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UNIQUENESS OF MINIMAL SURFACES
EMBEDDED IN R3, WITH TOTAL CURVATURE 12Π

C. J. COSTA

1. Introduction

A well-known general uniqueness question for minimal surfaces in a
Euclidean 3-space R3 is the determination of all the embedded complete
minimal surfaces with finite total curvature. Until recently the only known
surfaces were the plane and the catenoid. In [1], the author has constructed
an example of a complete minimal immersion of genus one and three
embedded ends. Later in [3], D. Hoffman and W. Meeks have proved
that this surface is embedded. Inspired by this surface they were able to
construct, for each genus γ > 1, a complete minimal embedded surface
with three ends.

The plane and the catenoid have total curvature zero and 4Π, respec-
tively, and they are the only embedded complete minimal surfaces with
such properties. In [10], R. Schoen shows that there does not exist a com-
plete minimal surface embedded in IR3 with total curvature 8Π.

In this work we make a contribution to the classification of minimal
embedded surfaces in R3 with total curvature 12Π.

We say that two minimal surfaces M and Mf in R3 are the same if there
exists a rigid motion and a homothety in R3 that carries M onto M'.

The main result to be proved in this paper is the following theorem.

Theorem 1. There exists a unique complete minimal immersion in R3

of genus one and three ends with finite total curvature such that:

(a) the ends are embedded and parallel,

(b) two ends are catenoid type and one end is flat.

We prove, also, the following corollary.

Corollary 1. Let M be a complete minimal surface embedded in R3 with
total curvature 12Π. Then, we have two possibilities:

(a) M is the surface t h a t appears in [I] and [ 3 ] .

( b ) M is of genus one with three ends of catenoid type.
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Remark 1. We know that D. Hoffman and W. Meeks in [4] have con-
structed a 1-parameter family Mt, t e (l,oo), of embedded minimal sur-
faces in R3 of genus one and three ends of catenoid type. Mt is conformally
equivalent to C/Lt9 where Lt = {m + nti e C; m,n e Z}, punctured in the
three half-lattice points. Recently, in [2], we have proved the uniqueness of
this family; that is, for each r e (1, oo), there exists, at most, one complete
minimal surface Mt, embedded in R3 with three ends of catenoid type,
where Mt is conformally equivalent to C/Lt punctured at three points.

To prove Theorem 1, we consider the compact Riemann surfaces of
genus one, Ή\, with complex structures induced by lattices L of C. Through
π: C —• C/L = M\, we identify elliptic functions and elliptic differentials
of L with meromorphic functions and meromorphic differentials of M{,
respectively. Then, in this way, we consider the Weierstrass representation
(g,w) of the immersions x: M —• R3 with the properties of Theorem 1,
where M c M\ is not compact.

The author would like to acknowledge his sincere gratitude to M. P. do
Carmo and H. Rosenberg for their encouragement and valuable conversa-
tions in the preparation of this paper.

2. Complete minimal immersions in R3

In [7] or [9], we have the following theorem of representation of com-
plete minimal surfaces, called Weierstrass-Osserman's representation:

Theorem 2. Let x: M —• R3 be a complete minimal immersion of finite
total curvature. Then the following hold.

(a) M is conformally equivalent to a compact Riemann surface of genus
γ, My, punctured at the points #i, , q^.

(b) There exist a meromorphic function g and a meromorphic differential
w in My such that w is holomorphic in M and q £ M is a pole of order m
of g if and only if q is a zero of order 2m ofw. g is the Gauss normal of
the immersion.

(c) Ifδ is a closed path in M, then

Re / gw = 0 and w = / g2w.
Js Jδ Jδ

(d) Every divergent path in M has infinite length.

Conversely, let My be a compact Riemann surface, let M = My -
{tfi, , QN}, where q\," ΛN € Mγ, and let g,w be a meromorphic func-
tion and a meromorphic differential in Mγ, respectively. If(g,w) satisfies
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(b)and(c) thenx:M-+R\

x{q) = ^Re fq«l-g2)w,i(l+g2)w,2gw)
z ho

is a minimal immersion with finite total curvature. Furthermore ifx satisfies
(d), x is complete.

