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1. Introduction

Recently, G. Huisken [4] studied the deformation of convex hypersurfaces in

Rn + 1 by their mean curvature vector. In particular, he proved the following:

1.1 Theorem. // the map Fo: S" -> Mo c Rw + 1 represents a strictly convex

smooth hyper surf ace in Rw + 1, n > 2, then the initial value problem

(I) ^(x,t) = -H(x,t).v(x,t),

has a unique solution on a maximum finite time interval [0, T) such that the M/s

converge to a point as t -» T. Here H denotes the mean curvature and v the

outward normal of M. Moreover, if we let Mt be Mt rescaled by a homothetic

expansion so that Vol(Mr) = Vol(M0), then as t -> T the M/s converge to a

smooth hypersurface Mτ in the C™-topology. In fact Mτ is a round sphere.

The case n = 1 is a theorem of M. Gage and R. Hamilton [2]. Thus Theorem

1.1 may be considered as a generalization of their theorem to dimensions

n > 2. Another possible generalization of their theorem to higher dimensions is

the deformation of a convex hypersurface by its Gaussian curvature K.
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Originally, Firey [1] considered this equation for surfaces in R3 as a model for
the wearing of stones on a beach by water waves. Recently, Tso [9] studied the
problem in arbitrary dimension. In particular, he proved

1.2 Theorem. If we replace (I) in Theorem 1.1 by

(II) ^(x9t)=-K(x9t).v(x9t)9

then the same conclusion as in Theorem 1.1 holds except that one does not know

whether or not Mτ is a round sphere.

Inspired by these results, in this paper we prove
1.3 Theorem. If in Theorem 1.2 we replace (II) by

( t ) K ( t ) β ( t )

F(x,0) = Fo(x), x e S " ,

then for all β > 0 the same conclusion as in Theorem 1.2 holds. Moreover, in the
case β = l/nwe can show that Mτ is a round sphere.

The first part of Theorem 1.3 is a straightforward generalization of Theorem
1.2. The bulk of this paper consists of showing the required estimates when
β = \/n. In the course of the proof of Theorem 1.3, it will become evident that
the case yβ = 1/ΛΪ is borderline and the most natural from the point of view of
the PDE's involved. Geometrically, K1/n represents the geometric mean of the
principal curvatures of M, whereas H/n represents their arithmetic mean.
Note that Kι/n is also scaled the same as H.

We also remark that in Theorem 1.3, for β > 1/w, there exist constants
0 < C{β) < \/n depending continuously on β with C(l/n) = 0 and
\imβ_+O0C(β) = \/n such that if the initial hypersurface Mo satisfies htj ^
C(β)Hgij, then Mτ is a round sphere.

I would especially like to thank Professors G. Huisken, R. Hamilton and
S.-T. Yau for many stimulating discussions and their encouragement. I would
also like to thank Professors J. Jost and R. Schoen for their interest and
encouragement. I am especially indebted to Professor Yau under whose advice
this paper was written. This paper is dedicated to the memory of my sister
Eleanor Chow.

2. Short time existence
If M w c R" + 1 is a hypersurface, the Gaussian curvature is given by K =

det A/y/det g/y, where htj = -(d2F/dxιdxJ, v) is the second fundamental form
and gtJ = (dF/dxι, dF/dxJ) is the induced metric on M from R" + 1 in the
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coordinate system {x1}. We consider the evolution equation (III) for β > 0.
Note that even for strictly convex hypersurfaces, (III) is only weakly parabolic
due to the fact that the diffeomorphism group of Sn acts as a gauge group.
However, short time existence follows as in [2] from an existence theorem of
Hamilton [3] for evolution equations with an integrability condition.

2.1 Theorem. // Mo is strictly convex, then (III) has a unique smooth
solution F(x,t) for short time.

Proof. We compute the symbol of the right-hand side (RHS) of (III). A
variation Fof F gives rise to variations gtJ, h^ and v of giJ9 htj and v. On the
symbol level, we have Λ/y = -£/£/(F, v), gtj = 0 and v = 0. This is because htj

depends on the second derivatives of F whereas g y and v depend only on the
first derivatives. Therefore K = Kh'jh^ = -Kh~jζ£j{F, v) and the symbol of
the linearization of the RHS of (III) is given by

Let πM and πN denote the projection of vectors in R" + 1 onto the tangent
and normal bundles of M c R " + 1, respectively. Then σD(-Kβv)(ζ)F =
βKβ\ξ\2

h7rN(F) and πM(-Kβv) = 0 is our integrability condition. That is, for
ξ Φ 0, the sequence

σD(-Kβv)(ξ) itM

R" + 1 R " + ι Rw + 1

is exact. Therefore, as in [2], we may now apply Theorem 5.1 of [3] to conclude
that there exists a unique solution of (III) for short time.

