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A MODEL FOR CYCLIC HOMOLOGY AND
ALGEBRAIC ^-THEORY OF

1-CONNECTED TOPOLOGICAL SPACES

MICHELINE VIGUE-POIRRIER & DAN BURGHELEA

It was proven in [2] and [5] that the cyclic homology of a connected

topological space with coefficients in a field of characteristic zero1 k,

HC*{X\ k), is isomorphic to H*(ESι Xsi Xs', k)\ it was also proven in [1]

that the reduced algebraic X-theory of the 1-connected topological space X,

tensored by k, K* + ι(X) Θ k, is isomorphic to the reduced cyclic homology

HC*( X; k). In this paper we describe a Sullivan minimal model of ESι X sι Xs1

in terms of a Sullivan minimal model of X (Theorem A). Our result completes

the results of [10] which provides a Sullivan minimal model of Xs1 by giving a

description of the Λ-minimal extension (in the sense of Halperin) of the

fibration Xs' -> ES1 X sι Xs1 -> BS\ where X is 1-connected.

The model is effective enough to permit new calculations of the algebraic

AT-theory of X (tensored by k\ where X = Xλ X X2 with X2 a "rational"

//-space or co-i/-space and Xλ a product of complex or quaternionic projective

spaces (or even more general) (see Theorem B and its corollaries). The model is

also effective enough to contradict a conjecture of [4, p. 376]. T. Goodwillie has

also calculated K+(CPn) ® k by a different method.

The model is explicit enough to deal with the more subtle structures of cyclic

homology (or algebraic Λ'-theory) providing a fast (alternative) proof of a

result of T. Goodwillie (Corollary 4).

This paper is organized as follows: In §1, we review the basic definitions and

state the results; in §2, we give the proof of Theorem A; and, in §3, we give the

proofs of the remaining results. We thank S. Halperin for useful conversations

he had with the first named author about Theorem A. The present proof was

influenced by this discussion.

Received July 15,1985. The second author was partially supported by an NSF grant.
1 Actually in any commutative ring.
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1.
In this paper, all spaces are ANR's and all differential graded algebras are

commutative differential graded algebras with differential of degree +1 over
the field of characteristic zero k.

Let Xs' denote the "free loop space" Xs' = {a: S1 -> X/a continuous}
equipped with the compact open topology and let μx: S1 X Xs1 -> Xs\
μ(θ~ι,a) = a°Tθ, where Tθ denotes the translation Tθ: S

ι -> Sι correspond-
ing to θ G Sι. μ x is a continuous S^action whose fixed point set consists of
the constant maps. We clearly have the following commutative diagram whose
horizontal lines are fibrations:

Xs1 • ESι X sι Xs1 • BSι

d 1 ) I I ii
X >BSι X X >BSι

The two fibrations are the bundles over BS1 associated to the action μx,
respectively, to the trivial S ̂ action on X\ the entire diagram is natural in X.
We remember from [2] that Hochschild homology (cohomology) of X,
HH*(X;k) (HH*(X;k)), respectively cyclic homology (cohomology) of X,
HC*(X;k) (HC*(X;k)) identifies to H*(Xsl;k) (H*(XsK

9k)), respectively
H*(ESι X sι Xs1; k) (H*(ESι X sι XsK, k)) and Connes' exact sequence which
connects the Hochschild and cyclic homology (1.2) and cohomology (1.2)' to
the Gysin sequence of the fibration (1.1).

(1.2) -> HHm(X\ k) ^ HC*(X; k) Λ HC+_2{X\ k) ^ HH^X; k),

(1.2)' <- HH*(X; k) J- HC*(X; k) t HC*~2(X; k) ?- HH*~ι(X', k).

From now on, our discussion will refer only to cohomology. By duality the
corresponding statements for homology remain true.

