odd involves
a more precise description below of the image of the multisignatures that
arise from BSPL(Sn/p).

Construction of the map. A: BSPL(Sn/p) -> V E ' ^ A ^ H ^ I ] .
By BO(A) we mean BO with coefficients in Λ (e.g., smash with a Moore
spectrum). The coefficient groups Z.(G)[j] are quite easy to understand.
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For i odd they vanish and for / even they are closely related to repre-
sentation theory via the multisignature [37]. For definiteness we then just
construct "half of the map

A: BSPL{Snlp) -> BO(RO(G)) \^\

where RO(G) is the ordinary real representation ring modulo the regular
representation. According to Sullivan's "Connor-Floyd" theory [34] this is
the same as constructing a homomorphism

ΩS0(BSPL(Sn/p)) Θ Ω ^ } Z[l/2]->RO{G) [±

where Z[\] is viewed as a Ω 5 0(*) module by multiplication by signature.
Such a homomorphism is provided by the Atiyah-Singer invariant of free
actions. If

[M9f]eΩS

k°(BSPL(Sn/p),

then there are associated PL block bundles:

Sn >E

\ \
(Sn/p) >E

ϊ
M

Note that the cover E bounds (cone down to M). Therefore \G\ιE

bounds in Ω%°k(BG) for some /. The multisignature of a coboundary

divided by \G\ι gives an element of RO(G)[l/\G\]. Subtract now the sig-
nature of the disk bundle (obtained by coning the sphere bundle forgetting
the group action) times the trivial representation. A standard argument
shows that / and the coboundary do not change the element obtained. It
is also easy to see (using homological triviality of bundle automorphisms)
that the construction only depends on the bordism class of [ ¥ , / ] .

Claim. The composite

ls

n+ι(G) -* BSPL(S"/p)

is localization.
The proof of this follows by replacing BSPL(Sn/p) by the structure

space S(Sn/p), the opposite of what was done above, and then computing
the map on homotopy groups. This last computation just recalls how the
Atiyah-Singer invariants change by an action of elements of the Wall group,
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e.g., by the multisignature which is an isomorphism ®Z[\]. It is the
necessary tensoring with Z[j] (typically only multiples of four are in the
image of the multisignature) that makes the problem at the prime 2 more
difficult. We will rely on the deep calculations of [37], taking advantage of
the fact that local linearity forced Ls-theory on us. In any case, for G of
even order, Theorem 1 is proved (for the locally linear case).

For G of odd order, it is best to concentrate on G = Zr, since a
standard argument involving Dress induction [14] shows that this is the
critical case. Intuitively, the Atiyah-Singer invariant is replaced by the
(main part of the) obstruction of making an odd multiple of E bound a
homologically trivial Zr-manifold.

Construction of the map. B: BSPL{Sn/p) -* \/EM{Ls

k+M(G), i){2).

Consider [M, /] - [M, *] which produces a similar situation to the
above. Now multiplying by rι one obtains something that bounds, and
consider the symmetric signature [25] of the coboundary as an algebraic
Poincare chain complex with boundary over the argumentation ideal I
of R[Zr]. By homological triviality again, the boundary is contractible;
so a priori, one obtains an element in Z^+ + 1 ( I ) . Note that as \ e R,
the symmetric signature group of Ranicki can be identified with Wall's
surgery group, i.e., Lι

χ = Lx

{ , x = s or h . Moreover, it is easy to see that
the simplicity obstruction of this chain complex [11, §2], i.e., the image
under the Rothenberg sequence to the cohomology of the Whitehead group,
is given by the Reidemeister torsion of the boundary. Since Zr action
preserves blocks and always has the same simple homotopy type for the
different blocks, there is a product formula for this [11, §5]; hence by taking
the reduced version [M, /] - [M, * ] , the Reidemeister torsion vanishes.
Thus this element is in the group Ls(ΐ). Now I is a product of type
O factors, so this group is detected by multisignature and thus there is a
unique preimage. Dividing by r gives an element of L"+ + 1(I) <g> Z ( 2 ) .
Again, it is well defined and yields a homomorphism

which yields

B: BSPL(Sn/p) - \f EM(Ls

n+i+ι(l), ){2)'

