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UNIQUENESS OF MINIMAL SURFACES
EMBEDDED IN Rr?, WITH TOTAL CURVATURE 12I1

C.J. COSTA

1. Introduction

A well-known general uniqueness question for minimal surfaces in a
Euclidean 3-space R? is the determination of all the embedded complete
minimal surfaces with finite total curvature. Until recently the only known
surfaces were the plane and the catenoid. In [1], the author has constructed
an example of a complete minimal immersion of genus one and three
embedded ends. Later in [3], D. Hoffman and W. Meeks have proved
that this surface is embedded. Inspired by this surface they were able to
construct, for each genus y > 1, a complete minimal embedded surface
with three ends.

The plane and the catenoid have total curvature zero and 4I1, respec-
tively, and they are the only embedded complete minimal surfaces with
such properties. In [10], R. Schoen shows that there does not exist a com-
plete minimal surface embedded in R? with total curvature 8I1.

In this work we make a contribution to the classification of minimal
embedded surfaces in R? with total curvature 12I1.

We say that two minimal surfaces M and M’ in R? are the same if there
exists a rigid motion and a homothety in R3 that carries M onto M’.

The main result to be proved in this paper is the following theorem.

Theorem 1. There exists a unique complete minimal immersion in R3
of genus one and three ends with finite total curvature such that:

(a) the ends are embedded and parallel,

(b) two ends are catenoid type and one end is flat.

We prove, also, the following corollary.

Corollary 1. Let M be a complete minimal surface embedded in R* with
total curvature 12I1. Then, we have two possibilities:

(a) M is the surface that appears in [1] and [3].

(b) M is of genus one with three ends of catenoid type.

Received February 23, 1987. Research partially supported by CNPqg-Brasil.



598 C. J. COSTA

Remark 1. We know that D. Hoffman and W. Meeks in [4] have con-
structed a 1-parameter family M, ¢t € (1,0), of embedded minimal sur-
faces in R3 of genus one and three ends of catenoid type. M, is conformally
equivalent to C/L,, where L, = {m+ nti € C;m,n € Z}, punctured in the
three half-lattice points. Recently, in [2], we have proved the uniqueness of
this family; that is, for each r € (1, c0), there exists, at most, one complete
minimal surface M,, embedded in R?® with three ends of catenoid type,
where M, is conformally equivalent to C/L, punctured at three points.

To prove Theorem 1, we consider the compact Riemann surfaces of
genus one, M |, with complex structures induced by lattices L of C. Through
n: C —» C/L = M/, we identify elliptic functions and elliptic differentials
of L with meromorphic functions and meromorphic differentials of A,
respectively. Then, in this way, we consider the Weierstrass representation
(g, w) of the immersions x: M — R3 with the properties of Theorem 1,
where M c M, is not compact.

The author would like to acknowledge his sincere gratitude to M. P. do
Carmo and H. Rosenberg for their encouragement and valuable conversa-
tions in the preparation of this paper.

2. Complete minimal immersions in R3

In [7] or [9], we have the following theorem of representation of com-
plete minimal surfaces, called Weierstrass-Osserman’s representation:

Theorem 2. Let x: M — R? be a complete minimal immersion of finite
total curvature. Then the following hold.

(a) M is conformally equivalent to a compact Riemann surface of genus
¥, M,, punctured at the points q,--- ,qn.

(b) There exist a meromorphic function g and a meromorphic differential
w in M, such that w is holomorphic in M and q € M is a pole of order m
of g if and only if q is a zero of order 2m of w. g is the Gauss normal of
the immersion.

(c) If & is a closed path in M, then

Re/gw=0 and /w=/g2w.
P 5 5

(d) Every divergent path in M has infinite length.

Conversely, let My be a compact Riemann surface, let M = M, —
{41, - ,qn}, where q1,--- ,qn € M,, and let g,w be a meromorphic func-
tion and a meromorphic differential in M,, respectively. If (g, w) satisfies
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(b) and (c) then x: M — R3,

q
x(a) = 3Re [ (1 = g)w,i(1 + g)w, 2gw)
40
is a minimal immersion with finite total curvature. Furthermore if x satisfies
(d), x is complete.

IfDjcM,, j=1,---,N,is a small topological disk with g; € D;, then
F; = x(MND;) is an end of the immersion. Let 1 < j < N be fixed. Since
g is the Gauss map of x, we can suppose, after a rotation of x in R3, that
g(g;) = 0. In this situation, [5], F; is an embedded end if and only if g; is
a pole of order two of w. Then, around g;, we have the local expressions

g(z) =apz" +o(z)"', @, #0, n>1,

w(z)=%+o(z)“, b#0.