Let k[a] denote the graded free commutative algebra generated by α,
degα = 2; when regarded as a k-CΌGA with differential zero, it will be
denoted by (Λα,0). HC*(pV9k) = k[a] and therefore HC*(X;k) is a k[a]
module with V: k[a] ® HC*(X; k) -> HC*(X\ k) given by v(a*> Θ x) =
6fpx. More general, to give a k[a] module structure V: k[a] Θ P* -• P* on
the /r-graded vector space P* is equivalent to giving a degree +2 /r-linear map
S: i > * - > p * + 2 . The relation between V and S is given by the formula
V(ap ® JC) = Sp(x).

Definition 1.1. The k[a] module (P*, S) is called:
(a) free, if S is injective,
(b) trivial, if S is zero, and
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(c) quasifree if it is a direct sum of a free and a trivial module.

Each free k[a] module P* can be written as k[a] Θ^TV*, N* a graded

vector space and S(ap ® n) = ap+1 0 n\ in this case, N* is called a base.

Therefore a quasifree k[a] module can be written &s k[a]<8> N* + W* with S

acting trivially on W*.

A minimal λ>CDGA is a free commutative differential graded algebra

(A,d) so that A = ΛZ, Z = φ . > 1 Z / a graded vector space so that dz e

Λ(Z <p) for any z e Zp with Z < ^ = 0 ( < Z'.2 Given a graded vector space

Z = Θ. > 2 Z'" (i.e., Z 1 = 0), we define Z = Θ 7 > 1 Z ' as Z' = Z / + 1 . Given a

1-connected minimal &-CDGA (ΛZ, rf), Z = φT .Z1", one defines /?: ΛZ <8>

AZ ^> AZ % AZ as the unique degree (-1) derivation with the property

β(z) = z (hencejB(z) = 0), as well as the λ:-CDGA's (ΛZΘΛZ,δ) and

(Λα Θ ΛZ Θ ΛZ, ^ ) with δz = rfz, δz = -^8Jz (hence 8β + /3δ = 0), ^ α =

0, ^w = δu + αβw if M 6 ΛZ ® ΛZ.

Clearly, we have the extension:

(1.3) (Λα,0) ^ (Λα ® ΛZ 0 Λ Z , 0 ) -^ (ΛZ Θ ΛZ,δ)

with ^(α) = a ® 1 <8) 1, i(a) = 0, J(z) = z, J(z) = z.

Sullivan theory allows us to associate with each simple space3 X a unique

(up to isomorphism) minimal Λ>CDGA (AZ,d) and to each continuous map,

/: X -> X\ a morphism of fc-CDGA's / * : (ΛZ1, d1) ^ (ΛZ, d) which de-

scribes the λ>homotopy theory of X and /. (ΛZ, d) is called a Sullivan

minimal model of X and / * a minimal model of /. It has been proved in [10]

that if X is 1-connected and (ΛZ, d) is the Sullivan minimal model of X, then

(ΛZ ® ΛZ, δ) is the Sullivan model of Xs . The following theorem completes

this result.

Theorem A. // X is a 1-connected space with dimTΓ^Ύ) ® k < oo for any i

and (AZ,d) the Sullivan minimal model of X, then in the extension (1.3),

(Λα®ΛZ(8)AZ,S) is the Sullivan minimal model of ES1 Xsι X
s' and p,

respectively /, are models for p, respectively /, in thefibration

(1.1)' Xsl^ESιXsιX
sl^BS\

Corollary 1. With the same hypothesis,

(1) # / / * ( * ; λ:) = i/*(ΛZΘ ΛZ,δ),

(2) HC*(X; k) = H*(Aa β ΛZ 0 ΛZ, 9),

2 Actually the usual definition is slightly more general; a k-CΌGA which verifies the above
requirements is, however, 1-minimal in the sense of [9] or [8].

3 Simple means the fundamental group is abelian and acts trivially on H^X k).
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(3) S is induced by multiplication with α, and

(4) Homikt + ̂ Xy, k) + H*(BSι; k) = //*(Λα <g> ΛZ <g> ΛZ, Q)\

Theorem B. Let X be a l-connected space such that H*(X; k) is a truncated

algebra in one generator. {For instance, X = Sn, or CPn, HP", CaP2.) Then

(1) HC*(X;k) is quasifree and HC*(X; k) = k[a] + W* with W* the

k-graded vector spaces whose Poincare series4 is given by:

(a) IfH*(X\k) = Auanddegu = 2p + 1, thenPw*(t)= t2p/(l - t2p).