If Dj c Mγ, j = 1, , N9 is a small topological disk with qj e Dj, then
Fj = x(MnDj) is an end of the immersion. Let 1 < j < N be fixed. Since
g is the Gauss map of x, we can suppose, after a rotation of x in R3, that
g(9j) = 0. In this situation, [5], Fj is an embedded end if and only if qj is
a pole of order two of w. Then, around qj, we have the local expressions

w(z) = ± + o(zy\ bφO.

We say that the embedded end Fj is of catenoid type ifn = l, and is a
flat end of order n-\ ifn> 1. In the latter case, the coordinate x$(q) =
Re fq gw, q eDjΠ M, is bounded and the immersion approaches a plane
parallel to the plane x?> = 0.

3. Elliptic functions and minimal immersions of genus one

If F = {τ = x + iy e C x2 + y2 > 1, y > 0, -\ < x < \) and
L(l,τ) = {m + nτ\m,n e Z} are the lattices of C, where τ e F, then
C/L(l,τ) with complex structures induced by π: C —• C/L(l,τ) are all
Riemann surfaces of genus one. That is, in [6], we have the following
theorem.

Theorem 3. Let L be a lattice in C and let M\ = C/L equipped with
the complex structure induced by L. Then there exists τ e F such that
C/L(l,τ) is conformally equivalent to M\. Furthermore, ifC/L(l,τ) and
C/L(l, τ), τ, τ e F, are conformally equivalent, then τ, τ e dF.

Remark 2. Henceforth, we shall consider only the compact Riemann
surfaces C/L(l, τ), where £(1, τ) is a lattice as in Theorem 3. To simplify,
we set Γτ = C/L(l,τ).

Two points z1? z2 E C are congruent, zx = z2, if z\ - z2 e L. Otherwise,
they are incongruent and we shall write z\ ψ z2. A set {z{, • ,zn} is
i n c o n g r u e n t i f z , ψ zj9 i,j=ly ,n,i^ j .

We define the middle-points of L(l, τ),

1 1+τ τ
W
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and the numbers
j j , j= 1 , 2 , 3 ,

where P is the Weierstrass function of L(l, τ).
We also have the quasi-elliptic function ζ: C —• C U {00} of L(l, τ) and

the numbers ^y e C, j = 1,2,3, such that

We have the following additive property for ζ:

ζ(zx ± z2) = ζ(zx) ± ζ(z2) +

and at 0 e C,

ζ(z) = ± + o(zγ and P(z) = l + o(z)2.

We shall need the following proposition which was proved in [1].
Proposition 1. In the lattice L(l, ΐ) we have (a) 2η\ = π and (b) e2 = 0,

e{ = -eι > 0.

4. Proof of Theorem 1.

To prove our main result we shall need several propositions and lemmas.
The first one is:

Proposition 2. Let g, w be an elliptic function and an elliptical differ-
ential of a lattice L(l, τ), respectively, and let z\,z2 € C such that

(a) zx + z2 ψ 0,
(b) g has order three, {z{, z2,ws} as an incongruent set of poles, where

s € {1,2,3}, and a zero in 0 e C, and
(c) w = (P - es) dz and Resz; g

2w = 0, j = 1,2.
Then

P'{zx) + P'(z2) = P'(zx) = P'{z2)
P(z{)-P(z2) P{zx)-es P(z2)-es'

and zx = z2-\- ws.
Proof Figure 1 shows the poles and zeros of g and w in the case s = 2.

Observe that we do not know the order of the zero of g at 0 G C. We set

( 1 ) Pj = P { z j ) , P ' j j

From (a) and (b) we observe that

P1ΦP1 and Pj-esφ0, j = 1,2.
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FIGURE 1

There exist a,b,c eC- {0} such that

g(z) = aζ(z - ws) + bζ(z - zι) + cζ(z - z2) + aζ(ws) + &£(zi) + cζ(z2),

(2) + c = 0.

