
J. DIFFERENTIAL GEOMETRY
29 (1989) 85-94

A CONSTRUCTION OF METRICS OF
NEGATIVE RICCI CURVATURE

ROBERT BROOKS

In this paper we will prove
Theorem 1. Every compact Z-manifold admits a metric ofnegative Ricci

curvature.
This theorem was originally proved by Gao and Yau in [2]. The proof

we give here, while based on [2], is substantially shorter, given signficant
results about hyperbolic 3-manifolds, and is (to our taste) more constructive
and conceptual. The simplicity comes from staying as long as possible in
the category of hyperbolic metrics. In particular, we make strong use of the
existence of tubular neighborhoods of specified width about short geodesies.
This theory follows from Jorgensen's inequality [4] and was developed in [1]
and [7].

Our construction is flexible enough to give
Theorem 2. There exist positive constants a and b such that every com-

pact 3-manifold admits a metric whose Ricci curvatures all lie between — a and
-6.

Observe that if M admits a metric whose Ricci curvatures lie between — a
and —6, where b/a < 2, then this metric has negative sectional curvature. Our
argument gives a ratio of b/a on the order of 1,000, but we do not compute
it explicitly.

We also obtain results about higher-dimensional manifolds carrying metrics
of negative Ricci curvature:

Theorem 3. Let M be a hyperbolic orbifold of order k, where k > 12.
Then M admits a metric of negative Ricci curvature.

The terminology "hyperbolic orbifold of order Λ;" is explained in §4. The
proof of Theorem 3 was motivated by the paper [3], which has a number of
points of contact with the present paper.

The plan of our argument is as follows.
Given a 3-manifold M, it follows from the Thurston theory [8] that there

is a link L in M such that M — L has a complete metric of constant curvature
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—1. Furthermore, for n sufficiently large, we may find a metric on M itself
which is hyperbolic away from L, but which has an orbifold singularity about
L of order n. This is discussed in detail in §1.

We then consider in §§2 and 3 the problem of smoothing out the metric
along L. To do this, we argue in §2 that about each component 7 of L, there
is a tubular neighborhood Tn(η) of radius rn(η), such that all the tubular
neighborhoods are disjoint. We then provide estimates on the size of rn(η).

Finally in §3 we show how to modify the metric in each tubular neighbor-
hood to preserve negative curvature. We are led to a family of differential
inequalities which must be met in order to retain negative Ricci curvature.
We find that if the tubular neighborhood is sufficiently large, then this can
be done. We also show that the tubular neighborhoods found in §2 are suffi-
ciently large to carry out this construction. In §4, we then consider the case
of dimensions greater than 3.

It is a pleasure to thank Bob Greene for bringing the paper [2] to our
attention, and Paul Yang and L. Z. Gao for helpful conversations. We would
also like to thank Anatole Katok, Rick Schoen, and S. T. Yau for their interest
and support.

1. The singular metrics

Let M be a compact 3-manifold. Then there exists a link L C M such that
M — L has a complete hyperbolic structure of finite volume.

There are two ways of seeing this. One way is to appeal to a theorem of
Thurston [8] that every 3-manifold can be obtained from the 3-sphere S3 by
doing Dehn surgery on a link whose complement has a hyperbolic structure.
Another way is to appeal to the easier theorem [5] that every 3-manifold M
arises as a branched covering /: M —• S3 of D3 whose branching locus on S3

is the figure-eight knot. Since the figure-eight knot complement has a well-
known hyperbolic structure, we may lift this to obtain a complete hyperbolic
structure o n M - L , where L = f'1 (figure-eight knot) is the branching locus
of / in M.

Let 71, ,7fc be the components of L. Then for each fc-tuple of pairs
of integers Y\i(Pi,qi), i = 1, , &, we may obtain a manifold M Π ^ ) ( Ϊ « ) by
removing a tubular neighborhood of 7̂  and replacing it with a new identifi-
cation of the boundary. Furthermore, when all the (pι,<ft)'s are sufficiently
large, ΛfΠ (?<»«<), has a hyperbolic metric. This is Thurston's hyperbolic Dehn
surgery [8]. We choose the ordering of (pήft) such that Λ/Πί0'1) = M.

When pi and ςr» are relatively prime, the hyperbolic metric on M^Pii9i^ is
smooth. However, if (pi.qi) = rc(^,<?<), with p\ and q'{ relatively prime, then
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the metric on ΛfΠ (?«•>««•) is branched about 7* of order n—in a neighborhood

of 7t the metric looks like the quotient of hyperbolic space by rotation through

angle 2π/n about a geodesic line.