(b) IfH*(X; k) = Au/un+1 and degw = 2p,n> 1, then

P (t) = \ ι ι )
^* V } (1 - t2P){\ - t*rn+'-V) '

(2) HH*( X\k) is the k-graded vector space whose Poincare series is given by.

(a) ////*(X\ k) = λu with deg u = 2p + 1, then

(b) IfH*(X; k) = Au/(un + ι) and degw = 2/?,

HH\ ) ^ 2 ^ t2(pn+p-l)j

_ t2(p-l)\

The same formulae remain true for HC*( ) and HH*( ). The arguments of

[2] permit us to calculate HC* and HH* (respectively HC* and HH *) for

X = Xλ X X2 X X3 with Xx an //-space, A"2 a product of co-//-spaces, and X3

a product of spaces as in Theorem B.

The following is an equivariant version of the main result of [10].

Corollary 2. Let X be a l-connected space such that dim //*( X\ k) < oo and

H*(X\ k) Φ 0. The following conditions are equivalent:

(i) 77ze cohomology algebra H*(X; k) cannot be generated by one element

(ii) The sequence dim HCt{X\ k) is not bounded

(iii) The sequence dim HH^X; k) is not bounded.

Corollary 3. // X is a l-connected space, then H^ + ̂ X k) is a direct

summand in HC*(X; k).

Corollary 4. // PHC *(X;k)= lim s HC * + 2n{ X; k) and X is l-connected,

then PHC*(X; k) = PHC*(pt; k). ~*

Corollary 4 is a particular case of a result of T. Goodwillie [5], which claims

that PHC*(X; k) = PHC*(k[ττ1(x)]). As the reader will see in the proof of

1 For a graded /:-vector space W* the Poincare series Pw*(t) = Σ, dim W't'.
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Corollary 4, Theorem A provides an immediate verification of Goodwillie's

result when X is 1-connected. With similar arguments, Goodwillie's result can

be concluded in full generality (but they will not be given here).

2.

Proof of Theorem A. Suppose X is a 1-connected space with minimal model

(ΛZ, d) and dimZ' < oo for each i. If μ: Sι X Xs' -> Xs' is an S^-action,

the associated fibration (1.1)' has by [8] a model, the extension

(1.3)" (Λα,0) ^ (Act ® ΛZ Θ ΛZ, Δμ) Λ (ΛZ <g> ΛZ,δ)

with Δμ(α) = 0 and Δμ(ω) = δω + Σ ^ α ^ ω ) for ω e ΛZ <S> ΛZ; each

term represents a minimal model for the corresponding term in (1.1)'.

Let Fμ: Λα Θ ΛZ ® ΛZ -> Λα ® ΛZ Θ ΛZ be the unique morphism of

graded algebras Refined by Fμ(a) = α, Fμ(z) = z and Fμ(z) = Σi^'^θ^z),

z G Z and z e Z.

Proposition 2.1. // .Fμ w αw isomorphism of graded algebras, then (1.3)' w

isomorphic to (1.3).

/V00/. If Z>μ = Fμ

ιHμFμ, then J^: (Λα Θ ΛZ ® ΛZ, Δμ) -> (Λα 0 ΛZ Θ

ΛZ, Dμ) is an isomoφhism of differential graded algebras so that Fμp = p.

But Z)μ = 3). Indeed

2)μ(α) = (Fμ\Fμ)(a) = ^ ^ ( α ) = 0,

Dμ(z) = F ^ Δ ^ ί z ) = / ; - ^ ( z ) = Fμ~\8z + αFμ(z)) = δz + αz.

It remains to verify that Dμz = -βdz or equivalently that α/)μz + aβdz = 0.

Since we have already verified that 3) and Dμ agree on ΛZ we have

0 = Dμ

2

z = Dμ(dz + α)β(z)) = ddz + αβdz + Dμaβ(z) = aβdz + αi)μiSz.

q.e.d.

