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0. Introduction

For connected Riemannian manifolds M we discuss the interplay between
the harmonic function theory on M, the statistical properties of random paths
on M and the global geometrical structure of M.

In particular, we study the case when M is a regular or Galois cover of a
smaller Riemannian manifold N. That is, there is a discrete group Γ of
isometries acting on M so that N = M/T. M will be called an Abelian (resp.
nilpotent, solvable, etc.) cover of N when Γ is an Abelian (nilpotent, solvable,
etc.) discrete group of isometries.

We first illustrate the general results by an example. Let M be any Abelian
cover of any compact Riemann surface N (the metric chosen for N is of no
significance). Let the genus of N exceed 1 and the rank of the Abelian group
exceed 2. Then by Theorems 1 and 4 below one sees that:

(i) M does not possess any nonconstant positive harmonic functions, but
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(ii) M has a Green function g (that is, one may find a positive function
whose Laplacian is the dirac mass at point, g is the minimal function with
these properties).

Next observe that e~2<ng is the absolute value of a multivalued holomorphic
function φ on M which becomes well defined in some Abelian cover (φ = exp
- 2ττ(g + zg*), g* = harmonic conjugate of g). Thus a two-step solvable cover
of a compact Riemann surface can admit nonconstant bounded harmonic functions

(even holomorphic ones).

We do not understand solvable covers in general but nilpotent ones and
nonamenable ones (see below) can be dealt with.

These function theoretic properties of M have well known statistical inter-
pretations. In particular Brownian motion on M is transient if and only if M
admits a Green function (or equivalently a nonconstant bounded subharmonic
function).

We now summarize the theorems; the proofs are to be found in the
respective sections.

Theorem 1. Any nilpotent covering of a compact Riemannian manifold has no

nonconstant positive harmonic functions.

The hypotheses of Theorem 1 can be relaxed if one is to conclude only that
bounded harmonic functions are constant. Compactness can be generalized to
recurrence of random motion (see below) and finitely generated nilpotent by
ω-nilpotent (Γ = U ^ Zz, Zi normal in Γ, where Zn+1 maps to the center of

Theorem 2. Any ω-nilpotent cover M of a recurrent Riemannian manifold N

is Liouville. (That is to say if N has no Green function then any bounded harmonic

function on M is constant.)

However, compactness is required in Theorem 1 because the two-sphere with
4 points removed admits a rank 2 abelian cover with a nonconstant positive
harmonic function defined on it [12].

Now we present an existence theorem for nonconstant bounded harmonic
functions. A countable group Γ is called amenable (moyennable in French) if
there is on Γ a finitely additive, translation invariant nonnegative probability
measure (defined for all subsets of Γ). Amenable groups include solvable
groups. This property passes to subgroups, but the free group F on two
generators is nonamenable. (Here is why: Divide F into 4 disjoint sets
according to starting letter of reduced word. Then observe each set is con-
gruent to itself union two others (mod finite sets). So F can have no such
measure. See Greenleaf s book Invariant measures.)
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Theorem 3. Any nonamenable cover M of any Riemannian manifold N

possesses nonconstant bounded harmonic functions.

Corollary. // M admits a free nonabelian group of isometries acting discon-

tinuously then M has nonconstant bounded harmonic functions. {Example: the

universal cover of a compact negatively curved manifold.)

The last theorem about function theory on covers concerns the Green

function on M or equivalently whether random motion on M is recurrent or

transient.

Theorem 4. An Abelian cover M of a compact Riemannian manifold M has a

Green function {equivalently random motion on M is transient) iff the rank of the

Abelian group is at least 3.

Guivar'ch gave a Fourier transform proof of Theorem 4.1

Theorem 4 is proved here using a criterion for transience of random motion

on M due respectively in special cases to Kelvin, Nevanlinna, and Royden. Let

M be a complete Riemannian manifold.

Theorem 4' {Kelvin, Nevanlinna, Royden). Random motion on M is transient

iff there is a vector field V on M satisfying:

(ϊ)lM\άivV\dm< oo,

(ii) fM\V\2 dm < oo, and

(iii) fMdivVdm Φ 0.

In other words there is a flow on M with a net divergence and finite energy iff

the random motion on M is transient.

Corollary. Transience or recurrence {equivalently the existence of a Green

function) only depends on the quasi-isometry class of the metric.

Problem (unsolved even for Riemann surfaces). Is the Liouville property a

quasi-isometry invariant of Riemannian manifolds!

The proof of Theorem 2 depends on a discretization of random motion on

M. The idea is due to Furstenberg in the case of discrete subgroups of

SL{2,R)[Ί].
A discrete set X c M is called * -recurrent if there are neighborhoods of the

points of X with a uniform Harnack constant (see §7 for a precise definition)

and so that a random path starting from any point of M hits the union of these

neighborhoods with probability one. Bounded harmonic functions on M are

determined in a precise way by their values on any * -recurrent set.

^ o r this and also an alternative proof of Theorem 1 see C. R. Acad Sci. Paris 892 (1981)

851-853.
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Theorem 5. // X c M is a discrete set which is * -recurrent then there is an

assignment y -> v of a positive probability measure vy on X for each point y in M

satisfying:

(i) vy(x) > Ofor each x e M,

(ii) h{y) = ΣxeXvy(x)h(x) for each bounded harmonic function h on M.

Moreover, y -> vy may be chosen to be compatible with any symmetries of the pair

(M, X).

Note that Theorem 5 says that the restriction of a bounded harmonic
function on M to X is a bounded harmonic function for the discrete time
Markov process on X defined by the transition probabilities: the probability a
particle at x e X is next at x' e X is vx(x'\ This is so because a special case of
(ii) is h(x) = Σx>eXvx(x')h(x')9 the definition of a harmonic function for the
discrete process (X, vx(x')).

With a stronger geometric assumption on X one can represent all positive
harmonic functions, characterize recurrence or transience, and couple the
dynamics of continuous random motion on M and with those of the random
walk on X.