We may compute the metric about a ηi as follows: let 7 be a geodesic line

in hyperbolic space. We may describe the metric in a tubular neighborhood

of 7 in Fermi coordinates by

ds2 = (cosh2(r)) dt2 + dr2 + (sinh2(r)) dθ2,

where t is the coordinate along the geodesic, r is the radial coordinate, and

θ the angular coordinate. Quotienting out by a rotation of 2π/n gives the

metric

ds2 = (cosh2(r)) dt2 + (dr)2 + ( 'E^ίrlV dθ\

Observe that a metric of the form

ds2 = g2(r)dt2 + (dr)2 + f2(r)dθ2

will be smooth at r = 0 provided

0, /;(0) = l, <7(0) > 0 , g'(0) = 0.

In conclusion, we have:

Lemma 1. Given M, and a link L such that M — L has a hyperbolic

structure, and suitably large integers Πi, there is a metric on M = M Π ( ° ' W » )

which is hyperbolic away from the link, and which is of the form

ds2 = (cosh2(r)) dt2 + (dr)2 + ( ^ ^ y dθ2

in Fermi coordinates about each component ^ of L.

2. Tubular neighborhoods

Let M be a hyperbolic 3-manifold, and η a closed geodesic in M. Then

there is an element A in PSL(2, C) whose axis is 7, and whose complex trans-

lation length τ is defined by

= ±2cosh(r/2).

In [1], it is shown that, if |sinh(r/2)| < l/v^θ, then there is a tubular

neighborhood T(η) of radius r, where

1 3
(*) s inh» =

4|sinh(r/2)|2 2'
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and, furthermore, corresponding tubular neighborhoods about disjoint short

(I sinh(r/2)| < l/\/6) geodesies are disjoint. Slightly sharper estimates appear

in [7] (see also §4 below), but the estimate (*) suffices for our purposes.

We apply these considerations to the branched coverings of our manifold

M which unwind the singularity about 7*. In this manifold, ηi is the axis

of rotation by 2π/n, and one sees easily that a tubular neighborhood in the

covering descends to a tubular neighborhood of ηi in M. We therefore may

apply the above considerations to r/2 = iπ/n to see that there is a tubular

neighborhood about ηi in M of radius ri where

sinh2(r;) =

where C ~ l/2τr.

In particular, we observe that r̂  —• cx» as n* —• oo, and sinh(ri)/rii

l/2π > 0 as n2 -> oo.

3. Negative Ricci curvature

Let us begin with a tubular neighborhood of a geodesic in which the metric

is of the form

ds2 = g2dt2+dr2 + f2dθ2.

This will describe a metric of negative Ricci curvature provided

(a) g"/g + f"/f>0,

(b) g"/9 + (9'/9)Λf'/f)>0,

(c) / " / / + (ff7ff) (/'//) >0

Theorem 1 will be proved once we show:

Theorem 4. For n sufficiently large, there are functions g{r), f(r) such

that

(i) conditions (a)-(c) are fulfilled,

(ii) For r > rn, where sinh(rn) =C n, C < l/2π, we have g(r) = cosh(r)

and f(r) = sinh(r)/n,

(iii) /(0) = 0, /'(0) = 1, 0(0) > 0, and g'(0) = 0.

Proof. We will construct / and g in the following way. First, we will

describe / and g piecewise so as to satisfy (i)-(iii). Then we will show how to

smooth out the singularities to obtain smooth / and g satisfying (a)-(c).

To smooth out the singularities, we will use the following two elementary

lemmas. Lemma 2 was proved in [2].

Lemma 2 [2]. Let f\, /2 be positive strictly increasing functions with

fί',f2>o.
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Suppose that /ι(α) = /2(α) and f[{a) < /^{a). Then for b < a < c, there
exists a smooth function / such that / is strictly increasing, /" > 0, and
/(r) = /i(r) for r < 6, /(r) = /2(r) for r > c.

Lemma 3. Lei /i, /2 αnc? y 6e positive strictly increasing, f!j > 0, #" >
0, and {fug) and (f2,g) satisfy (a)-(c). Suppose that /i(α) = /2(α) and
/ί (a) < /^(a). Then for b < a < c, there exists a smooth function f such that
(/, g) satisfy (a)-(c), and f(r) = /i(r) for r <b and f(r) = /2(r) for r > c.