We remark that the second order partial differential operator L = βKβΠ,
where D = h~k) V̂ V/ plays the same role for (III) as does the Laplace-Beltrami
operator for (I). In particular, the second fundamental form and all curvatures
formed from it satisfy equations of the form 3/3/ = L + lower order. Thus,
the fact that (III) may be written as (3/3O^(^, 0 = (l/nβ)LF(x, t) explains
the significance of the case β = \/n\ only in that case do the map F and the
second fundamental form satisfy equations which are equal in their highest
order terms.

We now explain some notations which we will use for the rest of the paper.
If X and Y are 1-forms and 5 is a symmetric positive definite covariant
2-tensor on M, then (X,Y)S denotes the inner product of X and Y with
respect to the metric s. In local coordinates, (X, Y)s = s^X^Yj. If / is a
contravariant 2-tensor, then we define (X,Y)rι = tiJXiYJ. Thus (X,Y)ri is
well defined even for indefinite 2-tensors. If Aikl is a covariant 3-tensor, then

\A\ hAA
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For future reference, we define m = {{H/n)n~ιg~ι — Kh'1)'1 and e =

(h~ι - ng'ι/H)~\ By the preceding remarks, (X,Y)m and (X,Y)e are well

defined.

3. Evolution of the metric and curvature

In this section we compute how the metric, second fundamental form,

Gaussian and mean curvatures evolve. As in [4], we have

3.1 Lemma. The evolution equations for g/y, v andh^j are given by

(2) £ ,
(3) γthu= v.VjKP - K%khkj,

where we suppress the raising of indices and the repetition of an index represents

contraction with the metric.

Proof. This follows from straightforward computation as in §3 of [4]. (3)

may be rewritten as

3.2 Lemma. We have

(4)

and equivalently

(5)

• [n+\

Proof. Recall that the Codazzi equations are

(6) v A / = V ^ / 7 = V,hik

and the rule for commuting two covariant derivatives acting on a 2-tensor Akι

is given by

(7) ViVjAkl - VjVtAkl = RijkmAml + RijlmAmk.
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The relation between the Riemannian curvature tensor and the second funda-

mental form is given by Gauss' equation

(8) Rijkl = hikhjf - huhjk.

We have VjK = Kh~k)VjhkI and by applying (6), (7) and (8) we obtain

ViVjK = Kh-k)vιVjhkl + Kh^nVihmnh-k)vjhkl +

+ Khl)((huhkm ~ himhkJ)hml+(huhkm - hιmhkl)hmj)

I i i
= KlΠhjj H -\7jKVjK + VihklVjhkl + Hh^ - nhikhkj

(3) now implies

(9) A/j = βκβ~ιw K+ β(β -
v / dt lJ ι J

and hence (4). We also have

ιkl

jh,,- VjHhkl)

so that

1

nK2 '
jK+ Vih~k)vjh

kl

+

H 2 - < «

A' \ /A
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Therefore

t) ( M2n

h. ί) Tf β I i—i λ. I
— n • • — A-'-**- I •— n • i

1 . . , .

ti

+ β-τ ^v.KVjK+Hh,.- U + i

which is equation (5).
When β = 1/rt, (4) may be rewritten as

The gradient terms are negative, therefore we cannot show the inequality
Λ,7 > 0 remains true for all time by applying the maximum principle for
tensors of [3] directly to A/y . In fact, the only thing we could prove is that the
inequality h^ < 0 is preserved under the evolution, which is the exact opposite
of what we want to prove!

We now compute the evolution equations for H and K.
3.3 Lemma. The mean and Gaussian curvatures satisfy the following evolution

equations'.

(10) - v " 2

(11)

Proof. (10) follows directly from (1) and (5). By using (1) and (9), we have

JTth'J ~ g

+

which is (11).
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4. Preserving convexity

Applying the maximum principle to (11) of Lemma 3.3, we have

4.1 Corollary. // C > 0 is a constant and K > C at t = 0, then K^ C for all

time. As a consequence, if Mt is strictly convex at t = 0, then it remains so.