Let Pt(x9 y) be the unique smallest solution to the heat equation with pole at
(JC, 0). Now for each point y in M there is a probability measure P^ on W, the
set of all continuous paths w: [0, ξ) -> M so that if At c M then

P ' M O €= Λx, ,w(tn) e ^ , ^ < /2 < < O

= ί ί '" f p

tι(y>xι)p

h-h(
xι>x2)

JAλ

JA2

 JΛn

and similarly if for each y in M there is a probability measure Q y defined on
M x I N s o that

(In other words P^ makes w perform Brownian motion from y9 Qy makes Y
into a Markov chain with transition probabilities v .)

The sought for correspondence between the Py and Q^ is realized by
constructing a map from paths in W to paths in M X XN. This map is random
(in the sense that one tosses several coins and depending on their outcomes one
maps the path w e W to different points of M X XH), so more precisely it
should be thought of as a map of W X Ω into M X XN with probability
measure Px X μ; (Ω, μ) is some suitably large probability space in which the
outcomes of all the coin tosses are recorded.
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Theorem 6. Let X c M be a discrete co-component set. For each x ^ X let

Ux a Vx be the associated neighbourhoods satisfying the uniform Harnack esti-

mates. Then there is

(a) an assignment of a probability measure vy on Xfor each y in M,

(b) an increasing sequence of stopping times Tn for the Brownian paths w from

y with the property that w(Tn) is on the boundary of VXn for some n where xn is

known as the centre f of w at Tn, and

(c) an associated map of paths π: w -> (y, xv x2,...) where xl9 x2... are

defined in (b). These satisfy:

(i) For each positive harmonic function h on M,h(y) = v (h).

(ii) π maps Y*y onto Qy.

(iii) There is a distance d on M for which the probability that

max d(xn(ω), w(t)) > k
τn<t<τn+ι

is at most e~kc for some c.

(iv) If the cover of M by the (Vx)xfΞX is locally finite, then the random walk on

M X XN is recurrent if and only if Brownian motion on M is.

Remark. Our notion of distance in (iii) only comes close to being the usual
notion of distance if the (Vx) are a locally finite cover.

1. Background (potential and ergodic theory)

In the thirties Myrberg [14] studied these questions for Riemann surfaces M
such as the sphere S2 (or any compact surface) minus a compact set X:
M = S2 - X. He found that for such surfaces M the existence of a Green
function was equivalent to the existence of a nonconstant bounded harmonic

function on M. Myrberg proved that either property was equivalent to a
thinness property of X, namely whether or not the logarithmic capacity of X
was zero or not. Thus for X the ordinary middle third Cantor set or any set of
Hausdorf dimension > 0, then there is a Green function and uncountably
many coconstant bounded harmonic functions on M = S2 — X while for X a
countable closed set there are no such functions on M = S2 - X.

Up to the early fifties it was a problem in Riemann surface theory to find a
surface with a Green function but no nonconstant bounded harmonic func-
tions.

This problem was settled by Ahlfors and Toki [2], [18] in the early fifties.
Their example was ingenious and quite different from the one described above
in the first part of the introduction.
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The example above arose from another point of view—the ergodic theory of
geodesic flows on negatively curved manifolds. Eberlein [6] asked whether an
infinite volume manifold existed with ergodic foliations of the asymptotic
geodesies while the flow of geodesies was not ergodic.

In studying these questions one of the authors found the first question
(ergodicity of the asymptotic fibration) was equivalent in the constant negative
curvature case to the existence or not of bounded harmonic functions on the
associated Riemannian manifold. The second question (ergodicity of the
geodesic flow) was found to be equivalent to the recurrence of random motion
on the Riemannian manifold and thus equivalent to the nonexistence or
existence of a Green function (Sullivan [17]). So the Myrberg question is
equivalent to the Eberlein question, and either example answers either ques-
tion.

As another example of connections between ergodic and function theory we
remark that the existence of a bounded holomorphic function (in dimension
two) implies no ergodic component of the asymptotic foliation or the corre-
sponding Fuchsian group has positive measure.

2. Problems: Solvable groups and exponential growth groups

These function theory questions for solvable groups are not settled. We
record here some information currently available and some outstanding prob-
lems.

In the Introduction we have constructed a (2-step) finitely generated solva-
ble cover of a compact manifold with a nonconstant bounded harmonic
function. In this example the commutator subgroup was not finitely generated.

Problem. Is every finite type solvable cover of a compact manifold Liou-
ville? Namely if M = N/T, where every subgroup of Γ is a finitely generated
solvable group, is every bounded harmonic function on M constant?

Evidence. Let Γ be the semidirect product (Z + Z)XLZ with action matrix
(ι\). Then Γ is a cocompact subgroup of the 3-dimensional unimodular
solvable Lie group Sf= R2 X^R with action

e' 0

0 e~!

Then όf/Γ is a compact 3-manifold N. The Abelian cover Nx of N is a Z
cover so is recurrent by Theorem 4. Then S? is a Z + Z cover of Nv So by
Theorem 2, £f has no nonconstant bounded harmonic functions. This is a
nontrivial example where the problem has an affirmative answer.

Concerning positive harmonic functions we ask the following
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Problem. Let M be a regular cover of compact manifold with a group of
exponential growth. (If w(n) = card{part of Γ represented by words of length
< n in some fixed set of generators}, then limwl/«log w(n) > 0.) Then does
M admit nonconstant positive harmonic functions? Conversely, if M has
nonconstant positive harmonic functions does Γ have exponential growth?

Evidence. For the first part of the conjecture we look at the first case of an
amenable Γ of exponential growth that comes to mind. Nonamenable groups
are handled by Theorem 3. Let Γ c ^ b e the pair of solvable groups put in
evidence above. We claim ^admits nonconstant positive harmonic functions.
In fact the Martin boundary contains two circles.

Problem. What is the rest of the Martin boundary of SfΊ
Sketch of proof. Sf has two transversal foliations by hyperbolic planes

intersecting in the cosets of ^ / [ ^ , S?]. Two leaves are at constant distance
along horocycles in one concentric family with this distance expanding ex-
ponentially as we approach the center of the family.

