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FINITE VOLUME AND FUNDAMENTAL GROUP
ON MANIFOLDS OF NEGATIVE CURVATURE

VIKTOR SCHROEDER

1. Introduction

Let V be a complete Riemannian manifold of dimension n and sectional
curvature K < 0. Then Fis a K(π, l)-manifold with π = irλ(V) [8, p. 103] and
hence determined up to homotopy by the fundamental group. In particular, the
homology H*(V) of V is isomorphic to the group homology H^π^V)) (see
[1]). Therefore V is compact if and only if H^π^V), Z 2) = Z 2 . Hence the
compactness of Kcan be read off from π^V).

We give a similar characterization for the condition of finite volume:
Theorem. Let Vbe a complete Riemannian manifold of dimension n ^ 3 with

curvature -b2 < K < -a2 < 0. Then the volume of Vis finite if and only if:

(1) πλ(V) contains only finitely many conjugation classes of maximal almost

nilpotent subgroups of rank n — 1.

(2) / / Δ is the amalgamated product of πx(V) with itself on these subgroups,

thenHn(Δ,Z2) = Z2.

For a full definition of Δ we refer to §4.
For n = 2, the statement is wrong: Let V be a noncompact surface with

constant negative curvature and finite volume. It is known that V has an end E
diffeomorphic to S1 X (0, oo) with a warped product metric/2 ds2 + dt2. The
curvature is given by -/"//and the volume of E by 2πf£°fdt. Using a suitable
function / we can deform E to an expanding end, such that the new end has
bounded negative curvature but infinite volume.

The first part of our proof (§3) leads to a description of the ends of finite
volume in terms of the fundamental group. This part is based on the investiga-
tions of Heintze [6], Gromov [5] and Eberlein [3]. A topological argument then
finishes the proof (§4).

This paper is a condensed version of parts of my thesis [10] written under
the guidance of Professor Wolfgang Meyer at Mϋnster. I am also deeply
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grateful to Mikhael Gromov who proposed the result and pointed out essential
ideas for the proof.

2. Notation and basic results
(Compare [3], [4].) Let X be a Hadamard manifold, i.e., a complete simply

connected Riemannian manifold with curvature K < 0, let d{ , ) be the dis-
tance function on X and let X = X U X(oo) be the Eberlein-O'Neill compacti-
fication. For x e X and z e A^oo) let HS(x, z) be the horosphere at z which
contains x and HB(x, z) the corresponding (open) horoball. For an isometry γ
of X we define the convex displacement function dy: x -> d(x, yx). y is called
elliptic (hyperbolic, parabolic), if dy has zero minimum (positive minimum, no
minimum). An isometry γ can be extended to a homeomorphism of X. If X has
curvature K < -a2 < 0, a nonelliptic isometry γ can be characterized by the
fixed points Fix(γ) on X(oo): a hyperbolic isometry fixes exactly two points of
X(oo) and translates the unique geodesic joining these points. A parabolic
isometry γ has exactly one fixed point z e I(oo) and leaves the horospheres
HS(x, z) invariant.

For a complete manifold V of negative curvature let X be the Riemannian
universal covering, π: X -> V the projection. Then V = X/T, where Γ is a
freely acting, discrete group of isometries on I , Γ = ^ ( F ) . We define the
Γ-invariant function dΓ: Λr-»(0, oo) by dτ(x):= min γ e Γ _ i d dγ(x). Then
dτ(x) = 2 Inj Rad(τr(;c)), where Inj Rad is the injectivity radius. Inj Rad(/?) >
ε and K < 0 imply that the volume of the distance ball Bε(p) is larger than the
volume of the ε-ball in euclidean space. Therefore vol(F) < oo implies that the
set {Inj Rad > ε} is compact for all ε > 0.

An end of V is a function E that assigns to each compact subset K of V a
connected component E(K) of V - K with the condition that E(K)^> E(K')
if K c Kr. An open set U c Vis a neighborhood of an end E if E(K) c U for
some compact subset K. An end E has finite volume if there is a neighborhood
Uoi Ewithvo\(U) < oo.

For the proof of our theorem, we can assume (by scaling the metric) that V
satisfies the curvature condition -1 < K < -a2, where a is positive. This
enables us to use the Margulis lemma in the following form.