In [4], Huisken, following an idea of Hamilton [3], looked at the function

ti H iΦj

where κv- ,κn are the principal curvatures of M. This quantity is scale

invariant when 8 = 2 and measures the difference of M from being totally

umbilic and hence a round sphere. We look at an analogous quantity which is

more natural for our equation. By the arithmetic-geometric mean inequality,

(H/n)n - K > 0 on M and equality holds at a point p e M if and only if p

is an umbilic point. The rest of this section consists of showing the inequality

K/H" ^ C> 0 or, equivalent^, ((H/n)" - K)/Hn < C < (l/n)n is pre-

served under the evolution.

4.2 Lemma. We have the evolution equation

β

where e = (/Γ1 - n/H g" 1 )" 1 .

By (10) and (11) of Lemma 3.3

H2

K2 ' ' nK2
V• ί -

\H"



124

Then the equality
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implies

n 4- 1 /

h H \

nK

,v

- l/n) . va

which is (12).
In the case β = l/«, the last two terms of (12) drop out, and by applying

the maximum principle we have
4.3 Corollary. In the case β = 1/n, if K/Hn > C> 0 at t = 0, then it

remains so.
As remarked earlier, \A\2 - H2/n > 0, so that when β > 1/n the zeroth

order term on the RHS of (12) is nonnegative and hence a good term. Now, by
Lemma 2.3(ii) of [4] we have the estimate

(13) I#VA/- V^hJ^hε2!/

provided htj ^ £#g/7 . Since htJ < Hgij9 we have

hkl\Sth> ιkl\

nε2 K

Choosing C{β) close enough to 1/n, we have

/ - I n

h ~H
-1 ε2 1

2nβ H'
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provided hij > C(β)Hgu. Therefore

(β ~ I/O
H"K vκ\

(β-l/n)

*~lrK^W
γ-l

«ε2 K . ...2 ,. .
^ Γ / Γ ^ ' ' + terms linear in

and hence

J,

modulo V terms.

Therefore, applying the maximum principle and (13') to (12), we have

4.4 Corollary. For β ^ 1/w, rΛer̂  exw/ constants C(β) < \/n depending

only on n and β with C(l/w) = 0 am/ lim^^^C(j8) = \/n such that if

hij > C(β)Hgij at t = 0, then the inquality K/Hn > C > 0 is preserved under

the evolution.

5. Convergence of the principal curvatures

In this section we will prove the main estimate which will show that the

shape of Mt approaches that of a round sphere as t -> T. Let / = \/nn - K/Hn

and fσ = Hσf. Then as remarked in §4, / ^ 0 with equality holding only at

umbilic points.

5.1 Theorem. If β = 1/n, then there exist constants σ0 > 0 and Co < oo

depedning only on MQ such that

(14)

actually preserved under the

C{β) <\/n is sufficiently

for all time. If β > l/«, ίΛ «̂ inequality (14)

evolution provided htj > C(β)HgiJ at t = 0

close to \/n and where σ0 /?ow depends also on β.

The rest of this section will consist of proving Theorem 5.1.

5.2 Lemma. If β = l/n, then there exist constants oλ > 0, Cλ > 0

C2 < oo depending only on Mo such that for σ < σ1?

(15) ^ < \ ! v/σ
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If β > l/n, then there exist constants σλ(β) > 0, C(β) < l/n, C\ > 0 and

C2(β) < °° depending only on β and M o such that for σ < σλ(β)

(16) ^ < βκ'(πfa - c ^ - 3 ! v^ | 2 + c2{β)H-'~°\ v/β

provided h

Proof.

di

3

Therefore

ij>C{β)Hgijatt =

By (10) and (12),

nK ,

— n
1 \ K

n β I

\ β ~

0.

/

+ 1

- 1

* !

; ι . ι ' -

/ i - l

11 JC

kl\ g h Tints' 1 ^ ^ 1 e

1 '

Π/β - 2oH°-χ{vH,Vf)h - σ(σ -

(17)

where we used (13) and Cλ > 0 and C3 < oo are constants depending only on

M o .

We first consider the case β = l/n. Then (17) gives

^ < £tfι/" •/„ - 2oH°-\vH,vf)h - σ(σ -

(18)
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We have the equalities

= H-2°\ V/σ I
2 - loH-^ f.ivH^f.) + o2H-2-2°fσ

2\vH\\

and the inequality

(20) ( ^ > , : | | f l |
2 + J-|z,|2, η > 0.