Take a function h on one plane Ho and extend it to ^ by defining h to be
h(x0) on the horocycle of the transversal leaf piercing Ho at x0. If grad^ h is
to be volume preserving (i.e. ΔΛ = divgrad h = 0) then (grad^Λ) υ must be
equal to -div^grad^Λ, where v is the unit vector field pointing in normal to
canonical horocycle family in H.

But we can find many such functions on H. Let y denote the function so that
gradlogy = υ. Then yι/1 satisfies ΔHy1/2 = - \yι/1. Let φ be any other
positive eigenfunction of Δ^ of eigenvalue — \ (any probability measure on
dH = S" gives rise to one integrating it against the square root of the usual
Poisson-kernel). Then the ratio h = φ/y1/2 satisfies ΔHh= — (grad^Λ) •
gradtflogy7 2. Using the other foliation gives another Sι in the Martin
boundary.

More evidence. If Γ is finitely presented and has less than exponential
growth, as far as anybody knows it may well have polynomial growth (prob-
lem). But in this case Gromov [9] has shown Γ contains a nilpotent group of
finite index. By our Theorem 1 there are then no nonconstant positive
harmonic functions on a Γ cover of a compact manifold.

Thus a counterexample to the second part involves a finitely presented
group of more than polynomial growth but less than exponential growth.

3. Nilpotent covers of compact manifolds (Theorem 1)

Proof of Theorem 1. Reduction to the Abelian case, (i) The translation of

M by an element t in the center only moves points a bounded amount. By
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Harnack if h is a positive harmonic function h(tx) < c h(x) for some
constant c. (The Harnack inequality is uniform because the geometry of M is
quasihomogeneous since N is compact.)

If h were a minimal harmonic function we would have h{tx) = c(t) h(x).
Moreover, / -> c(t) is a multiplicative character on the center of Γ.

Proposition. The homomorphism Z -> R* defined by the character t -> c(t)
(where Z = center of Γ) extends to all of Γ. (We need only to assume Γ
amenable.)

Proof. The 1-form ω = dh/h is bounded together with its first 2 derivatives
say, again by Harnack. (The value of positive harmonic function controls the
values and those of a finite number of derivatives on a neighborhood. Since
( i n I/Ί) < k\n and (/'//)' = /"// - (/')_2//2 so |(/'//)'| < 2k2.)

For each point x in M replace ω(x) by ω(x) by forming a mean over the
amenable group Γ of the set of bounded-correctors {ω(yx)} γ in Γ.

The form ω(x) has Lipschitz first derivatives and these derivatives are the
means of the derivatives of ω. This is true because ω bounded in C2 means the
difference quotients converge uniformly to the first derivatives of ω, and the
mean is linear and continuous in the superior norm topology. In particular
dω = mean(dω) = mean(0) = 0.

Let / be an arc between x0 and tx0 in M.

fω = j — = logh(tx0) - \ogh(x0) = logc(t).

For γ e Γ, γ/ is an arc between γ;c0 and y(tx0) or yx0 and £(Y*o) because t is
in the center. So we also have Jγl ω = log c(t).

We claim that j ι ω = log c(t). This is so because all the arcs γ7 are related by
isometries of M—they are congruent. On one such the Riemann integral fγι ω
is approximated by a finite sum with an error estimated by the Lipschitz
constant of ω which is uniform. Again by linearity and continuity of the mean
weget/zω = logc(0

But ω is Γ invariant and closed. It then defines a closed form on N = M/T.
The periods around closed loops of ω give the desired extension. This proves
the proposition.

(ii) The character t -> c(t) is defined on the entire center. We can form the
quotient by the kernel of this character because h is invariant under translation
by this subgroup. Thus we may assume t -> c(t) is injective on the center. But
then Γ must be Abelian. For let K be the kernel of the homomorphism Γ -> R*
given by the proposition. Then K is normal so must (in a nilpotent group)
intersect the center. This intersection contradicts our assumption that / is
injective. Thus the extended character is injective and Γ is Abelian.
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We are now in the situation where we have a minimal positive harmonic
function h on a cocompact abelian covering space. The following theorem
shows that h must be constant.

Theorem. // M is a regular covering space of a recurrent manifold N with
covering group of isometries Γ, then if h is a minimal positive harmonic function,
either yh/h is unbounded for some y in T or h is constant.

Proof. First observe that we may as well treat the case yh = c(y)h for all γ
and prove that this implies that h is constant. Quotienting by the kernel of c,
we may, in studying Λ, assume Γ is Abelian. If h is bounded then one sees that
h must be constant; thus we suppose h is unbounded.

Now because N is recurrent we know that if 8 > 0 then the union of the
balls of radius δ about each element of the fibre Γ̂  will be hit almost surely by
Brownian motion on M. On the other hand because h is an unbounded
function we know that the measure expressing the constant function 1 as a
convex combination of minimal positive harmonic functions has no atom at h.
It follows that h(bt) tends to zero almost surely. (In general Ex(limt_O0h(bt))
is the integral of the Radon-Nikodym derivative of the measure for h over the
measure for 1.) We know therefore that with probability one Brownian motion
will not hit the set

U yBx{»)
c(γ)>l

infinitely often, where Bx(8) is the ball of radius δ centered at x. On the other
hand it will hit

U y

infinitely often. The following lemma shows this to be impossible.
Lemma. Let E be a subset of Γ {Abelian) such that for every δ and some

fixed y £ Tx we have

r*lbthits

Then E 1 = {γ:γ ι ^ E) has the same property.
Proof. It is enough to prove that

lim P>(/>,hits |J γ ' ^ δ ) ) > 0

for some y € E~xx. In particular we will assume E does not contain x and
construct a measure μ on E~ιBx(δ) such that Gμ(x) > \ for each δ and also so
that |Gμ(z)| < 1 for all z in E~XBX{8\ where G is the Green kernel. The
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domination principle tells us that since Gμ is dominated by the hitting
probability of £ " ^ ( 5 ) on the support of μ this inequality extends to the
whole of M. Therefore we obtain the inequality

lim P^hits^Γ^δ))^ \

as we require.
We choose a potential q supported on EBx(δ) which satisfies WqW^ < 1 and

q(x) > f. We may do this by considering the potential obtained by consider-
ing a finite but large subset En of E and looking at the hitting probability of
EnBx(δ). Let q = Gv for some measure v on EBX(8). We now produce a new
measure μ on E~xBx(δ) by translating the part of v supported on yBx(δ) by
γ " 2 so that it is now supported on y~ιBx(δ).