Proof If f"{a) > 0, this is just Lemma 2. So we may assume f['{a) < 0.
Let us set ε = r - α, and choose εo such that if cεo = /bί^ + εo), then,

(a') α"/α + /ί'/c ε 0 > 0 for \r-a\< ε0,

(9'/9)ffi/ceo > 0 for |r - a\ < e0,

g'/9)ffi/cso > 0 for |r - α| < ε0.

Now choose c > sup |/ί'(ε)| for |ε| < εo Given 6, consider the function he

which is 0 for ε < — <S/c, and which is c for ε > — <5/c, and define fs by

/3(e) = /i(ε) fσrε<-δ/c, f£ = fϊ + h6

so that

for ε < - - ,
c

ε2c

f o r e < - - .
c

By choosing εi and 6 small, we have f'z < j'2 for |ε| < ε\. Note that

We now want to arrange it so that /s(εi) < /2(£i). Since fy'ia) > 0, we have
/2(ε) > /2(0) -h /ί(0) ε and since /['(a) < 0, we have

and from /i(0) = /2(0), we must show that

ε2c δ2

1 2 x 2c

We now choose ε\ sufficiently small so that
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and then δ sufficiently small so that

It follows that there is a point x between a and α+ε, at which fa{x) = /2(z),

and we have already shown that f^{x) < /2(z) Furthermore, /^(x) > 0 by

construction.

To see that {fa,g) satisfies (a)-(c), we observe that /3(r) < / 2(r + εo),

since fa is increasing and fa(x) = /2(z). Furthermore, fg > / " , f$ > f[, so

the fact that fa satisfies (a)-(c) follows from the fact that this is true for f\.

fa is not smooth at — <5/c, but by approximating hs by a smooth function

k$, and defining / 4 by / 4 = /i for ε < -δ/c, f'l = f" + k$, we see that / 4

possesses the same properties we have demonstrated for / 3 , and that / 4 is

smooth.

Finally, we apply Lemma 2 to / 4 and fa at x (where f'l > 0) to obtain a

smooth function / which satisfies the conclusion of the lemma.

To prove Theorem 4, we first apply Lemma 3 to

/i = T- arctan(λir), / 2 = ^ίLJL^ g = ^(cosh^r)) .
Λi n

Notice that arctan is an increasing function whose second derivative is nega-

tive, and that arctan(z) < τr/2 for all x. It follows that, given D > 0, for λi

sufficiently large, there is a point ro such that

fi{rO) = f2(rO)<D and f[{r0) < /£(r0).

We will fix D later.

fa and g are visibly positive increasing functions whose second derivative

is positive. Note also that /i(0) = 0, f[(0) = 1.

We now must show /i and g satisfy (a)-(c). Condition (a) then becomes

xl - A ; 2

 s i n h ( Λ i r ) — - > o
cosh (λir) arctan(λir)

or λ2arctan(λir) > λf sinh(λir)/cosh2(λir).

Noting that one gets 0 = 0 when r — 0, and taking derivatives, one sees

that (a) is fulfilled when λ2 > λi. Condition (b) is trivially fulfilled, since g,

g'', gh\ and / ' are all positive. Condition (c) becomes

/ sinh(Λ2r)\ / 1 \
\ 2cosh(λ 2r)/ \ ^oshiAirJarctaniAir)/

Since tanh is an increasing function, this will again be fulfilled when λ2 >
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We now would like to join up αcosh(λ2r) and cosh(r), but it is easy to
see that, for λ2 large, for the value of a where αcosh(λ2r) meets cosh(r),
the derivative of αcosh(λ2r) is greater, so that Lemma 2 does not apply
directly. We therefore proceed in two steps. Let rn be the value of n such
that sinh(rn)/n == C.

Let 03 = cosh(r) and let g2 = cosh(rn) + k(r — r n ), where k is close to
but less than sinh(rn). Then g2{rn) = gz{rn), 92(rn) < 03(rn) and Lemma 2
applies with / = sinh(r)/n, since g2, #3, and / all have nonnegative first and
second derivatives.

Now observe that g2 meets the x-axis at a point > rn — β, for β = coth(rn)
slightly larger than 1. We now may choose a sufficiently small so that g\(r) =
αcosh(λ2r) meets g2 at a point between rn — β and rn where g[ < g2 — k. We
now apply Lemma 2 twice to obtain a function g which agrees with a cosh(λ2r)
for r < rn — β, and with cosh(r) for r > rn.

