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ON EMBEDDED COMPLETE MINIMAL
SURFACES OF GENUS ZERO

FRANCISCO J. LOPEZ & ANTONIO ROS

From the point of view of the classical differential geometry, embedded
complete minimal surfaces of finite total curvature in R3 are interesting
objects. However until the last few years no relevant results have been
obtained on this field and the only known examples were the plane and
the Catenoid.

Some basic properties of these surfaces were described by Jorge and
Meeks in [5]. Schoen [10] characterized the Catenoid among the above
surfaces as the unique one which has only two ends. The first serious
effort to find nontrivial examples was made by Costa [1]. Although he
was able to construct the simplest surface of this type, he gave only partial
evidence of its embeddedness. The proof of this fact was obtained by
Hoffman and Meeks [3] (see [2] for a complete story of this discovery) who
also constructed more general examples and gave a nice characterization
of those in [4].

Topologically the above surfaces are three times punctured compact
surfaces of genus γ, for any γ > 1. No new examples of genus zero have
appeared, and it is expected that such a surface does not exist. In this
paper we give a proof of this fact. More precisely we will prove that:

The plane and the Catenoid are the only embedded complete
minimal surfaces of finite total curvature and genus zero in
R 3 .

A key step in our reasoning is the proof that for any surface satisfying the
hypothesis of the above result we have a one-parameter family of surfaces
with the same property. This deformation is also useful in the study of
the index of complete minimal surfaces of finite total curvature in R3 [8].
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1. Preliminaries

In this section we expose some basic results about complete minimal

surfaces of finite total curvature in the Euclidean space R 3 . More details

can be found in [9, Chapter 9],[4, §1].

Let ψ: M —• R3 be an orientable nonflat complete minimal surface of

finite total curvature. We denote by g and ω the meromorphic map and

the holomorphic 1-form on M determined by the Weierstrass represen-

tation of ψ [9]. Modulo natural identifications, g is the Gauss map of

M. We have that gω and g2ω are holomorphic 1-forms on M and

(1) ^

It was proved by Osserman [9] that M is conformally equivalent to

M — {Pγ J * * J Pr} J where M is a compact Riemann surface. The points

Pj correspond to the ends of M. Moreover g and ω extend, in a mero-

morphic way, to M. So the normal vector at the ends p- is defined.

We will assume that the ends of M are all parallel and that each end is

embedded (these conditions are necessary for embeddedness of ψ ). Then

we have the following formula (see [5]):

(2) degree(#) = genus(M) + r - 1.

After a rotation, we can suppose that g{Pj) = 0 or oo, j = 1, , r.

If g(pj) = 0, then ω has a pole of order two at p., and so g2ω is
holomorphic at this end. Moreover, as the expression in (1) is well defined,
we conclude that ω has no residue at p .

Symmetrically, if g(Pj) = oo , then g2ω has a pole of order two without
residue at Pj , and ω is holomorphic at this end.

Concerning the 1-form gω, it has a simple pole with real residue at
Pj if Pj is not a branch point of g, and it is holomorphic otherwise. In
the first case, ψ is asymptotic to a Catenoid at p-, and the end is called
a Catenoid end. In the second case, ψ is asymptotic to a plane, and the
end is called a planar end.

In this paper we also will assume that M is of genus zero, i.e., Ή = C.
So ω and g2ω are exacts. If we put F = / ω / 2 , G = / g2ω/2, φ =
F - G, and h = Real / # ω , then the immersion ψ is given by
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for any x e M. Moreover F (resp. G) has simple pole at the ends
p. with g(pj) = 0 (resp. g(Pj) = 00), and it is holomorphic at the other

points of C. The coordinate h is bounded unless precisely at the Catenoid
ends of M.

If λ is a positive real number, then we can see easily that the mero-
morphic map gλ = λg and the holomorphic 1-form ωλ = \ω determine,
via the Weierstrass representation, a complete minimal immersion ψλ of
M in R3 with finite total curvature. If we put φλ = jF - λG, then
ψλ: M -* C x R is given by

ψλ = (φλ,h).

Note that £A(Py) = 0 or oc, j = 1, , r, that each end of ^A is
embedded, and that the Catenoid or planar type of an end is independent
of λ.

Finally we will need the following result (see Langevin and Rosenberg
[6] or Meeks and Rosenberg [7]).

Maximum principle at infinity. Let Mχ and M2 be two embedded com-

plete minimal surfaces of finite total curvature and compact boundary in R 3.
// distance(Λ/1, M2) - 0, then Mχ n M2 is nonempty.

2. Deformations of embedded minimal surfaces

Let ψ: M —> R3 be an embedded complete nonflat minimal surface of
genus zero and finite total curvature, and let ψλ: M -> R 3 , λ > 0, be the
deformation described above. In this section we will prove that ψλ is an
embedding for any λ.