We must now estimate Gμ. Let>> e y~ιBx(δ). Then

= Σ ί g(y,z)μ(dz).

We will prove that if δ is small enough then Gμ(y) is very close to Gv(y2y).
The fundamental fact is

g(yx,px) = g(y~ιx,p~ιx).

To prove this observe that

g(yx, px) = g(ρ~ιy~ιyx, p~ιy~ιpx) = g(p~ιx, y'ιx) =

and note how fundamental use is made of the fact that p and γ commute and
the fact that g is symmetric.

On the other hand Harnack's estimate tells us that if y and z are in yBx(δ)
and pBx(δ) respectively, where γ Φ p, then

where ε is independent of JC, y9 p, γ and can be made as small as one likes by
choosing δ small.

Putting this together we obtain that if y is in ρBx(δ) where p e Γ 1 , then

Gμ(y)= Σ f , g(y,y2z)v(dz)

= Σ / g(y,y-2z)v(dz),
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and by Harnack's estimate this

g{y,p2z)v{dz) + Σ ί
%(δ) ιJyB

y<=E

Using the Green function identity we obtain that this expression equals

g{p-2y9z)v(dz)+ Σ ί g(p-ιx,y2x)v(dz)

and again by Harnack this expression - Gv(p~2y) proving all we require.
In the proof we refer only to the canonical random walk on M. With care

the argument can also be applied to the case of a certain singular diffusions on
the Heisenberg group (as studied in [8], [10]) or to any other situation with the
three essential ingredients: a nilpotent group, a symmetric Green function, and
a Harnack principle.

4. ω-nilpotent covers of recurrent manifolds (Theorem 2)

Let M be an ω-nilpotent cover of a manifold N where the random motion on
N is recurrent. Any fibre Γ over a point of N is * -recurrent so we may apply
Theorem 5 and discretize. The bounded harmonic functions on M inject into
the bounded ^-harmonic functions for the random walk determined by v on Γ.
Moreover we may think of Γ as the ω-nilpotent covering group. The construc-
tion of v in Theorem 5 allows us to assume for each γ, γ' in Γ, vy{y) > 0. Then
Theorem 2 follows from the

Proposition (Choquet-Deny-Dynkin [3]). If ve(y) > 0 for all γ e Γ, where Γ
is an ω-nilpotent group, then all bounded v-harmonic functions on Γ are constant.

Proof. If t is in the center of Γ and h is a positive harmonic function on Γ,
then h(y) ^ vy(ty)h(ty). But the Γ-homogeneity of vy(y') means that vy(ty)
= ve{y~ιty). Since t is central this quantity is independent of γ. Thus
h(ty)/h(y) is bounded above by ve{t) independently of γ. If h is minimal we
have h(ty) = ch(t)h(y), where t -> ch(t) is a character on the center of Γ.

This character function is continuous in h as h varies over the extreme rays
of the cone of positive harmonic functions (since ch(t) = h(ty)/h(y)). On the
support of m, where 1 = / h^dm(ξ), we must have ch = 1. This is so because
1 = t± ι(l) = t± 2(1) = implies \ck

hdm = \ for k any integer.

Thus the center of Γ fixes minimal positive harmonic functions which make
up the constant harmonic function. But any bounded harmonic is a convex
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combination of these. We divide by the center, consider the center of the
quotient and continue by induction.

Corollary of Proof. The center of any group Γ acts trivially on the minimal
positive harmonic functions for a (positive) random walk which are in the
support of the constant harmonic function.

Note that our arguments extend to any Γ-invariant diffusion with a Harnack
principle. We do not exploit symmetry of the Green function.

5. A natural projection of bounded functions

onto bounded harmonic functions (Theorem 3)

Theorem 3'. There is a projection of L°°(M) into the bounded harmonic
functions on M. If Γ is a group of isometries of M then this projection commutes
with the action of Γ. In particular if M admits no nonconstant bounded harmonic
functions and Γ acts discontinuously this projection induces an invariant mean on
/°°(Γ) and so Γ must be amenable.

Proof. (1) The idea is to choose an invariant mean φ for the abelian
semigroup (/ > 0, /) and apply it to the function Ptf(x) thought of as a
bounded continuous function on R+ for each x. Then one might hope that

φ[P,/] = ψ(Pto+tf) = p/oφ(pr/) s o <P(P,/(*)) is a harmonic function of x.
Now for the rigour.

(2) The locally compact additive semigroup R+ is abelian and hence ame-
nable. Therefore there exists a continuous linear functional φ on the bounded
continuous functions on R+ (written Ch(R)) which is invariant under transla-
tion. That is, let g(t) = f(t0 + t\ then φ(/) = φ(g).

We wish to interchange the order of operation of φ and the semigroup
action. To do this we need an analytical fact. Let P(t, x, y) denote the
transition density of Brownian motion on M. We assume for now that
JMP(t, x, y) dy = 1 for all x in M. Then for fixed / we have

lim / \

This follows from the joint-continuity of P(t, x, y) for all x, y and t > 0.
Similarly,

lim f ]P(t, x, y) - P(t9 x, y)\dy = 0.
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Let/be in L°°(M). Then the second estimate says that the function

Vt

xf=[P(t9x9y)f(y)dy

is a bounded continuous function of t for each x. Moreover,

su P (p* + ,/- py+lf) = suP(p* - Pζ)(ptf)
ί>0 t>0

M

and so the second inequality tells us that the map gx(t) defined by gx(t) =
P,*+,/ is a continuous map from M into Cb(R+), where Q(R+) is given the
norm topology.