Clearly Proposition 2.1 and the following Proposition 2.2 imply Theorem A.

Proposition 2.2. With the hypotheses in Theorem A, // μ: Sι X Xs' -> X^1

/s /Λ̂  αcί/o« jLt̂ . described in §1, /Λew i^ is an isomorphism.

Proof. It suffices to show that

(2.1) ^λθ^+z' + B(z)

with λ a nonzero number independent of z, z' e ΛZ and B(z)

e"Decomposable part" of AZ ® AZ = Dec(ΛZ ® ΛZ). If (2.1) is estab-

lished, then it follows by induction on the degree of z that z,a,z^ Im Fμ\

hence /^ is surjective, and because dim(Λα ® Λ Z Θ Λ Z ) r < o o , Fμ is an

isomoφhism.
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In order to verify (2.1) we observe that if i: Xs' -> ESι Xsι Xs' is "the
inclusion of the fibre" for the fibration Xs' -> ES1 X sι Xs' -> BSι associated
with the action μ and p2: S1 X Xs1 -» Xs1 is the second factor projection,
then ip2 and iμ are homotopic. If At is the minimal model of Sι (hence
degί = 1), έ: (ΛZ Θ ΛZ, δ) -> (ΛZ ® ΛZ, δ) ® Λί is the canonical inclusion
(which is the model of p2) and μ: (ΛZ Θ ΛZ, δ) -> (ΛZ Θ ΛZ, δ) Θ Λί is a
model of /A: S 1 X Xs' -> Xs1, then έZ and /xZ are homotopic. If one uses the
definition of homotopy as given in [8, Chapter 5], we have a morphism of
differential graded algebras Φ:(C I ,Δ)->(ΛZ®ΛZ,δ)ΘΛί, where C = AY,
7 = {a} + Z 4- Z, which satisfies:

(i) Φ|C = ε/r,
(ii) Φ(Id + Σ(Δy +yΔ)V/i!)|c = μl
We recall from [8] that C1 = AY 0 Λ7 Θ Λ7 and 7 = 7 and ( 7 ) ' = 7^+ 1,

Δ|7 = Δ, Δ(j;) = y, Δ(^) = 0, and j is the unique derivation of degree-1
which extends j(y) = y9 j(γ) = 0. Note that (i) implies (a) Φ(α) = 0 and (b)
Φ|ΛZ ® ΛZ = id. Note that for dimensional reasons we have (c) Φ(ά) = λ/,
λ <= ρ, and because jΔj\Y = 0 (see [8]) (ii) implies (d) μi(z) = Φ(z + Δyz +
jΔz + L n > 2 (7^) ' f z / w 0- % expanding Δz as Jz + E f > 1 <*%(z) and by using
(a), we conclude that μi(z) = z + ^ ( z ) + ίfi^z) + Φ(jdz) + λtθ^z) with
^ ( z ) , ^ ( z ) G Dec(ΛZ Θ ΛZ).

Because

= Σ ,̂'2 - *,V'-2 * ' ' Z'V r ^ 2 ' C'Ί

we know that

Σ ( - i ) N + " " " " Λ »/ι-t φ (^)•••

belongs to DecΛZ Θ ΛZ+ί(DecΛZ Θ ΛZ+ΛZ); the contribution to
t{AZ) comes only from the monomials with at least one variable of degree 2.
Consequently μi(z) = z + A(z) + t{λθλ{z) + z' + B(z)) with A(z\ B(z) e
Dec(ΛZ Θ ΛZ), z' ^ ΛZ. Then Lemmas 2.3 and 2.4 below will imply (2.1),
completing the proof of Theorem A.