We say that the embedded end F; is of catenoid type if n = 1, and is a
flat end of order n — 1 if n > 1. In the latter case, the coordinate x3(q) =
Re [ Tgw, qe Djn M, is bounded and the immersion approaches a plane
parallel to the plane x3 = 0.

3. Elliptic functions and minimal immersions of genus one

IfF={t=x+iyeCx2+y>>1,y>0 -1 <x<3}and
L(l,7) = {m + nt;m,n € Z} are the lattices of C, where 7 € F, then
C/L(1,7) with complex structures induced by n: C — C/L(1,7) are all
Riemann surfaces of genus one. That is, in [6], we have the following
theorem.

Theorem 3. Let L be a lattice in C and let M| = C/L equipped with
the complex structure induced by L. Then there exists T € F such that
C/L(1,7) is conformally equivalent to M. Furthermore, if C/L(1,1) and
C/L(1,%), 1, € F, are conformally equivalent, then t, T € OF.

Remark 2. Henceforth, we shall consider only the compact Riemann
surfaces C/L(1, 1), where L(1, ) is a lattice as in Theorem 3. To simplify,
we set T, = C/L(1, ).

Two points z;, z, € C are congruent, z; = 2, if z; — z; € L. Otherwise,
they are incongruent and we shall write z; # z,. A set {zy,---,z,} is
incongruent if z; £z, i,j=1,---,n, i # J.

We define the middle-points of L(1, 1),

! _ I+1 w
—5, wz_ 2 ) 3

wy
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and the numbers
ej = P(w;)), Jj=12,3,

where P is the Weierstrass function of L(1, 7).
We also have the quasi-elliptic function {: C — CU {oo} of L(1,7) and
the numbers 7; € C, j = 1,2, 3, such that

{'(z2) ==P(2), L(wj)=n; &(z+2w;)={(2)+2n,.
We have the following additive property for {:

P'(z1) ¥ P'(25)

C(z1 £ 22) = {(z1) £{(22) + P -Plz)’

andat 0 € C,
1 1
{2)=-+0(z)’ and P(z)=_; +0(2)"

We shall need the following proposition which was proved in [1].
Proposition 1. In the lattice L(1, i) we have (a) 2n, = nt and (b) e; = 0,
ey =—e3>0.

4. Proof of Theorem 1.

To prove our main result we shall need several propositions and lemmas.
The first one is:

Proposition 2. Let g, w be an elliptic function and an elliptical differ-
ential of a lattice L(1, 1), respectively, and let z, z, € C such that

(@) z1+ 22 #0,

(b) g has order three, {z,, z2,ws} as an incongruent set of poles, where
s€{1,2,3}, and a zero in 0 € C, and

(c)w=(P—e)dz and Res;; g*w =0, j =1,2.

Then
P(z))+P'(zy) _ Plz1)) _  Pl(z)
P(z))— P(z;)  P(z;)—es  P(z3)—¢’
and z| = z, + w;.

Proof. Figure 1 shows the poles and zeros of g and w in the case s = 2.
Observe that we do not know the order of the zero of g at 0 € C. We set
(1) Pj=P(z;), Pj=Pl(z;), Jj=12
From (a) and (b) we observe that

P #P, and P;—e;#0, j=12.
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T

FIGURE 1

There exist a,b,c € C — {0} such that

8(2) = af(z — ws) + bl(z — z1) + ¢{(z — z2) + af(wy) + b{(z1) + c{(22),

(2) a+b+c=0.

By using the local expression for {(z) in a néighborhood of 0 € C, we find
the following expression for g in a neighborhood of z; (see §3):

8(z) = +al(z1 —wy) + c{(z) — z2)

zZ—Z
+al(ws) + b{(z1) + c{(z2) + o(z — z1)".

Thus, by using the additive properties of {, (1) and (2) we have

1[ aP c(P + P)) )
g(z);z—zl E[Pl—es+ PP, +o(z—-2z).
Then, at z;,
b? aP! c(P/+P)] b
20, — 1 174 _,\0
g(z)_(2—21)2+[P1—-€s+ PI—PZ }2—214_0(2 Zl),

and from (c)
w(z) =[P, —es+ P{(z — z1) + o(z — z1)?]dz.