We now define φ: L°°(M) -> bounded harmonic functions on M. Define

M

P(to,x,y)gvdy
M

But y -> gy is a continuous bounded function from M to Q(R+). It follows
that we can approximate to the integral uniformly by Riemann sums and
hence we can interchange the integration and φ to obtain

h{x) = ί P(tQ9 x, y)φ(gy) dy=\ P(tQ9 x9 y)h(y) dy.

So Y*th = h, and since t0 is arbitrary h is harmonic.
It is clear that the construction of φ described above will commute with any

isometric group actions. If Γ is a discontinuous group, then it is easy to
construct a Γ invariant injection of /°°(Γ) to L°°(M% which maps 1 to 1:
simply extend the /°° function to M by making it constant on fundamental
domains.

This completes the proof under the assumption that P,l = 1. If P,l Ψ 1, then
one simply replaces Δ by pΔ, where p is a smooth scalar function which decays
at infinity at a rate sufficient to ensure that the associated diffusion (which is
just a time changed version of the old one) does not leave M in finite time. By
general considerations (see for example the excellent discussion in [20]), this
diffusion will exist and will also have a C00 transition density pt(x, y).
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Since p may be chosen in terms of the local geometry it may be assumed to
be compatible with a discrete group of isometries. And so we have a proof of
Theorem 3. Any Riemannian manifold with a discontinuous nonamenable
group action has nonconstant bounded harmonic functions.

A simpler argument of the same kind can be applied to discrete time
processes on countable state spaces, but we have no continuity problems. The
approximation by Riemann sums is immediate.

6. The Kelvin-Nevanlinna-Royden recurrence criterion (Theorems 4, 4')

Theorem (Kelvin, Nevanlinna, Roy den). M is transient if and only if there is

a vector field ψ on M with

/ψ ψ dm < oo, /|divψ|dm < oo,

and

I div ψ dm Φ 0.

In other words it should be possible to have a net source or sink in a vector
field with finite energy. Before sketching a proof of this we should make some
remarks.

The idea of constructing a flow as a way of proving transience seems, in
various parts, to have occurred to many people at different times in history.
Kelvin noticed that of all flows in a domain with prescribed normal flow at the
boundary there is a unique one with minimal energy. This flow is irrotational
and hence the gradient of a harmonic function. Nevanlinna [15] proved that if
the length A(r) of the circle of radius r in a Riemann surface satisfies
f™ l/A(r) dr = oo, then the surface is recurrent. It is an easy application of
the Cauchy-Schwartz inequality to prove that if this integral diverges then
there cannot be a flow satisfying the hypothesis of the theorem. Let Sr be the
sphere of radius r and B(r) the associated ball. Suppose v is a vector field
satisfying the hypothesis of the theorem; then

/ \\vfdx =Γlί \\vfdx) dr > f i t (v • nfdx) dr,
JM J0 \JSr I J0 \JSr )

where n is the outward normal of Sr at x. An application of Cauchy-Schwartz
shows that

Γ\( {v'nfdx\dr> Γ^-[( (vn)dx\ dr,
0 \JSr ) J0 Ar\JSr I
Γ

J0
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and by the divergence theorem this is equal to

P - M f divυdx) dr.
J0 Λr\JBr )

Because Umr^oofB divυdx exists and is nonzero we see that this integral
diverges if jλ(χ/Ar) dr diverges. This proves that υ does not exist.

Royden [16] may have been the first person to put both ideas together. That
is if there is a flow then one has transience, if there is no flow there is
recurrence. Tsuji has a clear proof of Roydens results [20]. One of the authors
[11] and P. Doyle [5] have considered the analogous ideas for reversible
Markov chains. D. R. Debaum [3] has the same idea stated in modern form in
terms of ZΛcohomology.

Sketch of proof. Suppose M is transient and so admits a Green function.
Let / ^ 0 be a smooth function of compact support on M. Let u(x) =
f g(x, y)f(y) dy. Then put v = Vu. We claim υ satisfies all the hypotheses.
First the field υ has finite energy:

/ (Vw VM) dx = — / uΔudx = — I ufdx < oo.
JM JM JM

Of course fMΔudx = fMfdx Φ 0 and so the other hypothesis on Vw is
satisfied.

The converse direction involves more work and justification, and owes much
to Kelvin. We will deal first with the case where the divergence of the field is
nonnegative and of compact support. By a theorem in De Rham [4] there is a
smoothing operator which commutes with d and so we may assume the field
and its divergence are both smooth. Let ψ be a vector field on M with finite L2

integral and a smooth divergence φ which is nonnegative, of compact support,
and not identically zero. We will use ψ to obtain a contradiction if a Brownian
motion on M is recurrent.

The idea is to consider a second square integrable field ψ' with divψ' =
div ψ = φ, but chosen to minimise the L2 norm. Let E be the Hubert space of
square integrable vector fields with zero divergence. Then because E is com-
plete there is a vector field ψ' in ψ + E which minimizes /Mψ' ψ' dx. By a
standard argument in Hubert space theory, /Mψ' e dx = 0 for all e in E.
Therefore ψ' is orthogonal to all the smooth cycles and so must have no curl.
In other words ψ' = Vw for some function u. But div Vw = Δw is φ and so w is
in fact smooth because Δ is elliptic. If we now show that w is bounded our
argument is complete, for we will have constructed a nonconstant bounded
subharmonic function and hence a Green function.
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To prove this consider a disc D containing the support of φ = Δw. Off D, u
is harmonic and fM-D(Vu)2 dx is finite. Now it is a fact that a harmonic
function with finite Dirichlet integral is determined by its boundary values
(because it will yield an L2 bounded martingale when composed with Brownian
motion). Because Brownian motion on M is recurrent we know that harmonic
measure for any point in M - D relative to M - D is supported on dD and
not at oo. But u is bounded on D and hence on M. This leads to our
contradiction.