By using the local expression for ζ(z) in a neighborhood of 0 e C, we find
the following expression for g in a neighborhood of z\ (see §3):

Z - Z\

+ aζ(ws) - zι)1.

Thus, by using the additive properties of ζ, (1) and (2) we have

b 1 Γ aP! c(P' + P

z-zx 2[Px-es Pι-P2

Then, at zu

and from (c)

tι>(z) = [Pi -es + P[(z -Zι) + o(z- zλ)
2]dz.

Hence,

From (c) and (?) it follows that

P[ P{ + Pj
Pι-es Pλ-P{
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In the same way, by using the local expressions for g2 and w at z2, we
obtain

P2 _ P2

and therefore

Pι-es P2-es Pι-P2'

On the other hand, let h be the elliptic function

h(z) = [
P(z)-es P{-es

Since h is of order two and has simple poles at Ό and ws, P is an even
function and Pf is an odd function. Thus by (3) we have

and therefore z\ = -z2 or z\- z2 = ws. But from (a) it follows that
z\ + z2£0. Hence z\ = z2 + ws, which completes the proof.

By using Proposition 2, we shall prove the following.
Lemma 1. There does not exist a complete minimal immersion in R3

of genus one and three ends with the following properties:
(a) The ends are embedded and parallel
(b) Two ends are ofcatenoid type and one end is flat of order 1.
Proof By contradiction, we will suppose that there exists an immersion

x: M = Tτ-{q\, q2, #3} —• R3 with the properties of the lemma. Let (g,w)
be the Weierstrass representation of x. Since the ends are embedded, the
total curvature c(M) = 12Π and g is a meromorphic function in Tτ (that
is, an elliptic function in L(l, τ)) of order three. Let Fj be the ends of x
associated to the points #/, j == 1,2,3, where F?> is the flat end of order 1.
We must consider two cases:

Case 1°: g{qx) = g{q2) φ g{q3) and Case 2°: g(q{) φ g(q2) = g{qi).
In the first case, after a rotation of x in R3 we may suppose that g{q\) =

g(q2) = 00 and #(#3) = 0> where #3 is a double zero of g. Since F\ and
F2 are ends of catenoid type, q\ and q2 are simple poles of g. Therefore
there exist c[ e M, a simple pole of g, and q' e M, a simple zero of g.
Since F3 is embedded, w has a double pole at #3. From (b) of Theorem 2,
w has a double zero atqeM. Thus, after a homothety, a rotation of the
immersion around the X3-axis in R3 and a translation of coordinates in C,
we have

w = (P-es)dz, s e {1,2,3}, π(0) = q3, π(ws) = q,
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where π: C —• Tτ = C/L(l, τ) is the canonical projection. We define zχ,z2,
z' eC such that

π(z') = q', n(zj) = qj, 7 = 1,2,

and remark that

(4) {09wS9z
f

9z\9z2} is L(l,τ)-incongruent.

Figure 2 shows g and w for s = 2.

We have

(5) z\ + z2 + ws = z',

which together with (4) implies that z{ + z2 ^ 0. We also have Resz> w = 0,
7 = 1,2. Thus from (c) of Theorem 2 it follows that

ZJ

so that g and w satisfy the hypothesis of Proposition 2. Therefore by
using the notation (1) we obtain

On the other hand, the elliptic differential gw has simple poles at z{,
z2 and simple zeros at wS9 zf. Then there exists a e C, a Φ 0, such that

gii; = ά[ζ(z - zx) - ζ(z - z2) - ζ{ws - zx) + C(tϋ, - z2)]rfz.

From (c) of Theorem 2,

(7) Re&gw = άeR.

By using the additive properties for ζ and the notation (1), we have

^ ^ - i rfz.
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We define the paths a, β: [0,1] -+ C as

a(ή = t + voτ, β(t) = uo + tτ,

where 0 < UQ < 1, 0 < vo < 1 and such that π oa c M, π o β c M. Then,
from [11, vol. 3, p. 61 and vol. 4, p. 109] we have

?— dz=[Rclog\P-Pj\]δ = 0,

where j = l , 2 , i e { α , /?}, and σ is the classical σ-function of Weierstrass.
We remark that σ satisfies the following properties of addition in L(l, τ)
[11, vol. l ,p . 61]:

σ(z + 2Wj) = -e2^z+w^σ{z), j = 1,2,3.