Hence,

/ / P!
Rzesg2w=b2P1’+b(P1—es)[ ab| | c(Pi+ 2)]_
1

P-e P—-P
From (c) and (2) it follows that
Pl P +P
Pi—e P -P
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In the same way, by using the local expressions for g2 and w at z,, we
obtain
P, P+ P
Po—e, P,—-P’

and therefore
3) P __ P; =P1’+P2’
Pl—es P;_—es Pl—Pz'

On the other hand, let 4 be the elliptic function

P(z) A
P(z)—e; P —e
Since & is of order two and has simple poles at 0 and ws, P is an even
function and P’ is an odd function. Thus by (3) we have

h(zy) = h(-22) =0,

h(z) =

and therefore z, = —z, or z; — z, = w,. But from (a) it follows that
21 + 2, 2 0. Hence z; = z; + w,, which completes the proof.

By using Proposition 2, we shall prove the following.

Lemma 1. There does not exist a complete minimal immersion in R3
of genus one and three ends with the following properties:

(a) The ends are embedded and parallel.

(b) Two ends are of catenoid type and one end is flat of order 1.

Proof. By contradiction, we will suppose that there exists an immersion
x: M =T,—{q1,q,49:} — R3? with the properties of the lemma. Let (g, w)
be the Weierstrass representation of x. Since the ends are embedded, the
total curvature c(M) = 12I1 and g is a meromorphic function in 7; (that
is, an elliptic function in L(1, 7)) of order three. Let F; be the ends of x
associated to the points g;, j = 1,2, 3, where Fj is the flat end of order 1.
We must consider two cases:

Case 1°: g(q1) = g(q2) # &(g3) and Case 2°: g(q1) # g(42) = 8(43)-

In the first case, after a rotation of x in R? we may suppose that g(q;) =
g(q2) = oo and g(q3) = 0, where g3 is a double zero of g. Since F; and
F, are ends of catenoid type, ¢; and g, are simple poles of g. Therefore
there exist g € M, a simple pole of g, and ¢’ € M, a simple zero of g.
Since F; is embedded, w has a double pole at g;. From (b) of Theorem 2,
w has a double zero at g € M. Thus, after a homothety, a rotation of the
immersion around the x;-axis in R3 and a translation of coordinates in C,
we have

'LU=(P—€5)dZ, S€{1,2,3}, 7'[(0)=q3, n(ws) =79,
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where n: C — T; = C/L(1, 1) is the canonical projection. We define z;, z,,
z' € C such that
n(z')=q', n(z;)=4q;, j=1,2,
and remark that
(4) {0,ws, 2', 2y, 2z} is L(1, 7)-incongruent.

Figure 2 shows g and w for s = 2.

FIGURE 2

We have
(5) 21+ 2 +ws =2,

which together with (4) implies that z;+z, # 0. ,Wej also have Res;, w =0,
J = 1,2. Thus from (c) of Theorem 2 it follows that

Resg?w =0, j=1,2,
Zj

so that g and w satisfy the hypothesis of Proposition 2. Therefore by
using the notation (1) we obtain

P+Pp P -P
Pl —-Pz - Pl — €& - Pz—es'

On the other hand, the elliptic differential gw has simple poles at z;,
z, and simple zeros at wy, z’. Then there exists @ € C, a # 0, such that

8w =a[l(z — z) = {(z — z3) — {(ws — z1) + {(ws — 23)]d z.

From (c) of Theorem 2,

(6) Zy = Zy) + Wy,

(7) ; Resgw =a eR.
Z)

By using the additive properties for { and the notation (1), we have
w_Zz P’+P,’_P’+P2’+ A P
EW=3|P-P, "P_P "P-¢ P-o

dz.
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We define the paths o, 8: [0,1] — C as
a(t) =t + U1, B(t) = up + tr,

where 0 < ug < 1,0 < vg < 1 and such that toa C M, mo f C M. Then,
from [11, vol. 3, p. 61 and vol. 4, p. 109] we have

PJ" U(Z Zj) .

Re/P -dz = [Relog|P - Pj|]; =

where j = 1,2, 0 € {a, §}, and o is the classical o-function of Weierstrass.
We remark that o satisfies the following properties of addition in L(1,7)
[11, vol. 1, p. 61]:

o(z +2w;) = —e#*Wig(z),  j=1,2,3.

By using (c) of Theorem 2, (7) and the additive properties of g, we con-
clude that Re [, gw = Re |, 5 &w = 0 if and only if

Re[2n1(z2 = z1) + {(z1) = {(z2)]1+ =5 Re( Iies Pzp_ées>=0,

TP P\
Rel2s(z2 - 20+ (1) — (2] + 3 Re (0L = 52 ) =0

Also, from (6) and the additive properties of { it follows that

/

1 P
{(z1) - (22)+2P —C(Zl-zz)
The equations above imply that
1 P
®) Re[2m(z2 - 20)+ {(a1 - 2 - 3 5ty | =0,
(9) Re |2m5(z2 = 20) + 121 — 22) - =22 | =0
n(z2 — 2y 1= Ty e | T
On the other hand, from (6) we have
Zy— 2z =M+ Nt + Wy, mneZ.