Suppose we have a vector field φ with

/ |φ | + |divφ |<oo, / divφ Φ 0.

Then there is a vector field with nonnegative divergence of compact support
and the listed properties. To see this observe that we may as well assume φ is
smooth. Now find a relatively compact open subset E of M with piecewise
smooth boundary such that div φ ^ 0 on E and

/ divφ > / |divφ|.
JE JM\E

The set M\E admits a Green function GM\E, and if

«(*) = f GM\E(X> j0(divφ)(>0 dy,
JM\E X

then V u minimizes the energy among all vector fields ψ on M \ E with

divψ - divφ = 0 onM\E.

Now

ί \du/dn\^ f |divφ|.
JdE JM\E

Define c by cjEdrvψ = JdE du/dn. Then because

ί |3W/3A?|< f |divφ|
JdE JM\E

we have \c\ < 1. Let v solve the following Neumann problem in E. Δi; =
+ cdivφ; dv/dn = du/dn on dE. Let ψ = Vv onE and V« on M\ E. Then

divψ= H-cdivφ o n £ , divψ = divφ oϊfE,

so

div(φ — ψ) = (1 — c) divφ on E,

and is zero off E.
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However, because divφ is smooth, du/dn is piecewise continuous and
bounded on E and this is certainly sufficient to imply that υ has bounded
Dirichlet norm. It follows that φ — ψ has finite ZΛnorm and the reduction is
complete.

Let us give an application to covering manifolds of compact manifolds,
which for Riemann surfaces is due to Mori [13]. Namely we prove a Z X Z
cover M of a compact Riemannian manifold N is always recurrent; a Z X Z X
Z cover M of a compact Riemannian manifold N is always transient. This is in
contrast to finite volume manifolds. It is shown in [12] that a Z X Z cover of
C\{0,l} is transient.

Suppose N is our compact manifold. We can induce the Abelian cover in
question from a smooth map N -* Tk, k = 2, or A: = 3. By transversality, we
pull back the square (or cubic) decomposition of R2 (or R3) to get a similar
decomposition of M over N.

Letting A(r) denote for the Z + Z cover the length of the boundary of the
union of those cells whose images in R2 touch the disk of radius r, one sees
easily that / l/A(r) dr = oo. By Nevanlinna's criterion M is recurrent.

Similarly for the Z + Z + Z cover M -> N consider a dual 1-skeleton Kλ to
the cubical decomposition. We think of Kλ as mapping to the corresponding
dual 1-skeleton Lλ of the cubical decomposition of R3. Associate to each
oriented edge e of Lλ the flux f(e) of w, the gradient of the Green function
across the corresponding cubical face. Since w varies slowly in norm and
Jx<ΞR3,\\x\\>δ \w\2 < oo it is clear that Σ e e L l ( / ( e ) ) 2 < oo. Also at each vertex υ
(except for the one nearest the pole of the Green function) the sum of the
fluxes of those edges touching v is zero (by the divergence theorem).

Now we transport these fluxes on the 1-dimensional complex Kv This
defines a 1-chain with the desired properties. Now diffuse this 1-chain using an
equivariant smoothing operator on M to obtain an n — 1 form ω so that dω is
positive with compact support and j\ω\2 < oo.

7. Discretization of the random motion in the * -recurrent case (Theorem 5)

In this section we will prove Theorem 5. Let X be a discrete subset of a

Riemannian manifold M. We say that X is * -recurrent if for each x in X there

are a relatively compact open set Ux containing x and a second such set

Vx D Ux chosen so that:

(i) (JX(ΞX UX is a recurrent set,

(ii) the supremum of the Harnack constants of the pairs (Vχ9 Ux) is c < oo,
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We say that X is cocompact if for each JC in X there are a relatively compact
open set Ux containing x and a second such set Vx 3 Ux chosen so that:

}
(ii) the supremum of the Harnack constants of the pairs (Vx, Ux) is C < oo.
The Harnack constant C of a pair (F, E), where V is open and E c F, is

defined by

C = sup
h(x)

h(y)
x, y G E,h positive and harmonic on V

Clearly if E is relatively compact in V this is finite. For given E it gets smaller
as V increases. This is the point of the definitions above— V might not get
large enough to make C uniformly small.

It is an easy observation that any Riemannian manifold M admits a set X
which is cocompact simply because M is locally compact.

Sometimes it will be significant that the cover Vx is chosen to be locally
finite. It is clear that one can do this in the case of a cocompact covering, but
less clear that it can be done in general.

The other idea we will need in the proof of Theorem 5 is that of harmonic
measure and balayage. Let U c M be any open set and x e U. Let εx denote
the measure obtained by allowing Brownian motion to start at x and run until
it leaves U and then setting ε^ eqaul to its exit distribution. This will always be
a probability measure if U is relatively compact in M, and will frequently be
one anyway. To say that a compact set K is recurrent is precisely the same as
saying that ε™~κ is a probability measure for each x. The main points which
we will use in the following are that if / is bounded and harmonic on U and if
ε^(l) = 1, then/has fine boundary values at εx almost every Martin boundary
point and /(JC) = εx(f). This follows from the martingale convergence theo-
rem. If / is a bounded Borel function on dU, its extension to U given by
x -> εx(f) is harmonic. The balayage of a measure μ onto dU is simply defined
to be μu = /εxμ(dx), so μ(h) = μυ(h) for every bounded harmonic function
on U providing M - Uis recurrent. We can now prove Theorem 5.

Proof. Let X be our *-recurrent set, Ux, Vx our associated family of open
sets and suppose c is the supremum of the Harnack constants of the pairs
(VX,UX). Let us suppose for convenience that the l^ are disjoint (otherwise one
must decompose UX(ΞXUX into countably many disjoint Borel sets Ex c Ux)
and locally finite.