By using (c) of Theorem 2, (7) and the additive properties of σ, we con-
clude that Re fa gw = Re L gw = 0 if and only if

- Zι) + C(*i) - ζ(z2)] + \ Re

z2 - zx) + τC(z,) - τζ(z2)] + i Re ( ^ ^ - - - ^ - ) = 0.

Also, from (6) and the additive properties of ζ it follows that

The equations above imply that

(8) Re ]lηx{z2 - zx) + ζ(zx - z2) - \

(9) Re ^2η3(z2 - zx) + τζ(zx - z2) - \j^\ = 0.

On the other hand, from (6) we have

z2 — z\ = m + nτ + ws, m,n G Z.

Hence,
- z2) = -2mη{ - 2nη3 - ηs.

This last expression, the Legendre relation, η$ — τr\\ — πi, and the additive
relation Σ j = 1 Y\J - 0 imply that

Rε[2ηj(z2 -z{) + 2wjζ(z{ - z2)\ = 0, j = 1,3, s = 1,2,3.
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Pi-es "'

But from (4) it follows that P2 - es φ 0. Thus P[ = P'{z2) = 0 and
z2 = wt, t e {1,2,3}, / Φ s. This fact combined with (5) and (6) implies
that z\ = wk, where (s, t, k) is a permutation of (1,2,3), and z' = 0. Since
this is a contradiction to (4), the first case cannot occur.

In the second case, after a rotation of x in R3 we can suppose that
g{qi) = g{q?>) = °o and g(q\) = 0. Since F3 is a flat end of order 1 and
F\ ,F2 are ends of catenoid type, q^ is a double pole of g, q2 is a simple
pole of g and #i is a simple zero of g. Thus g is holomorphic in Λf, and
from (b) of Theorem 2, w is holomorphic in M and w(#) ^ 0, for all
q e M. On the other hand, since the ends are embedded and F3 is flat,
w has a double pole at q\ and a double zero at q?>. So, after a homothety
of the immersion in R3, a rotation around the X3-axis and a translation of
coordinates in C, we have

w = (P-es)dz9 5G{1,2,3}, π(0) = 9 l , π ( ί 3 ) = ws.

We also define z2 e C, such that π(z2) = q2. Figure 3 shows g and w for

OO

-7 OO" 0 2

OO
w

FIGURE 3

So, there exist a,b eC-{0} and d e C such that

g = aζ{z - z2) -f bP{z - ws) - aζ{z - ws) + d.

At ws, we have,

g(z) =

w(z) =

7 ry - 7 r

{z-ws)
2 {z -ws)

θ(z - Ws)°,

dz.
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Also, since w has a zero of order exactly two at wS9 P"{ws) ψ 0. Further-
more [11, vol. 1 p. 175], we have

(10) P"(ws) = 2(ek-es).(et-es)φ0.

Thus,
Res g2w = -abP"(ws) φ 0.

ws

But, from (c) of Theorem 2,

2πi Res g2w = -2πiResw = 0.
ws ws

This is a contradiction, so we conclude the proof of Lemma 1.
Lemma 2. Let x\ M = Tτ — {qx.qi.q^} —• ^ 3 be a complete minimal

immersion of genus one and three ends with the following properties:
(a) The total curvature c(M) = 12Π.
(b) The ends are parallel.
(c) Two ends of the immersion are of catenoid type, and one end is flat

of order two.
Then, after a rigid motion and a homothety of the immersion in R3, the

Weierstrass representation (g9w) ofx is

where (5,k, t) is a permutation o/(l, 2 , 3 ) , B e R - {0}, π(0) = ?3, n(wk) =
qx and π(wt) = qι. Furthermore, in the lattice L(l, τ), τ = x + iy e F, we
have

(I)

Proof From (a) we have that g is a meromorphic function of order
3 in Γτ. Then, after a rotation of the immersion in R3, g has a zero of
order 3 at q?> and simple poles at q\ and qι. So, there exists q' e M such
that qf is a simple pole of g. Since the ends are embedded, w has double
pole at #3. From (b) of Theorem 2 w has double zero at q'. Then, after a
homothety and a rotation of the immersion around the X3-axis in R3 and
a translation of coordinates of C, we arrive at

(11) w = (P-es)dz, s e {1,2,3}, π(0) = ί 3 , π ( ^ ) = q'.