Hence,

{(z1 = z2) = =2mny — 2nn3 — 1;.
This last expression, the Legendre relation, 53 = tn; — ni, and the additive
relation ZL, n; = 0 imply that

RC[Z’U(ZZ - Zl) +2wJC(Zl - 22)] = 0’ .] = 1, 3’ §= 1,2) 3.
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Finally, using the expression above, (8) and (9) we obtain
P
P 2 — 6 e
But from (4) it follows that P, — ¢, # 0. Thus P = P'(z;) = 0 and
z; = w, t €{1,2,3}, t # 5. This fact combined with (5) and (6) implies
that z; = wy, where (s, ¢, k) is a permutation of (1,2, 3), and z’ = 0. Since
this is a contradiction to (4), the first case cannot occur.

In the second case, after a rotation of x in R3 we can suppose that
g(q2) = g(g3) = oo and g(q;) = 0. Since F; is a flat end of order 1 and
F\|,F, are ends of catenoid type, g3 is a double pole of g, ¢, is a simple
pole of g and ¢, is a simple zero of g. Thus g is holomorphic in M, and
from (b) of Theorem 2, w is holomorphic in M and w(qg) # 0, for all
g € M. On the other hand, since the ends are embedded and F; is flat,
w has a double pole at g; and a double zero at g;. So, after a homothety
of the immersion in R3, a rotation around the x3-axis and a translation of
coordinates in C, we have

w=(P-e)dz, se{1,2,3}, n(0) = q1, n(q3) = W;.

We also define z, € C, such that n(z;) = ¢,. Figure 3 shows g and w for
s =2.

FIGURE 3

So, there exist a,b € C — {0} and d € C such that
g=al(z—-2z)+bP(z —ws)—al(z —ws) +d.

At w,, we have,

Tmwp oy T

P"(wy)
2

g(z) = (

w(z) = (z —w)? +o0(z —wy)*| dz.
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Also, since w has a zero of order exactly two at w;, P"(w;s) # 0. Further-
more [11, vol. 1 p. 175], we have

(10) P (ws) = 2(ex — &) - (e — &5) # 0.

Thus,
Res g*w = —abP"(wy) # 0.

But, from (c) of Theorem 2,
2miRes g*w = —2niResw = 0.
Wy Ws

This is a contradiction, so we conclude the proof of Lemma 1.

Lemma 2. Let x: M = T, — {q1,492,q3} — R® be a complete minimal
immersion of genus one and three ends with the following properties:

(a) The total curvature c(M) = 12I1.

(b) The ends are parallel.

(c) Two ends of the immersion are of catenoid type, and one end is flat
of order two.

Then, after a rigid motion and a homothety of the immersion in R3, the
Weierstrass representation (g, w) of x is

2B(e; — e
g = 28 ;«) , 0}

where (s, k,t) is a permutation of (1,2,3), B € R— {0}, n(0) = g3, m(wy) =
q, and n(w,) = q,. Furthermore, in the lattice L(1,7), t=x+ iy € F, we
have

w=(P-e)dz,

— 201 + e 2m+e,)
— n2
1) (2n +e)=RB (ek_es e )
(I1) -(2m + e;) — n = nB? ! + ! )
y m s = e — e e —e .

Proof. From (a) we have that g is a meromorphic function of order
3 in T;. Then, after a rotation of the immersion in R3, g has a zero of
order 3 at g; and simple poles at ¢; and ¢,. So, there exists ¢’ € M such
that ¢’ is a simple pole of g. Since the ends are embedded, w has double
pole at g3. From (b) of Theorem 2 w has double zero at ¢’. Then, after a
homothety and a rotation of the immersion around the x3-axis in R? and
a translation of coordinates of C, we arrive at

(11) 'l.U=(P—es)dZ, 56{1,2,3}, n(0)=q3: n(ws‘):ql'
We define z,, z, € C such that
(12) n(z1) = qu, n(z2) = qa.
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o0 -2
______ — 00 ——————, 0%
/ /
/ /
7 . /
/ 00 - 22 /
L i
g 1 oo? w 1
FIGURE 4

Then {0, zy, z5, w;} is L(1, 7)-incongruent.
Figure 4 shows g and w for s = 2.
Abel’s theorem implies that