However, Wall shows [36] that L^Z^ and L*(I) are isomorphic with
identical ranges of multisignatures so that the argument can be completed
as before, finishing the proof of the theorem.
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Remark. To get actual choice of classes, rather than just show they
exist, one must repeat the same argument with Zn -manifolds as in, for
example, the discussion of F/PL in [23].

2. Hard extensions across homology collars and applications

In this section we prove Theorem 2 of the introduction in the locally
linear case. There are two ingredients: the bundle theory of §1 and the
special case where the submanifold L = 0 . This special case was first
proven by A. Assadi and W. Browder (jointly and unpublished) and the
second author [39]. We restate it here for the readers' convenience.

Theorem. Suppose {Wn,d+,d_) is a Z^G^ homology collar (i.e.,
H^{W, d±\ Z ( | G | ) ) = 0), and G acts freely and Z[1/|G|] homologically
trivially on d_ . Suppose further π{(d+) = nχ(W) = 0 and n > 6. Then
the G action on d_ extends to such a homologically trivial G action on

W if and only if Σ ( - l ) ^ ( l ^ ( W, d_)\) = 0e KQ(ZG).
Extensions differ by an element of Wh(G).
This statement differs from that in [39] only in that there d_ was sup-

posed simply connected. However, an examination of the proof given
there shows that this hypothesis was never used (except to reassure the
author!). In any case one can use the fact Hx[d_ Z,,G,)) = 0 to do a " +
construction" equivariantly with respect to G to get the data needed for
the Zabrodsky mixing of that paper.

Theorem 2 now follows from Theorem 1. After extending the Atiyah-

Singer classes one can extend l/\G\ the map L -> BSPLk to a map

K -+ BΪSPLk . At |G| , L = K so there is no difficulty in the extension. We
now have an action on d_xluNbd(L). The complement of this union is
a homology collar and the action already given on its "bottom boundary" is
free. Homological triviality follows from a Mayer-Vietoris argument, and
simple connectivity follows from the codimensionality hypothesis, q.e.d.

We record two corollaries.
Corollary 1. Let p: G -> SO(k), k > 2, be a semifree representation.

A submanifold Fn of Dn+k is the fixed set of a semifree locally linear PL
G action with normal representation p if and only if H+{F; Z,,G^) = 0

and Σ ( - l ) V | f l i ( F Z)|) = 0 G KO(ZG) .
Actions are classified up to an element of Wh(G) by the Atiyah-Singer

class in [F: ϊf(G)l/\G\] (and every element is the Atiyah-Singer class of
some action).
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The proof is trivial from Theorem 2.
Corollary 2. If p is a prime, and Σn is a Zp homology subsphere of

Sn+2k, k > 1, then there is a locally linear Zpr action on Sn+2k with fixed
set Σ.

Although the proof of this is more complicated, we shall be brief since
the second author has classified the semifree actions for arbitrary groups
as an application of the ideas of this paper and Jim Davis' method of
detecting surgery obstructions [14]. One punctures Σ, makes it the fixed
set on the disk, and then examines the action on the boundary. By [29]
this action on a sphere with fixed set a subsphere is determined (PL) by a
Whitehead torsion. However, our action is only well defined up to concor-
dance which changes the Rothenberg-Sondow elements by a norm. This
leads to a problem involving H*(Z2 Wh(Z r)). For a p odd [11] imme-
diately leads to the vanishing. For p = 2 one tries to solve the problem for
Z r+i and retreats to Zpr and makes use of the vanishing of the transfer
on Rothenberg groups [7].