We define z l 5 z2 € C such that

(12) π(zι) = qu π(z2) = q2.
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FIGURE 4

w

Then {0, z\9Z2, ws} is L(l,τ)-incongruent.
Figure 4 shows g and w for s = 2.
Abel's theorem implies that

(13) z{ + z2 + ws = 0.

Also, from (c) of Theorem 2 and (11), we have

(14) Res g2w =-Resw = 0, y = 1,2.
Zj Zj

Using (11), (13), (14) and considering the positions of the poles and zeros
of g, we conclude that g and w satisfy the hypothesis of Proposition 2.
Thus z\ = Z2 + wS9 which together with (13) implies that 2ZJ = 0, j = 1,2.
Hence,

(15) z2 = wt,

where (fc,,s, /) is a permutation of (1,2,3).
From (11), (12) and (15) we see that there exists B e C, B φ 0, such

that the Weierstrass representation of x is

(16)

Since

= 2B(ek-et)j;9 w = (P-es)dz.

(17) (P1)2 =2 = - ej) and = P(z - wr) - er,

where (r,fι,l) is a arbitrary permutation of (1,2,3), we arrive at

B

(18)
ek-es e,-es
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Since at ws,

P{Z - Ws) = γ—^ Γ2 + O{Z -
\ s)

from (10), (17) and (c) of Theorem 2 we obtain

which together with (16) proves the first part of Lemma 2.
Now, we define the paths α, β: [0,1] —• C,

Then π o α and π o β generate the homology of Tτ. From (18), (16) and
(c) of Theorem 2, we have

Hence, Legendre's relation, τ/3 = τη\-πi, implies that the equations above
are equivalent to equations (I) and (II). This concludes the proof.

Our next goal is to show that equations (I) and (II) of Lemma 2 are
satisfied if and only if L(l, τ) = L(l, i), B = yfπfl and s = 2. This result
will be an immediate consequence of Lemmas 3 and 4 below. In order to
prove this fact we will need several propositions. First a little remark: If
τ = x + iy e F, then

(19) y>\β/2, ^ > 1 5 and eπ > 23.

Proposition 3. For every lattice L(l, τ), τ = x + iy e F, we have
(a) y Re(2*/i + έ>i) > 2π and Re(e; - ^ ) < 0, j = 2,3,
(b) ( - i y Im(6>, - ex) > 0 i/x > 0, and (-iy lm{ej - ex) < 0 I/JC < 0,

7 = 2,3.
Proof. To prove (a) we shall use [11, vol. 3, p. 138]

(20) 2iί, + e, = π2 - 8π 2 £(-i )»-M-_, ^ = e™.
n=\ q

Thus,

Re(2,1 + g l ) = π 2 - 8π
χ 2 e c o s 2 π n χ

n=\
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which implies that

and therefore that, in consequence of (19),

yRe(2η{ + *,) >y [π2 V

( 1_ g_2 π; ) 4 J > 2π.

Also, we have [11, vol. 2, p. 27]

(21) e2-e{ = -π2yf ) 2, <?3 - *i = -π2y\^

where

n=\ n=\

Thus, by (19) we otain, for j = 2,3,

and

(22) |AiByij|<π/8, 7 = 2,3,

which together with (21) implies that

Re(έ?y-*i)<0, 7 = 2,3.