(13) zZi+2zy+w; =0.
Also, from (c) of Theorem 2 and (11), we have

(14) Resg’w = -Resw =0, j=1,2.
Zj Zj

Using (11), (13), (14) and considering the positions of the poles and zeros
of g, we conclude that g and w satisfy the hypothesis of Proposition 2.
Thus z; = z; +w;, which together with (13) implies that 2z; =0, j = 1,2.
Hence,

(15) Z] = Wy, Zy = Wy,

where (k, s, t) is a permutation of (1,2,3).
From (11), (12) and (15) we see that there exists B € C, B # 0, such
that the Weierstrass representation of x is

1

(16) g =2B(e ‘et)F,

w=(P—-e)dz.
Since

e —e)(e —

€) _pr_ .y
P_c =P(z—-w,) —e,

3
(17) (P)*=4]](P-e) and (
j=1
where (7, h,1) is a arbitrary permutation of (1,2,3), we arrive at

v B
) P—¢ P-—e¢ ’

P(z—wy)e—k + P(z-w) —¢
ey — 6 € — €5

(18) g’w = B? [ ] dz.
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Since at wy,

_
(z —ws)?
from (10), (17) and (c) of Theorem 2 we obtain
B P(Z - wk) — €k
= Res P’ [

2 (e: — ex)(es — )

which together with (16) proves the first part of Lemma 2.
Now, we define the paths a, §: [0,1] — C,

P(z —w;) = +0(z — w;)?,

Res gw = =B eR- {0},
Wi

(z)_ 1, Bt)= —+n

Then toaand o B generate the homology of T;. From (18), (16) and
(c) of Theorem 2, we have

- =(27]1_+€s$=_/g2,w=32[2m+€k 2'71+et]

[w

N e — e e — e
/w 2 T o) = / g w = B2 213 + ;T 2?]3 +€t‘t]
n3 g ek —e_g et _es )

Hence, Legendre’s relation, n3 = 79, — mi, implies that the equations above
are equivalent to equations (I) and (II). This concludes the proof.

Our next goal is to show that equations (I) and (II) of Lemma 2 are
satisfied if and only if L(1,7) = L(1,i), B = +/n/2 and s = 2. This result
will be an immediate consequence of Lemmas 3 and 4 below. In order to
prove this fact we will need several propositions. First a little remark: If
T=x+1y € F, then

(19) y>V3/2, €™ >15 and e" > 23.

Proposition 3. For every lattice L(1,71), T = x + iy € F, we have

(a) yRe(2n; + e;) > 2m and Re(ej —e;) <0, j = 2,3,

(b) (-1)/Im(e; —€;) >0 if x > 0, and (—1)/ Im(e; — e;) < 0 if x < 0,
Jj=23.

Proof. To prove (a) we shall use [11, vol. 3, p. 138]

2n

(20) 2 + e =n*—8n%) (-1)" "4 qg=e'",

1 —_ q2n ’
Thus,

f: 1y ne=2m(cos 2mnx — e~ 2"

1 — 2e-2mny cos2mnx + e—4nny’

Re(2m + €)
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which implies that

2 —27ry
Re(2n; +e,) > n? — 87[1 _lj_iny Z ne=2 .

and therefore that, in consequence of (19),

8n2(1 + e~ 2)e—2my
yRe(2n1 +e) >y [nz - ((1 — e_zny))4 ] > 2m.
Also, we have [11, vol. 2, p. 27]
(21) er—e =-n’yl,,  e3—e =-n%;,

where
[o o] ) [e o] )
ya=1+2) (-1)"¢", p3=1+2) ¢"
n=1 n=1

Thus, by (19) we otain, for j = 2,3,

|RCY1,1—1|S2nZ_:le <z, [Impl<s,
and
(22) |Argy il <m/8,  j=2,3,

which together with (21) implies that
Re(ej — 1) <0, j=2,3.

Hence (a) is proved. To prove (b) for j = 2, we notice that
oo
Imy; (x) =2 Z(— 1)"e=""™ sin nnx.
If% <x % then

oo
Imy;5(x) < —2¢7™ sin Zs Zze—nny <0.
, 6 n=4

If 0 < x < {, we obtain

(Imy; ) (x) = 27!2 1)"n2e=™" cos tnlx

o o]
< -nVv3e ™ + 27:2 ne~™ < 0.
n=4
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Since Imy;2(0) = 0 and Imy;,(x) is an odd function of x, the results
above imply that

Imy;»(x) <0, x>0 and Imy;2(x) >0, x<O0.