3. Rothenberg classes

This section studies actions that are not necessarily locally linear but
do have manifold fixed sets. An example of this situation occurred in the
previous section where it was fairly easy to get something to be a fixed
set in a sphere but local linearity required the vanishing of an additional
obstruction. In general we shall see that there are ordinary cohomology
class obstructions to concording an action with fixed set F to a locally
linear action. The classes lie in H\F\ Hn~\Z2\ Wh(G))) and we call
them Rothenberg classes. (One can define these much more generally,
for nonsemifree actions, but then they lie in a sheaf cohomology group
with local stalk the Tate cohomology of the Rothenberg-Illman Whitehead
group of the isotropy.)

The Atiyah-Singer classes appropriate to locally linear actions lie in
[F: ϊf(G)[l/\G\]]. The ones related to PL actions with manifold fixed
set lie in [F: Lh(G)[l/\G\]]. There is an obvious connection between the
difference of receiving groups for these classes and the Rothenberg classes
via the Rothenberg sequence [33]. The fact that the classes lie in coho-
mology is due to the fact that, according to that sequence, the fiber of the
map V(G) -> LΛ(G) is 2-local and then, by general principles, Eilenberg-
Mac Lane. (It is a module over L*(Z) which is Eilenberg-Mac Lane at 2.)
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Proposition. There is a classifying space for concordance classes ofequi-
variant k-codimension regular neighborhoods of manifolds.

The proof of this is the same as the corresponding result for nonlocally
flat codimension two embeddings [8], and will hence be deleted (see also
[22]). A little thought shows that the components are in a 1-1 correspon-
dence with concordance classes of the free PL G actions on Sn~ι. Thus
BRNk(G) -• \JpBRNk(p) is a homotopy equivalence.

An analysis as in §1 for BSRNk(G) is feasible. This works very well
for the fiber of BSRNk(G) -> BSA\xt{Sn/p). The trouble with defin-
ing Atiyah-Singer classes directly is due to the difficulty in understanding
Lh

n(G){2y We shall compare BSRNk(G) to BSPLk(G) and leave the de-
duction of the existence of relevant Lh -Atiyah-Singer classes to the reader.
(An alternative is to refer to [40] which gives a relevant integrability the-
orem for /^-invariants in the nonlocally linear case.)

One has fibrations:

Ss(Sk~ι/p) > BSPLk{p) > BSAut(Sn~ι)/p)

i
&h(Sk~ι/p) > BSRNk(p) > BSAut(Sk~ι/p)

Consequently, the fiber of BSPLk{p) -> BSRNk{p) is the same as that of
the simple and homotopy structure spaces. These latter can be analyzed
as before:

Ss(Sk~ι/p)

Sh(Sk~ι/p) > (F/PLfk~l/p

We shall denote the fiber of lfk(G) -• L* (G) by ^ ( G ) . There is a well-
known connection between πn(Ak(G)) and the cohomology of the White-
head group.

Theorem. There is a fibration

BSPLk(G) -+ BSRNk(G) -> 5 ^ ( G ) = J |Λ:(^< + < C(Z 2 Wh(G), /)).

PROOF. We shall construct cohomology classes, which it is then easy to
see produce a classifying map for the fibration. For each component of
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BSRNk(G) pick a specific free G action on Sk~x. There is a homotopy
equivalence

BS^omto{Sk~XIG x Q) -> ^ S A u t ^ " 1 / * ? ) ,

where β is the Hubert cube. (See [13] for background.) By choosing a
homotopy inverse one gets a well-defined simple homotopy type for any
map M —• BS Aut(Sk~ι/G). We get an /-dimensional cohomology class
by taking the torsion of the homotopy equivalence from the pullback of
the boundary sphere bundle over F to a submanifold of dimension /
to the associated Hubert manifold bundle over that submanifold. By the
time one considers the class in Tate cohomology, it is independent of all
choices. Surgery theory, and tracing through the above fibrations, complete
the proof of the theorem, q.e.d.
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