Margulis Lemma. There is a number μ = μ ( « ) > 0 , depending only on n,
with the following property: let X be an n-dimensional Hadamard manifold with
curvature -1 < K < 0, let Γ be a discrete group of isometries on X, x e X, and
let Γμ(;c) be the subgroup of Γ generated by the elements γ e Γ with dy(x) < μ.
Then Tμ(x) is almost nilpotent, that is, Tμ(x) contains a nilpotent subgroup of
finite index.
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For a proof see [11, p. 5.51], [2, p. 27], [5], [10].

Lemma 1. Let X be a Hadamard manifold with curvature K < -a2 and let Γ

be a freely acting, discrete and almost nilpotent group of isometries on X. Then

F i x ^ ) = Fix(γ2) for all yv γ2 e Γ - id. Hence the elements of Γ - id are

either all parabolic with a common fixed point z e A^oo), or all hyperbolic with

common axis c. In the second case Γ is infinite cyclic.

For a proof see [3, Lemma 3.1b].

3. Ends of finite volume

The main result of this section is the following description of the ends of

finite volume.

Proposition. LetV = X/T satisfy -1 < K < -a2, 0 < r < μ.

(1) If E is an end of finite volume, then there is a unique connected component

Ur(E) of {Inj Rad < r/2} such that Ur{E) is a neighborhood of E. The volume

of Ur(E) is finite. For two different ends E and E* of finite volume, the

neighborhoods Ur(E) and Ur(E*) are disjoint.

(2) If n = dim V > 3, then the ends of finite volume correspond one-to-one to

the conjugation classes of the maximal almost nilpotent subgroups of rank n — 1

I Λ Γ .

(3) The ends of finite volume have disjoint neighborhoods U diffeomorphic to

B X (0, oo), where B is a compact codimension 1 submanifold of V.

Before we will prove this result, we need some preparations. Our manifold V

was represented as V = X/T. Now we look for a similar description for

subsets U c V as U = W/Tw, where W c X is precisely invariant, i.e. for any

γ G Γ either yW = W or yW Π W = 0, and Tw is the subgroup ( y e T\yW

Lemma 2. Let Γ be a discrete group of isometries acting on a Hadamard

manifold X. Let r > 0 and let W c X be a connected component of {dτ < r }.

Then:

(1) W is precisely invariant.

(2) Ify e Γ, x e Wanddy{x) < r, then y e Γ^.

Proof. (1) Because dτ is Γ-invariant, yW is also a connected component of

{dτ < r } for all γ G Γ . Thus yW Π W Φ 0 implies yW = W.

(2) dγ(x) = dγ(yx) < r. The convexity of d γ now implies dγ < r hence

rfΓ < r on the geodesic from x to yx. Thus both JC and yx are in W. By (1),

γ e I V q.e.d.

Let ί/be a component (i.e., a connected component) of {Inj Rad < r/2]

and Wbe a component of fiT^ί/) c X Then Wis a component of { J Γ < r}



178 VIKTOR SCHROEDER

and, by Lemma 2, U = W/Tw. With regard to the Margulis Lemma we will
study components U of {Inj Rad < r/2} and the corresponding components
W of { dτ < r }, where r is smaller than the constant μ of the Margulis Lemma.

Lemma 3. Let V be complete, -1 < K < -a 2, 0 < r ^ μ. Let U o V be a
component of {Inj Rad < r/2} in V, W a component of π~\U) in X and

(1) Either there is a unique geodesic c in X, such that Tw is the infinite cyclic
group Tw= Γc:= {γ e Γ|γ has axis c} or Twis a group of parabolic is ome tries
and there is a unique z e X(co) with Tw= Γz:= { γ e Γ|γ(z) = z}. W is
bounded in the first and unbounded in the second case.

{2)W={dVw<r}.
(3) If Wγ and W2 are distinct components of {dτ < r}, then TWι and TWi

intersect only in the identity.

Proof. (1) Using Lemma 1 it is easy to prove (see [3, Lemma 3.1c]): if
x, y e W, da(x)9 dβ(y) < r for nontrivial α,]8EΓ, then Fix(α) = Fix(β).
Thus for A := {γ G Γ - id| there exists x e Wwith dγ(x) < r], the classifica-
tion of isometries yields: either all a e A are hyperbolic with a unique
common axis c, or all a e A are parabolic with a unique common fixed point
z. If γ G Tw — id, x e W, then yx e W and there is an a e A with r >
da(yχ) = dΊ-ιay(x). Hence yιay e A.