Applying (19) and (20) with a = V#, b = V/σ to (18) implies (15) for
sufficiently small σ.

When β > 1/rt, the zeroth order term on the RHS of (17) is nonpositive for
σ sufficiently small depending on β. Also, if htj > C{β)Hgij for C(β) < \/n
sufficiently close to l/«, then

modulo controllable |V/|2 and (vH, v / ) terms. Therefore, by applying (19)
and (20) to (17) we have (16) provided hi} > C(β)HgiJ at ΐ = 0 and where the
constants now depend also on /?. This completes the proof of Lemma 5.2.

When β > \/n, Theorem 5.1 is a direct consequence of (16) of Lemma 5.2
and the maximum principle. Therefore, in proving Theorem 5.1, we will restrict
ourselves to the case β = \/n. Then, (15) has bad (positive) zeroth order terms
and we may not apply the maximum principle directly. As in [4], we prove a
lemma which will allow us to bound the L^-norms of fσ. The supremum norm
bound of fσ will then follow from the Sobolev inequality for submanifolds of
Rn and an iteration type argument.

The evolution of the L^-norms of fσ is given by
5.3 Lemma. There exist constants 0 < C5, C6, C7, Cτ < oo depending only

on Mo such that for p > C5,

hίf' * I -C*P2f°P~2^f° I2 - ClPH'-*fΓι\vH\2 + CrσpH2ff.

Proof. By (15),

dtJ° PJ° dt

fe + Q//-1-"! V/σ |
2 + oHfa).

Then

•// = pfΓιvfβ + P ( P - ι)Lp-2\ v/ σ \\
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implies

and hence, by integrating,

(21) Iff? < \j

BENNETT CHOW

- i)fΓ2\v/σ \]

- \p{P - \)fΓ2\ v/

σpHf

provided p > C4, where C4 is a constant depending only on Mo, and we

ignored the negative term coming from differentiation of the volume form.

Now

j κι"Ώf! = f KV'hjvpj

and by the Codazzi equations,

= -hj^

Therefore

(22) /

The equality

<vκ,v/σ)A

then implies

(23)

KV*L

= -H

= -H

f>

ya

p = p{\-\

"(v/,v/σ)A +

"-"Iv/ji + σ,

1 I ~r/~ \ / n — \x p — 1 / T-^ if »-
1 1 •**• / \ v •**• ? v

^-<v//,v/σ)A

f/«-1-7σ(v/ί,v/σ>A +

'/^//"Ίvίrllv/J,
where C8 < oo is a constant depending only on Mo. By applying (20) to (21)

and (23), we have

^ I2 - C.pH'-'fr'lvHl2 + CrσpH2fP,

where 0 < C5, C6, C7, C r < oo depend only on Mo provided p > C5. This

proves Lemma 5.3.

We now prove the lemma which will enable us to bound the L^-norms of fσ

for p sufficiently large and σ sufficiently small.
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5.4 Lemma. There exist positive constants C1 8, C1 9, C 2 0 cmd C2 1 depending

only on Mo such that for any 0 < σ < 1, η > 0 andp > C 1 8,

tf2// < (Cl9pη + C2 0)/ /ί-2//-1! V/ί|2 + C2lprι / /Γ 2 | V/σ | 2 .

Λ oo/. Recall /„ = ((l/«")i/π - K)/H"~° so that

We have

~^H" ~ K ) = ^(nH""lfl^V'VJH + " ( " ~ 1)H"~2\

( 2 5 ) *

- - ^ I V Λ : I* -

and by applying the Codazzi equations,

V.-V/fc, = VkVιhu+(hijhkm - himhkj)hml + {huhkm - hιmhkl)hmj.

Since

Λ o ( ( f ) " V ' - **!")((A.-A" - *tmhkJ)hml+(huhkm ~ h,mhkl)hmj)

= ( ( f ) " " V ' " Kh-kή(nhkmhm, - Hhkl) = « ( f

(25) may be rewritten as

(26)
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(24) and (26) imply

i W - l
I I - / / Γ~l \ . . - I / Π

(27)

"~l

n — Λ r Kl/nfp~l

~ 5 — Γ ί 1°
n — l j H

VH,V[\H" - K

n ' - - \ \ n

We have

.2rιufa+P(P- \yfκιs"fr2\ v/σ u

which, together with (22), implies

(28) -(l -l)f κι"-1frι(vκ,vf.)k + j Vfί-'nfo

Multiplying (27) by Kλ/"fξ~x and integrating, we have

/ κ*"f>-ιnf. = -/ ((f)""V' - AΛi})v^^^j^vA,.