Here is the inductive step. Suppose μn is any measure on M, we may find
two new measures μn+ι and τn+ι such that:
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(i) τ π + 1 is supported on X,
(ii) μn(h) = μn+ι(h) + τπ+1(Λ), and

(iii)τ / ϊ + 1(A)>M n(Λ)/C,
whenever Λ is a bounded positive harmonic function.

Start by moving all mass off X so put

If h is bounded and harmonic we certainly have

μ(h) = μn(h) - /iB(x)(Λ(*) ~ *(*)) = /

Now balayage this measure μ back onto Όx€ΞX Ux to obtain a new measure jϋ.

(Leave any mass which is already in UxeXUx alone.) Because ΌxeXUx is

recurrent we get that μ is also a probability measure and μ(h) = μ(h) for all

bounded harmonic functions h. Now let px be the restriction of β to Ux for each

x E l Then consider p™~ Uχ and ε^. By Harnack's inequality these are both

mutually absolutely continuous and

for if not we could choose a bounded continuous function on dVx which
extended to a harmonic function on Vx violating the Harnack condition on Ux.
Observe that

μ»(Λ)= Σ f

IIPxIl v
& \h +

c -χ r c
Xt=Λ •- "

P u t

WpxWvλ ^ Λ _ _ I I P ,
EVS\ and

C x ] n+ι C x'

Both μn+1 and τn+ι are positive measures and the required property τn+ι(h)
1 is obtained by using the other half of the Harnack inequality:

The construction of vy is now very straightforward. Let μ0 = εy9 the unit mass

at y. Then if h is a bounded harmonic function we have
n

h(y) = Mo(Λ) = Mi(Λ) +
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and sinceμn(h) < (1 - l/C2)"h(y) wehaveΛ(j>) = Σ? τk(h). Put *>>( = Σ? τk.
It has all the required properties.

8. Discretization of the random motion in the cocompact case (Theorem 6)

We now treat the cocompact case. First we will construct the measure vy on
X in much the same way as we did in the recurrent case. Then we will explain
how to think of vy as coming from a stopped Brownian motion. As before we
proceed by induction. Let (Ux)x^x be the relatively compact open cover of M
and VXD Ux a. second relatively compact cover of M such that the pairs
(Vχ9Ux) have Harnack constant bounded above by a fixed constant C. Such a
family of Uχ9 Vx exists by definition. Now let (Ex)xGX be a Borel partition of
M subordinate to the Uxs. For any point y in M denote by x(y) the unique
point x in M withy e Ex.

Now let μn be any positive measure on M, we will construct two positive
measures μn+ι and τn+ι so that τw + 1 is supported on X,

τ π + 1
(A) > ̂ μ

Because all the expressions are linear we may as well assume μn is supported
on 2^. Now because Vx is relatively compact any positive harmonic function h
is bounded on Vx and therefore

- * ( * ) - (<• - +

P u t μΛ +i = /AKΪ " H M J C ^ / C and τw + 1 = ||/xj|εyc, because μn is supported
entirely on Ux we know that μn+1 is positive; moreover we know that
h(y) > h(x)/C for all j> in ί/̂ , and therefore τx(h) > μ(h)/C2.

This is the inductive step; to obtain v if y £ X we simply start off with
μ0 = εy, then vy = ΣJ° η as in the * -recurrent case. If y is an element of X then
we start off with μ0 = εv

yy. The reason for this slightly different treatment of
points of X will become apparent as we try to connect the Markov chain on v
induced by the vy with the diffusion on M.

Let us think of how vy was constructed. We start off with unit mass at y,
look for the point x(y) which is the 'closest' to y in X, and balayage our mass
at y onto the boundary of Vx(y). Because the mass originated near the centre
of Vx(y) (i.e., from Ux(y)) the balayaged measure dominates εζfβ/C. We leave
that measure behind on the boundary of Vx, and reapply the procedure to the
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residual mass; so for each x in A^balayage that bit of the remaining mass which
is nearest to x onto the boundary of F~, leave the appropriate multiple of ε~r

behind, and then iterate the procedure. Ultimately nothing is left iterate and
we have a new measure,

x<=X

supported entirely on the boundaries of the Vxs with the property that

h(y)-

Butεζ*(h) = h(x\ and so

In other words \y = vy. In the special case where y is in X we change the first
step slightly by replacing the first measure ε̂  by tv

yy.
We wish to do this whole iteration procedure using Brownian motion, and in

fact go quite a lot further. Let (Zn) be the Markov chain with transition
probabilities (vy)yeM. The paths of ( Z J are elements of M X XN; let Qγ be
the measure on M X XN obtained by starting (Zn) with Zo = y. Let P v be the
measure on our Brownian event space Ω corresponding to starting Brownian
motion at y. We will explain how to construct from any Brownian path w(t)
and the results of infinitely many independent coin tosses a sequence of points
(Yn)™=0 with Yo = y in M and Yn in X for all n > 0 and such that the map

w -> (Yn): Ω ^ M X XM

takes P^ onto Q^. In fact the Markov chain is almost a skeleton of the
Brownian motion.

We must do two things. First we must describe how to obtain the Yn, then
we must justify our claim that P^ is taken onto Q^. Both are rather formal but
also rather technical.

To simplify the discussion change the Fx's slightly so that dVx Π X is empty
for every x in X. Let Wbe the set of all continuous paths on M, and let w(t) be
a path in W. We wish to define some stopping times. Suppose first that
y = w(0) is not in X, then put S(w) = M{t\ w(t) £ Vx(y)}9 in other words w
starts near x(y\ S is the first time w leaves the ball Vx(y) centered at x(y). If
w(0) is in X put S' = inf{ί: w(ί) £ Kw(0)}, then S(w) = S(w(t + S'(w))) +
S'(w); in other words if w starts a t ^ e l r u n it until it leaves Vy, look to see
which x e X is the nearest neighbor in X at this point and then run to the
boundary of Vx.
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We may define S(n) inductively from 5(1) = S by either of the following

relations:

S(n9w) = S(n - l9w(t + S(w))) + S(w)9

S(n9w) = S(w(t + V Λ w ) ) ) + Sn_x(w).