If α e 4̂ is hyperbolic with axis c, then y~ιc is the axis of y~ιay e 4̂ and
hence y~ιc = c. Therefore γ leaves c invariant and γ is hyperbolic with axis c.

If a e A is parabolic with fixed point z e X(oo), the same argument shows
that yz = z.y is also parabolic by [4, Proposition 6.8].

Hence we have proved that the elements of Γ^ are either all hyperbolic with
axis c (Tw c Γc) or all parabolic with fixed point z (Tw c Γz). In the first case
c is contained in W and hence Γc c Γ^. The discreteness of Γ then implies that
Γc is infinite cyclic. In the second case let g: [0, oo) -> X be a geodesic ray with
g(0) e JΓand g(oo) = z. Because K < -a2 < 0, dy(g(t)) -> 0 for all γ e Γz as
/ goes to oo. Hence g is contained in Wand, by Lemma 2(2), Γz c Γ^.

If f/ is bounded, then Inj Rad assumes a minimum in p e U. Let x ^ W
with π(x) = /? and rfΓ(x) = dy(x) for some γ e Γ^. If γ is parabolic, then
there is a nearby j> with dy(y) < dτ(x\ hence Inj Rad(π(jO) < InJ Rad(ir(jc)),
a contradiction.

On the other hand let Γ ,̂ be an infinite cyclic group of isometries with
common axis c. Then the curvature assumption implies that dTw{y) > r for all
y e X with d(y, c)> R for a suitable R. Therefore d(q9 iτ(c)) < R for all
q e [/ and t/ is bounded.

(2) By Lemma 2(2), ί Γ c [dTyv < r). Now it is easy to see that for
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a geodesic c or a point z e X(oo), the sets {dv< r) and {dτ< r) are

connected. Therefore W = {dτ < r).

(3) Let γ e Γ ^ Π Γ^ be a nontrivial element. If γ is hyperbolic with axis c,

then Tw = Γc = Γ^ and if γ is parabolic with fixed point z, then Tw = Γz =

IV2. By (2), Γ ^ = TW2 impUes ^ = PΓ2.

Lemma 4. I e / F = X/Γ Λtfwfr -1 < # < -a2, 0 < r ^ μ. Let U (z V be

an unbounded component of {InjRad < r/2}, and let W be a component of

π~λ(U) with Tw as above. Then the volume of U is finite if and only if Tw is an

almost nilpotent group of rank n — 1.

Remark. The rank of an almost nilpotent group is the rank of a nilpotent

subgroup of finite index. For the definition of rank and other facts about

nilpotent groups compare Chapter II of [9].

Proof. We divide the proof into three steps:

(a) If vol(ί/) < oo, then Γz is almost nilpotent and operates with compact

quotient on the horospheres HS(x, z):

The proof of Lemma 3.1g of [3] shows that Tz operates with compact

quotient on the horospheres and therefore Γz is finitely generated. Let yl9 ,ym

be a system of generators. K < -a2 implies that there is a point g(t0) with

dγ(g(t0)) < r. By the Margulis Lemma, Γz is almost nilpotent with nilpotent

subgroup N of finite index. Then N also operates with compact quotient on the

horospheres.

(b) rank N = n - 1: N is nilpotent, finitely generated and without torsion.

By a theorem of Malcev N is isomorphic to a lattice in a simply connected

nilpotent Lie group A with dim A = rank N =:m [9, Theorem II.2.18]. Be-

cause every lattice in a nilpotent Lie group has a compact quotient and A is

homeomorphic to Rm, N operates with compact quotient on Rw. Because N

operates also on a horosphere, hence on R"" 1 with compact quotient, we

conclude m = n — 1 by comparing the homology groups of these K(π, 1)-

manifolds.