Lemma 2.3. μ = Id + ί/?.
Lemma 2.4. λ ^ O .
Proof of Lemma 2.3. The adjoint map of the action μ: S1 X Xs -» X s is

ju': S1 X S 1 X Xs1 -> ΛΓ, ft' = £ <>(m x id) with /w: S 1 X S1 ^ S1 given by
multiplication and where E: Sι X Xs1 -> X is the evaluation map E(eiθ, a) =
α(e^). Clearly if £': (ΛZ, J) -> Λr <g» Λίr (8) (ΛZ Θ ΛZ, δ) is a model of μ'
given by μ'(ω) = ^(ω) 4- ίZ>(ω) 4- /'(c(ω) 4- th(ω)), (degί = degί' = 1) with
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a{ω\_b{ω), c(ω), h(ω) e ΛZ <S> ΛZ, then μ: (ΛZ Θ ΛZ,δ) -* Λί Θ (ΛZ

(8) ΛZ,δ), the model of μ is given by μ(z) = #(z) -I- tb(z% μ(z) = c(z) 4-

th(z). Conversely, if μ(ω) = a(ω) + ίfe(ω) and μ(β(ω)) = c(co) + ίλ(ω), then

μ\ω) = a(ω) + /6(ω) + t\c{ω) + ίλ(ω)). By [6] a model for £ , E: (ΛZ, rf)

-* Λr φ ( Λ Z Θ ΛZ,δ) is given by ^ ( ω ) = ω + ί S(co) and because a model

of m, m: Λ^ -> Λί $ Λί' is given by w(0) = / ® l + l ® ί / w e conclude that

μi(co) = ω 4- tβ(ω).

Proof of Lemma 2.4. If Φ(ά) = 0, then Imφ c ΛZ <S> ΛZ which is incom-

patible with the homotopy between εl and /x/. Hence Φ(ά) Φ 0 so λ Φ 0.

3.

O/ Theorem B. Part (2) of this theorem is already contained in

Addendum to [10].

(a) If H*(X; k) = Λw with \u\ = 2p + 1, then the minimal model of

ESι Xsι Xs1 is (Λ(α,w,w),^) with \a\ = 2, a = 0, |w| = 2/? + 1, |w| = 2/?,

= 0 and 3>u = άΰ. Therefore,

HC*(X; k) = H*(ESλ Xsi XsK, k) = Λ(α, ΰ)/aΰ = k[a] + W*,

where W* is the vector space spanned by {ΰk, k > 1} and we have αw* = 0.

Since the map S is the multiplication by α, W* is a trivial A:[α]-module.

(b) If H*(X; k) = Λ(w)/(wM+1) with degu = 2/?, then the minimal model

of X is (Λ(w, v), d), with degϋ = 2/?(« + 1) - 1, and du = 0, έfo = MΠ + 1.

Then by [10], respectively Theorem A, the minimal model of Xs\ respectively

ESι Xsι Xs\ is (Λ(W,M, v, ϋ),δ), respectively (Λ(α, w, w, ϋ, i;), 3)). Note that

degw = 2 / ? - l , degϋ = 2p(n + 1) - 2, degα = 2 and δu = 0, δw = 0, δi; =

u» + \ Sϋ = -(« + 1)WWM, ^w = dw, ^ M = 0, 9>υ = wM+1 + aϋ, 3)υ =

-(n 4- l)w"i;, ^ α = 0.

From Proposition 2 of [10], we have

HC*(X;k) = H*(A(u) ®(A(a,u,ϋ)/(un+ι + aϋ)),D)

with Dα = 0, Du = 0, Dw = αw and Dϋ = -(w + l)w"w. The statement (b) is

a consequence of the following two lemmas.

Lemma 3.1. Ker D is the k-υector space spanned by the following monomials

{of AM ® (A(a,u,v)/(un+ι + aϋ))):

(i) 1, ( α ) w , (1**5*5), m > l , 0 < έ i < / ι - l , fc>0.

(ii) (u"ϋhu), (asuavbu) with 0 ^ a ^ n, b > 0, s > 1.