Lemma 1. Given x0 G C and λ0 € (0, 00), there are a neighborhood
U of x0 in C and e > 0 such that if \λ - λo\ < e, then ψλ\unM is
one-to-one.

Proof If x0 e M the result is clear.
Suppose now that xQ e C - M is an end of M. We can assume

that x0 = 0 and that G has a simple pole at the origin. So in some
neighborhoods D of xQ and / of λQ, we have that

G(x) = - + Gι(x),
x

with a e C - {0}, G{ and F being holomorphic in D, and φλ(x) φ 0
for all xeD- {0} and λ e I.
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Then the function / : {D - {0}) x / -> C defined by

1 1
f(x,λ) = Φλ(x) \F(x)-λGχ(x)-λa/x

x
jF(x)-λxG{(x)-λa

extends, in a differentiate way, to D x I. Moreover

v
0 ' λoa

W e c o n s i d e r t h e a p p l i c a t i o n Ψ : D x / — > C x R g i v e n b y

Φ(x,λ) = (f(x,λ),λ).

As dΦ,0 λ ) is regular, we conclude that Φ is injective near (0, λ 0 ) . This
means that Φλ\unM is one-to-one if | λ-λ o | < e , and so we have the same
conclusion for the map *¥λ\unM .

Lemma 2. Let p. e C - M be an end of M, λ0 a positive real number,
and {λπ}π €N c (0, oo), {xn}neN c M sequences such that λn —> λ0 and
xn —• p . Then there exists a sequence {x'n}neN c M satisfying that

xn - Pj and \ψλn(xn) - ΨλQ(xn)\ - 0.

Proof We can assume that p. = 0 and that G has a simple pole at
this point. Choose a neighborhood D of the origin such that

G(x) = - + Gx(x), h(x) = Z?log|jc| + h{(x)

in D - {0} , with a G C - {0} , b e R, Gj and F holomorphic, and h{

harmonic in D.

As G is invertible near the origin we can consider the sequence x'n =

G~ι(λnG(xn)/λ0). Observe that x'n-* 0 and λ0G(xn) - λnG{xn) = 0, so
that

, 1 — 1 — ,

" ° n ^n

 n λ Q

Moreover for each n we have

a i λn a λn

xn

 n λQ xn λ0

and so
n i n n ( J \ _
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Taking limits we conclude that xjxn —• 1 so that

x~
h(xn)-h(x'n) =

Therefore we have proved that

hx{xn) - h{{x'n)-. 0.

Proposition 3. Let ψ\ M -» R3 be an embedded complete minimal
surface of finite total curvature and genus zero. Then ψλ is an embedding
for any positive λ.

Proof We reason by contradiction. Suppose that for some λ (we can
assume λ > 1), ψλ is not injective. Let

λ0 = infimum {λ > \\ψλ if not injective} .

We discuss the following cases:
(i) ψλ is injective. By definition of λ0 there exist sequences {λn}n€N C

(0,oo), {xn}neN, and {yn}neN c M, such that λn > Ao, λn -> λQ9

xn φ yn and Ψλ{xn) = Ψλ(yn) for each n e N .
Without loss of generality, suppose that {xn} and {yn} have limits in

C, xn->x and yn->y.
If x = y, then Lemma 1 gives us a contradiction.
I f x ^ y , x j e M j W e contradict the injectivity of ψλ .

If x e M and y G C - M, we have that |^A (JCΠ)| -> |^A (χ)| and

\ψλ (yn)\-+ oo, a contradiction.

Finally, if x and y are distinct ends of M, then using Lemma 2
we construct sequences {^}π €N and {j^}Λ€N c M, with x^ -> JC and
yn —• y such that

i^nK) " ̂ 0(^)l "̂  ° and I ^ W " ̂ AO(^)I ^ °
Therefore, \ψλ (xn) - ψλ (y'n)\ —• 0, which contradicts the maximum

principle at infinity.
(ii) ψλ is not injective. First note that in this case λ0 > 1, and ψλ is

an embedding for λ € [1, λ 0 ) . Given two different points x and y of
Λ/, such that ψλ (x) = ^A (y), it follows from the maximum principle
(see, for example, [10]) that there are neighborhoods of those points with
the same image under ψ2 . Then we conclude that N = ψ2 (M) is an
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orientable embedded complete minimal surface of finite total curvature
in R 3 , conformally equivalent to N - {qχ, , qs} , N being a compact
Riemann surface. Moreover ψλ : M —* N is a finite Riemannian cover-
ing, and therefore it has a holomorphic extension to the compact surfaces
ψλ : C —• N. As ψλ : M —> R3 has embedded ends, we have that ψλ

is also unbranched at each p. e C - M, and so it has degree one. This
contradicts our hypothesis in (ii).