(c) If Γz contains a nilpotent subgroup N of finite index and rank n — 1,

then N and hence Γz operate with compact quotient on the horospheres

HS(x, z) by inversion of the arguments of b. Because dτ(g(t))-+ oo as

/ -> -oo, we conclude easily that there is a horoball HB(x0, z) with W c

HB(x0, z), and thus vol(ί/) < vo\(HB(x0, z)/T2). We prove that the latter is

finite: HB(x0, z)/Tz is diffeomorphic to B X (0, oo), where the projection on

(0, oo) is a riemannian submersion and Bt = B X {t} is the quotient of a

horosphere. Because of the curvature condition, we control the stable Jacobi-

fields (see [7]). This implies vol(i?,) ^ke~at with a constant k. Hence

vol(HB(x09 z)/Tz) < Γ ke~atdt < oo.
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Lemma 5. Let V = X/T satisfy -1 < K < -a2, 0 < rλ < r2 < μ. Let JJi be

components of {Inj Rad < η/2} with Uλ c ί/2 and let Wt be components of

i r - H φ wiίA H^ c W2. Then:

(1) Γ ^ = TWi.

(2) ί/x w /Ae only component of {Inj Rad < A^/2} WA/CA W contained in U2.

Proof. (1) Ŵ  c W2 immediately implies Γ ^ c TWi. Using Lemma 3(1) we

conclude that either Γ ^ = Γc = YWi or Γ ^ = Γz = YWi for a geodesic c or a

point z e A^oo).

(2) is a consequence of (1) and Lemma 3(3).

Now we are able to prove our proposition.

Proof. (1) Because E has finite volume, there is a compact set K c V with

vol(£(^)) < oo and InjRad ( £ ( A : ) < r/2. Let £/r(£) be the component of

{Inj Rad < r/2} which contains E(K). If U' is another component of

{Inj Rad < r/2} which is a neighborhood of E, then ί/' Π Ur(E) Φ 0 and

hence £/' = Ur(E).

We now prove that vol(Ur(E)) < oo. Let Â  be as above. Then there is an r'

with 0 < r' < r and InjRad^ > rf/2. By construction Ur,(E) c E(K) c

£/,.(£) and hence vol(t/Γ,(£)) < oo. Let Wr, c PΓrbe components of w-H^iJ?))

and ττ~1(ί/r(^)). By Lemma 5, Tw = Tw and, by Lemma 4, the finiteness of

the volume of Ur,{E) implies vol (Ur(E)) < oo.

If E, E* are different ends of finite volume, there is a compact set K c V

with £ ( # ) ^ E*(K) and hence ^ ( ^ ) and E*(K) are disjoint. As above there

is an r\ 0 < r' < r, with Vr,{E) c E(ϋ:) and t/Γ,(£*) c ^•(A'). By Lemma

5(2), Ur(E) and £/r(f;*) are distinct, hence disjoint.

(2) For an end E of finite volume let Ur{E\ Wr be as in (1). By Lemma 4,

Γ^ is almost nilpotent of rank n — 1 and Tw = Tz for some z e Jf(oo). Γz is

maximal almost nilpotent: if Γ' D Γz is almost nilpotent, then, by Lemma 1, all

γ E Γ have a common fixed point in X(oo) and hence Γ c Γ r

If W'r = γWr is another component of ττ"1(C//.(£)), then Yw, = γΓ^/y"1.

Thus we assign to every end of finite volume a conjugation class of the

maximal almost nilpotent subgroups of rank n — 1. We prove that this map is

bijective:

(a) Different ends E and E* have disjoint Ur(E) and Ur(E*). If Wr and Wr*

are components of ττ~\Ur{E)) and 9r~1(l/r(£'*)), then there is no γ G Γ with

yWr = Ŵ *. Therefore Γ^ and Γ^ define different conjugation classes by

Lemma 3(3).

(b) On the other hand let Δ c Γ be a maximal almost nilpotent subgroup of

rank n — 1 > 2. Then Δ is not infinite cyclic and hence, by Lemma 1, Δ is a

group of parabolic isometries with a common fixed point z e ^Γ(oo). Thus
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A c Γz. By the arguments of Lemma 4, Δ operates with compact quotient on
the horospheres HS(x, z) and \όl(HB(x, z)) < oo. Then Γz also operates with
compact quotient on the horospheres and the argument of Lemma 4(a) proves
that Γz is almost nilpotent. Hence Δ = Tz by maximality. Part (c) of that lemma
shows that for suitable x e l the volume of HB(x, z)/Tz is arbitrarily small,
and hence also the injectivity radius on π(HB(x, z)) is small. For 0 < r < μ let
Ur be the component of {InjRad < r/2} which contains π(HB(x, z)) for
suitable c. Let Wr be the component of ττ~1(ί//.) containing HB(x, r). Then
Tw = Γz and, by Lemma 4, vol(ί/r) < oo. By definition Ur, c Ur for 0 < r' < r
< μ, and therefore one checks that the following function E defines an end of
finite volume:

For compact K c V let E{K) be the component of V — K which contains
Ur, where r is chosen such that Inj Rad)A: > r/2. By construction the conjuga-
tion class assigned by E is the class of Δ.