As soon as rn — β > 0, we may choose λi sufficiently large so that
(λi)" 1 arctan(λir) never exceeds (sinh(rn) - /?)/n, and λ2 accordingly. This
will happen as soon as rn > coth(rn), that is, rn > 1.19968. From (*) of §2,
this will happen when n > 14.

From the equality

sinh(r - β) = sinh(r) cosh(/?) — cosh(r) sinh(/?)

and sinh(rn)/n = C, we see that for n large (so that sinh(rn) is close to
cosh(rn)),

n
We may now take D — C(cosh(β) — sinh(/?)). Noting that /?, and hence D, do
not depend on λ2 we may now choose λi so that (λi)" 1 arctan never exceeds
D; hence for large n we may choose λi and λ2 independent of n.

This proves Theorem 4, and hence Theorem 1. To prove Theorem 2, we
make use of the following refinement of [5].

Theorem ([6]): Let L be the Borromean rings link in S 3 . Then any 3-
manifold M arises as a branched covering of f:M —> S3, whose branch locus
is L, such that the order of branching is 1, 2, or 4 on each component of

To prove Theorem 2, choose no divisible by 4, sufficiently large so that
doing (0, no)-Dehn surgery on each component of the Boormean rings gives
a hyperbolic metric on S3, branched of order no along L, and such that
no/4 > 14.

It follows that, for every 3-manifold M, there is a link L such that M has
a hyperbolic metric which is branched of order n0, no/2, or no/4 along each
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component of L. Therefore, in our proof of Theorem 4, we need only take n
to be one of these three values. The existence of a and b as in Theorem 2 is
now immediate.

We remark that one could probably greatly improve on this no, giving
better estimates for a and 6, but doing so would take us out of the scope of
this paper.

4. Manifolds of higher dimension

Let M be a manifold of dimension n > 3. We will say that M is a hyperbolic
orbifold of order k if there is a codimension 2 hypersurface X in M such that
M carries a hyperbolic metric which is smooth and of constant curvature
— 1 away from X, and in a neighborhood of X looks like the quotient of
hyperbolic space by an element of order k fixing a geodesic codimension 2
hyperbolic space:

In this section, we will show:
Theorem 3. Let M be a hyperbolic orbifold of order k, where k > 12.

Then M admits a metric of negative Ricci curvature.
Proof We proceed as before. We may choose "Fermi coordinates" xi, ,

xn_2, r, and θ about x, where xi, , xn-i are coordinates for the fixed-point
set, r the distance from the fixed-point set, and θ the angular coordinate.

Let us compute the Ricci curvature of a metric in a tubular neighborhood
of x of the form

The Ricci curvatures are

We seek functions / and g satisfying these equations, and also satisfying

/(0) = 0, /'(0) = 1,

sinh(r)
f(r) = — j r 1 for r > r0,

g(r) = cosh(r) for r > ro

We now observe that in our solutions to these questions when n = 3, our
solutions / and g satisfied that /, /', g, g1 and g" were all positive. Therefore,
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these solutions are also solutions to the present equations, so that we have
solved these equations provided that X has a tubular neighborhood of radius
r 0 such that ro > coth(r0), i.e., such that r 0 > 1.19968.

We now want to estimate ro in terms of A;, but at first sight the results of
[1] are unavailable to us.

A generalization of [1], valid for elliptic elements A fixing a geodesic hy-
persurface of codimension 2, was given in [3]. Since we will want sharper
constants than those given there, we will repeat the argument here.

L e m m a 4 [3]. Let X and M be as above. Then X has a tubular neigh-

borhood of radius ro, where

2sin(π/fc) cosh(r0) = 1.

Proof. In hyperbolic space, let 7 be a geodesic of minimal length joining
two distinct lifts of X, and let λ = length^). Then A(η) is another such,
and makes angle 2π/k with 7. The geodesic joining the other ends of 7 and
A(7) then forms an isosceles triangle in hyperbolic space, with sides of length
A and angle 2π/k. By elementary hyperbolic trigonometry, the opposite side
has length 2z, where

sinh(x)/sinh(λ) = sin(τr/fc).

We must have 2x > λ by construction, so

sinh(λ/2)/sinh(λ) < sin(τr/fc)

or 2cosh(λ/2)sin(π/fc) > 1.
Since the width of the tubular neighborhood is λ/2, this gives the lemma.
It follows that we get a tubular neighborhood of radius r0 = 1.19968 when

k is at least 12.
We remark that it is not too difficult to construct such M and X by arith-

metic methods, giving interesting examples of manifolds with negative Ricci
curvature, but at present we have little feeling for the topology of such M.
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