Lemma 3.2. 7/ιe sector space spanned by the monomials of (ii) is contained

in Im D and the monomials of (i) are cohomologically independent.
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Proof of Lemma 3.1. Clearly the monomials of the type (asuaϋbϋ), with

s > 0, a < H, b > 0, are all in KerZλ We never consider a power of

u greater than (n + 1) since we have un+ι = -α£, and therefore u

k(<n+l)+r =

ur(-aϋ)k with k > 0, 0 < r < w. Any element of even degree of Λw ®

(Λ(α, w, ϋ)/(un + ι + «£)) can be written P = P 0 (α) + Pχ(w, y, a) with P o(«)

G Λα, PxO, w, i;) G { w, ϋ} (Λ(α, w, ϋ)/(un + 1 + αi;)), the ideal generated by

the elements u and ϋ in Λ(α, w, ϋ)/(un+1 + αi;). If degP is odd, then

P = MP2(M, ϋ,α) with P 2 (t ι ,ϋ,α)G {M,U} (Λ(α, M, ϋ)/(Mrt + 1 + αϋ)). If P G

KerZ) we shall see that Px = 0 and this achieves the proof of Lemma 3.1.

Indeed, if DP = 0, we have

0 = DPY = -3— αw - ( Λ + 1 h ^ w w M

and therefore

α ^ - 1 - (/ i + l ) « π - ^ r G (w"+ 1 + αϋ).

Write P x = ΣjL oβι(α» ϋ)ui + P 3 w i t h β, G Λ ( α ' ϋ), A: < Λ and P 3 G ( M M + 1 +
αi;). Since

, ,v 9Pi

= (αβ! + 2aQ2u + + / : α W ^ 1 ρ , ) -(/i

P 4 ,

with P 4 G (un + 1 + αϋ), then in Λ(α,ϋ) we have 9 β 0 / 9 ^ = ° a n d ι«βf- +

(Λ + tyaϋdQi/dϋ = 0 for 1 < i < ifc < n. Hence, β 0 G Λα and βf. = 0 for

/ > 1, hence Pλ = 0.

Proof of Lemma 3.2. We have (α + 1 + fen + b)asuaϋbϊι = D ( α 5 ~ 1 w α + 1 ^ )

for J > 1, Λ < Λ - 1, and -(/ι + l)(b + l)α swn^w = D(asϋb+1u) for 5 ^ 0 .

This proves the first part. Suppose now we have a relation of the type

Σ λ , M α Φ u E l m D in Λ(w) ® Λ(α, w, v)/(un+1 + αi;), with λ, G k, at < «

- 1; this means that there exists μy e A: and the positive integers di9 tt and ci

with cf < n, so that
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in Λ(w) Θ Λ(α, w, v)/(un+ι + av). Then we have

i Cj>l

-a Σ μj(n + l)dJu
c;-1vdJatJU+ Σ (n + ϊ)μJ.dju

nΌdJ-1atJΰ

Since α, < « — 1, we have λf = 0 and μy = 0 for every / and j ; hence, Lemma

3.2 is proved.

Let W* be the vector space generated by the monomials (uavbΰ\ 0 < a < n

— 1, b ^ 0; then we have a w = 0 for any w e fF* which shows that H *̂ is

a trivial Λ[o] module. If Pw*(t) = Σ ^ ' d i m ^ ^ then clearly

_ f2(pn+p-l

which finishes the proof of Theorem B.

Note. For CPn this calculation disproves the Conjecture of Dweyer, Hsiang

& Staffeldt [4]; it was also done by T. Goodwillie.

In view of Theorem B, it is natural to ask if the cyclic homology of a

1-connected space whose cohomology is a polynomial algebra k[uλ up]

truncated by a regular sequence of p homogeneous elements is quasifree. By S.

Halperin [7], the hypotheses above are equivalent to dimH*(X\k) < oo,

dimTΓ^AΓ) 0 k < oo and E ^ - l V d i m ^ * ) ® k = 0.

Proof of Corollary 2. (ii) -> (i) is implied by Theorem B. (i) -> (ϋ) can be

done using the same arguments as in [10]. The equivalence (i) <-> (in) is done in

[10].