(3) The proof of (2) shows that an end E of finite volume has a neighbor-
hood of the form E(B) = HB{x, z)/Tz which is diffeomorphic to B X (0, oo)
with B = HS(x, z)/Tz. These neighborhoods are contained in Ur(E), hence
different ends have disjoint neighborhoods.

Remark. Part (1) implies the theorem, due to Heintze [6, p. 33], that a
complete manifold V with vol(F) < oo and -1 < K < -a2 has only finitely
many ends: the ends have disjoint neighborhoods Ur(E). In Ur(E) we will find
an injectively imbedded r/4-ball, thus vol(ί/r(2?)) is larger than a constant
depending on r and n.

4. Finite volume and fundamental group

Let V be a complete Riemannian manifold of dimension n ^ 3, which
satisfies -1 < K < -a2. Using the result of Heintze remarked above, we see
that the volume of V is finite if and only if V has only finitely many ends and
every end has finite volume. This is equivalent to the conditions:

(1) Khas only finitely many ends of finite volume, and
(2) V has no further ends.

According to the proposition, condition (1) is equivalent to the finiteness of the
conjugation classes of the maximal almost nilpotent subgroups of rank n — 1

We will prove that (2) also is equivalent to a condition on the fundamental
group. Therefore let us assume that V has finitely many ends Eo, -,Ek of
finite volume. By our proposition the ends Ei have disjoint neighborhoods
diffeomorphic to Bt X (0, oo). We identify B( X (0, oo) with subsets of V. Then
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M:= V - Uf= 0(^/ x (0> °°)) i s a manifold with /: + 1 boundary components
2?0, 9Bk. It is easily checked that V has no further ends if and only if M is
compact. Now we define a manifold W without boundary by glueing two
copies M1, M2 of M canonically along their common boundary. Clearly M is
compact if and only if PFis compact. Therefore condition (2) is equivalent to:

(2*) W is compact.

To prove that (2*) is a condition on π^V), we show:

(a) The fundamental group of W can be computed purely algebraically from

(b) if is a K(π, l)-manifold, hence W is compact if and only if
Hn(πι(W),Z2) = Z2.

Proof of (a). By the theorem of Zaidenman ([12], compare Steenrod's reviews,
Part I, Amer. Math. Soc, 1968, p. 52) we can compute the fundamental group
of Win the following way: we choose pointsp( e Bi9 and by arcs fτompi top0

we define imbeddings φ/: irx(Bi9 pt) -> π^M 7', p0). Let Fk be the free group
with k generators yl9 ",yk. Then π-JJV) is isomoφhic to the quotient of the
free product π^M1, /70)*ττ1(Af2, po)*Fk divided by the normal subgroup gen-
erated by the elements Φoί^oίΦoί^o)"1* Φ / K h / Φ ^ K Γ V 1 ' ι < ι < k> w h e r e

αz e πx(Bi9 Pi). This computation is purely algebraic, because by the construc-
tion of our proposition φ/(πx(Bi9 pt)) is a maximal system of pairwise noncon-
jugate maximal almost nilpotent subgroups of rankn — 1 : π^W) is an
amalgamated product with itself on the maximal almost nilpotent subgroups of
rank n — 1.

Proof of (b). To prove that Wis a K(π, l)-manifold, we note:
(i) Bt c M is, as a quotient of a horosphere, a K(π, l)-manifold.

(ii) By construction, the inclusion Bt c M induces an injection π^Bj) ->

(in) It is easy to see that the inclusions M1, M2 c ίΓ induce injections

Now W is a ^(TΓ, l)-manifold by the following lemma, which is an easy
consequence of Whitehead's theorem [1, p. 49].

Lemma 6. Let W be α CW-complex which is the union of two connected
subcomplexes M1 and M2 whose intersection consists of k + 1 components
B09- -,Bk. Let M\ M2, Bo, >,Bk be K(π,l)-spaces and the maps ir^B^ ->
πi(W% πλ(MJ) -> π^W), induced by the inclusions, be injectiυe. Then W is a
K(π, l)-manifold.
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