Hence (a) is proved. To prove (b) for j = 2, we notice that

oo

lmγU2(x) = 2^(-l)^-Λ 2 π> ;sinπ2πx.
n=l

If ^ < Λ: < 5, then

Imyi>2(x) < - 2 ^ " ^ s i n - + 2Σe~n*y < °

If 0 < x < ^, we obtain
oo

(Imyi^yC*) = 2π\^{—\)nn2e~πn y cosπn2x

oo

< -πy/3e~πy + 2π ̂  ne"*1" < 0.
n=4
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Since Imj>i,2(0) = 0 and Imyi^Cx) * s a n °dd function of x, the results
above imply that

(x) < 0, x > 0 and Imy^C*) > 0, x < 0.

This fact together with (21) and (22) prove (b) for the case j = 2. In
the same way, we can prove (b) for the case 7 = 3. Hence the proof of
Proposition 3 is complete.

Proposition 4. Let L(l,τ) be a lattice where τ = x + iy e F. Then the
following hold:

(a) Re(2;/i + e3) = 2η{+e3<0 ifx = 0.

(b) (-iy Im(2ι/i +e, ) >0ifx> 0, and (-iy Im(2ιjr+e/) < 0,
i/x < 0, j = 2,3.

(c) Im(e2 - 3̂) > 0 ifx > 0, am/ Im(^2 -e3)<0ifx<0.
(d) Re(£2 - ^3) = (e2 -e3)>0 ifx = 0.
Proof We have [11, vol. 3, p. 138]

(23) 2* + ,3 = -8π^ £
n= l

where q = eiπτ. If x = 0, then

n=\

which proves (a).
In order to prove (b), let y > \Πj2 be fixed. Then

Λ = l

OO

where

Ln(x) = -fr\-r[n(l+e

Dn(x) = 1 - 2e~2πny cos2π«x + e'4πny.

Also

L^(x) = —L-[πn2e-κny(l + e-2πny)(Dn(x) - Se-2πny sin2 nx)cosπnx].
L>nyX)

Since Im(2τ/i + ̂ ) is an odd function of x, it is sufficient to prove (b) for
x > 0.
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If 0 < x < ±, then, from (19),

and, for « > 2,

6π 2

Furthermore, by using (19), we obtain

2 -*B« 4e- 2 π ^ - 3e-3*y + e~4*y ^ 2 _πv

(l-e-'yy S 5e

So, if 0 < x < \, the expressions above yield that

ΣL'n(x)>L\(x)-jΓ\L'n(x)\>0,
n=\ n=2

n=\ n=2

which further imply that (-1)7 Im(2τ/i +βj) is an increasing function of x,
0 < x < \, j = 1,2. Since Im(2//i +£,) = 0, if x = 0, j = 2,3, we conclude
that

(-iyim(2m+ej) > 0, 0 < x < ±, j = 2,3.

On the other hand, if ^ < x < \ then, from (19),

. , . . e - ^ . π . 3 _ _

and, for « > 2,

Furthermore, by using (19), we obtain

2πy p—3πy p—πy

/ϊ=2

So, if \ < x < \, then

jjΓLn(x)>Lι(x)-Σ\Ln(x)\>0,
n=\

Σ(-l)"Ln(x) < -L,(x) + f;|LΛ(x)| < 0.
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Thus,
(-1) /Im(2^i +ej)>0, \ < x < 5, j = 2,3,

which completes the proof of (b).
In order to prove (c), let y > \β/2 fixed. Then [11, vol. 2, 27]

Γ <*> . Ί 4

(24) e2 — 3̂ = = I6π2qγl3(x),
L n=\

where
00

Re γ2i3(χ) = 1 + Σ e~π{n2+n)y cos π(n2 + n)x,

00

n=\

Thus, from (19) we have

I Re72,3(x) - 1| < jΓe-πny < 10"2, |Imy 2 f 3(x)| < 10"2,

and therefore

(25) |Argy 2

4

3(x) |<π/6.
Now, if 0 < x < ±, then, by using (19),

(Im y2j)'{x) = n J ^ ( « 2 + «)^ π (" + " ) y cos π(«2 + Λ)X

00

>πe-2πy-πJ2ne-πny>0.

Furthermore, Im 72,3(0) = 0. Thus

0, 0 < JC< ^.