Proof of Corollary 3. Let us first observe that if b = Ho + aHλ + a2H2

+ +aΉr e Λα ® ΛZ Θ ΛZ with i/, e ΛZ ® ΛZ and Ẑ> = a e ΛZ

Θ ΛZ, then δ ^ 0 = β, δ ^ + ^ 0 = 0, ,8Hr + jβJEΓJF_1 = 0, βHr = 0. More-

over since ( Λ Z Θ Λ Z , / ? ) is acyclic and δβ + βδ = 0, clearly the above

equalities imply that there exists Co, , C r _ l 9 Cr e ΛZ <8> ΛZ so that j8Cr =

Hr9 βCr_λ = i/ r_ x - δCr, - ^ Q = # ! - δC2, iβCo = Ho - δCl9 and βJΪ0 =

δβC0 = a. Moreover, if a = βω, then βω = βδ(-C0). Suppose now βω =

ΣPi(z)β(zi) = ΣPiWZi (for instance when ω G ΛZ). If Co constructed above
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satisfies -C o = β(z) + ΣQMz, + ΣQij{z)zizj + , then
E0/y(z)zf.z 4- ) is a sum of monomials which contain at least two elements
from Z, which by our hypothesis on βω is zero. Since β is injective when
restricted to ΛZ, βω = βδQ(z) = βdQ(z), which implies ω = dQ(z). Now to
prove Corollary 3, we consider the cochain complex (C*, </) with C 1 =
(ΛZ)"+ 1andlet £: C* -> (Λα Θ ΛZ Θ ΛZ)begivenby£(ω) = (-l)'ω|β(ω).
It is easy to verify that B is a morphism of cochain complexes; hence it
induces B*: i/w + 1(ΛZ, d) = Hn(C*, d) -> Hn(Aa ® ΛZ ® ΛZ, 0 ) . As we
have seen, if Bω = 6, then ω = dQ(z) which shows that B* is injective.
q.e.d.

Λw/ of Corollary 4. Let (Λα 8 ΛZ Φ ΛZ, ^ ) be as defined in §1, the
minimal model of Xs1 Xsι ES1. Note that 3>= dτ 4- J π with Jj and du

degree +1 differentials defined by dγ(z) = δz = dz, dγ{z) = δz = -idz, dλa
= 0 and du(z) = az, du(z) = 0, ί/π(α) = 0, which satisfy £/Î /II + dιιdι = 0.
We regard C{Z) = (Λα Θ ΛZ Θ ΛZ, dl9 dn) as a bicomplex with Cp'q(Z) =
{ω e C(Z)|ω = Σf.0^i(z» ^)«'» w i t h degco = /? + r̂, Pz <Ξ AZ ® AZ and P^
¥=0}. Let E?'q(Z) be the associated spectral sequence which converges to
H*(C(Z),9) and has Eξ* = H^(H^{C{Z))). The^multiplication by α_de-
fines a moφhism of bicomplexes, ά: ΛαΘΛZ<E>ΛZ-^Λα®ΛZΘΛZ, of
degree (0,2) which induces the morphism άEr\ E?*>* -» J E r ** + 2 of spectral
sequences and therefore we can consider a new spectral sequence

£Γ*'* = lim ( -> E*>*+2s -• £r*>*+2*+2 _, . . . )

This new spectral sequence converges to lim( H* + 2s(C(Z)) ->
7/* + 2 5(C(Z))-> •••)• The moφhism of differential graded algebras k:
(Λ(φ),0) -» (ΛZ, J), which corresponds to the map X -> pt, induces the
moφhism {w/ *}: E^q(φ) -> E^q{Z) and therefore the moφhism {w/^}:
Er

p'q(φ) -» Ef-q(Z) of spectral sequences; here φ is the empty vector space,
hence Λ(φ) =/: . Notice that the acyclicity of (AZ ® AZ, β) implies
lim r i / ^ 2 r ( C ( Z ) ) equals zero if n is odd and equals k if n is even. Since

i j z ) = lim( Hdu{C{Z)) -> Hdu(C(Z)) -+ ) we conclude that TΓ^'*

is an isomoφhism which implies PHC*(pt; A:) = PHC*(X; A:) for A: = Q and

then for any k of characteristic zero.
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