3. The theorem

Note that, using the notation fixed before, given x, y e M such that
F(x) Φ F(y) and λ e {o, oo) we have that

(3) φλ{χ) = φλ(y) <=> \FM-F(y)\ = {F{χ) _ F { y ) ) {G{χ) _ G{y))

We first state a partial version of our main result.
Lemma 4. Let ψ: M —• R3 be an embedded complete minimal surface

of finite total curvature and genus zero, and with two Catenoid ends (but,
possibly, with other planar ends). Then it must be the Catenoid.

Proof We will suppose that 0, oo e C - M are the Catenoid ends of
M. By elementary complex analysis we obtain

(4) h(x) = blog|JC| for some 6 G R - { 0 } .

Define Sθ(x) for each θ e C with |0| = 1 a meromorphic function

SΘ:C-+C:

Sθ(x) = (F(x) - F(θx)) (G(x) - G(θx)).

If Sθ is not a constant function, then it must be onto, and so we can
choose x0 e M such that θx0 e M and Sθ(x0) = r2 for some positive
real number r. Taking λ = j\F(xQ) - F(θxo)\ we conclude from (3) and
(4) that Ψλ(x0) = ψλ(θx0). As xQ Φ θx0 using Proposition 3 we obtain a
contradiction. Therefore Sθ is a finite constant function for every θ e C
with |0| = 1.

If M has a planar end, namely p G C, we can take θ eC with |0| = 1
such that Sθ must have a simple pole at Pj, which is impossible by the
above argument. So M has precisely two ends, and from (2) we see that
its Gauss map must be of degree 1. Hence ψ: M —> R3 is the Catenoid
(see [9]).
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Theorem. Let ψ: M —• R3 be an embedded complete nonflat minimal
surface of finite total curvature and genus zero. Then ψ: M —• R 3 is the
Catenoid.

Proof Let Σ c CP2 be the projective curve determined by

{(x, y) e C2\[G(x) - G(y)][F(x) - F(y)] = 1} ,

and Σ an irreducible component of Σ. Then the Σ is a compact Riemann
surface, and x, y, F(x), F(y), G(x), G(y): Σ —• C are meromorphic
functions. Let B c Σ be the finite set formed by the poles of the above six
functions, the branch points of x, and the multiple points of Σ in CP2 .
Let M' = C-x(B) c M and Σ' = x~{(Mf). Then x: Σ' -> M1 is a finite
sheeted topological covering, and Σ' and M1 are finitely punctured com-
pact Riemann surfaces. Moreover x,y, F{x), F(y), G{x), G{y), h(x),
and h(y) are finite valued functions on Σ', JC(Σ') and y(Σ') are con-
tained in M, x{p) φ y{p), and F(x(p)) φ F(y(p)) for every point p in
Σ\

If h{y(p)) = k{x(p)) for some p e l ! , then taking λ = \F(x(p)) -
F{y{p))\ w e have from (3) that φλ{x{p)) = Φλ{y(p)), so that ψλ(x(p)) =
Ψχ(y{p)) and Proposition 3 give us a contradiction. Therefore the har-
monic function h(x) - h(y) has no zeros on Σ ; . As Σ' is parabolic, we
conclude that h(y) = h(x) + c for some C G R - { 0 } . In particular for p,
qet

(5) x(p) = x(q) implies h(y(p)) = h{y{q)).

We consider now the function / : Σ ; -> R defined by

If there exist two points p and <y in Σ ; with jc(p) = JC(^) and /(/?) =
/ ( ? ) , then taking λ = /(/?) it follows from (3) that φλ(x(p)) = φλ(y(p))
and φλ{x{q)) = Φλ(y(q)), so that ^(y( ί ) ) = Φλ(y(p)), and using (5) and
Proposition 3 we have that y(p) = y(q) and, therefore, p = q . Thus / is
a continuous function which separates the points in the fibers of the finite
covering x: Σ7 —• M1. Therefore x is a conformal difFeomorphism and,
so, the same holds for x: Σ —• C.

By changing the role of x and y we obtain also that the meromorphic
function y: Σ -• C is of degree one.
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In conclusion, the Mόbius transformation H = yoχ~ι: C —• C satisfies

(G(x) - G o H(x)) (F(x) - F o H(x)) = 1,

hoH(x) = h(x) + c for each xeC,

where c Φ 0. From the last identity it follows that H preserves the set of
Catenoid ends of M, and that Hn cannot be the identity function on C
for any « e N . So the minimal surface has at most two Catenoid ends.
Trivially it must have at least two ends of this type, and using Lemma 4
we conclude the proof of the theorem.
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