- 1 | V K\l - KhjJVihJ
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where we integrated by parts and used Vk{Khk}) = 0. By applying the Codazzi
equations we have

/
/ * / i\ f a / \

aΠb = - I \Va,Vb),+ I — \VK,Vb),
J J Γi.

for any smooth functions a and b on M. This and the equality

(29')

applied to (29) imply

= H2"\ V/\\ - 2nH"-ιK( vH, vf)h + ^
H

~ι

(30

1

+ (n - o)f jj

-(n-σ)f —

We have

/I
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Applying (29') and (30') to (30) gives

,v/σ>,

ί —7Ϊ7Γ7Γ-U^21v/|i - 2nHn-ιK(vH,vf)m + —-\vH\l

_(._.)/ £I^l<vβ. v/>. + . ( .- .)/ ^ ? P

- ViHhkI

l

+p(n-o)j £

where m = ({H/n)n-lg~l - Kh~ιy\

(31) n

- ^ - 4 / /" \VH\2 + ̂ -
 κ " (Ml

π»-2 J H3~° n"-2J H1-" I n
fτl/n-lfp-1
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Since (31) is rather complicated, we first make some remarks to clarify the
situation. There are basically three types of terms in (31): | V/σ|

2, (VH9 v/σ)
and | v # | 2 terms. The p(n - σ)J(Kι/nfp-1/H)\(vH,vfσ)h\ term with the
term

n{p-\)j K^»fΓ2H-n- 1 + σ|<Vi/,V/σ>J

will dominate the rest of the (v//, V/σ> terms by choosing p large enough
depending only on Mo. The \VH\2 terms, modulo ones with σ's in the
coefficient, are

n -

/I

n ( l - 2 / ι ) 1/

— ^ —

+ ,;ς4+ i -!fi f ί^CW

The |v/σ |2 terms are

(p - 1)/

- f H"
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By the preceding remarks and (31), we have

.2

a \ mifβ>(p-i)J κι/»-ιff-2

1 f fτn-σrl/n-2fp-lly7{ | 2 ί

--} H K' f; |v/σ |m-j

(32)

-Cnpf H-»+°

where C9, C 1 0 , C1]L and C 1 2 depend only on Mo.

Combining (28) and (32),

O>(P- l ) /
2\v/

σ |Λ

-σ( l - 1 ) j" H^

(33)

J

-c9pf ^-|vi/| |v/J

-cn />/ H-»+°fr2\vH\ I v/σ I ( f ) " V7 -

c 1 0/ ^ 1 v^l2 + c1 2/ H-//-

ι\ V/cσ \h

Khu

2

σ \h

In order to simplify (33) we first prove a small lemma.

5.5 Lemma. There exist positive constants C 1 3 and C 1 4 depending only on n

such that

(0

(ϋ)
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Proof, (i) Since both sides are homogeneous of degree n, we may assume

without loss of generality that H = Σ"=1κi = n. We can then write /c,, / =

1, , n, uniquely as K, = 1 4- εpi9 where ε > 0, Σ " = 1 /?, = 0 and Σ " = 1 pf = 1.

Since ΣiΦjPιPj = (ΣιPi)
2 - ΣiPf = - 1 ;

i n

= ε2+O(ε3).
Also, H"~2(\A\2 - H2/n) = n"-\2εΣipi + ε2Σ, pf) = n"-2ε2. Part (i) now

follows,

(ii) If we make the same assumptions as in the proof of part (i), we have

This proves part (ii).

Applying Lemma 5.5 to (33) gives, for large enough p,

0 > Cupf fΓ2\ V/σ I2 - Cl6pf tf /2-i//-

-Cwf H'~2frx\vH\2 + C17j H2fP,

where C 1 0 , C 1 5 , C 1 6 and C 1 7 are positive constants depending only on Mo.

Lemma 5.4 now follows from applying the inequality ab < jηa2 + 2

η > 0.

By Lemmas 5.3 and 5.4, we have by choosing η = p~1/2

|2 - CΊpj H°~2fΓl\vH\2 + Crσ/>/ 7/2//,

(C1 9//2 + C20)/ i/- 2 /Γ

which imply

2 + C 2 4 σ/;)/ i/"

where the constants depend only on Mo.