This fact together with (21) and (22) prove (b) for the case j = 2. In
the same way, we can prove (b) for the case j = 3. Hence the proof of
Proposition 3 is complete. ‘

Proposition 4. Let L(1,7) be a lattice where 1 = x + iy € F. Then the
Sfollowing hold:

(a) Re(2n; +e3) =2m +e3<0ifx =0.

(b) (=1)/Im(2n; +¢j) >0 if x > 0, and (—1)/ Im(2n, + ;) <O,
ifx<0,j=2,3.

(c) Im(e; —e3) >0 if x >0, and Im(e; —e3) <0 if x < 0.

(d) Re(er —e3) = (e —e3) >0 if x =0.

Proof. We have [11, vol. 3, p. 138]

2 5 l)n+lnq

(23) 2m+e3=-8n Z T  2mter=8n Z—IT,
n=1 n=1

where g = ¢/™*. If x = 0, then

ne—ltny

Re(20; + e3) =—87z221 =3y <0

which proves (a).
In order to prove (b), let y > v/3/2 be fixed. Then

m(27n; +e3) = —872 Y Ly (x),

n=1

m(2y; +e;) = —Snzi(—

where )
— =2Nny\ ,—ANY o3
L,(x) NEY [n(1+e e sin Tnx],
Dp(x) =1—2e"2" cos 2nnx + e~ 4™,
Also
1
Ly (x)= DIlx )[nnze""‘y(l +e 2 (D, (x) — 8¢2™ sin® nx) cos Tnx].

Since Im(2#; + ¢;) is an odd function of x, it is sufficient to prove (b) for
x>0.
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If 0 < x < 1, then, from (19),

> 2
e~ ™ (1 — 10e—2m) e~

! > TS -
Li(x) 2 Tremy o85> ——

and, for n > 2,

1 + e~ 4m)3

_ b , _
ILI |_ e_4ny)4 2€ any o 2 5 2e nny.

Furthermore, by using (19), we obtain

i 2, —nny _ 4e=2my _ 331y 4 o—4ny g —y
n<e = < .
(I —e-w)3 5¢

So,if0<x <4

< 4, the expressions above yield that

ZL(x ) > Li(x Z|L' )| >0,

Z( 1)Ll (x) < —Li( x)+Z|L (x)] <0,

which further 1mp1y that (—1)/ Im(2n, +e j) is an increasing function of x,
0<x <13 j=1,2 Since Im(2n +e;) =0, if x =0, j = 2, 3, we conclude
that

(-1 )jIm(2m+ej)>0 0<x<i, j=23

On the other hand, if § < x < 1 then, from (19),

e
P — || W S’ b 34
Li(x)> Tte) sin 72 5e s
and, for n > 2,
1 —d4ny
|Ln(x)] < (—t‘%‘—ﬂvne""‘y <2ne ™,

Furthermore, by using (19), we obtain

any _ 2e-—2ny _ e—37ty e~
ne— = <
> s iyt

So, if  <x < 1, then

Y La(x) 2 Li(x) = ) |La(x)] > O,
n=2

n=1

Y (=1)"La(x) € —Ly(x) + Y |Ln(x)] < 0.
n=1

n=2
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Thus,
(-1)/ Im(2m +ej) > 0, 1<x<i,j=23
which completes the proof of (b).
In order to prove (c), let y > /3/2 fixed. Then [11, vol. 2, 27]

o 4
(24) e;—e3=16m%q |1+ Zq("2+”)] = 16m2gy3 3(x),

n=1

where

oo
Reyys(x) =1+ Ze""("z“')y cos m(n? + n)x,

n=1

oo
Imy;3(x) = Ze_"("z“')y sin(n? + n)x.
n=1
Thus, from (19) we have

o o]
|Rey23(x) — 1| <) e ™ <1073, |Imyy3(x) < 1072,
n=2
and therefore

(25) | Arg 3 3(x)| < /6.
Now, if 0 < x < £, then, by using (19),

[o ]
(Imyy3)(x)=m Z(n2 +n)e~ ™Y cos r(n? + n)x
n=1

oo
>ne ™ —n Z ne~™ > (.
n=6
Furthermore, Im y,3(0) = 0. Thus

Im}'z,:;(X) > 0, 0<x< %

Also, if 0 < x < %, then 0 < Argg < n/6, and from (24), (25) and the
inequality above it follows that

0 < Arg(e; — e3) < /3, 0<x<t.

On the other hand, if { < x < 3, then 7/6 < Argg < 7/2, and from
(24) and (25) it follows that

0 < Arg(e; — e3) < 2m/3,
These results show that

Im(e; —e3) > 0, x > 0.
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Furthermore, since Im(e; — e3) is an odd function of x,
Im(e; —e3) <0, x <0.