The times Sn break the journey of w(t) up into discrete pieces. Between Sn and
Sn+ι the path w is travelling from the middle to the boundary of some Vx. It
will be convenient to call w(S(n, w)) the nth exit point and x(w(S(n - 1, w)))
the nth center point of w except that if w(0) = y ^ X then we will use the
notation the zeroth exit point of w to mean x(w(S'(w))), otherwise it will be
x(w(0)). Observe that the nth center of w(t + S) is the n + 1st center of w(t).

Now, keeping the construction of vy in mind, let w be in W. At S(n) flip a
coin with probability

of coming up heads, where x is the nth center and z is the (n - l)th exit point
of w. We know that

and so (l/C)dεζx/dεζx is a legitimate probability.
Flip the coin in a way that is completely independent of w once z and x are

known. We have a sequence of heads and tails at the times Sn. Let T = 7\ be
the time at which the first head occurs, and T2 the time the second head occurs,
etc. Clearly Tn(w) = Tn_ι(w(t + T)) + T(w). For each i there is a A:(w) such
that 7] (w) = SΛ(w). Let yπ(w) be the Λ(w)th center of w. Then ^; is the law of
Yx given that the Brownian motion starts at y. In other words

vy(f) = Ey{f(Yι)) whenever f^Γ(X).

By construction, the P^ law of w(T) (in other words the measure on M which
satisfies Έy(f(w(T))) = μ(f) for all bounded continuous functions on M) is
just

The point is the following. If μ0 = εy (or εv

yy if y e Λ'), and /xπ, τrt are defined
by the inductive process described at the beginning of the proof, then
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for all bounded continuous functions /. To see this we use the strong Markov
property. It suffices to see that if μn is any measure then

E*»(/(w(Γ Λ S^xiS, = T)) =

and

E""(/( W (ΓΛS 1 ) ) χ ( S 1 < Γ ) ) = μB

This was the point of stopping the paths with density

if they started at y e EX.
We now prove that the map w -> (ΪJ )/io does map P^ onto Q v. Because Q*

is determined by its finite dimensional distributions it is enough to prove that

P> (7 0 = y9 Yλ = x l 5. , Yn = xn) = vy{Xl)vXi(x2) rXtJxk)

for any y, x1, , x ί l e j f x Xn. Again we use induction and the strong
Markov property: suppose that for each k < n we have

= " , ( * ι > X l ( * 2 ) * * * vxk-X(
xk)*VχX

k

kU)-

Then we have the same relation for k = n. Let mk_ι = ^v(jc1)^ri(x2) ' '
vx (xk). Then by the strong Markov property and the result for k = n — 1,

because of the definition of Yv Tλ when w(0) e X Using the result in the case
k = 1 we have that this

This establishes the identity for all «. Putting/ = 1 we obtain

p> ( r 0 = >v ,yB = * J = wB = ^,(χ) • px,JχH).

The distance between the Brownian and discrete paths. Let us define a notion
of distance from a point of X. We will say that y is a distance at most n from x
if there are points (xk)" e X with xx = x such that EXn Π 3Fλ. t is always
nonempty and y e Fx . Put d(x, y) equal to the smallest possible of these n.
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Now consider a Brownian path w(/), and ask how close it stays to the path
(γn)™-o w h i c h i ι projects to in M X XN. Clearly, at Tn, d{w{Tn\ Yn) = 1 and
d(W{t\ x) < d(w(Sk\ x) + \ for any choice of Sk < t < Sk+ι. It follows that
the maximum distance that w gets from Yn between Tn and Tn+ι is at most one
more than the number of Sks that occur between the head which determined
Tn and that which determined Tn+ι. In other words if w is to get a distance
k + 1 away from 1̂  between Tn Tn+ι we must have a string of A: tails. The
probability of a tail is at most (1 - 1/C2). If we define

d H ( w , Y) = s u p { d ( w ( t ) 9 Yk): T k < t < Tk + ι } 9

then we have the following easy estimate.
Theorem. The probability that dn(w, Y) exceeds λ is at most 1 — (1 —

(1 - \/C2)λ)n. In particular if λ is large, 1 - (1 - (1 - l/C2)λ)n ~
n{\ - 1/C2)\

Proof. The sets where dn(w, Y) exceed λ, and the set of w where the first n
heads occur with no more than (λ — 1) tails interspersed between any two of
them, are mutually disjoint. It follows that the probability that the first event
occurs is at most 1 minus the probability that the second event occurs. At each
coin toss the probability is at least 1/C2 that it will be a head, this inequality
holding independently of the outcomes of the other tosses. The probability that
the first head comes on or before the λth toss is at most 1 - (1 - 1/C2)\
Repeating this estimate n times, and using the fact that the estimate holds
independently of the outcomes of the other tosses we obtain the result.

Most of the time the Brownian path and the discrete Markov chain stay
close together in this ball metric. It would not be surprising that the two
mirrored each other in other ways.

Theorem 6'. Providing the Vx's are a locally finite cover of M, the v-random

walk on X will be recurrent if and only if Brownian motion on M is recurrent.

Proof. Suppose first that M is recurrent. Fix a compact recurrent set K in
M for Brownian motion on M. Let F = {x e X: Vx n K Φ 0} . By hypothesis
F is finite. Now for some x in F there must be infinitely many k such that
w(sk-ι) e Ex> w(Sk) e dVx. But at each of these k there is a probability 1/C2

that Sk(w) = Tj(w) for some j , this lower bound on the probability being
independent of everything else. It follows that there are infinitely many k(j)
with w(Sk_ι) e Eχ9 Sk = Tj^ky But therefore Y}Γ = x infinitely often and the
Markov chain is recurrent.

Suppose now that M is transient. Clearly, for each x in X, w will almost
surely leave Vx for the last time τ(w). For all n such that Tn(w) > τ(w) it
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follows that Yn(w) Φ x. In other words Yn eventually leaves all finite sets with
probability one. Yn is transient.
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