Also, if 0 < x < I, then 0 < Arg# < π/6, and from (24), (25) and the
inequality above it follows that

0 < Arg(e2 - e3) < π/3, 0 < x < ^.

On the other hand, if £ < x < \, then π/6 < Argq < π/2, and from
(24) and (25) it follows that

0 < Arg(e2 - e3) < 2π/3, \<x<\

These results show that

i) > 0, x > 0.
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Furthermore, since Im(e2 - £3) is an odd function of x,

(c) is proved.
Part (d) of the proposition follows immediately from (24). Hence the

proof of the proposition is complete.
Lemma 3. Let L(ί,τ) be a lattice, where τ = x + iy G F, and let

B G R - {0} such that equation (II) of Lemma 2 is satisfied. Then s = 2
and x = 0.

Proof. By Propositions 3 and 4, if \x\ < \ and s = 1 or x = 0 and s = 3,
the real parts of the first and second members, respectively, of equation
(II) are of opposite sign. Furthermore, if x Φ 0 and s = 3 or x Φ 0 and
s = 2, the imaginary parts of the first and second members respectively,
of equation (II) are of opposite sign. Hence the lemma is proved.

Remark 3. In accordance with Lemma 3, if there exist B e R - {0}
and a lattice L(l,τ), τ e F, such that equations (I) and (II) of Lemma
2 are satisfied, then L(l,τ) = L(l,iy), y > 1, and s = 2. In this case
2J/I + ey G R, ek - e, G R, kj = 1,2,3, and equations (I) and (II) are
respectively equivalent to

(F) 2m+e2 = B
- e2 e3 - e2

We shall prove that the unique solution of equations (Γ) and (IΓ) is
y = 1 and B = yJπ/2. For this purpose we need Propositions 5-8:

Proposition 5. Let L(ί, iy) be the lattices ofC, where y > 1. Then:
(a) (2ηx + eι)/(eι - e2) + (2η{ + e3)/(e3 - e2) >
(b) the function f(y) = y(2ηχ +e-ι)-π satisfies

and

(c) the function h(y) = πe~πy/{e\ - e2) + πe~πy l(e?> - e2) satisfies

—2(\ -4- e~πy)e~πy
0 >*'(?)> ( \ _ ^

From (20) and (21) we have

n=\
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n=l

By using (19), we obtain for n odd,

Sn(y) + Sn+ι(y) > ( l - χ e ^ π y J ne~2π"y > 0 ,

_e-πn2y _̂_ ̂ -τr(/H-l)2y < Q

so, 2//i + e\ > π2 and π2 > e\ - βι > 0. Hence

(26) ^ L ± ^ . > ( i _ e

Also, from (23) and (24) we have

/ n*\ \ 4

-\6π2e-πy[\ ^ "9™lM lβπ2e πy

n=\

<->n *-ό ̂  j _e-2πy '

Thus

which together with (26) proves (a).

In order to prove (b), from Proposition 1 we notice that /(I) = 0. Also

(27)

Using (23) we obtain 00

np

(28) 2ηι+e2 = Sπ2^Rn(y), Rn(y) = (-1)"+1

 χ _e_2πny.

Thus, for k = 1,2, , from (19) we have

3 7 1 ) 0,
(29)

Also,
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and for k = 1,2,...

"2k-lWJ-<-"2kWJ ^ eπ(2k-\)y ^ (j _ e-4π)2e2nky

So,

π(2k - I)2

(30) R'^iy) + R'2k(y) < - ^1 - ^ _ g - ^ ,,(»-,„

But,

( 3 1 ) Σ { 2 k - i ^ ^ i y > 2 > ( ) =

A : = l i k = l K }

Also, by (19) we obtain

1 - *\1^* )c *t

Thus, from (30), (31) and (32) it follows that

Λ = 1 A : = l

which together with (27), (28) and (29) implies that

κ ] J κy} - 5(1 -e'2πy)2 (1 -^-2πr)2

Hence (b) is proved.
In order to prove (c) we have h{\) = 0 from Proposition 1, and from