(c) is proved.

Part (d) of the proposition follows immediately from (24). Hence the
proof of the proposition is complete.

Lemma 3. Let L(1,7) be a lattice, where T = x + iy € F, and let
B € R — {0} such that equation (I1) of Lemma 2 is satisfied. Then s = 2
and x = 0.

Proof. By Propositions 3 and 4, if |x| < ands=1orx =0ands =3,
the real parts of the first and second members, respectively, of equation
(II) are of opposite sign. Furthermore, if x # 0 and s = 3 or x # 0 and
s = 2, the imaginary parts of the first and second members respectively,
of equation (II) are of opposite sign. Hence the lemma is proved.

Remark 3. In accordance with Lemma 3, if there exist B € R — {0}
and a lattice L(1,1), 7 € F, such that equations (I) and (II) of Lemma
2 are satisfied, then L(1,7) = L(1,iy), y > 1, and s = 2. In this case
2nm+e €R e, —e; €R, k,j = 1,2,3, and equations (I) and (II) are
respectively equivalent to

(1) 2m+e2=32<2'7‘+e‘ +2"‘+e3),

€ —é €3 — €

1 1
/ 7= 2
) y2n +e)—n=nB (6’1 — o + o ez) .

We shall prove that the unique solution of equations (I') and (II') is
y =1and B = \/n/2. For this purpose we need Propositions 5-8:

Proposition 5. Let L(1,iy) be the lattices of C, where y > 1. Then:

(a) 2m +e1)/(e1 — ) + (2m +e3)/(e3 —e2) > 3(1 —e72™)3,

(b) the function f(y) = y(2n, + e2) — 7 satisfies

Foy< 22Ty =o,

- (1 — e—27ty)2
(c) the function h(y) = me~™ /(e; — e;) + me~ ™ /(e3 — e3) satisfies

-2(l+e ™)e~™
(1 — e—2ny)2

Proof. From (20) and (21) we have

and h(1)=0.

0>H(y) 2

) —1)ntlpe—2rny
2 +er =2+ 812 Y Su(y),  Sa(y) = %ﬁﬂy—_’

n=1
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o0
e —e = 71'2(1 + 22(_1)ne—nn2y)4.
n=1
By using (19), we obtain for n odd,

22y
S0)+ S () > (1= 1

——4> ne=%m > 0,
— e~ ny

_e—nnzy +e—7t(n+l)2y < 0,

s0, 21, +e, > n? and n? > e, — e; > 0. Hence

(26) Mten s | ey,
e — e

Also, from (23) and (24) we have

[o o}
0>e3—e > —16n2e™ (1 + Ze‘z"”y

n=1

4
_ lénZe ™™
T (I—em)®

—_8nle—my
21 +e3 < —1—%
Thus
2?]1 +e3 >
€3 — €
which together with (26) proves (a).
In order to prove (b), from Proposition 1 we notice that f(1) = 0. Also

S —ey,

(27) ) =2m+e+y2m+e) ).
Using (23) we obtain

> —nny
(28) 2n + e = 8?2 ZR"(-V)’ R,(y) = (_1)n+1 1 ne

— e 2nny”
n=1
Thus, for k =1,2,---, from (19) we have

2ke=2%kmy (1 37
Roi + Rypyq < —2ke —m <0,

e~™ —
29) 2n+e = 872 l:-l———_eT”Y + E(RZk + Rogy1)

k=1

8nZe~
] S T=eo)

Also,

nn2(1 + e=2mmy)e—mny
Rln(y) =(-1)" 1- e—27my)2 ’
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andfork =1,2,...

—(2k -1 4nk3(1 + e—*7)
'2k"1(y) + Rf?k(y) < en(2k—1)y (1 — e—4m)2e2nky"

So,
4(1 +e e ™\ n(2k — 1)2
(30) w-10) + Ry () < - (1 T T —ey ) onCk—T)y
But,
S0k _ \2p—2k=1)y o S~ gp-rn@k—1y _ €7
(31 Y (2k—1)2e "=y 5 Y ke v = ey

k=1
Also, by (19) we obtain

4(1 4 e )"
(1 — e—47¢)2
Thus, from (30), (31) and (32) it follows that

dne ™
ZRn(Y) ZRZk 1) + Ry () < TSI e

which together with (27 ), (28) and (29) implies that

o) < —872(4ny —S)e™™ _ —12n%e""
(33) f ) < 5(1 — e—2ny)2 < (1- e—2ny)2'