136 BENNETT CHOW

Therefore, (3/3/)/// < 0 for p > C25 and σ < C26p~ι/2, where C25 < oc
and C26 depend only on Mo. Now that we obtained suitable Lp bounds on /σ,
we may continue exactly as in [4] to obtain a supremum bound on fσ for σ
sufficiently small by an iteration argument. This completes the proof of
Theorem 5.1.

6. Tso's Theorem
In [9], K. Tso studied (III) of §1 for β = 1. His proof of Theorem L2

extends to the case of any β > 0 with only trivial modifications. For complete-
ness, we give a brief exposition of his argument in this section. Tso considered
(II) from the point of view of the unnormalized equation and proved C00-
convergence of the Λf,'s for the unnormalized equation. In the previous
sections, we followed Huisken in looking at the metric and curvatures of M to
get the zeroth order estimate, but we did not succeed in using his method to get
the gradient or higher derivative estimates. It is by combining both methods
that we are able to prove Theorem 1.3. We now present Tso's argument (see [9]
for details).

We parametrize M by the inverse of the Gauss map which is well defined
since M is strictly convex. Then F: Sn -> M takes a unit vector v e Sn to the
point F{v) on M having v as its outward normal. The support function h:
Sn -> R is defined by h(v) = (F(v), v). (Ill) is clearly equivalent to the
equation

(34) lh(v) = -K(v)β, , € E S « .

It is standard to extend h to R"+1 as a function homogeneous of degree 1 and
then consider its restriction to a hyperplane. We therefore define u: Rn -> R by
u(x) = h(x, -1), x = (x1,- - -,x") G R". The Gaussian curvature of M as a
function of a normal vector in the southern hemisphere of Sn is given by

where (w/7(x)) denotes the Hessian of u at x e Rn. In terms of the function w,
(III) becomes

where h0 is the support function of Mo.
As is usual for parabolic equations, the Holder norms Ck*a(Sn X [0, /]) are

defined with time derivatives counting as two space derivatives. We then have
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6.1 Lemma. Ifh e C2(S" X [0, /]) is a smooth solution of (34) andh> r>
0, then there exists a constant C < oo depending only on r and Mo such that

Il*lk2(s2χ[<ui>< c .

Proo/. We first bound A and 3A/3ί. By Corollary 4.1, -3A/3/ > inf,=0 A*
> 0 and hence r < A < sup/==0A. To bound -dh/dt from above, Tso con-
sidered the function <p(*>) = -(dh/dt)(v)/(h(v) - r'\v e S"1, and where r' <
r. If φ attains its maximum at (vv tλ) with tx > 0, then by applying standard
maximum principle arguments, we derive H < (n + l/p)/r' at (i^, rx). The
bound -ΘA/θί < C then follows. The bound on | vA| follows from the bound
on A and the convexity of u. To bound | V2A| we apply the maximum principle
to the function

ψ = (1 +

where we have assumed without loss of generality haβ is diagonal and achieves
its maximum An at (0, -1 , tx), 0 = (0, ,0) e Rn and tλ > 0. Then, as in [9],
we have R < (- \{n + 2) + \/2β)H~ι < C at (0,-1,^)- The upper bound
for haβ follows. Since K < C, we also have a lower bound for haβ. By the
preceding remarks, we have ||A||C2(5«x[0/]) < C(r,M0). This completes the
proof of Lemma 6.1.

The C 2 α estimate of A now follows from a theorem of Krylov-Safonov [10]
and an adaptation of an argument due to Trudinger [8] (again see [9] for
details). The C00 estimate for A now follows from standard arguments. By
applying the previous estimates to the normalized equation, we may show
C°°-convergence to a hypersurface Mτ for the normalized equation.

7. Conclusion

We now show how C°°-convergence to a convex hypersurface Mτ and the
estimate / = ((H/n)n - K)/Hn < CH~σ for some σ > 0 implies Theorem
1.3. Clearly there is some point p on Mτ with K(p) > 0; this is true for any
hypersurface by taking the point farthest from the origin. By continuity there is
a neighborhood U of p with K > 0 in [/. Then, for the unnormalized equation,
H(x) approaches infinity for every X E [/. By scale the invariance of /,
f(x) = 0 for x G U c Mτ. Therefore every point x e U is an umbilic point
and by a standard result, K is constant in U. Clearly, K must then be constant
on Mτ and hence Mτ is a round sphere. This completes the proof of Theorem
1.3.
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