(21) and (24) it follows that

ΣZ\(n2 + n)e~{n2+n)πy

4{

So, A;(y) < 0 and

{\2eY 2

Thus, by using (19) we have

p-2πy —7(\
h'(\ > 2~πy > Z l i

which finishes the proof.
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Remark 4. Proposition 5 allows us to define C°°-functions Bj: (1, oo)
R, y = 1,2, such that, in the lattices 1,(1, iy),

(i) -pz-~ Bι{y

(IF) y(2m +e2)-n = πB2(y)

Then there exist B e R - {0} and a lattice L(l,iy), y > 1, such that
equations (I') and (II7) are satisfied if and only if there exists y > 1 such
that B\(y) = B2(y) > 0.

Proposition 6. B{(y) < 3(1l
6

g-\π)5
Proof The proof follows from (29) and (a) of Proposition 5.
To evaluate B2(y) we need the following elementary proposition.
Proposition 7. Let fh,K: (1 - ε,oo) —• R be C°°-functions such that

(a) /(I) = A(l) = 0, (b) h'iy) < 0, K'iy) < 0 and f (y)/hf(y) > K(y) > 0,
y > l-ε. Then the function f{y)/h(y) is defined in [1, oo) and f(y)/h(y) >

Proposition 8. B2(y) > 6π2/(l + e~π).
Proof Let /, h: [ 1, oo] -> R be defined by

f(y) = y(2ηx + e2) - π9 h(y) = π

From Proposition 5 we have /(I) = h{\) = 0, h'(y) < 0 and

f'(y) > 6π2

 > 6π2

ytt (i»λ ~~ 1 I Λ — 71V ^~ 1 I o — 7Γ
»*• \Jf J l I C X I C

Thus, by using Proposition 7 we obtain

which completes the proof of Proposition 8.
Lemma 4 . Let L(l, iy) be a lattice where y > 1, <zm/ let B eR- {0}

equations (I) am/ (II) of Lemma 2 are satisfied for s = 2.

It follows from Propositions 6 and 8 that B2(y) > B\(y). Then
Remarks 3 and 4 prove the lemma.

Using all the results above, we can finally proceed to the proof of The-
orem 1 and its corollary.

Proof of Theorem 1. Let x: M = Tτ - {q\,qi,q?>} -• R3 be a minimal
immersion as in Theorem 1, where Tτ = C/L(l,τ), τ e F. Then, from
Lemmas 1 and 2 we have the following:
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(1) After a rigid motion, a homothety of the immersion in R3 and a
translation of coordinates of C, the Weierstrass representation (g, w) of x
is given by

g = 2B(ek-et)/Pf, w = (P-es)dz, BeU-{0},

π(0) = q3, π{wk) = q2, π{wt) = Qi,

where (s, k, t) is a permutation of (1,2,3), B e R - {0}, and π: C -• Tτ is
the canonical projection, and the end associated to the point q$ is the flat
end.

(2) Equations (I) and (II) of Lemma 2 are satisfied in the lattice L(l, τ).
But, from Lemmas 3 and 4, if equations (I) and (II) are satisfied in

L(l, τ), then τ = / and s - 2.
On the other hand, if B = γ/π/2, by Proposition 1 we find that equations

(I) and (II) are satisfied in L(l,z). That is, under these conditions the
immersion obtained is the same one constructed in [1]. This finishes the
proof.

Proof of Corollary 1. Let x: M —> R3 be an embedded, complete mini-
mal surface with c(M) = 12π. Then M is conformally equivalent to a com-
pact Riemann surface, Mγ, of genus γ, punctured at the points qw ΛN
Thus we only need to show that γ = 1 and N = 3. Since the ends of M
are embedded, it follows from [5] that

\2π = -2π[2-2y-2Nl

and therefore
γ + N = 4.

However, M cannot be embedded in R3 as a complete minimal surface of
finite total curvature in the three following cases:

(2)M~Mγ-{quq2},γ>0,
(3)M^My-{qily>0.
Cases (1) and (2) follow from [5] and [10] respectively. Case (3) follows

from the fact that the coordinates of a minimal surface are harmonic
functions. Hence the proof is complete.
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