(32) 1-

>4
=5

Hence (b) is proved.
In order to prove (c) we have A(1) = 0 from Proposition 1, and from
(21) and (24) it follows that

h'(y) = _(1 +23 2 (=11 - 4n2)e—""2y)e—ny
)= TR T, (e oy
Y% (n? + n)e=(n*+mmy
- 414307, e—(n+mny)s’

So, A'(y) < 0 and

[ (l + 6e_n i _ = —21my
W) 2 =T 5=y 2 —

Thus, by using (19) we have

e~ —2(1 + e~™)e™™
2(1 - e—27ty)2 = (1 — e-—27ty)2 >

H(p)2 =207 -

which finishes the proof.
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Remark 4. Proposition 5 allows us to define C*°-functions B;: (1,00) —
R, j = 1,2, such that, in the lattices L(1,iy),

2n +e 2m +e 2 +e
1) M=Bl(y)< m+e  2m 3)

e~ e — e e3— e

1 1
" -7 = -
" yemte)-n nBZ(y)<e1—ez+€3—€2)e '

Then there exist B € R — {0} and a lattice L(1,iy), y > 1, such that
equations (I') and (IT') are satisfied if and only if there exists y > 1 such
that B (y) = By(y) > 0.

Proposition 6. B,(y) < 3(+_?_2W

Proof. The proof follows from (29) and (a) of Proposition 5.

To evaluate B,(y) we need the following elementary proposition.

Proposition 7. Let f,h,K: (1 — &,00) — R be C*®-functions such that
(a) f(1) =h(1) =0, (b) #'(y) <0, K'(y) <0 and f'(y)/h'(y) > K(y) >0,
y > 1 —¢. Then the function f(y)/h(y) is defined in [1,00) and f(y)/h(y) >
K©).

Proposition 8. B,(y) > 672/(1 +e~ ™).

Proof. Let f,h:[1,00] — R be defined by

f0) =y@m +ex) -, h(y)=n( 1,1 )e"‘y.

e — e e3 — €
From Proposition 5 we have f(1) = A(1) =0, A'(y) < 0 and
f’(y) 6m? S 6m?
h’(y) “T+ew=Tt+ern
Thus, by using Proposition 7 we obtain

fo)  _6n
B0 =30 > Tvem
which completes the proof of Proposition 8.

Lemma 4. Let L(1,iy) be a lattice where y > 1, and let B € R — {0}
such that equations (I) and (I1) of Lemma 2 are satisfied for s = 2. Then
y=1

Proof. 1t follows from Propositions 6 and 8 that B,(y) > B, (y) Then
Remarks 3 and 4 prove the lemma.

Using all the results above, we can finally proceed to the proof of The-
orem 1 and its corollary.

Proof of Theorem 1. Let x: M = T, — {q,¢2,93} — R? be a minimal
immersion as in Theorem 1, where T; = C/L(1,1), T € F. Then, from
Lemmas 1 and 2 we have the following:
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(1) After a rigid motion, a homothety of the immersion in R? and a
translatica of coordinates of C, the Weierstrass representation (g, w) of x
is given by

g=2B(e,—e)/P', w=(P-e)dz, BeR-{0},

n(0) =gq3, m(wk)=q, w(w)=4q1,
where (s, k, t) is a permutation of (1,2,3), BER - {0}, and n: C — T is
the canonical projection, and the end associated to the point g3 is the flat
end.

(2) Equations (I) and (II) of Lemma 2 are satisfied in the lattice L(1, 7).

But, from Lemmas 3 and 4, if equations (I) and (II) are satisfied in
L(1,7),then T =i and s = 2.

On the other hand, if B = y/7/2, by Proposition 1 we find that equations
(I) and (II) are satisfied in L(1,7). That is, under these conditions the
immersion obtained is the same one constructed in [1]. This finishes the
proof.

Proof of Corollary 1. Let x: M — R3 be an embedded, complete mini-
mal surface with ¢(M) = 12zn. Then M is conformally equivalent to a com-
pact Riemann surface, M, of genus y, punctured at the points gy, - , gn.
Thus we only need to show that y = 1 and N = 3. Since the ends of M
are embedded, it follows from [5] that

12n = -2#[2 — 2y — 2N],

and therefore
y+N=4.

However, M cannot be embedded in R? as a complete minimal surface of
finite total curvature in the three following cases:

(l) MES_Z-{qu an}, 3SNS 5,

(2) M~ M, —{q1,4:}, 7 >0,

B)YM=M,-{q},y>0.

Cases (1) and (2) follow from [5] and [10] respectively. Case (3) follows
from the fact that the coordinates of a minimal surface are harmonic
functions. Hence the proof is complete.
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